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Abstract

Fault diagnosis in the presence of noise and model
errors is of fundamental importance. In the paper,
the meaning of fault isolation performance is for-
malized by using the established notion of coverage
and false coverage from the field of statistics. Then
formal relations describing the relationship between
fault isolation performance and the residual related
design parameters are derived. For small faults, the
measures coverage and false coverage are not ap-
plicable so therefore, a different performance crite-
ria, called sub-coverage, is proposed. The perfor-
mance of different AI-based fault isolation schemes
is evaluated and it is notably shown that the well
known principle of minimal cardinality diagnosis
gives a bad performance. Finally, some general
design guidelines that guarantee and maximize the
fault isolation performance are proposed.

1 Introduction
The FDI (Fault Detection and Isolation) problem, as often de-
scribed within the control community, is to detect and iso-
late any possible faults given sensor and actuator signals only.
A typical solution, see Gertler [1998]; Pattonet al. [2000];
Blankeet al.[2003], is to use a set of thresholded residuals to-
gether with a fault isolation scheme, which, based on the fact
that the thresholded residuals respond differently to different
faults, isolates the fault.

In a real application, there are typically model errors and
noise. This fact limits our ability to construct a diagnosissys-
tem that perfectly detects and isolates the present fault. How-
ever, there is also design freedom available such as the thresh-
old levels, the set of residuals to be included, and which iso-
lation strategy to use. Thus, under the premises of noise and
model errors, the design freedom should be utilized such that
the ability of detecting and isolating faults is optimized.

The discussion above reveals first of all, that there is a need
for an exact measure of FDI performance. Secondly, it is
important to understand how this FDI performance changes
when different design parameters are changed. In the litera-
ture, only a few studies have addressed these issues. In Ny-
berg [1999], FDI performance was studied in the framework
of structured hypothesis tests. In Cordieret al. [2004] these
issues were posed as open questions.

In several works, e.g. Nyberg and Krysander [2003]; Ploix
et al. [2003]; Cordieret al. [2004], it has been recognized that
fault isolation in FDI can be solved by using algorithms de-
veloped within the field of AI, see Kleer and Williams [1987];
Reiter [1987]. Advantages of these AI algorithms, compared
to their counterpart from the control community, e.g. Gertler
[1998], are that they can easily handle multiple faults and their
computational efficiency. Because of these advantages we
have in the present paper chosen to focus entirely on fault iso-
lation algorithms from AI. However, the results can be easily
generalized to cover fault isolation techniques from the con-
trol community such asstructured residualsGertler [1998].

In the paper, a first contribution is to formalize what we
mean by FDI performance, especially for noisy and uncer-
tain systems. For this we use the established notion ofcov-
erageandfalse coveragefrom the field of statistics. Then as
a second contribution, we derive formal relations describing
the relationship between FDI performance and the residual re-
lated design parameters. Further it is noted that a different
performance criteria is needed for the smallest faults, andwe
therefore introduce a third performance measure calledsub-
coverage. We then discuss the intrinsic FDI performance of
different AI-based fault isolation schemes. It is notable that
the well known principle ofminimal cardinality diagnosis
gives a bad performance for the the smallest faults. Based
on the performance measure and investigations, we develop
some general design guidelines that, if followed, guarantee
and maximize the fault isolation performance. Finally we il-
lustrate the theory and the guidelines on a small application
example.

2 Stochastic view on diagnosis

In many papers, both from the control community Gertler
[1998]; Pattonet al. [2000]; Blankeet al. [2003] and espe-
cially in AI Kleer et al. [1992]; Cordieret al. [2004], the sys-
tems to be diagnosed are assumed not to contain noise. This
means that an observation in the model is either deterministic
given the states, or completely unknown, depending on if a
fault is present and also which fault that is present. The view
taken here is that a system contains stochastic parts which im-
plies that, given the states, observations have probability dis-
tributions rather than exact values. Based on this idea we will
below give a basic stochastic framework for diagnosis.



2.1 The System

The system to be diagnosed consists of a number of compo-
nents, and we assume here that the behavioral mode of a com-
ponent is either non-faulty or faulty, abbreviatedNF andF
respectively. The behavioral mode of the complete system,
called system behavioral modeor simply mode, can be de-
scribed by a vector of length equal to the number of compo-
nents, e.g. in a system with 5 components the system behav-
ioral mode could be[NF,F,NF,NF, F ].

Further, we assume that the system has a vector-valued tra-
jectoryz which is possible to observe. The vectorz includes
measured sensor values and actuated control values.

2.2 The Diagnosis System

We consider adiagnosis systemto be a system that takes an
observationas input and computescandidates, i.e. a setC of
system behavioral modes, as output. The candidate setC is
assumed to be a function of the observation and supposed to
be the system behavioral modes that are likely explanationsof
the observation.

Formally we define observation as follows.

Definition 1 (Observation) An observationzT of z is sam-
ples ofz at times specified by the index setT .

Here we assumeT to be a finite set. Examples ofT areT =
{0} andT = {0, 1, 3}.

Since we have a stochastic view on diagnosis, we consider
zT to be a random variable. For each system behavioral mode,
we assume thatzT has exactly one given pdf (probability den-
sity function), denotedfb(zT ). Later in Section 6 we will
relax this assumption. Since the candidate setC is a function
of the observationzT , alsoC is a random variable which for
each mode will have a unique pdf.

3 Statistical Performance Measures of
Diagnosis Systems

Two performance measures of set estimators known from sta-
tistical decision making theory Casella and L.Berger [1990]
will here be introduced as performance measures for diagnosis
systems regarding their fault isolation capability. Note that in
these performance measures, fault detection becomes a special
case of fault isolation so we will refer only to fault isolation
performance from now on.

3.1 Coverage Probability

Suppose that we want to diagnose a system that is operating in
an unknown mode. It is almost never possible for a diagnosis
system to exactly determine the present mode. A more real-
istic objective is that the candidate setC should at least with
some high probability contain the present mode and the first
performance measure formalizes this idea.

Definition 2 (Coverage Probability) Given a diagnosis sys-
tem computing the candidate setC, thecoverage probability
is a function ofb given by

P (b ∈ C |b) (1)

Practical Relevance of Coverage

LetNF denote the fault free system behavioral mode. False
alarm can formally be described as the negation of coverage
with respect to the modeNF. Thus the probability of false
alarm becomesP (NF 6∈ C |NF). False alarms lead to ex-
pensive and unnecessary troubleshooting. Further, they de-
grade both the perceived product quality and the confidence
in the diagnosis system. Therefore false alarms are in general
not accepted in industrial applications.

Consider next the eventb 6∈ C in the case that the present
mode isb whereb 6= NF. If the user of the diagnosis result
takes action based on the fact thatb can not be the present
mode, severe and expensive mistakes might be done. For ex-
ample, if a repair technician excludes the possibility thatb is
the present mode, he will replace non-faulty parts and stillnot
succeed with his repair mission.

From this discussion it is clear that lack of coverage is in
general not acceptable in industrial applications.

3.2 False Coverage Probability
It is not sufficient to evaluate the isolation performance of
a diagnosis system by using only its coverage probabilities.
For example, a diagnosis system that always outputs that all
system behavioral modes are candidates would have coverage
probability 1 for all modes. Ideally we also want the candidate
setC to exclude all modes that are not the present mode.

Definition 3 (False Coverage Probability)Given a diagno-
sis system computing the candidate setC, the false coverage
probabilityis a function ofb andb′ given by

P (b′ ∈ C |b), whereb′ 6= b (2)

Note that, in contrast to coverage probability which is a
function defined on the set of all modes, the false coverage
probability is a function defined on the set of all non-equal
pair of modes.

Practical Relevance of False Coverage

False coverage means thatb′ ∈ C even though another
modeb is the present one. This is of course not a desired sit-
uation since it implies that the user of the diagnosis resulthas
to undertake unnecessary safety or repair actions or to convey
further analysis to exclude the modeb′. However we consider
it not as serious as lack of coverage.

4 Diagnosis Systems using AI-Based Fault
Isolation

As said in the introduction, we consider diagnosis systems
consisting of a set of diagnostic tests together with a faultiso-
lation scheme using techniques from the field of AI. Further,
we consider diagnostic tests in the view of hypothesis testing
in accordance with Nyberg [1999]. It should be noted that this
view is compatible with traditional fault isolation techniques
from both FDI and AI, see Cordieret al. [2004].

The main idea is the following. Each diagnostic testδk is
a hypothesis test with a null hypothesisHk

0 and a rejection
regionRk. The diagnostic test takes an observationzT as
input and generates a binary decision as output as follows. If
zT ∈ Rk, thenHk

0 is rejected, otherwiseHk
0 is not rejected.

The null hypothesisHk
0 is here represented as a set of system



behavioral modes. When the null hypothesis is rejected, the
conclusion from the diagnostic test is that none of the modes
in Hk

0 is the one that has generated the observationzT , i.e.

the present mode must be in the complement setHk
0

C
. Using

AI terminology, a rejected null hypothesisHk
0 is a so called

conflict.
In the isolation scheme, the conclusions from the individual

diagnostic tests are merged. In its simplest form, the isolation
scheme is a simple intersection of the conclusions from the
tests, i.e.

C =
⋂

k
Hk

0
is rejected

Hk
0

C
(3)

This principle has been used in both FDI and AI Nyberg
[1999]; Cordieret al. [2004] even though more efficient rep-
resentations and computations have been utilized.

For an example, letF2 denote the system behavioral mode
with a fault in component 2 only, letF12 denote the sys-
tem behavioral mode with faults in components 1 and 2 only,
etc. Then consider the following table which we calldecision
structure:

NF F1 F2 F3 F12 F23 F13 F123

δ1 0 X X 0 X X X X
δ2 0 X 0 0 X X X X
δ3 0 0 X X X X X X

(4)
A 0 in row i and columnj means that the mode of columnj
is a member of the null hypothesis of the test corresponding to
row i, i.e. Hi

0. Assume thatF2 is the present mode and that
the null hypotheses of the testsδ1 andδ3 have been rejected.
Then, according to (3),

C = H1

0

C
∩H3

0

C
=

= {F1,F2,F12,F23,F13,F123}∩

{F2,F3,F12,F23,F13,F123} =

= {F2,F12,F23,F13,F123} (5)

A problem with the fault isolation scheme (3), and as seen
even in this small example, is that the candidate setC will in
general be very large and include many other modes in addi-
tion to the present one. This problem is well known and has in
the field of AI been solved by, in a second step1, filtering out
less likely modes fromC. This is often calledfocusingand is
based on the idea of a preference relation≤p defined on the
set of system behavioral modes.

For example, in (5), if single faults are preferred over mul-
tiple faults, the result is a focused set of candidatesCF =
{F2}, which is actually the perfect result sinceF2 was the
mode assumed to be present. Formally, the setCF can be de-
fined as

CF = {b ∈ C | ¬∃b′ ∈ C : b′ >p b} (6)

The preference relation≤p can be defined using different prin-
ciples of which the concepts ofminimal diagnosesKleer and
Williams [1987]; Reiter [1987]; Hamscheret al. [1992] and
minimal cardinality diagnosesTuhrim et al. [1991] are the

1Note that computationally, this filtering (i.e. focusing) does not
necessarily need to be implemented as a second step.

two most common. In Section 7, these preference relations
and also the case without focusing, i.e. (3), will be compared
with respect to the fault isolation performance measures pre-
sented in Section 3.

5 Bounds for the Performance Measures
In this section we will present bounds for the performance
measures presented in Section 3. The idea of these bounds
is to estimate the performance measures (1) and (2) by using
only the performance of the individual diagnostic tests. The
performance of each diagnostic test is specified in terms of the
probabilityP (rejectHk

0 | b) which, in the field of statistics, is
calledpower functionCasella and L.Berger [1990]. For con-
venience we will use the shorter writingP (rejk | b).

The rationale behind bounds of this type is that the design
freedom in designing diagnosis systems of the type described
in Section 4 lies in the selection and construction of the diag-
nostic tests. Thus, it is critical to know the relationship be-
tween the performance of the individual tests and the perfor-
mance of the complete diagnosis system. By utilizing these
bounds, performance requirements on the individual tests can
be derived from diagnosis-system performance requirements.

In the bounds we will use the notationΩb for the index set
of tests which contain modeb in its null hypothesis, i.e.

Ωb = {i|b ∈ Hi
0} (7)

In the decision structure,Ωb is the rows with 0 in columnb.
For example, in (4),ΩF3 = {1, 2}.

Basic probability theory gives the general relationsP (A)+
P (B)−1 ≤ P (A∧B) ≤ min(P (A), P (B)) andmax(P (A),
P (B)) ≤ P (A∨B) ≤ P (A)+P (B) for two arbitrary events
A andB. Using these relations we can derive the bounds given
in the following theorem.

Theorem 1 LetB be the set of modes that are more preferred
than modeb, i.e. B = {b̄|b̄ >p b}. If Ωb̄ ⊆ Ωb for some
b̄ ∈ B, then

P (b ∈ CF | b′) = 0 (8)

for all b′. Otherwise, for modeb′ it holds that

1 − |B| −
∑

k∈Ωb

P (rejk|b
′) +

∑

b̄∈B

max
j∈Ω

b̄
\Ωb

P (rejj |b
′)

≤ P (b ∈ CF | b′) ≤

min
(

1 − max
k∈Ωb

P (rejk|b
′), min

b̄∈B

∑

j∈Ω
b̄
\Ωb

P (rejj |b
′)
)

(9)

The proof of Theorem 1 as well as all other results in the pa-
per can be found in Nyberg and Krysander [2007]. Note that
no assumption about the correlation between the response of
different tests has been made in the theorem above.

From Theorem 1 a number of bounds can be derived both
for coverage probability and false coverage probability. For
example if a bound for coverage probability in the case of no
focusing is needed, letb = b̄ andB = ∅.

Later in the paper we will use the following simplified upper
bound for false coverage probability.

Corollary 1 (False Coverage Probability) It holds that

P (b ∈ CF | b′) ≤ 1 − max
k∈Ωb

P (rejk|b
′) (10)



Next, by using the assumption

P (rejk|b) = 0, for all b ∈ Hk
0 (11)

a simplified lower bound for coverage probability can be de-
rived. Note that (11) implies that we assume that the false
alarm probability is zero.

Corollary 2 (Coverage Probability) Assume that(11) holds
and letB be defined as in Theorem 1. IfΩb̄ ⊆ Ωb for some
b̄ ∈ B, then

P (b ∈ CF | b) = 0 (12)

for all b. Otherwise, it holds that

1 − |B| +
∑

b̄∈B

max
j∈Ω

b̄
\Ωb

P (rejj |b) ≤ P (b ∈ CF | b) (13)

6 Relaxing the Assumption of Unique
Distributions

In Section 2.1 we assumed thatzT , and consequentlyC and
CF , have exactly one given pdf for each modeb. This assump-
tion is quite restrictive since it requires that the behavior of a
fault is relatively well known. Thus it is desirable to relaxthis
assumption. We do this here by assuming that for a specific
modeb, the random variablezT has a pdf in a setΦb.

The next issue is the performance measures presented in
Section 3. For example, the coverage probabilityP (b ∈ CF |b)
is no longer well defined since the fact thatb is the true mode
does not give a single distribution forzT and consequently not
for CF . Our solution to this problem is to instead consider a
coverage probability conditioned on one specific distribution
in the setΦb. Thus we write

P (b ∈ CF |zT ∼ fb(zT )) fb(zT ) ∈ Φb (14)

For convenience we will mostly writeP (b ∈ CF |fb(zT ))
instead of (14). When using the coverage probability mea-
sure (14), and only the setΦb is specified, we do not get a
single coverage probability for a specific modeb but instead a
set, possibly infinite, of coverage probabilities. Thus, the next
question is how to use such a performance measure.

First, note that a modeb may contain both small and large
faults. For example consider the mode bias of a sensor. There
are both small biases, close to zero and large ones. Because we
consider stochastic noisy systems, it is not realistic to require
good performance for both small and large faults. For exam-
ple to require that the diagnosis system detects and uniquely
isolates a very small bias is not realistic, but it may be realistic
to require both good detection and isolation for large biases.
Thus, the required performance of a diagnosis system need
to be formulated differently for small and large faults respec-
tively.

Formally, we start by partitioning the setΦb into two sub-
setsΦsig

b and Φinsig
b , representingsignificant faultsand in-

significant faultsrespectively. We will below use different
performance requirements for these two sets. The idea of this
partitioning is thatΦsig

b contains the pdf’s of those faults that
are critical to detect and isolate. The setΦinsig

b is then the
pdf’s of the faults that neither need to be detected or isolated.

Note that the partitioning into significant faults and insignif-
icant faults may be the result of an FMEA. Typically small

faults are classified as insignificant and large as significant but
in pricniple this must not be true. For instance, it can very well
be the case that the set of significant faultsΦsig

b contains some
very small faults, even though this probably makes it harderto
design a diagnosis system that fulfills requirements associated
with the significant faults.

6.1 Performance Measures for Significant Faults
For each pdf belonging toΦsig

b , we use the following measures
corresponding to coverage and false coverage probability re-
spectively:

P (b ∈ CF | fb(zT )) (15)

P (b′ ∈ CF | fb(zT )) b′ 6= b (16)

Still, the number of performance measures will typically be
infinite. A solution to handle this is given later, together with
the application example, in Section 9.

6.2 Performance Measure for Non-significant
Faults

For the distributions belonging toΦinsig
b , we use another per-

formance measure. To explain this, assume that the present
fault in the system is insignificant, i.e. associated with a dis-
tribution in Φinsig

b . Then if NF is not present inCF , i.e. a
clear indication of that the system is faulty, then a reasonable
requirement is that at least some mode inCF should indicate
that there is a fault in some of the components that are indeed
faulty. If this would not be the case,CF would indicate a fault
but only in a part of the system not related to the present fault,
which would for example completely mislead a mechanic try-
ing to repair the system.

To achieve this, we will, for modes inΦinsig
b , not aim at

strict coverage. Instead we aim only for something that we
will call sub-coverage. Further we do not care about false
coverage at all which means that ifb is the present mode, it is
acceptable to also have other modesb′ included inCF .

The idea of sub-coverageis that we consider it fully
acceptable to say that a component is non-faulty even
though it is faulty. For example, ifb = [NF,F,NF, F ]
is the present mode andzT has a distribution belong-
ing to Φinsig

b , it is acceptable if [NF,F,NF, F ] 6∈
CF as long as[NF,NF,NF, F ], [NF,F,NF,NF ], or
[NF,NF,NF,NF ] belong toCF .

To formalize this, useψi to denote the behavioral mode
of the i:th component which means thatb can be written as
b = [ψ1, ψ2, . . . , ψn]. Then let≤O be a relation2, defined on
the set of system behavioral modes, such thatb′ ≤O b, where
b′ = [ψ′

1, ψ
′
2, . . . , ψ

′
n], if and only if ∀i ∈ {1, 2, . . . n} : ψ′

i =
NF ∨ ψ′

i = ψi. By using this relation we replace the perfor-
mance measure of coverage probability (15) with a measure
that we callsub-coverage probability:

P (∃b̄ ∈ CF : b̄ ≤O b | fb(zT )) (17)

6.3 Bounds for Sub-Coverage
The aim now is to derive a useful bound for the probability
of sub-coverage. We do this for the special case when the
preference relation≥p is such thatb′ ≥p b impliesb′ ≤O b.

2If system behavioral modes are represented by their sets of faulty
components the relation≤O is equivalent to the subset relation.



Theorem 2 If the preference relation≥p is such thatb′ ≥p b
impliesb′ ≤O b, then for anyfb(zT ) ∈ Φb, it holds that

P (∃b̄ ∈ CF : b̄ ≤O b | fb(zT )) ≥ P (b ∈ C | fb(zT )) (18)

PROOF If b ∈ C then there is a modeb′, whereb′ ≥p b,
andb′ ∈ CF . Since it holds thatb′ ≥p b implies b′ ≤O b, it
follows that

∃b̄ ∈ CF : b̄ ≤O b (19)

Thus, we have proven thatb ∈ C implies (19). This fact means
that (18) holds trivially. �

As seen this theorem shows that if we aim for coverage in
C we get also sub-coverage.

7 Comparison of Focusing Principles
In this section we will compare the diagnosis system perfor-
mance when using minimal and minimal cardinality diagnosis
as focusing strategies and also the case without focusing. We
use the performance measures defined in the previous section,
i.e. coverage, false coverage, and sub-coverage. For sake of
simplicity, we assume that (11) holds.

7.1 No Focusing
First, consider the strategy to not use focusing, i.e.CF = C.
Since we assume that (11) holds, the bound (13) withB = ∅
gives directly thatP (b ∈ CF |fb(zT )) = 1. SinceCF ⊆
C alsoP (b ∈ C|fb(zT )) = 1, which implies, according to
Theorem 2, that alsoP (∃b̄ ∈ CF : b̄ ≤O b | fb(zT )) = 1.
Thus both coverage and sub-coverage are guaranteed.

In general, false coverage can not be avoided. A typical ex-
ample is if[F,NF,NF ] is the present mode. Then, assuming
we have coverage, it holds that[F,NF,NF ] ∈ C but also that
[F, F,NF ] ∈ C since it is typically not possible to construct a
diagnostic test which responds to the mode[F,NF,NF ] but
not to[F, F,NF ]. Such a response would require that the sec-
ond fault always compensates for the first one, something that
is a rare situation in most real systems. Therefore, ifb is the
present mode, and we have coverage, all modesb̄ ≥O b will in
the generic case be part ofCF . Thus, we can not avoid false
coverage.

7.2 Focusing
We saw in the previous section that the strategy of no focusing
gives perfect performance with respect to coverage and sub-
coverage, but very bad false coverage performance. The bad
false coverage performance is the reason why focusing is used
and we will in this section quantify how focusing improves
the false coverage performance but also how the coverage per-
formance is reduced if no special care is taken. We will later,
in Section 7.3 and 7.4, see also that the sub-coverage perfor-
mance may be severely affected depending on the actual fo-
cusing strategy chosen.

First consider the coverage probability. IfNF is more pre-
ferred than any other mode, which should hold in any sensible
focusing strategy, coverage in the case the present mode is
NF is guaranteed from the bound (13) since the setB will be
empty and we assume that (11) holds. For other modes, we do
not get coverage automatically. When modeb is present, we
need the tests to respond in a way such that all modesb̄ >p b

are eliminated fromCF . A sufficient condition to achieve cov-
erage with high probability is obtained from the bound (13).
This relation says that for each̄b >p b it is sufficient to have
one test that responds tob but not tob̄ with high probability.
Then the sum will be close to|B| which implies that the bound
becomes close to 1. Thus, the selection and design of a set of
tests with this property for all significant faults is critical to
obtain high coverage probability.

As said above, the only reason to use focusing is to lower
the probability of false coverage. Given a modeb, consider
the modes̄b for which it holds that̄b <p b or b̄ >p b. For these
modes it holds thatb ∈ CF implies b̄ 6∈ CF . Therefore we
haveP (b̄ 6∈ CF |fb(zT )) ≥ P (b ∈ CF |fb(zT )). Thus, if we
aim for high probability of coverage ofb, which is of primary
importance, we get also low false coverage probability of the
pair (b̄, b).

Next, if b̄ ≮p b andb̄ ≯p b, low false coverage probability
can be guaranteed via the upper bound in (9) or the simplified
bound (10). If the simplified bound is used, it tells us that a
sufficient condition to get low false coverage probability is to,
for each modēb whereb̄ ≮p b andb̄ ≯p b, have one test with
b̄ ∈ Hk

0 and which responds with high probability whenb is
present.

7.3 Minimal Diagnoses

Now consider the case of focusing by means of the princi-
ple of minimal diagnosesKleer and Williams [1987]. This
principle says that≥p=≤O. That means for example that
if [F,NF,NF ] ∈ C and [F, F,NF ] ∈ C, the mode
[F,NF,NF ] is preferred and thus,[F, F,NF ] 6∈ CF . The
underlying idea of this focusing principle is that if a diagnosis
system says that mode[F,NF,NF ] is consistent with obser-
vations, there is no reason to believe that the a-priori much
less probable mode[F, F,NF ] is the present mode.

All discussions in Section 7.2 regarding coverage and false
coverage performance are valid for the case minimal diagno-
sis focusing. In addition we can note that, as a direct conse-
quence of Theorem 2, the probability of sub-coverage is al-
ways greater than the coverage probability when minimal di-
agnoses focusing is used.

7.4 Minimal Cardinality Diagnoses

Next consider the focusing strategyminimal cardinality. This
principle says thatb1 ≥p b2 if the number of faulty com-
ponents inb1 is less or equal to the number of faulty com-
ponents inb2. For example,[F,NF,NF ] >p [NF,F, F ].
As in the case of minimal diagnosis focusing, all discussions
in Section 7.2 regarding coverage and false coverage perfor-
mance are valid for the case of minimal cardinality diagnosis
focusing. However, there is an important difference regard-
ing sub-coverage, something that is revealed by the following
example. Assume that we have a diagnosis system with the
following decision structure and that each testδk is designed
to respond to the mode of a column if the row contains anX
in the column.

NF F1 F2 F3 F12 F23 F13

δ1 0 X X 0 X X X
δ2 0 X 0 X X X X
δ3 0 0 X X X X X

(20)



Assume the modeF23 is present with an insignificant fault
and because the fault is small, only testsδ1 andδ2 respond.
This implies thatC = {F1,F12,F23,F13}. Minimal car-
dinality focusing givesCF = {F1}. It is obvious that sub-
coverage is not obtained. Note that in the case of minimal
diagnosis focusing, sub-coverage is obtained (even coverage)
sinceCF = {F1,F23}.

The important conclusion of this study is that if an insignif-
icant fault is present, we have no control of whether tests re-
spond or not, and thus we can not guarantee any level of sub-
coverage probability when using minimal cardinality focus-
ing.

8 Guidelines for Design of Diagnosis Systems
In Section 6 we have presented three fault-isolation
performance-measures: coverage probability, false coverage
probability, and sub-coverage probability. In this section we
aim at giving some general design guidelines such that de-
sired performances with respect to these three measures are
obtained or maximized. First however we give some general
presumptions as a starting point.

In Section 3.1 it was argued that lack of coverage can not
be accepted in industrial applications. Therefore, but also to
make our analysis tractable, we decide to aim for coverage
probability one, i.e.P (b ∈ CF |fb(zT )) = 1 for significant
faults.

In Section 3.2 it was argued that false coverage is not as se-
rious as lack of coverage. Therefore, and because we would
often get an unsolvable problem if we would require false
coverage with probability zero, we will not aim atP (b̄ ∈
CF |fb(zT )) = 0 when b̄ 6= b and the faultb is significant.
Instead we aim atP (b̄ ∈ CF |fb(zT )) ≤ ǫ whereǫ may be
fixed or dependent on the pair(b̄, b).

We assume that the diagnosis system design starts with a
default set of diagnostic tests where each testδk has a residual
generatorrk and a setHk

0 . This situation is common for ex-
ample if the diagnosis system design starts with a search for
residual generators via structural analysis Krysander [2006].

The design freedom then consists of: (i) selecting the re-
jection region, i.e. the threshold and possibly some residual
filtering, of each testδk, (ii) from the default set select testsδk
to be included in the diagnosis system, and (iii) to select the
focusing strategy.

8.1 Selection of Rejection Region
A necessary requirement for coverage is thatP (b ∈
C|fb(zT )) = 1 and from Theorem 1, it can be shown that
a necessary and sufficient condition to achieve this is that the
rejection region, for each diagnostic testδk, fulfills

P (rejk|fb(zT )) = 0 for all b ∈ Hk
0 (21)

This rule is, as seen in Section 7.2, however not sufficient to
obtain coverage in the case when focusing is used. Whenb̄ ≥p

b, coverage can only be guaranteed if we also have at least one
test that responds tob but not to b̄. Further, from (10) it is
clear that also to obtain low false coverage probability, itis
important to have tests that responds as much as possible to
modesb 6∈ Hk

0 . These facts means that we must follow the
constraint (21) but in addition, it is in general advantageous to
maximize the probabilityP (rejk|fb(zT )). This leads us to our
first design guideline:

G1. For each diagnostic testδk, select the maximal rejection
region such thatP (rejk|fb(zT )) = 0 for all modesb ∈

Hk
0 and all distributionsfb(zT ) ∈ Φinsig

b ∪ Φsig
b .

8.2 Selection of Diagnostic Tests to Include
Following design guideline G1 is necessary to obtain coverage
but as seen in Section 7.2 not sufficient if focusing is used. As
was stated above, a sufficient condition is to, for each pair of
modes such that̄b >p b, have at least one test that responds
to b with probability one but not tōb. From Section 7.2 it has
already been concluded that if coverage of ab is secured, we
only have to consider false coverage of modesb̄ wherēb ≮p b

andb̄ ≯p b. This leads us to our next design guideline:

G2. For each pair of modes(b̄, b), make sure that for all dis-
tributionsfb̄ ∈ Φinsig

b̄
∪ Φsig

b̄
andfb ∈ Φsig

b there is,
included in the diagnosis system, at least one testδk such
that b̄ ∈ Hk

0 , P (rejk|fb̄(zT )) = 0, and

a) P (rejk|fb(zT )) = 1 if b̄ >p b

b) P (rejk|fb(zT )) ≥ 1 − ǫ if b̄ 6<p b andb̄ 6>p b

8.3 Selection of Focusing Strategy
Note that a consequence of the discussion in Section 7.1 is
that fulfillment of guideline G2 is in general not possible if
we don’t use a focusing strategy. This implies that, of the
three choices of no focusing, minimal diagnoses, and minimal
cardinality diagnoses, we have to use minimal diagnoses or
minimal cardinality diagnoses.

We have seen in Section 7 that the choice of focusing
method affects the ability to obtain sub-coverage. Of the two
choices left, i.e. minimal diagnoses and minimal cardinality
diagnoses, minimal diagnosis is the best choice since it guar-
antees high sub-coverage probability when we have high cov-
erage probability. This is our final design guideline:

G3. Use the focusing strategyminimal diagnoses.

8.4 Summarizing Theorem
We end this section by summarizing the discussion in a theo-
rem.

Theorem 3 If guidelines G1, G2, and G3 are followed, we
obtain a diagnosis system where:

a) P (b ∈ CF |fb(zT )) = 1 for all fb(zT ) ∈ Φsig
b and for all

b, i.e. coverage is guaranteed for all significant faults,

b) P (∃b̄ ≤O b : b̄ ∈ CF | fb(zT )) = 1 for all fb(zT ) ∈

Φinsig
b and for all b, i.e. sub-coverage is guaranteed for

all insignificant faults,

c) P (b′ ∈ CF | fb(zT )) ≤ ǫ for all fb̄ ∈ Φinsig

b̄
∪ Φsig

b̄

andfb ∈ Φsig
b and for all pairs(b̄, b), i.e. false coverage

probability less thanǫ is guaranteed.

Further, no other choice of rejection region for each test gives
strictly better performance in all measures of coverage, sub-
coverage, or false coverage probability.

9 Example
Consider a system with a pumpP and two sensorsS1 andS2.
The angular velocityx of the pump is measured by sensorS1.
The angular velocity determines the output pressure which is



measured by sensorS2. The measurement signals are denoted
y1 andy2 respectively. All three components are assumed to
be either in a non-faultyNF or faulty modeF . The system
behavioral modes are denoted by their faulty components, e.g.
S1 means the mode where only the sensorS1 is faulty.

Next, we assume that the following model is available:

P = NF → ua = u (22a)

ẋ = f(x) + ua (22b)

S1 = NF → y1 = x (22c)

S2 = NF → y2 = g(x) (22d)

S2 = F → y2 = g(x) + c (22e)

wherec is an unknown constant. Even though not written out
explicitly we assume that all equations also are affected by
noise terms with unspecified pdf’s. Note that, and as will be
shown below, it is for our purpose not important to know these
unspecified pdf’s explicitly.

According to our framework, the set of pdf’sΦb, for each
modeb, is assumed to be partitioned into two setsΦsig

b and
Φinsig

b . However, in this example, these sets are not speci-
fied explicitly. Instead we pick out, from each setΦsig

b , a pdf
f∗

b (zT ) that represents abenchmark fault. Then the bench-
mark fault is defined explicitly and we assume that the pdf
f∗

b (zT ) is representative for the whole setΦsig
b in the sense

that for eachfb(zT ) ∈ Φsig
b it holds thatP (rejk|fb(zT )) ≥

P (rejk|f
∗
b (zT )) for all k.

It is assumed that only modesP, S1, S2, andS1S2 are
important to detect and isolate and thus, only these are consid-
ered to have significant faults and consequently also bench-
mark faults. The benchmark fault for modeP is defined by
replacing equation (22a) byua = u+ ∆umin, and the bench-
mark fault for modeS1 is defined by replacing equation (22c)
by y1 = x + amin. Further the benchmark fault for modeS2

is defined byc = cmin. Finally, the benchmark fault for mode
S1S2 is the combination of the benchmark faults forS1 and
S2.

Next, structural analysis, see Krysander [2006], is used to
find the equation sets that can be used to derive residual gen-
erators and their corresponding null hypotheses. The result is
that 7 sets are found and the decision structure for potential
testsδk, to be constructed from these equation sets found, is
the following.

equation set NF P S1 S2 S1S2

δ1 (22a), (22b), (22c) 0 X X 0 X
δ2 (22a), (22b), (22d) 0 X 0 X X
δ3 (22c), (22d) 0 0 X X X
δ4 (22a), (22b), (22c), (22d) 0 X X X X
δ5 (22a), (22b), (22e) 0 X 0 0 0
δ6 (22c), (22e) 0 0 X 0 X
δ7 (22a), (22b), (22c), (22e) 0 X X 0 X

(23)

In the decision structure above only modes which have sig-
nificant faults are shown. All other multiple-fault modes have
X :s only in their columns.

9.1 Diagnosis System Design
Now we have all the elements needed to start the design of
the diagnosis system. By following guideline G3 we will use

the focusing strategy minimal diagnoses. By using guideline
G2 we will now describe how to, from the list of potential
tests (23), select a subset of tests∆ to be included in the diag-
nosis system.

Given the focusing strategy and the significant faults con-
sidered, it follows that there is one requirement in guideline
G2a for each pair inRa = {(NF,P), (NF,S1), (NF,S2),
(NF,S1S2), (S1,S1S2), (S2,S1S2)} and in guideline G2b,
one for each pair inRb = {(S1,S2), (S1,P), (S2,P),
(S2,S1), (P,S1), (P,S2), (P,S1S2), (S1S2,P)}.

To illustrate how to fulfill these requirements, consider the
pair (S2,S1S2) ∈ Ra. To fulfill guideline G2 for(S2,S1S2)
we need a test whereS2 ∈ H0

k . Potential tests fulfilling this
are testsδk indexed{1, 5, 6, 7}. Note that, since we intend to
follow guideline G1, it will hold thatP (rejk|fS2

(zT )) = 0
for any testδk, k ∈ {1, 5, 6, 7}, if included in the diagnosis
system. If we choose to includeδ5, a consequence of ful-
filling G1 is also thatP (rej

5
|fS1S2

(zT )) = 0. This implies
that, since we are looking for tests that fulfill G2a for the pair
(S2,S1S2), there are only the potential tests{1, 6, 7} left.
Thus to fulfill guideline G2a for(S2,S1S2) we would need
at least one of the potential tests inπ1 = {1, 6, 7} to be in-
cluded in the diagnosis system.

For all other pairs inRa ∪ Rb, setsπi of potential tests
are obtained in the same way. A necessary requirement for a
diagnosis system with tests∆ to fulfill G2, is that the set∆
has a non-empty intersection with all setsπi.

By applying a minimal hitting set algorithm Kleer and
Williams [1987], we get that the minimal test sets are
{1, 2, 3, 5}, {2, 3, 5, 6}, and{2, 3, 5, 7}. Hence a set of tests
∆ included in a diagnosis system fulfilling G2 must neces-
sarily be a superset of some of these minimal test sets. This
is however not sufficient since both G2a and G2b specify re-
quirements onP (rejk|fb(zT )) for all fb ∈ Φsig

b .
Assume that we decide to investigate if the minimal test

set{1, 2, 3, 5} fulfills the requirement onP (rejk|f
∗
b (zT )) for

all pairs in Ra ∪ Rb. For this set, all requirements on
P (rejk|f

∗
b (zT )) specified by G2a and G2b correspond to non-

zero entries in the following table.

NF P S1 S2 S1S2

δ1 0 p1 p4 0 1
δ2 0 p2 0 p6 1
δ3 0 0 p5 p7 p8

δ5 0 p3 0 0 0

(24)

Then from guidelines G2a and G2b we can derive the re-
quirements thatmax(p1, p2, p3) = 1, max(p4, p5) = 1,
max(p6, p7) = 1, andpi > 1 − ǫ for all i = 3, . . . 8. The
constantǫ is the guaranteed false coverage probability that in
this example is chosen asǫ = 0.1.

The next step is to construct residual generators for the se-
lected equation sets and investigate if the requirements in(24)
are achievable by filtering and thresholding of these residu-
als. Observer based residual generators are derived fork =
{1, 2, 5} and a static residual generator is derived using equa-
tion set3 in (23). Then the pdf’sf∗

b (zT ) corresponding to
the benchmark faults are estimated using data from the real
process. These estimated pdf’s are then used for selecting,
by means of thresholding and filtering, the rejection regionin
accordance with G1.



Assume that there are thresholds for the residuals such that
the following performanceP (rejk|f

∗
b (zT )) for the benchmark

faults has been confirmed:

NF P S1 S2 S1S2

1 0 1 1 0 1
2 0 0.8 0 1 1
3 0 0 0.95 0.97 0.98
5 0 0.9 0 0 0

(25)

By using this matrix, the bounds forP (b ∈ C|b′) in Theo-
rem 1, whereb′ corresponds to the rows andb to the columns,
are:

NF P S1 S2 S1S2

NF 1 0 0 0 0
P 0 1 [0 0.1] 0 [0 0.1]
S1 0 [0 0.05] 1 0 0
S2 0 [0 0.03] 0 1 0
S1S2 0 [0 0.02] 0 0 1

The interpretation of the first row is that, when the present
mode isNF thenCF = {NF} with probability 1. In row 3,
we can see that whenS1 is the present mode thenS1 ∈ CF but
P will also be included inCF with a probability less than0.05.
No other modes will be included inCF . All diagonal elements
are 1, i.e. complete coverage of all significant faults have been
obtained. All non-diagonal elements are less or equal to 0.1
and this means that the false coverage probability is less than
10%. In fact, the false coverage probability is better than the
guaranteed 10% for all modes except forP .

10 Conclusions
The first contribution of the paper is the formalization of “fault
isolation performance” in noisy and uncertain systems. For
this we have used the established notion ofcoverageandfalse
coveragefrom the field of statistics. Further it has been noted
that a different performance criteria is needed for insignifi-
cant faults, and we have therefore introduced the third perfor-
mance measuresub-coverage. We have also derived formal
relations describing the relationship between fault isolation
performance and the null-hypotheses and rejection regionsof
the tests. Further, the intrinsic fault isolation performance of
different AI-based fault isolation schemes has been evaluated
and it has notably been concluded that the well known princi-
ple of minimal cardinality diagnosisgives a bad performance
for the case of small faults. Finally, based on the performance
measure and investigations, we have developed some general
design guidelines that, if followed, guarantee and maximize
the fault isolation performance.
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