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ABSTRACT

Structural methods have previously been
used to perform isolability analysis and find-
ing testable sub-models, so called Minimal
Structurally Overdetermined (MSO) sets,
Analytical Redundancy Relations (ARR),
or Possible Conflicts (PC). The number of
MSO sets grows exponentially in the degree
of redundancy making the task of comput-
ing MSO sets intractable for systems with
high degree of redundancy. This paper de-
scribes an efficient graph-theoretical algo-
rithm for computing a similar, but smaller,
set of testable submodels called Test Equa-
tion Supports (TES). A key difference, com-
pared to an MSO based approach, is that
the influence of faults is taken into account
and the resulting number of testable mod-
els as well as the computational complexity
of finding them can be reduced significantly
without reducing the possible diagnosis per-
formance. It is shown that the TESs in a
direct way characterize the complete multi-
ple fault isolability property of a model and
thus extends previous structural approaches
from the single-fault case.

1 INTRODUCTION

Structural methods have previously been used in
the field of model-based diagnosis to, for exam-
ple, find testable subsets of equations in a model
and to perform fault isolability analysis. This pa-
per addresses the two mentioned applications of
structural methods.

Many works, e.g. those cited in (Armengol et
al., 2009), have proposed different ways of finding
testable subsets of equations such as (Krysander
et al., 2008; Gelso et al., 2008) based on Minimal
Structurally Overdetermined (MSO) sets, (Pulido
and Alonso-González, 2004) based on Possible Con-
flicts, and (Travé-Massuyès et al., 2006) based on
Structural Analytical Redundancy Relations. All

these concepts are related to MSO sets, which are
minimal sets of equations containing redundancy.

A problem with these approaches is that the
number of MSO sets grows exponentially in the
degree of redundancy of the model. Thus, if a
system has many sensors, the number of MSO sets
will be large and it will not be possible to neither
compute all MSO sets nor to design residuals for
each of them.

However, in these cases it might not be neces-
sary from a diagnosis point of view to construct
and use all possible tests since there might exist a
significantly smaller number of tests with sufficient
capability of distinguishing between different faults.
Instead of searching for all MSO sets, we propose
to search for a smaller set of testable models, so
called Test Equation Supports (TESs), where in
addition to redundancy also the influence of faults
is taken into account. By including fault informa-
tion, the resulting number of testable models as
well as the computational complexity of finding
them can be reduced without reducing the possible
diagnosis performance.

Regarding isolability analysis, this work ex-
tends the structural isolability analysis given
in (Krysander and Frisk, 2008) for single faults
to the case of multiple faults in a computation-
ally efficient way by showing that the set of all
TESs characterizes the multiple fault isolability.
The results fit into the framework of multiple fault
isolability analysis described in (Pucel et al., 2009).

In conclusion, key contributions of this paper are
to motivate and define the new concept of TESs,
develop an efficient algorithm1 for computing these,
and to show that the TESs characterize multiple
fault isolability.

2 TES MOTIVATION

This section first introduces and describes the intu-
ition of the basic concepts of TES and the closely

1A Matlab implementation is available at http:
//www.fs.isy.liu.se/Software/TestModelTool/.
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related concept Test Support (TS). A main objec-
tive of this section is then to show how TSs are
incorporated in the important problems of multiple
fault isolability analysis and test selection.

To introduce and motivate definitions and re-
sults, consider the following small state-space
model with 3 states, 3 measurements, and 5 faults:

e1 : ẋ1 = −x1 + u+ f1
e2 : ẋ2 = x1 − 2x2 + x3 + f2
e3 : ẋ3 = x2 − 3x3
e4 : y1 = x2 + f3
e5 : y2 = x2 + f4
e6 : y3 = x3 + f5

(1)

where xi represent the unknown variables, u and
yi the known variables, and fi the faults to be
monitored. For simplicity, this model is linear but
the objective of the paper is to derive methods
applicable to general non-linear model descriptions.
In (1), faults are modeled as fault signals fi that in
the fault free case are equal to zero, i.e., fi = 0. In
a faulty case, e.g. if fault i is present, then nothing
is assumed about the signal fi. An alternative way
of representing faults is by introducing components
as follows. Let fault i correspond to component ci
such that fi = 0 if and only if ci is OK, otherwise
ci will be not OK. With this notation, equation e1
including fault 1 can be written as

c1 = OK→ ẋ1 = −x1 + u

Any of these two fault representations is equally
applicable, but we will use the fault signal repre-
sentation here.

2.1 Residuals and TSs

Diagnosis can be achieved by a set of thresh-
olded residuals together with a fault isolation
algorithm (Gertler, 1998; Blanke et al., 2006).
Fault isolability is then achieved by designing pre-
compiled residual generators where different resid-
uals are sensitive to different subsets of faults.

Examples of residuals derived from model (1)
are

r1 = y1 − y2 = f3 − f4 (2)

r2 = ẏ3 + 3y3 − y2 = ḟ5 + 3f5 − f4 (3)

where both the computational form and the inter-
nal form, describing the fault influence, are given.
Residual r1 is influenced by the faults {f3, f4} and
r2 by the faults {f4, f5}. Thus, these two residuals
show that the faults

{f3, f4} ∪ {f4, f5} = {f3, f4, f5}
are detectable. Isolation can also be achieved with
these residuals, for example if both these residuals
deviates from 0, the diagnoses are the hitting sets
of the conflicts

{{f3, f4}, {f4, f5}}
i.e. the minimal diagnoses are the single fault
{f4} and the double fault {f3, f5} (de Kleer and
Williams, 1987; Reiter, 1987).

{f1, f2, f3, f4, f5}
{e1, e2, e3, e4, e5, e6}

{f3, f4, f5}
{e3, e4, e5, e6}

{f1, f2, f4, f5}
{e1, e2, e3, e5, e6}

{f1, f2, f3, f5}
{e1, e2, e3, e4, e6}

{f1, f2, f3, f4}
{e1, e2, e3, e4, e5}

{f4, f5}
{e3, e5, e6}

{f3, f5}
{e3, e4, e6}

{f3, f4}
{e4, e5}

{f1, f2, f5}
{e1, e2, e3, e6}

{f1, f2, f4}
{e1, e2, e3, e5}

{f1, f2, f3}
{e1, e2, e3, e4}

Figure 1: All TSs and TESs for model (1).

This example shows that the fault sets describing
the fault influences on the residuals determine both
the detectability and isolability capability of the
residuals. These sets of faults will be called test
supports (TSs) which later in Section 3 will formally
be defined. For a linear dynamic system like (1), all
TSs can be computed using simple rank-conditions
on model matrices without the need to design any
residuals (Krysander, 2006).

The TSs of (1) are given in Figure 1. There are
in total 11 TSs and these sets represent all pos-
sible fault sensitivities that can be achieved with
any residual derived from the model. For exam-
ple, the TS of (2) is equal to the third set in the
third line. The TSs are organized according to
the subset relation. This means that the minimal
sets, i.e. the minimal TSs, are found in the bottom.
The equation sets in the figure indicate which part
of the model to use in order to derive a residual
with the corresponding TS. For example, {f3, f4}
corresponds to {e4, e5} which is the set of equa-
tions needed for deriving residual (2). Such sets of
equations will be referred to as TESs. Since there
is a one-to-one correspondence between TESs and
TSs we will only focus on TSs in this section.

2.2 TSs for Multiple Fault Diagnosability

In the previous section, TS was introduced and
it was mentioned that the set of all TSs can be
computed in the linear case. Now, we will show
that the set of all TSs characterize detectability
and multiple fault isolability of a model.

The definition of isolability used here is a
straightforward generalization of the definition
given in (Frisk et al., 2009) to the multiple fault
case. To define isolability, let the set of observa-
tions consistent with the model in mode Fi be
denoted by O(Fi). This set is called observation
set in (Frisk et al., 2009) and the signature of Fi

in (Pucel et al., 2009). Then, a mode Fi is isolable
from a mode Fj if

O(Fi) * O(Fj) (4)

i.e. there exists an observation consistent with Fi
but not with Fj . A mode Fi is detectable if the
fault is isolable from the fault free mode Fj = ∅,
i.e.

O(Fi) * O(∅)
It is straightforward to compute, in an exhaus-
tive way, the detectability and isolability for a



∅

{f1, f2}
{f1}, {f2}

{f3} {f4} {f5}

{f1, f2, f3}
{f1, f3}, {f2, f3}

{f1, f2, f4}
{f1, f4}, {f2, f4}

{f1, f2, f5}
{f1, f5}, {f2, f5}

{f3, f4} {f3, f5} {f4, f5}

Figure 2: Multiple fault isolability properties of the
model (1) represented by a lattice on fault modes.

linear dynamic model by evaluating condition (4)
for each pair of modes. Then, for each pair of
modes, condition (4) is equivalent to a simple rank-
condition (Krysander and Frisk, 2008) in the model
matrices. Such an approach is simple in principle
but computationally often not feasible since the
number of pairs grows exponentially with the num-
ber of faults.

The complete detectability and multiple fault
isolability of (1) is represented in Figure 2 as a
partial order on sets of modes (Pucel et al., 2009).
In each node there is one or several fault sets repre-
senting system modes. For any two modes Fi and
Fj in the same node it holds that O(Fi) = O(Fj),
i.e., these faults are not isolable from each other.
If Fi is isolable from Fj , i.e. O(Fi) * O(Fj), then
Fi � Fj . Finally if both Fi is isolable from Fj

and Fj is isolable from Fi, then Fi and Fj are not
related. The ideal detectability and isolability is
represented by a complete subset lattice of the fault
modes.

To give some examples of how Figure 2 should
be interpreted, note first that all faults in (1) are
detectable since no fault mode is equal to the fault
free mode ∅. Furthermore, the second level shows
that all single faults are isolable from each other
except that {f1} is not isolable from {f2} and vice
versa.

When there are more than one mode in a node
the maximal set is underlined. The maximal set
in each node characterizes all sets in the node
as follows. A mode Fi belongs to the node with
maximal set Fj if and only if Fi ⊆ Fj and there
exists no Fk < Fj such that Fi ⊆ Fk, i.e., Fi is
included in the least node where Fi is a subset of
the maximal set. Therefore, we will refer to a node
by its maximal element. To give an example, {f1}
is a subset of {f1, f2} but not of ∅. Hence {f1}
belongs to the node {f1, f2}.

From the characterization of nodes with their
maximal elements, it follows that the multiple fault
detectability and isolability properties of the model
is fully represented by the lattice and the corre-
sponding maximal elements for each node. These
maximal elements are given by the TSs and this
can be realized by comparing Figure 1 and Fig-
ure 2. First, if the lattice in Figure 2 is flipped
horizontally the structure of the graphs becomes
equal. Then, by comparing the maximal sets in
each node in Figure 2 with the corresponding fault
sets in Figure 1, it is clear that these are set com-
plements. Hence, by computing the TSs, the full
multiple fault isolability is also obtained.

2.3 TSs for Test Selection
In Section 2.1, TS was introduced and it was dis-
cussed how the set of all TSs, here denoted by
T , could be used for test design. Now, we will
exemplify that this set of TSs is fundamental also
when selecting which tests to design, i.e. the test
selection problem.

Diagnosis system design can be performed with a
two step approach, where in the first step a subset
of TSs T ⊆ T is selected. For each ti ∈ T , a
residual generator is derived in the second step. If
there are difficulties in deriving a residual generator
for some TS or the resulting diagnosis performance
for the residual is unsatisfactory, it is often possible
to make another TS selection.

To describe and formalize TS selection, we need
first to define detectability and isolability of a set
of TSs and then also formalize an isolability speci-
fication.

Detectability and isolability of a set T of TSs
will be defined as the combined isolability of the
individual TSs. A mode Fi is isolable from a mode
Fj with test support ti if a corresponding residual
is sensitive to Fi but decouples Fj , i.e., ti ∩ Fi 6= ∅
and ti ∩ Fj = ∅. If a mode Fi is isolable from
the fault free mode ∅ with ti, we say that Fi is
detectable with ti. The fault Fi is isolable from Fj
with TSs T , if there exists a TS ti ∈ T with that
property and the same holds for detectability.

A detectability and isolability specification can
be formulated as I = {Ik|1 ≤ k ≤ n}, where each
isolability property Ik specifies that some Fi should
be isolable from Fj , i 6= j. Given a set of TSs T ,
let the subset of test supports that provide the
isolability property Ik be denoted by Tk ⊆ T .

The task of selecting tests can then be formu-
lated as, given the set of all TSs T and an isolability
specification I = {Ik|1 ≤ k ≤ n}, select a subset
of test supports T ⊆ T such that T is a minimal
hitting set of the sets Tk for all k ∈ {1, 2, . . . , n}.
If the specified isolability cannot be achieved with
T , the best possible isolability is obtained by the
minimal hitting sets of all the non-empty sets Tk.
An example of test selection will be given in Sec-
tion 5.1.

To conclude this discussion, the TSs of a model
can play an important role for selecting tests to
achieve a desired isolability specification.

2.4 Algorithm Objective
To sum up the discussions, TSs are of fundamental
importance both for test selection and isolability
analysis. All TSs can in a brute force way be
computed for linear systems, but since we aim
also for analyzing non-linear models a structural
approach is chosen. The problem studied in the
rest of the paper is how to efficiently compute all
TSs and the corresponding TESs using a structural
description of the model and the fault locations.

3 THEORETICAL FOUNDATIONS

This section first recapitulates some basic theory
in Section 3.1 and then introduces new definitions
and basic theoretical concepts used in the proposed
approach in Section 3.2.



3.1 Background Theory
As noted in Section 2, general non-linear model
descriptions will be analyzed based on the model
structure. The model structure is a coarse model
description which only describes, for each model
equation, which variables that are included. For
example, the model (1) corresponds to the model
structure

x1 x2 x3
(1) x ← f1
(2) x x x ← f2
(3) x x
(4) x ← f3
(5) x ← f4
(6) x ← f5

For a detailed introduction into the use of model
structure for diagnosis, see e.g. (Blanke et al., 2006;
Krysander and Frisk, 2008; Krysander et al., 2008).

First, it is assumed that faults are modeled using
signals, but as discussed in Section 2, it is equally
possible to introduce a component oriented view.
Without loss of generality, it is assumed that each
fault enters in only one equation. The equation a
fault f affects is denoted by ef . If, in the original
model, a fault signal f appears in more than one
equation, introduction of an auxiliary equation
xf = f and a simple substitution makes the system
fulfill the assumption.

A key tool for analyzing structural models is
the Dulmage-Mendelsohn decomposition (Dulmage
and Mendelsohn, 1958). By a clever reordering of
variables and equations, a unique block diagonal
structure can be obtained as is shown in Figure 3.

X− X0 X+

M−

M0

M+

Figure 3: A Dulmage-Mendelsohn decomposition
of a structural model.

The main property of the decomposition is that
it separates the model into three main parts, the
overdetermined part M+ with more equations than
variables, the exactly determined part M0, and the
underdetermined part M−. The overdetermined
part is interesting with respect to diagnosis since
that part includes redundancy and therefore can
be monitored, i.e. tests can be designed with the
set of equations in M+. Hence if a fault is to be
detected by a diagnosis system, then there must
exist a residual sensitive to that fault. Formally,
from (Blanke et al., 2006; Krysander and Frisk,
2008):

Definition 1. A fault f is structurally detectable
in a model M if

ef ∈M+

Note that a structural analysis only gives best
case results when applied to a non-linear system.
For example, a structurally detectable fault does
not have to be detectable in practise, since it might
not be possible to use the set M+ in Definition 1
to compute a residual.

If a diagnosis system should have the capability
to distinguish a single fault fi from a single fault
fj then one of the tests must be sensitive to fi but
not to fj . In general, if a fault mode is represented
by a set Fi of faults, then Fi is isolable from Fj
if there exists a residual sensitive to some fault
f ∈ Fi but insensitive to all faults in Fj . Following
the ideas in (Krysander and Frisk, 2008), isolability
is defined as

Definition 2. A mode Fi is structurally isolable
from mode Fj in a model M if

∃f ∈ Fi : ef ∈ (M \ eq(Fj))
+

where eq(Fj) = ∪f∈Fj
ef .

It is clear from the above definition that removal
of an equation from the model, e.g. decoupling of
a fault, and determining the overdetermined part
is a crucial operation for determining isolability.
In particular it is interesting to observe, when
decoupling one fault, which other faults that are
automatically decoupled since this implies that
these faults are not isolable from each other. As
in (Krysander et al., 2008), define a relation on
the set equations such that e1 is related to e2 if
e1 6∈ (M \ {e2})+. It can be proven that this is
an equivalence relation and the set of equations
equivalent to e is denoted by [e].

3.2 Basic Definitions

Now, the theoretical foundations for the proposed
approach can be established. A key concept from
Section 2 was test support, i.e. a set of faults for
which there exists a residual with the correspond-
ing fault sensitivity. To proceed, it is suitable to
introduce, as in (Krysander et al., 2008), sets of
equations that all can be monitored.

Definition 3 (PSO and MSO). A set of equations
M is proper structurally overdetermined (PSO) if
M = M+ and minimally structurally overdeter-
mined (MSO) if no proper subset of M is overde-
termined.

Now, let F (M) denote the set of faults that
influence any of the equations in M . Then, since
a PSO-set exactly characterizes a set of equations
that can be used to form a test, a formal definition
is then given by:

Definition 4 (Test Support). Given a model M
and a set of faults F , a subset of faults ζ ⊆ F is
a test support if there exists a PSO set M ⊆ M
such that F (M) = ζ.

Of special interest are minimal test supports
which is naturally defined as:



Definition 5 (Minimal Test Support). Given a
model, a test support is a minimal test support
(MTS) if no proper subset is a test support.

The above two definitions state which set of
faults that can affect a test. However, it is also of
importance to characterize sets of equations that
can be used to form a test. In particular for a given
test support ζ we are interested in the maximal
set of equations M = M+ such that F (M) = ζ.
Without explicitly referring to the corresponding
TS this concept is summarized in the following
definition:

Definition 6 (Test Equation Support). An equa-
tion set M is a Test Equation Support (TES) if

1. F (M) 6= ∅,
2. M is a PSO set, and

3. for any M ′ ) M where M ′ is a PSO set it
holds that F (M ′) ) F (M).

Also here it is interesting to consider minimal
such sets of equations.

Definition 7 (Minimal Test Equation Support).
A TES M is a minimal TES (MTES) if there exists
no subset of M that is a TES.

Here it is clear that there is a one to one corre-
spondence between a TES M and TS ζ given by
the relation

ζ = F (M)

To give examples of Definition 4-7, recall that all
TSs, MTSs, TESs, and MTESs for (1) are given in
Figure 1.

4 ALGORITHM

This section describes an algorithm for finding all
TESs and MTESs in a model. The algorithm is
based on the algorithm developed in (Krysander
et al., 2008) for finding all MSO sets. It is a recur-
sive algorithm where in each step one equation is
removed from the model and then the overdeter-
mined part of the remaining part is computed. This
means for the example in Figure 1 that the nodes,
i.e. the TESs, are traversed through spanning-tree
of the graph with a depth-first search. The first
Lemma shows that as long as we only remove an
equation affected by a fault, we remain in the class
of sets that are TESs. Due to space constraints,
some of the proofs are omitted.

Lemma 1. Assume that M is a TES and that
f ∈ F (M). If F ((M\{ef})+) 6= ∅ then (M\{ef})+
is a TES.

The next Lemma gives a necessary and sufficient
criteria to determine if a set is an MTES. This
criteria will be used as the stop criteria in the
algorithm.

Lemma 2. Let M be a TES. Then, M is an
MTES if and only if there exists an e ∈ M such
that ef ∈ [e] for all faults f ∈M .

Now the algorithm for finding all MTESs is pre-
sented. As pointed out in the beginning of this
section, the basic idea in the algorithm is to remove

one equation from the model and then compute the
overdetermined part of the remaining part of the
model. By doing this recursively all MTESs will
be found. However as was shown in (Krysander
et al., 2008), the equivalence classes, introduced
in Section 3.1, can be lumped together in order
to reduce the computational complexity of the al-
gorithm. This improvement of the algorithm is
used in the algorithm presented here. The steps
in the algorithm will be described in the proof of
Theorem 1 below.

1 function S = MTES(M)
2 S = ∅;
3 M = {{e}|e ∈M+};
4 if F (M) 6= ∅
5 S = FindMTES(M,M);
6 end

The main procedure above calls the recursive pro-
cedure MTES described below.

1 function S = FindMTES(M,R)
2 Select an E ∈M such that F (E) 6= ∅;
3 if ef ∈ ∪E′∈[E]E

′ for all f ∈ F (M)
4 % M is an MTES
5 S = {∪E∈ME};
6 else
7 R′ = ∅; M′ =M;
8 % Lump the structure M′ and create R′
9 while F (R) 6= ∅

10 Select an E ∈ R such that F (E) 6= ∅;
11 M′ = (M′ \ [E]) ∪ {∪E′∈[E]E

′};
12 if [E] ⊆ R
13 R′ = R′ ∪ {∪E′∈[E]E

′};
14 end
15 R = R \ [E];
16 end
17 S = ∅;
18 % Make the recursive calls
19 while R′ 6= ∅ do
20 Select an E ∈ R′;
21 R′ = R′ \ {E};
22 S = S ∪ FindMTES(M′ \ {E},R′ ∪R);
23 end
24 end

Note that by replacing the first 6 lines in the
function FindMTES with:

1 function S = FindTES(M,R)
2 S = {∪E∈ME};
3 % Check if M is not an MTES
4 Select an E ∈M such that F (E) 6= ∅;
5 if exists an f ∈ F (M) : ef /∈ [E]

we obtain an algorithm that outputs all TESs in-
stead.

Theorem 1. If the function MTES is applied to
an equation set M , then each MTES is found once
and only once.



Proof. The set M is a family of equation sets.
Initially the sets in M consist of single equations
taken from the overdetermined part M+ of the
model M ; see line 3 in MTES.

The argument R in FindMTES is the subset of
sets inM that are allowed to be removed fromM.
The reason for introducing this set is to prevent
that the same set is traversed more than once in
the search tree and in this way avoid that the
same set is found more than once by the algorithm.
The basic idea is that if a recursive call is made
where a set E in R is removed from M then E
is removed from R in all other branches. Hence,
the search tree is split into two parts, one branch
where all sets do not contain the set E and the
other branches where all sets do contain E since it
is not allowed to be removed from M. It follows
that the two parts have no sets in common and by
following this rule in all recursive calls it is clear
from this discussion that no set will be traversed
more than once.

The first step in FindMTES is to check if the
stop criteria is fulfilled. The stop criteria is that
all ef , f ∈ F (M), belong to the same equivalence
class. It will be shown below that all sets in the
search tree are TES, and it will then follow from
Lemma 2 that all sets that fulfill the stop criteria
are MTESs.

For all E ∈ R such that F (E) 6= ∅,M′ is formed
by first removing all sets in [E] and adding a single
set containing all equations in the sets [E]. This
is where the equivalence classes are lumped to-
gether, as described in the paragraph before the
algorithm. The set R′ consists of the equivalence
classes lumped in the previous step with the addi-
tional property that all equations are allowed to
be removed, i.e., [E] ⊆ R.

AfterM′ andR′ have been created, the recursive
calls are made in the way outlined above. If M
does not fulfill the stop criteria, then it follows
that F (M′ \ {E}) 6= ∅, for all equivalence classes
E ∈ R′. Furthermore, the root node M+ is a
TES and all equivalence classes in E ∈ R′ fulfills
the condition F (E) 6= ∅. Hence, the conditions in
Lemma 1 are fulfilled, and it follows that all sets
M in the search tree are TESs. As pointed out
above, this implies that all sets that fulfill the stop
criteria are MTESs.

To summarize the discussion above, it has been
shown that all sets that fulfill the stop criteria are
MTESs, and now it remains to show that all MTES
are found by the algorithm. In fact we shall prove
the stronger statement that all TESs are traversed
by the algorithm.

Consider an arbitrary TES M∗. It will now be
described which branch in the search to follow to
reach the set M∗. The set M∗ can be written as
the union of a subset of the equivalence classes
of M. Hence, for each E ∈ M, either F (E) ⊆
F (M∗) or F (E) ⊆ F (M) \ F (M∗). To reach the
set M∗, select, in each node in the recursive tree,
the first recursive call on line 22 with the property
that F (E) ⊆ F (M) \ F (M∗). It is clear that if
we follow this path, then F (M∗) ⊆ F (M) and
F (M) \ F (M∗) ⊆ F (R) hold and the set M∗ is

reached when F (M) = F (M∗).

The algorithm developed in (Krysander et al.,
2008) was designed to find all MSO sets. The MSO
sets can be characterized by redundancy which
is defined as follows. The degree of redundancy
ϕ(M) for a model M is defined as the number of
equations in M+ minus the number of variables in
M+, i.e. with some abuse of notation

ϕ(M) = |eq(M+)| − |var(M+)|
The MSO sets are the smallest subsets with re-
dundancy equal to one, i.e. all sets M such that
ϕ(M) = 1 and no proper subset fulfill the same
condition. This can be used as stop criteria in the
MSO algorithm.

The next Lemma gives a similar characterization
of an MTES, which can also be used as stop criteria
in the algorithm. A consequence of this Lemma is
that all MTESs are also MSO sets if (M\Mf )+ = ∅
where Mf is the set of equations in M that are
affected by faults.

Lemma 3. Given a model M0, a TES M ⊆M0 is
an MTES if and only if ϕ(M) = ϕ((M0 \Mf )+)+
1, where Mf is the set of equations in M0 that are
affected by faults.

The main advantage with the condition in
Lemma 3, compared to the condition in Lemma 2,
is that it can be checked without computing the
Dulmage-Mendelsohn decomposition. It is suffi-
cient to compute the number of equations and
unknowns in the model to verify it.

5 EXAMPLES

In this section, the MTES-algorithm will be demon-
strated by first applying it to a small three-tank
system to illustrate basic properties, and then to
a larger truck engine model. Advantages with the
proposed algorithm will be shown in a compari-
son with the results obtained when applying the
MSO-algorithm given in (Krysander et al., 2008).

5.1 Three-tank Example
Consider the simple three-tank system in Figure 4.
A first principles model of the system is given by
the equations

e1 : qp =
1

Rpipe
(ps − p0) e2 : qp = q0

e3 : pf = p0 − p1 e4 : q0 =
1

Rv0
pf

e5 : q1 =
1

Rv1
(p1 − p2) e6 : q2 =

1

Rv2
(p2 − p3)

e7 : q3 =
1

Rv3
(p3 − 0) e8 : ṗ1 =

1

C1
(q0 − q1)

e9 : ṗ2 =
1

C2
(q1 − q2) e10 : ṗ3 =

1

C3
(q2 − q3)

where ps is the pressure in the (large) fluid source,
qi the flow through valve vi, qp the flow through
the pipe, and pi the pressure in the tanks.



Figure 4: A simple three-tank system.

The measurement equations and a controller for
valve v0 are given by the equations

e11 : y1 = q0 e12 : y2 = p1 e13 : y3 = q3

e14 : y4 = p3 e15 : Rv0 = f(y2)

The set of known signals are the measurements
yi and the restriction Rv0 which is the controlled
variable according to equation e15. Seven faults
are considered: changes in tank capacities C1, C2,
C3, partial blocks in the valves v1, v2, v3 and in
the pipe, modeled as changes in the restriction
resistances Rv1, Rv2, Rv3, and Rpipe.

For this small subsystem there exists 54 MSO
sets, i.e. even by only considering the minimal sub-
models with redundancy there exists 54 different
tests that can be designed. For the set of 7 faults,
significantly less number of tests are needed to ob-
tain full isolability. To illustrate, consider single
fault isolability and use the hitting-set based test
selection strategy presented in Section 2.3. As it
turns out, even for this small example this is not
a feasible approach since there are more than 106

minimal set of tests that achieves full isolability.
A minimal solution involves 7 tests which is signif-
icantly smaller than the complete set of 54 tests.
The reason for the high number of minimal solu-
tions is that many of the 54 MSO sets have same,
or almost the same, fault signatures.

Algorithm MTES from Section 4 delivers 7 MTESs
with fault sensitivities according to

{{fv3}, {fv2, fc1, fc2, fc3}, {fv1, fc1, fc2, fc3},
{fv1, fv2, fc2, fc3}, {fv1, fv2, fc1, fc3},

{fv1, fv2, fc1, fc2}, {fpipe}}
The hitting-set based approach show that all 7 fault
signatures are needed to achieve full single-fault
isolability and thus that 7 tests are sufficient. This
example shows that, even for a small toy example,
there are significant advantages in analyzing the set
of MTESs rather than the set of MSO sets. These
advantages become even more significant when
more realistic, larger, examples are considered.

5.2 Engine Example

The next example analyzes the gas-flow in a truck
engine. The gas-flow is modeled in Simulink and
the model equations have been automatically gen-
erated from the Simulink file. The structure of the
resulting equations can be seen in Figure 5. This
model has 532 equations, 528 unknowns, and 8
states. The model includes many equations and
this is typical for models generated automatically
from Simulink or component based modeling ap-
proaches. The number of equations can be reduced
by analytical computations, but this might reduce

the structural information contained in the model
and is therefore not recommended.

There are 3 actuators controlling the variable
geometry turbine (VGT), the exhaust gas recir-
culation (EGR), and the fuel injectors (FI). The
air-mass flow through the compressor (W), the pres-
sure in the intake manifold (PIM), the pressure
in the exhaust manifold (PEM), and the turbine
speed (NTRB) are measured and the degree of
structural redundancy is equal to 4. Faults in the 3
actuators and the 4 sensors are considered. There
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Figure 5: The structure of the gas-flow model
where rows correspond to equations and columns
to unknowns.

are 1436 MSO sets in this model but only 32 MT-
ESs which all are MSO sets. This result shows two
things.

First, the computational complexity of comput-
ing the MTESs is much lower than computing the
MSO sets. The MSO-algorithm traverses 1774
nodes while the MTES algorithm only visits 61
nodes. The number of traversed nodes is equal
to the number of performed Dulmage-Mendelsohn
decompositions which is the most computationally
demanding operation. The reduction is caused by
considering only 7 faults. Generally, if nf denotes
the number of faults, ϕ the degree of structural
redundancy, an upper bound for the number of
nodes traversed in the MTES algorithm is given
by

ϕ−1∑
k=0

(
nf
k

)
which for this example is equal to 64. For bigger
models and especially models with higher degree
of structural redundancy, the number of MSO sets
can be intractable but with a limited number of
faults all MTESs can be computed.

Second, in this example all MSO sets can be com-
puted in about 1s so the computational complexity
is not an issue here. However, in the three-tank
example it was shown that the selection of MSO
sets for a much smaller example is computationally
demanding. This selection step can be significantly



simplified or even omitted, since it is sufficient to
consider only the 32 MSO sets computed by the
MTES algorithm instead of the complete set of
1436 MSO sets.

Concerning the complete multiple fault isolabil-
ity analysis, this model has full detection, single,
double, and triple fault structural isolability ex-
cept for the following properties. Consider the
set of components C = {V GT,EGR,FI, PEM}
and assume that multiple fault modes are repre-
sented by the set of faulty components. Then for
each c ∈ C, the single fault {c} is not structurally
isolable from the triple fault C \ {c}. The only
faults isolable from quadruple faults are defined
as follows. For each c /∈ C, the single fault {c} is
structurally isolable from the quadruple fault C.
No fault modes are isolable from fault modes with
cardinality strictly greater than 4.

6 CONCLUSIONS

An efficient graph-theoretical algorithm for com-
puting all TESs or MTESs given structural infor-
mation about the unknown signals and faults has
been described. It is based on the MSO-algorithm
described in (Krysander et al., 2008), but by search-
ing for MTESs instead of MSO sets the search tree
can be pruned, reducing both the computational
complexity and the number of resulting equation
sets. Two main application of structural methods
within the field of diagnosis have been finding and
selecting testable models and to perform isolability
analysis. We have shown that the less numerous
TESs are sufficient for providing the answers to
both these questions. The algorithm has been
applied to two realistic examples and it has been
shown that the number of MTESs are much smaller
than the number of MSO sets for these examples,
thus reducing the computational burden of finding
the MTESs compared to finding the MSO sets.
Furthermore, the test selection problem is signif-
icantly simplified due to the reduced number of
possible tests. Finally, from the direct relation
between the set of all TSs and multiple fault isola-
bility, the proposed algorithm has also shown to be
a powerful tool computing the complete multiple
fault isolability of a system.
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June 2006.

(Pucel et al., 2009) X. Pucel, W. Mayer, and
M. Stumptner. Diagnosability analysis with-
out fault models. In 20th International Work-
shop on Principles of Diagnosis (DX-09), pages
67–74, Stockholm, Sweden, 2009.

(Pulido and Alonso-González, 2004) B. Pulido
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