
A Decentralized Service Based Architecture for Design and
Modeling of Fault Tolerant Control Systems

Mattias Nyberg, Carl Svärd
Department of Electrical Engineering, University of Linköping, SE-58183 Linkoping, Sweden

mattias.nyberg@scania.com, carl.svard@liu.se

ABSTRACT
The paper presents a hierarchical architecture for
fault tolerant control of mechatronic systems. In
the architecture, both the diagnosis and the recon-
figuration are completely decentralized according
to the structure of the control system. In each
module of the control system, diagnosis and recon-
figuration are included and use only locally avail-
able signals. Therefore, no extra dependencies are
added to the control system software, something
which is important to facilitate efficient engineer-
ing of large scale system. All this is achieved by
using a purely service oriented view of the system
including both hardware and software. The service
view with no cyclic dependencies is further used
to obtain Bayesian networks for modeling the sys-
tem.

1 INTRODUCTION
The main contribution of the present work is an archi-
tecture and design method for fault-handling in mecha-
tronic control systems. We have primarily been in-
spired by control systems in automotive vehicles. In
these systems, fault tolerance mostly means that each
fault should lead to a minimal degradation of the per-
formance, and typically, fault tolerance is achieved by
control-system reconfiguration. A second contribution
is that we show how a fault tolerant control system,
designed in accordance with the proposed architecture,
can be modeled using Bayesian networks.

One standard solution to Fault Tolerant Control
(FTC), as often suggested in the literature, e.g. see
(Zhang and Jiang, 2008; Blanke et al., 2006; Bonivento
et al., 2003), is to have one centralized diagnoser diag-
nosing the whole system, and then a centralized recon-
figuration based on the diagnosis result. However, for
large-scale mechatronic control systems, possibly with
functionality distributed over several Electronic Control
Units (ECU’s), another solution might be needed. We
list three reasons supporting this claim. The first is that
to obtain good FTC-performance, e.g. a fast and guar-
anteed response to detected faults, the FTC-algorithms
need to be executed locally in each ECU, since net-
work communication would slow down and make the
response unreliable. A second reason is the complexity
associated with the number of fault combinations and
number reconfiguration possibilities that would need to

be considered in a centralized solution. A third reason
is that in order to facilitate efficient distributed engi-
neering of large scale systems, it is important to min-
imize the dependencies between subsystems; a central-
ized FTC-solution would easily lead to that all subsys-
tems connected to the reconfiguration become, via the
diagnoser and the reconfiguration, dependent on all sub-
systems providing inputs to the diagnoser. For these
reasons, instead of the centralized solution, the FTC
problem is in our proposed architecture solved using a
decentralized approach. In this architecture, the FTC
mechanisms are distributed according to the architec-
ture of the control system, which is assumably already
structured to cope with system size and complexity. Im-
portant also is that the proposed FTC architecture adds
no extra dependencies in the software (SW) compared
to the control system architecture.

In the control system, we view both software and
hardware subsystems as service providers and the rela-
tion between subsystems is based solely on how fail-
ures of these services propagates in the system. In
this framework, we have abstracted away all objects
and information not related to failures, such as signals.
Thereby, a minimalistic pure failure-oriented view of
the system is obtained. This view is used as the foun-
dation both for the FTC architecture and for modeling
the system. Note that since inability to perform a ser-
vice is the same as a failure (Laprie, 1991), we can
speak about a service-oriented view as well as a failure-
oriented view.

The service (failure) oriented view of the system fa-
cilitates a design of the fault handling mechanism with
noncyclic dependencies within the system. This is im-
portant for modeling since it makes it possible to use
Bayesian networks; a clear benefit since Bayesian net-
works have shown to be powerful for modeling and
making inference in systems containing uncertainties.
One example is automotive engine control systems,
whose On-Board Diagnosis (OBD) systems are re-
quired by regulations to handle subtle faults like biases,
which usually have uncertain effects on the system. By
having a model in the form of a Bayesian network, in-
ference tasks like diagnosis becomes easy. Other ex-
amples of useful inference tasks are analysis of FTC-
performance and analysis of consequences of differ-
ent faults, for example FMEA or FTA, see e.g.(Storey,
1996).

Architecture of fault tolerant control systems have

1

21st International Workshop on Principles of Diagnosis

been considered also in earlier literature, e.g. see
(Blanke et al., 2006; Grunske and Kaiser, 2005;
Staroswiecki, 2008; Gehin and Staroswiecki, 2008).
The key differences compared to these earlier works are
that: 1) the diagnosis task in the present paper is com-
pletely decentralized among the components of the sys-
tem, 2) we use the service view, where software com-
ponents are viewed as service providers with service de-
pendencies, as the basis for the FTC-architecture, 3) we
discuss explicitly how the different SW-components of
the systems communicate with each other about failure,
4) we use Bayesian networks as the tool for modeling,
and we include in the model also the diagnosers.

2 BASIC CONCEPT
We consider a system of ECU’s connected in a commu-
nication network. The control system software in each
ECU is assumed to be designed, in a first iteration, with-
out considering or including diagnosis or FTC function-
ality. We partition the control system software into sep-
arate parts, called components or modules. Each mod-
ule communicates with other modules, within the same
ECU or, by using the communication network, also with
modules in other ECU’s.

Figure 1: A Service Provider, its suppliers and cus-
tomer. Service (failure) dependencies are represented
by (white) double headed arrows and signal flows by
single headed arrows.

2.1 The Service View
In the control system, the purpose of each module
is to provide one or several services. Therefore we
view each module as a service provider. The service
is provided to a customer, which itself is a module
and service provider. There may also be several cus-
tomers, and the top-level customer of a system is of-
ten a human user. To provide its service, a service
provider may use a number of suppliers, which in turn
are service providers, see Figure 1. Note that the ser-
vice of a module is not, as in (Staroswiecki, 2008;
Gehin and Staroswiecki, 2008), defined as the compu-
tation of the output signal of the module, or the output
signal itself. Instead the service is the purpose or the
objective of the module.

In our service view of the system, the service depen-
dencies, represented in Figure 1 by double headed ar-
rows, do in general not have the same direction as the
signal flows within the system. For example consider
a service provider which is master controller of a cas-
cade control system. One of its suppliers is the slave
controller which receives the reference signal from the
master. Thus the signal flow in this example is directed
from the service provider to the supplier, but the service
dependency always has the direction from supplier to

service provider. To find out the direction of service de-
pendencies, one can think of how faults propagate in the
system. In the example, a fault in the slave controller
propagates and affects the service provided by the mas-
ter controller. The idea to allow fault propagation not to
follow signal flow directions has been used also in (Deb
et al., 1995; Misra et al., 1994) but stands in contrast
to models used in (Mohamed and Zulkernine, 2008;
Grunske and Kaiser, 2005), in which fault propagation
is constrained to signal flow directions.

How to determine the granulation of the partition of
the control software into modules, is a matter of consid-
eration. Using small modules, it is easier to add diagno-
sis and FTC-functionality. A small module is also easier
to model. However, in a small module, with few signals
available, good diagnosis and FTC may be difficult to
include because of lack of redundancy. Furthermore,
the complexity of the whole system and its model may
be increased if the modules are small but many, because
the number of service providers becomes large and also
the number of dependencies between them.

For sake of clarity, we will from now on assume that
each service provider only provides one single service.
The extension to several services is trivial.

One main advantage with the service view is that the
service dependencies form a graph with no directed cy-
cles. This means that we later on in Section 6 can use
these dependencies as the basis for a Bayesian network
modeling the system. An argumentation to why di-
rected cycles are avoided is as follows. For a service to
be delivered, a set of tasks need to be performed. We as-
sume that each service provider performs at least some
of these tasks, and not just delegate all tasks further to a
supplier. This means that the service delivered by a sup-
plier is always a proper subset, in terms of tasks, com-
pared to the service delivered by the service provider
itself. A directed cycle in the service dependency graph
would therefore lead to the contradiction that the set of
tasks performed by some service provider would be a
proper subset of itself.

2.2 Service Status
The service of a service provider may be available or
not available. If available, the service has a service
quality which is mostly nominal. It may also happen
that it becomes disturbed in some way. We collect
these service statuses into three classes which we de-
note nominal (NOM), disturbed (DIST), and unavail-
able (UNA). The service status of a service provider m
will be denoted Sm. Even though the quality of a ser-
vice may change, we do assume that the objective of a
service does not change. However, this assumption can
be relaxed by considering different operating modes as
in (Gehin and Staroswiecki, 2008).

The status NOM is always applicable, but the sta-
tuses UNA and DIST may or may not be needed de-
pending on the specific case. If needed for a specific
service provider, the service status DIST can also be ex-
tended to several levels of disturbed, i.e. DIST1, DIST2,
DIST3, etc.

As stated in Section 1, it is important to minimize
the dependencies between modules. Therefore, in ac-
cordance with ideas of modularization, software hierar-
chies, abstraction, encapsulation etc., e.g. see (Storey,
1996), each service provider is, for its design and com-
putations, only allowed to use information within its
scope, see Figure 1. The scope contains knowledge
about its suppliers and often also some part of the hard-
ware or electronics.

2

21st International Workshop on Principles of Diagnosis

2.3 Service Status Estimation
The service provider has, in addition to providing the
service itself, also the task to monitor and estimate the
status of its own service and to communicate this esti-
mated status to its customers. The reason is that if the
customer becomes aware that a service delivered has
a degraded status, the customer can adapt to the situa-
tion for example by reconfiguring itself. Also, when the
customer is to estimate the status of its own service, it
is crucial to take into account a possibly degraded sta-
tus of one of its supplier’s services. For a customer to
be able to utilize a communicated service status from
the service provider, all statuses must be clearly defined
in advance. This definition must be available to, and
agreed with, the engineers designing the SW-modules
acting as customers of the service provider.

When a service provider estimates the status of its
service, a variety of information sources throughout the
system could be useful, but according to the principles
of scope discussed above, only information within its
scope is allowed to be used. It is evident that a service
status estimate obtained by using information within the
scope only may differ and be less accurate compared to
what would be the result using all information in the
system. This is the prize we pay to keep the number of
dependencies low.

The estimate produced by a service provider m of its
service status Sm, using information within its scope,
is denoted Ŝm|m. Clearly, an estimated service status
is in general not equal to the true service status, i.e.
Ŝm|m 6=Sm. Except for the fact that we use only the
limited information within the scope, another reason is
that this is a general estimation problem under the influ-
ence of noise and model uncertainties.

Since the estimate Ŝm|m might not be possible to
obtain with high accuracy, it is sometimes enough to
use a more restricted domain for Ŝm|m compared to
Sm. For instance, Sm ∈ {NOM,DIST,UNA} while
Ŝm|m ∈ {NOM,UNA}. We use the convention that
the estimated service status communicated from a ser-
vice provider to a customer should always be guaran-
teed from the perspective of the service provider itself.
That is, the estimated service status is set to NOM as
long as there are no signs of anything else, but as soon
as there are signs of that the service status is not NOM ,
the estimated service status should be changed to DIST
or UNA . The customer should then always assume that
the true service status is not better than the communi-
cated one, but it may be worse, e.g. if the estimated
service status is DIST , the customer should assume that
the service status is not NOM .

We will apply the view of service providers also
to hardware (physical) components. Everything said
above is valid except that hardware components do not
have the ability to estimate and communicate the status
of its services. This is principally the same as if they are
always communicating the status NOM .

3 ILLUSTRATIVE EXAMPLE
To illustrate the principles and concepts in previous and
subsequent sections we introduce a simple, yet relevant
and realistic, mechatronic system inspired by automo-
tive applications.

3.1 System Description
We consider a simplified air-control system whose main
task is to control the air-flow past a throttle in order

Figure 2: The air-control system. Double headed ar-
rows indicate service dependencies, single headed ar-
rows signal flows.

to maintain a given stoichiometric ratio under the in-
fluence of an external fuel reference command. A
schematic view of the system is shown in Figure 2,
in which signal flows are represented by single headed
arrows and service dependencies by (white) double
headed arrows. Note that signal flows form directed cy-
cles but service dependencies do not. The physical part
of the system, lower part of Figure 2, consists of a tank,
containing high-pressure air, connected through a pipe
to ambient air. A throttle valve and a fuel injector is
mounted in the pipe. The throttle valve is maneuvered
via a proportional valve and there are sensors measur-
ing the position of the throttle valve and the pressure in
the air-tank. The sensors, the proportional valve, and
the injector are connected to an ECU, upper part of Fig-
ure 2, in which a set of controllers and estimators are
implemented as software modules.

Note that the main reason to consider this relatively
small-sized system is merely to clarify the proposed ap-
proach and exemplify introduced concepts, not to ex-
emplify how the approach handles large-scale systems.
This is left for future work.

3.2 Service Providers
Following the ideas introduced in Section 2, we con-
sider all components in the system, hardware compo-
nents as well as software modules, as service providers.
A list of all service providers, their provided service,
suppliers and customers, is shown in Table 1.

For example, consider module A3, whose service is
to control the position of the throttle valve. Module A3
is master controller in a cascade control subsystem con-
sisting of modules A3 and A4. The service provided by
the slave controller A4 is to control the current through
the proportional valve. If A4 fails to provide its service,

3

21st International Workshop on Principles of Diagnosis

Service Suppliers(s) Customer
A1 Control air mass-flow past

throttle in order to maintain
stoichiometric ratio

A2, A3, L4 Final

A2 Deliver air mass-flow past throt-
tle

L1, L3 A1

A3 Control throttle valve position A4, L3, C2 A1
A4 Control current through propor-

tional valve
L2, B3, C1, W3 A3

L1 Deliver pressure measured in air
tank

B1, S1, W1 A2

L2 Deliver current through propor-
tional valve

B2, W2 A4

L3 Deliver position of throttle
valve

B4, S2, W4 A2

L4 Deliver fuel mass-flow in injec-
tor

B5 A1

B1 Deliver digital number corre-
sponding to voltage at input port

- L1

B2 Deliver digital number corre-
sponding to voltage at input port

- L2

B3 Deliver power at output port
corresponding to duty cycle

- A4

B4 Deliver digital number corre-
sponding to voltage input port

- L3

B5 Deliver power corresponding to
duty cycle

- L4

W1 Transport measure voltage from
sensor to input port, supply sen-
sor with voltage and ground

- L1, S1

W2 Transport current from propor-
tional valve to grounded input
port

- L2

W3 Transport power from output
port to proportional valve

- A4

W4 Transport voltage from sensor
to input port, supply sensor with
voltage and ground

- L3, S2

S1 Deliver voltage corresponding
to pressure

W1 L1

S2 Deliver voltage corresponding
to position

W4 L3

C1 Deliver force corresponding to
current

- A4

C2 Deliver position corresponding
to force

- A3

Table 1: Service Providers in the air-control System

then also A3 will fail to provide its service. This means
that A4 is a supplier of A3 although the signal flow,
i.e. the current reference signal, goes from A3 to A4,
c.f. the single and double headed arrows in Figure 2.
To utilize closed-loop control, A3 uses feedback of the
throttle valve position. The position is delivered by L3,
which is also a supplier of A3. To control the position of
the valve, A3 is also dependent of that the valve itself
works properly. Hence the physical hardware compo-
nent C2, corresponding to the throttle valve, is also a
supplier of A3.

The scope associated with A3 consists of knowledge
about modules A4, L3, and the physical component C2,
i.e. the throttle valve, since A3 needs to know what kind
of device it should control.

To illustrate how a failure and degraded service sta-
tuses propagates through the system, suppose A3’s sup-
plier L3 fails to provide its service, i.e. deliver the throt-
tle valve position, and sets ŜL3|L3 = UNA. Since A3
is dependent on the throttle valve position for closed-
loop control, it reconfigures itself and instead applies
an open-loop control strategy in which the throttle valve
position is not needed. A3 can then still provide its ser-
vice, but since the performance of the open-loop con-
troller is slightly worse than the closed-loop controller,
it sets ŜA3|A3 = DIST. Since the meaning of ser-
vice statuses is agreed between suppliers and service
providers, module A1 knows that the throttle position

control performance is degraded when ŜA3|A3 = DIST.

4 GENERAL PRINCIPLES OF A SERVICE
PROVIDER

As stated above, a service provider has the task to pro-
vide its services, and also the task to estimate the sta-
tus of these services. To achieve fault tolerance, the
service provider should also try to keep up the service
quality, even though faults make the service status of
suppliers DIST or UNA . The standard solution for this
is reconfiguration, as exemplified above. In this paper
we represent reconfiguration by using a concept of vari-
ants. That is, a service provider m may exist in sev-
eral variants denoted m:1, m:2 etc. and each variant
typically uses different, possibly overlapping, subsets
of suppliers. Thus their sensitivity to supplier services
becoming DIST or UNA differ, and by selecting the
most appropriate variant to be run, fault tolerance is ob-
tained. When using variants, the service status of the
service provider equals that of the selected variant m:i,
i.e. Sm = Sm:i. If there is no reconfiguration, we will
view this as a case of only one possible variant.

In a service provider with the capability of reconfigu-
ration, there must exist a selector, which is a mechanism
for choosing the variant to be executed in a given situ-
ation. We will not give any general principles for this,
even though we later on, in Section 5, discuss an exam-
ple design. In a real-time system, the change of variant
may cause transients to occur. This needs to be handled
but is considered out of scope of the present paper.
Example 1 (Variants in Service Provider A2)
Recall the air-control system described in Section 3 and
consider service provider A2, whose service is to pro-
vide the air mass-flow past the throttle. For this it uses
the suppliers L1 and L3. To increase fault-tolerance,
there are three variants of the service provider, denoted
A2:1, A2:2, and A2:3. The variants are illustrated in
Figure 2 as multiple shaded layers behind the block rep-
resenting A2.

Variant A2:1 is the main variant and uses signals
from both suppliers L1 and L3 to estimate the air mass-
flow. Variant A2:2 uses only the signal from supplier
L1 for the estimation, and in a similar way variant A2:3
uses only the signal from supplier L3. With this de-
sign, A2 can deliver its service, possibly with reduced
quality, even if one of the suppliers L1 and L3 fails to
deliver its service.

4.1 Service Status Estimation
To estimate the service status of the service provider,
and also to be able to select the most appropriate vari-
ant, the service status estimates of the variants are
needed, i.e. Ŝm:i|m. For the estimation of Ŝm:i|m,
the variant m:i uses the service statuses communicated
from its suppliers. Further, it typically uses the signals
to and from its suppliers and possibly also other signals
within the service provider. The important features of
these signals are extracted using diagnostic tests, and
thus, the signals themselves are not directly used for
the status estimation. Diagnostic tests are obtained for
example by using standard techniques from the field
of FDI (Fault Detection and Isolation) (Blanke et al.,
2006),e.g. analytical redundancy and residuals.

The service status estimation can be seen as a map-
ping from each combination of estimated supplier ser-
vice statuses and test results to the service status of the
variant. In the simplest cases this mapping is hard coded
in the software using constructs like if- or switch/case-
statements. In more involved cases, the mapping can be

4

21st International Workshop on Principles of Diagnosis

represented and processed using a lookup-table. Also
possible is to use a model based approach in which
the service status is inferred using a model together
with observed test results and estimated service statuses
communicated from the suppliers. Whatever the chosen
solution is, the mapping must be possible to represent
efficiently in a model, to facilitate efficient inference
and analysis of the system (see also Section 6).

Some general principles for estimating the service
status will now be given. We start with the simple case
where there are no diagnostic tests involved.

No Diagnostic Tests Involved
For the service status estimation, each variant has a
number of possible service status values. It may cor-
respond to the full domain of the possible values of the
estimated service status of the service provider, but it
can also be a subset of the full domain. For each service
status value to be valid, the estimated service statuses of
the suppliers used must fulfill a condition.

For an example, consider a service provider variant
A:1 with suppliers B and C. To represent the service
status estimation in A:1 we can use a table as the one
exemplified below.

ŜA:1|A
NOM DIST UNA

ŜB|B NOM NOM ∨ DIST -
ŜC|C NOM - -

(1)

The interpretation of the table is that the service sta-
tus of A:1 is estimated to be NOM if both supplier B
and supplier C communicate that their service status is
NOM . Else, if Supplier B communicates service status
NOM or DIST , then the service status is estimated to be
DIST . Else, the service status is estimated to be UNA .
Using Diagnostic Tests
To improve the service status estimation we will now
discuss how information from also diagnostic tests can
be used. Without loss of generality, we assume that di-
agnostic tests utilized for service status estimation are
contained within the service provider. Thus the signals
used by a test must be known within the scope. Other-
wise we get a dependency, via the diagnostic test, to the
outside of the scope of the service provider.

For an example of how a diagnostic test may be uti-
lized, consider a variant that implements a PI controller.
Then we can use diagnostic tests checking the control
error and integrator size. A further example, if a vari-
ant implements an observer, we can use diagnostic tests
based on residuals checking the validity of the input sig-
nal against a model of the system. The use of diagnostic
tests means that even though all suppliers estimate their
services to be NOM , additional information from di-
agnostic tests may imply that the service status of the
variant becomes DIST .

Each diagnostic test uses a subset of the suppliers.
This means that if any supplier in the subset communi-
cates the service status UNA , the diagnostic test can not
be run.

Exactly how the results of the diagnostic tests are
used by the service provider to assist the service sta-
tus estimation will not be further discussed here. Partly
due to space limitation but mainly because we believe
that there is not one single best way since different cir-
cumstances demand different solutions. However, an
example will be presented later in Section 5.
Example 2 (Service Status Estimation in L1)
Recall again the air-control system presented in Sec-
tion 3. The service of service provider L1 is to de-
liver the measured pressure in the air tank. The cus-
tomer of L1 is A2 and its suppliers are B1, S1, and

W1. Due to the nature of this service and the limited
amount of signals available for use in L1, its only possi-
ble communicated service statuses are NOM and UNA ,
i.e. ŜL1|L1 ∈ {NOM,UNA}

To aid the estimation of its service status, L1 con-
tains one diagnostic test TL1 which simply checks if the
pressure is in-range, with respect to physical limitations
of the tank, as well as the specification of the sensor S1.
That is, TL1 equals 0 (no alarm) if J1

L1 ≥ p̂at ≥ J2
L1

and 1 (alarm) otherwise. The service status estima-
tion logic for L1 is thus very simple; if TL1 = 0 and
ŜB1|B1 = NOM, then ŜL1|L1 = NOM. Otherwise,
ŜL1|L1 = UNA.

4.2 Summary
We summarize the elements of the service provider to-
gether with their requirements:
• A service provider may exist in several variants,

and there must be a selector, i.e. a mechanism for
selecting the variant.
• Each variant uses a subset of suppliers and a sub-

set of diagnostic tests. The subsets may be over-
lapping.
• Each diagnostic test in the service provider uses a

subset of suppliers, and the subsets may be over-
lapping.
• Each variant has a mechanism for service status

estimation.
• The service status estimation uses as input: es-

timated service statuses communicated from the
suppliers, and diagnostic test results.
• The service status estimation must be possible to

represent efficiently, e.g. in a lookup table.

5 EXAMPLE DESIGN OF SERVICE
PROVIDERS

We consider the principles in Section 2 and 4 to be
sound and general in the sense that they can be ap-
plied to every service provider implemented in soft-
ware. Below follows a design discussion on a more
detailed level. However, we consider this to be an ex-
ample design rather than a general design since, de-
pending on circumstances such as practical considera-
tions, other solutions might be preferred. For instance,
in many small service providers, much more simple so-
lutions are natural, e.g. see Example 2.

The strategy used consists of a two-part solution;
variant service status estimation and variant selection.
In the first part, the service status of the different vari-
ants are estimated. This is done by executing the diag-
nostic tests and then, based on the test results, using a
diagnoser to estimate the service statuses of the suppli-
ers. This estimate of the service status of supplier n is
denoted by Ŝn|tests. Each estimate Ŝn|tests is then com-
bined with the one communicated from the supplier, i.e.
Ŝn|n to obtain Ŝn|m = min(Ŝn|tests, Ŝn|n) where we
have used the min-operator to represent a selection of
the worst status. Next, for each variant m:i, use the es-
timated statuses Ŝn|m of the suppliers together with the
principle illustrated in the table (1) to obtain estimated
service status of each variant Ŝm:i|m.

In the second part, the variant with best estimated ser-
vice status Ŝm:i|m is chosen as the one to be executed.

5

21st International Workshop on Principles of Diagnosis

If there is no unique variant with best estimated service
status, a fixed linear preference order of all variants, de-
termines which one to select.

The estimated service status of the whole service
provider becomes equal to the status of the selected
variant, i.e. let Ŝm|m = Ŝm:i|m. In case all variants
have their estimated status Ŝm:i|m equal to UNA , no
variant can be executed and the estimated service sta-
tus of the service provider becomes UNA , i.e. Ŝm|m =
UNA.

These principles are now illustrated in an example.
Example 3 (Service Status Estimation in A2)
We return to the air-control system and the air mass-
flow estimation module A2. In the following, we il-
lustrate how the principle outlined in Section 5 is used
to estimate the service statuses of the different variants
A2:1, A2:2 and A2:3 described in Example 1.

In order to estimate the service statuses of suppli-
ers L1 and L3, a diagnostic test TA2 is utilized. This
test is based on a residual rA2 formed as the difference
between a pressure estimate, obtained from a physical
model of the tank, and the pressure p̂at, delivered by
L1, see Figure 2. The diagnostic test is obtained by
comparing the residual rA2 with a threshold JA2, and
hence TA2 equals 0 if |rA2| ≤ JA2 and 1 otherwise.

Since TA2 uses signals from both L1 and L3, the fail-
ure signature matrix (FSM) for the test is

SL1 = DIST SL3 = DIST
TA2 X X

where SL1 and SL3 denotes the true service status of
L1 and L1 respectively. Thus, if TA2 alarms we may
conclude that either L1 or L3, or both, has status DIST .
We assume that the diagnoser available for use is con-
servative, hence if TA2 alarms it concludes that both L1
and L3 have status DIST .

Given the outcome of TA2, we attain the service sta-
tus estimates ŜL1|TA2

and ŜL3|TA2
. The final estimates

are calculated as ŜL1|A2 = min
(
ŜL1|TA2

, ŜL1|L1

)
and

ŜL1|A2 = min
(
ŜL3|TA2

, ŜL3|L3

)
, where ŜL1|L1 and

ŜL3|L3 are the communicated service statuses from the
suppliers. According to Section 4.1, the test TA2 is not
run if ŜL1|L1 = UNA or ŜL3|L3 = UNA. In those
cases, the estimated service statuses are based solely on
the communicated statuses, i.e. ŜL1|A2 = ŜL1|L1 and
ŜL3|A2 = ŜL3|L3.

Given the estimated supplier service statuses, we can
estimate the status of each of the variants A2:1, A2:2,
and A2:3. The conditions, in terms of estimated sup-
plier service statuses, for a variant’s service status are
in general a result of an engineering process. For exam-
ple, the air mass-flow estimation algorithm used in A2:1
is designed in a way so that an adequate estimate can be
calculated even if ŜL1|A2 = DIST or ŜL3|A2 = DIST
so that in this case ŜA2:1|A2 = DIST. The supplier sta-
tus conditions for all variants are given in the following
table with an assumed preference order where a status
to the left is preferred over a status to the right.

ŜA2:1|A2 ŜA2:2|A2 ŜA2:3|A2
NOM DIST UNA DIST UNA DIST UNA

ŜL1|A2 NOM NOM ∨ DIST - NOM - - -
ŜL3|A2 NOM NOM ∨ DIST - - - NOM -

The table should be interpreted in this way: if, for
example, ŜL1|A2 = DIST and ŜL3|A2 = NOM then
ŜA2:1|A2 = DIST.

Suppose now there is a fault affecting the electrical
wire W1 connected to pressure sensor S1, e.g. short-
cut to ground. This leads to that a voltage of 0 V is
delivered to the ECU input port. In spite of the fault
affecting W1, B1 can nevertheless deliver its service,
which is to give the voltage at the input port, and there-
fore ŜB1|B1 = NOM.

In L1, the monitoring test TL1, see Example 2,
alarms since 0 V does not correspond to a pressure in-
range and therefore ŜL1|L1 = UNA. If we assume that
there are no other faults in the system, we have that
ŜL3|L3 = NOM. The test TA2 is not executed since
ŜL1|L1 = UNA and thus ŜL1|A2 = ŜL1|L1 = UNA and
ŜL3|A2 = ŜL3|L3 = NOM.

In accordance with the table above we then have that
ŜA2:1|A2 = UNA, ŜA2:2|A2 = UNA, and ŜA2:3|A2 =
DIST. The variant to be executed in A2 becomes A2:3
and ŜA2|A2 = ŜA2:3|A2 = DIST.

6 DIAGNOSTIC MODELING
A diagnostic model is a model that includes all rele-
vant faults and the symptoms they cause in the system.
We need such a model because of at least two reasons.
The first is the use for analysis, and the second is for
model based diagnosis and troubleshooting at the work-
shop. The questions asked during analysis are to obtain
measures of how fault tolerant the system is, or how
easy it is to localize faults. For example we can inves-
tigate probability of false alarm, probability of missed
detection, probabilities of failures of different degrees
of severity. The questions asked during diagnosis and
troubleshooting are for example: given a set of diagnos-
tic test results, what is the most probable faulty compo-
nent, or what is the most probable cause for a specific
service to become unavailable? As said in the introduc-
tion, we use a model in the form of a Bayesian network
since it allows for probability based inference.

A system with service providers, software modules,
and hardware components, arranged such that no di-
rected cycles appear, can be interpreted as a causal
network. Then by adding probabilities, we obtain a
Bayesian network. In addition to service providers, we
add nodes also for diagnostic tests, estimated service
statuses, and selectors. We will now describe the details
of these principles, and we will use a model of service
provider A2, A3, L1, B1, S1, and W1 as an illustrating
example, see Table 1 and Figure 3.

6.1 Structure and Variables of the Bayesian
Network

We consider four kinds of nodes: true service statuses
of both the service provider Sm and its variants Sm:i,
estimated service statuses of both the service provider
Ŝm|m and its variants Ŝm:i|m, diagnostic test results
Tj , and selectors Vm. Note that service providers are
both hardware components and software modules. The
methodology for determining nodes, structure and vari-
ables is now described step by step:

1. The structure is first constructed by considering the
service providers and their service dependencies.
At this stage hardware components have to be in-
cluded in the model. We create one service status

6

21st International Workshop on Principles of Diagnosis

SA2:2

SL1
SL3

Vm

SA2:1 SA2:3

SA2

TA2

SL1|L1
SL3|L3

SA2:2|A2 SA2:1|A2 SA2:3|A2

SA2|A2

SB1|B1 SB1

TL1

SS1 SW1

A2

L1

S1 W1

Figure 3: Model of Service Providers A2, L1, S1, and
W1.

node Sm for each service provider and addition-
ally, for service providers having several variants,
one service status node Sm:i for each variant. The
causal links are the service dependencies. This is
illustrated by the light-gray circular nodes in Fig-
ure 3. As seen, there are also links from each vari-
ant service-status Sm:i to the true service status Sm
of the service provider. In this case, with variants,
the node Sm only represents a copying of the true
service status from the selected variant.

2. In parallel to the structure built so far, we build for
software modules a structure of nodes representing
the estimated service statuses of service providers
and variants. This is illustrated in Figure 3 by the
dark-gray square nodes.

3. We add nodes for test results Tj . These are illus-
trated in Figure 3 by black rhombus. The test result
nodes have incoming links from the true service
statuses of suppliers since these are the nodes de-
termining if the test will alarm or not. Also incom-
ing links from estimated service statuses commu-
nicated from the suppliers to tests are needed since,
as described in Section 4.1, the execution of a test
is disabled if suppliers communicate UNA . The
tests in a service provider are used to estimate the
service status of the different variants, and there-
fore, the outgoing links from the tests go to the
estimated service statuses of the variants.

4. We add nodes for selectors Vm. The selector node
represents the selection of variant, which we here
view, in accordance with Section 5, as a mapping
from estimated service statuses of the variants to
variants. As seen in Figure 3, the selector node has
outgoing links to control which variant that is to
be used both for the estimated service status Ŝm|m
and the true service status Sm.

5. The variable domains need to be determined. The
domains of the estimated service status nodes
Ŝm|m and Ŝm:i|m are given from the software as

described in Section 4.1. The test results Tj have
binary domains {0, 1} and the domain of each se-
lector Vm is the set of possible variants of the ser-
vice provider. The domains of true service statuses
Sm and Sm:i are obtained by analyzing which
fault modes each hardware component can be in
and how these fault modes propagate up-wards in
the system. Thus, for hardware components, the
domain typically correspond to the different fault
modes. For software modules, the domains include
the status NOM and UNA , but the status DIST
might in some cases need to be extended to ob-
tain a higher resolution. That is, one value of the
variable domain of Ŝm may correspond to several
possible values in the domain of Sm. The reason
is that we may know, and want to model, that a
certain test responds differently depending on in
which way, or how much, a service of a supplier is
disturbed.

6.2 Conditional Probability Distributions
The CPD’s of the estimated service status nodes Ŝm|m

and Ŝm:i|m and the the selectors Vm are deterministic
and given by the corresponding algorithms in the soft-
ware. The representation of each CPD can be a lookup
table, or the algorithm itself if it is efficient enough.

The CPD’s of the tests Tj and the service statuses Sm
and its variants Sm:i are stochastic, and they are typ-
ically determined by expert knowledge and/or by ana-
lyzing the system. Here it is useful to use the principle
of noisy-or to reduce the number of parameters and sim-
plify the determination of the CPD, e.g. see (Jensen and
Graven-Nielsen, 2007).
Example 4 (Inference)
Using the principles introduced above, a Bayesian net-
work of the whole air-control system was built us-
ing (GeNIe, 2010). To illustrate the use of the model,
we have here included four experiments. The results of
these experiments are shown in Table 2. The first two
experiments illustrate an analysis of how the system re-
sponds to faults, and the last two experiments illustrate
troubleshooting scenarios.

In the first experiment, the single fault open circuit
(OC) of the wire W1 has been assumed by setting the
evidence SW1 = OC and all other true service sta-
tuses of physical components to the evidence NOM .
Then the effect on all software modules is computed
using the Bayesian network and the result, concerning
all affected parts of the network, is shown in the left
part of Tables 2a and 2b. The probability for NOM
is left out from the table but is 1 minus probabilities
for DIST and UNA . We can for example see that the
true service status SL1 will be UNA , the true service
status SA2 will be DIST , and SA1 will be DIST with
probability 0.9. It is also evident that the software
modules L1 and A2 will provide estimates ŜL1|L1 and
ŜA2|A2 in total agreement with the true statuses. How-
ever, the software module A1 may be a bit conserva-
tive since P (ŜA1|A1 = DIST) = 0.95 compared to
P (SA1 = DIST) = 0.9.

The second experiment is similar but the fault as-
sumed is a single fault bias (B) in sensor S1. In this
case, due to the nature of bias faults, we can see in
the right part of Table 2a that there is no guaranteed
response of any diagnostic test. The diagnostic tests are
used to compute estimated statuses and as shown in the
table, also these become uncertain.

7

21st International Workshop on Principles of Diagnosis

Open Circuit W1 Bias Fault S1
Test ALARM ALARM
TL1 1.0* 0.05
TA2 1.0* 0.90*
TA1 0.05 0.10

(a) Diagnostic test probabilities
Open Circuit W1 Bias Fault S1

Status DIST UNA DIST UNA
ŜL1|L1 - 1.0 - 0.05
ŜA2|A2 1.0 0.0 0.90 0.0
ŜA1|A1 0.95 0.05 0.78 0.13
SL1 0.0 1.0 0.9 0.05
SA2 1.0 0.0 0.82 0.09
SA1 0.90 0.05 0.74 0.13

(b) Service status probabilities
Open Circuit W1 Bias Fault S1

Comp. faulty faulty
W1 0.98 0.0
W2 0.0 0.0
W3 0.0 0.0
W4 0.0 0.0
S1 0.02 0.8
S2 0.0 0.2
C1 0.0 0.0
C2 0.0 0.0

(c) Fault probabilities

Table 2: Probabilities computed using the Bayesian net-
work.

As a conclusion so far, we can also use the numbers
in the table to obtain a measure of fault tolerance against
the two faults considered. As measure we use the
probability that the system can continue its operation,
which corresponds to P (SA1 6= UNA|SW1 = OC)
and P (SA1 6= UNA|SS1 = B) respectively. From the
table we can conclude that these numbers are 0.95 and
0.87 respectively.

In the third experiment, we consider a troubleshoot-
ing scenario and assume that the single fault open cir-
cuit of the wire W1 is present and that this has resulted
in that the tests TL1 and TA2 have responded. This is
in agreement with the conclusions of the first experi-
ment and it is highlighted in Table 2a by a star next
to these two test results. For troubleshooting, the only
thing given is the test results from all tests and these are
therefore given as evidence to the Bayesian network.
We then use the Bayesian network to compute the prob-
abilities of different faults. This is shown in the left part
of Table 2c and it is evident that the Bayesian inference
succeeds in perfectly localizing the fault.

In the fourth experiment, we assume that the single
fault bias in the sensor S1 is present and that this has
resulted in that only the test TA2 has responded. As seen
in the right part of Table 2c, the inferred probability of
a fault in S1 is 0.8 but also a fault in S2 gets some
probability mass. That is, the fault localization is not
perfect, but a mechanic trusting these diagnosis results
would certainly first try to repair sensor S1 which in
fact would give a successful repair.

7 CONCLUSIONS
The paper has presented a hierarchical architecture for
fault tolerant control of large-scale mechatronic sys-
tems. In the architecture, both the diagnosis and the
reconfiguration are completely decentralized according
to the structure of the control system. In each module
of the control system, diagnosis and reconfiguration are
included and use only locally available signals. There-
fore, no extra dependencies are added to the SW. This
is of key importance since a requirement of efficient en-
gineering of large scale system, is to reduce and control

the amount of dependencies in the system. All this has
been possible to achieve by using a purely service ori-
ented view of the system including both hardware and
software. The service view with no cyclic dependen-
cies is further used as the basis for obtaining Bayesian
networks for modeling the system.

ACKNOWLEDGMENTS
This work was supported by Scania CV AB, Södertälje,
Sweden. The authors also want to thank the MSc stu-
dent Erik Landström for his work with modeling exam-
ples.

REFERENCES
(Blanke et al., 2006) M. Blanke, M. Kinnaert,

J. Lunze, and M. Staroswiecki. Diagnosis and
Fault-Tolerant Control. Springer Berlin Heidelberg,
2 edition, 2006.

(Bonivento et al., 2003) Claudio Bonivento, Andrea
Paoli, and Lorenzo Marconi. Fault-tolerant control
of the ship propulsion system benchmark. Control
Engineering Practice, 11(5):483 – 492, 2003. Auto-
matic Control in Aerospace.

(Deb et al., 1995) S. Deb, K.R. Pattipati, V. Ragha-
van, M. Shakeri, and R. Shrestha. Multi-signal flow
graphs: a novel approach for system testability anal-
ysis and fault diagnosis. Aerospace and Electronic
Systems Magazine, IEEE, 10(5):14–25, 1995.

(Gehin and Staroswiecki, 2008) A.L. Gehin and
M. Staroswiecki. Reconfiguration analysis using
generic component models. IEEE Trans. on Sys-
tems, Man, and Cybernetics. Part A: Systems and
Humans, 38(3):575–583, 2008.

(GeNIe, 2010) GeNIe. Decision Systems Lab-
oratory, University of Pittsburgh, URL:
http://genie.sis.pitt.edu/, 2010.

(Grunske and Kaiser, 2005) L. Grunske and B. Kaiser.
Automatic generation of analyzable failure propa-
gation models from component-level failure annota-
tions. International Conference on Quality Software,
2005.

(Jensen and Graven-Nielsen, 2007) F. Jensen and
T. Graven-Nielsen. Bayesian Networks and
Decision Graphs. Springer, 2 edition, 2007.

(Laprie, 1991) J.C Laprie, editor. Dependability: Basic
Concepts and Terminology. Springer, 1991.

(Misra et al., 1994) A. Misra, J. Sztipanovits, and
J. Carnes. Robust diagnostics: Structural redundancy
approach. SPIE’s Symposium on Intelligent Sys-
tems, 1994.

(Mohamed and Zulkernine, 2008) A. Mohamed and
M. Zulkernine. On failure propagation in
component-based software systems. International
Conference on Quality Software, pages 402–411,
2008.

(Staroswiecki, 2008) M. Staroswiecki. On fault han-
dling in control systems. International Journal of
Control, Automation, and Systems, 6(3):296–305,
2008.

(Storey, 1996) Neil Storey. Safety-Critical Computer
Systems. Addison Wesley, 1996.

(Zhang and Jiang, 2008) Y. M. Zhang and J. Jiang.
Bibliographical review on reconfigurable fault-
tolerant control systems. IFAC Annual Reviews in
Control, 32(2):229–252, 2008.

8

