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Abstract
Model-based approaches to fault detection and
isolation (FDI) rely on accurate models of the
plant and a sufficient number of reliable measure-
ments for residual generation and analysis. How-
ever, in realistic situations, there can be uncertain-
ties in the plant models and measurements, which
have a negative impact on the diagnosability per-
formance that depends on the system state. In
other words, the impact of the uncertainties can
be larger in some operating regions as compared
to others. To achieve acceptable performance in
practice, it is necessary to find a set of residuals
that are sufficiently sensitive to faults but robust
to uncertainties across all operating conditions.
In this paper, a quantitative measure, called de-
tectability ratio, is used to evaluate and quantify
detectability performance of different residuals in
different operating regions. This measure is used
to find a minimal residual set that fulfills a set of
desired diagnosability performance requirements.
The proposed method is demonstrated and vali-
dated through a case study.

1 Introduction
In model-based diagnosis, finding a suitable set of resid-
uals which fulfils required detectability and isolability is
an important part of the diagnosis system design process
[Chen and Patton, 2012; Blanke and Schröder, 2003]. A
common approach to design FDI systems utilizes the con-
cept of structured residuals, see for example [Gertler, 1991;
Cordier et al., 2004], which utilizes a set of residuals, where
each residual is sensitive to a subset of faults, and the set
of residuals can detect and isolate the set of faults. Sev-
eral algorithms have been proposed to find sets of residuals
which fulfil a required detection and isolation performance
(see for example [Armengol et al., 2009; Svärd et al., 2013;
Bregon et al., 2014]).

Depending on the system size and the number of po-
tential sensors that may be used, the number of residual
candidates can become very large and search for the op-
timal set is computationally infeasible. In [Svärd et al.,
2013], a greedy search strategy is used to select a min-
imal set of residuals that can detect and isolate a set of
faults. The problem of finding sets of residuals for fault
diagnosis is also covered in [Travé-Massuyes et al., 2006;
Nejjari et al., 2010] as a component of the sensor placement

problem. On-line residual selection strategies have been
proposed to reduce the computational cost [Krysander et al.,
2010]. In [Eriksson et al., 2012], an on-line sequential test
selection strategy is proposed where the detectability perfor-
mance of each residual is quantified using a measure called
distinguishability [Eriksson et al., 2013]. In [Nyberg, 1999],
a loss function is used as a predefined cost for different situ-
ations that produce incorrect results such as false alarms and
incorrect isolations hypotheses, then the expected value of
the loss function is used as a measure to evaluate effective-
ness of different diagnosis system candidates.

Even if faults are detectable and isolable in theory, param-
eter uncertainties can complicate the FDI problem produc-
ing false and missed alarms, and degrade the detection and
isolation performance. Given a model of a dynamic system,
and a set of measurements that can be made on the system,
there are several residual candidates that can be derived us-
ing ARR approaches. In this paper, we study the problem
of choosing a subset of residuals that are the most sensitive
to faults and at the same time are robust to the uncertainties.
Sensitivity of a residual with respect to a fault or an uncer-
tainty represent the residual’s response to the fault or uncer-
tainty respectively. Our primary goal in this paper is to max-
imize detectability of faults, and then extend the analysis to
establish isolability results. However, choosing the best set
of residuals for fault diagnosis is not trivial. It is a challenge
to evaluate the effects of uncertainties and faults on each
residual. In [Djeziri et al., 2007], the effects of uncertain-
ties are compensated for by the use of adaptive thresholds.
In [Eriksson and Sundström, 2014], residual performance is
quantified using the Kullback-Leibler divergence. In rela-
tion to previous work, a contribution here is to develop an
approach to residual selection that achieves sufficiently high
detectability, thus reducing the chances of false alarms over
different operating regions of system behavior. For fault iso-
lation, it reduces the chances for incorrect diagnoses.

Moreover, as the system behavior evolves, the perfor-
mance of each residual may vary over time and the de-
tectability performance will depend on the operating regions
of the system. A residual that is more effective in detecting
a fault in one operating region, may be quite ineffective in
another. Therefore, different residual sets may be necessary
to fulfill the required performance over multiple operating
regions of the system. However, since the set of residual
candidates can be large, it is important to keep the search
process constrained to avoid large computational expenses
in the selection process.

In previous work [Khorasgani et al., 2014] used sensitiv-



ity analysis (see for example [Ascher and Petzold, 1997])
to define a detectability ratio measure to quantify the per-
formance of a residual. By comparing the sensitivity of
the residual value to the fault versus the sensitivity of the
residual value to uncertainty in model parameters, the de-
tectability ratio quantifies the separation of the effect of the
fault from uncertainty effects. In the previous work, the de-
tectability ratio was used for on-line residual selection when
the system switched from one operating region to the next.
In this paper we use the detectability ratio for off-line resid-
ual selection. The objective is to find subsets of residuals
that fulfil a specified detectability performance for the op-
erating regions of the system. The selected residual sets
can then be invoked on-line for the corresponding operating
range. This reduces the overall computational complexities
for on-line detection.

The outline of this paper is as follows. Section 2 for-
mulates the problem and briefly reviews dynamic system
models, residual selection and the fault detection problem.
Section 3 presents a running example to describe the resid-
ual selection method, the approach for residual generation
given a system model and measurements, and the residual
candidates for the example problem. A quantitative mea-
sure to evaluate residual performance for fault detection is
presented in Section 4. Two algorithms for choosing an opti-
mal set of residuals for the different operating ranges of sys-
tem behavior are presented in Section 5. Section 6 extends
the work to discuss residual selection for fault isolation us-
ing the detectability ratio criterion. Section 7 discusses the
conclusions of the paper.

2 Problem formulation
In this work, we study the problem of off-line residual se-
lection for linear dynamic systems.

2.1 System representation
The general model of linear dynamic systems takes the form

ẋ = A(θn, δ, f)x+B(θn, δ, f)v

y = C(θn, δ, f)x+D(θn, δ, f)v
(1)

where x ∈ Rlx represents state variables, v ∈ Rlv actuator
signals, y ∈ Rly sensor signals, θn ∈ Rlθn nominal system
parameters, δ ∈ Rlδ parameter uncertainties, and f ∈ Rlf
faults. It is assumed that the true values of parameters of
the system model may not be known, and the uncertainty
in the parameters is characterized by a multiplicative term.
Therefore, each parameter θ with nominal value θn is repre-
sented as: θ = θn(1 + δθ), where δθ models the uncertainty
in the parameter. It is also assumed that each parameter un-
certainty δθ has a known upper bound ∆θ:

|δθ| ≤ ∆θ (2)

2.2 Fault detection
A residual r is an analytical redundancy relation (ARR) be-
tween parameters of the system, process measurements, and
inputs. Once a persistent fault occurs the computed value
from the ARR will most likely not match the measured
value. To detect a fault f we need a residual sensitive to
the fault and, at the same time, invariant or at least robust
to uncertainties [Frank and Ding, 1994]. In this paper we
model residuals for the linear dynamic system (1) as a non
linear dynamic relationship between nominal parameters of

the system, process measurements, and inputs in the follow-
ing manner:

˙̂x = f(x̂, θn, u, y)

r(x̂, θn, u, y) = 0,
(3)

where x̂ represents the internal dynamics of the residual and
u represents measured inputs. When the inputs are known
or we have ideal sensors with no faults or uncertainties, u is
equal to v.

2.3 Residual selection
The total number of possible residual candidates for fault
detection grows exponentially as the number of measure-
ments increases [Armengol et al., 2009; Svärd et al., 2013].
In (3) the total number of redundancies introduced into the
system model is equal to the number of measurements ly .
Theoretically, each ARR can include from one to ly mea-
surements. Therefore, the total number of residuals NARR
is proportional to the number of all the possible combina-
tions of the measurements :

NARR ∝
ly∑
i=1

(
ly
i

)
= 2ly (4)

Therefore in general, there are many different residual sub-
sets that we can use to detect the faults.

When there are uncertainties in the system, the sensitiv-
ity of these residuals to each uncertainty have to be com-
puted to determine the residuals that provide the best per-
formance. The sensitivity of the residuals to the faults are
not the same. Therefore, different sets of residuals can have
different performances for fault detection. Moreover, for a
given behavior trajectory, different residuals can have dif-
ferent performance in different operating regions of the sys-
tem. As a result, the best performance over an entire range
of operations of the system can not be achieved by consid-
ering a single set of residuals. To achieve the best possible
performance we need to find the best set of residuals in each
operating region and switch to that set as the system be-
havior evolves and crosses from one region to another. To
minimize the computational costs at the same time, we want
each residual set to have minimal cardinality. As discussed
earlier, solving the general problem of finding optimal resid-
ual sets for a set of faults over different operating regions is
a computationally intractable problem. Therefore, we sim-
plify the problem by finding the best subset of residuals to
detect each possible fault and then we consider the mini-
mal size sets formed by the union of the individual sets as
the final answer. This simplification still gives us the best
performance but the computational cost is not globally opti-
mum.

In this paper we define detectability ratio of fault fi for
a residual r, D(fi|r), as a measure that captures the perfor-
mance of residual r in detecting fault fi. Using this measure
we can choose the best residual to detect fi within each op-
erating region. To achieve the maximum performance with
minimum on-line required computation we have developed
an off-line residual selection algorithm that can choose a
subset of residuals to detect fi that guarantee maximum per-
formance for a given trajectory. The problem is presented as
follows.

Let R = {r1, r2, . . . , rn} denote a set of residual candi-
dates. We develop an algorithm to find a subset of residuals



Ri which guarantees a maximum quantitative detectability
ratio for each fault fi over the time interval T , and has min-
imum number of residuals.

min Ri ⊆ R
s.t. ∀t ∈ T, ∃r ∈ Ri :

D(fi|r(t)) = max(D(fi|rj(t))|∀rj ∈ R),

R =

lf⋃
i=1

Ri

(5)

where t represents time and R is the final subset of resid-
uals for fault detection.

3 Running example

As the running example for this paper, consider a simple DC
motor with a mechanical load shown in Figure 1.
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Figure 1: DC motor diagram.

The rotational speed of the mechanical load is considered
as the only state variable in the system. The corresponding
state equation is:

ω̇2 = −(
B(1 + δB)

J(1 + δJ)
+
Ka(1 + δKa)Kf (1 + δKf )

J(1 + δJ)Ra(1 + δRa)
)ω2

+
N2

N1
(1 + fg)

Ka(1 + δKa)

J(1 + δJ)Ra(1 + δRa)
v,

(6)
where v is the DC voltage applied to the motor, Ra is the
nominal value of armature resistance. The parameter Ka is
the unit rate of the proportional relationship between motor
torque Te and current ia. The parameter Kf represents the
rate of change of back electromotive force (EMF) voltage
e with respect to electric motor rotational speed ω1. The
gear helps in increasing the torque and reducing the speed of
mechanical load. The mechanical torque is given by Tm =
N2

N1
Te and mechanical rotational speed by ω2 = N1

N2
ω1. A

fault in the gear is denoted fg . Mechanical load has nominal
inertia J and nominal friction coefficient B.

The system has four known variables, the input u, and
three measurements, y1, y2, and y3 with associated sensors.
The equations for the measured input and the three output

measurements are given by:

u =(1 + δu)v,

y1 =(1 + δy1)ia

=(1 + δy1)

(
−
Kf (1 + δKf )

Ra(1 + δRa)

N1

N2(1 + fg)
ω2

+
1

Ra(1 + δRa)
v

)
,

y2 =(1 + δy2)Tm

=(1 + δy2)

(
−
Ka(1 + δKa)Kf (1 + δKf )

Ra(1 + δRa)
ω2

+
N2

N1
(1 + fg)

Ka(1 + δKa)

Ra(1 + δRa)
v

)
,

y3 =(1 + δy3)ω2,

(7)

where u represents the output of the first sensor: a volt-
meter which measures the battery voltage, v. The signal y1
is the ammeter output that measures the motor current. y2
represents the output associated with the torque transducer
and, i.e., the mechanical torque Tm. y3 is the output mea-
surement recorded by the tachometer, ω2. The uncertainty
in each parameter θ is denoted δθ. The block diagram of
the system, derived from the state and output equations is
shown in Figure 2.
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Figure 2: Block diagram model of DC motor.

Several methods have been proposed for designing resid-
uals [Frank, 1990]. Given u and y3 the following residual
can be designed to detect fg by comparing y3 and its pre-
dicted value ω̂2 as:

˙̂ω2 = −(
B

J
+
KaKf

JRa
)ω̂2 +

N2

N1

Ka

JRa
u

r1 = y3 − ω̂2.

(8)

Another residual that can be used to detect fg is computed as
the difference between a measurement y2 and its predicted
value T̂m.

˙̂ω2 = −(
B

J
+
KaKf

JRa
)ω̂2 +

N2

N1

Ka

JRa
u

T̂m = −KaKf

Ra
ω̂2 +

N2

N1

Ka

Ra
u

r2 = y2 − T̂m.

(9)

Usually an ARR is considered as a relationship between in-
puts and outputs, however it can also represent analytical
redundancy between two or more outputs. r3 is derived us-



ing y1 to predict y3.

˙̂ω2 = −B
J
ω̂2 +

Ka

J

N2

N1
y1

r3 = y3 − ω̂2.

(10)

Considering y1 and y2 we have:

r4 = y2 −Ka
N2

N1
y1. (11)

So far the residuals were a function of two known variables.
The following residuals represent an analytical relationship
between three known variables i.e., using u and y3 to predict
y2:

r5 = y1 −
1

Ra
(u−Kf

N1

N2
y3). (12)

The next residual uses u and y2 to predict y1.

˙̂ω2 = −B
J
ω̂2 + y2

r6 = y1 −
1

Ra
(u−Kf

N1

N2
ω̂2).

(13)

Similarly, the following residual uses u and y3 to predict y2.

r7 = y2 −
1

Ra
Ka

N2

N1
u+Kf

1

Ra
Kay3. (14)

We can also estimate the input by v̂ = Ray1 +Kf
N1

N2
y3 and

substitute it in (9). This results in a new residual, which is a
function of y1, y2 and y3.

v̂ = Ray1 +Kf
N1

N2
y3

˙̂ω2 = −(
B

J
+
KaKf

JRa
)ω̂2 +

N2

N1

Ka

JRa
v̂

T̂m = −KaKf

Ra
ω̂2 +

N2

N1

Ka

Ra
v̂

r8 = y2 − T̂m.

(15)

The number of possible residuals increase as the number of
analytical redundancies in the system increase. It should
also be mentioned here that in general any linear or even
non-linear combination of residuals can be used to generate
a new residual. In this paper, we propose a methodology
to choose an optimal subset of residuals for a given system
trajectory.

4 Quantifying the performance of residuals
To select the best set of residuals for fault detection we need
to quantify their performance in the face of model uncertain-
ties. As discussed, we use sensitivity analysis as the basis
evaluating the effect of model uncertainties on the residuals.
In this section we present the sensitivity analysis methodol-
ogy, and then use this method to define a quantitative mea-
sure for fault detection performance of a given residual.

4.1 Sensitivity analysis methodology
Sensitivity analysis helps evaluate how model behaviors
are affected by variations in model parameters [Serban and
Hindmarsh, 2005]. We start by computing the derivative of
each system variable with respect to each parameter using
the chain rule. Consider a general linear dynamic system

model (1). The chain rule is applied to the state and output
equations to obtain [Ascher and Petzold, 1997]:

ṗψ = Apψ +
∂A

∂ψ
x+

∂B

∂ψ
v

qψ = Cpψ +
∂C

∂ψ
x+

∂D

∂ψ
v,

(16)

where pψ = ∂x
∂ψ and qψ = ∂y

∂ψ represent the sensitivity of
state variables and measurements to the parameter ψ, which
can be a fault, fi or the uncertainty associated with a param-
eter, δj . It is assumed that v is an external control signal
which does not depend on ψ, implying ∂v

∂ψ = 0.
Consider the DC motor state dynamic equations (6). We

can present the dynamics associated with pδB = ∂ω2

∂δB
for

nominal behavior as:

ṗδB = −(
B

J
+
KaKf

JRa
)pδB −

B

J
ω2. (17)

Using equation (7) and the chain rule we can derive the sen-
sitivity of known variables of the system to δB as a function
of pδB :

∂u

∂δB
= 0

∂y1
∂δB

= −KfN1

RaN2
pδB

∂y2
∂δB

= −KaKf

Ra
pδB

∂y3
∂δB

= pδB .

(18)

Sensitivity of known variables to other uncertainties δRa ,
δKa , δKf , δJ , δu, δy1 , δy2 ,δy3 and fault fg are derived in a
similar manner but due to the lack of space we do not list all
of them in this paper.

4.2 Sensitivity analysis of residuals
Consider the residual model given by equation (3). We can
use the sensitivity of known variables to uncertainties and
faults derived in the previous section, to compute the sensi-
tivity of the residual to faults and uncertainties, represented
by ψ, as:

˙̂pψ =
∂f

∂x̂
p̂ψ +

∂f

∂u

∂u

∂ψ
+
∂f

∂y

∂y

∂ψ

∂r

∂ψ
=
∂r

∂x̂
p̂ψ +

∂r

∂u

∂u

∂ψ
+
∂r

∂y

∂y

∂ψ
,

(19)

where p̂ψ = ∂x̂
∂ψ . As an example, the sensitivity of the first

residual r1 to δB is derived as:

˙̂pδB = −(
B

J
+
KaKf

JRa
)p̂δB

∂r1
∂δB

=
∂y3
∂δB

− p̂δB .
(20)

where p̂δB = ∂ω̂2

∂δB
.

4.3 Detectability ratio for fault detection
We use sensitivity analysis to compute the effects of uncer-
tainties and faults in the residuals. It is assumed that the fault
magnitude and uncertainties are small and approximately
constant over time. A first order linear approximation of



a residual with respect to the faults f and uncertainties δ is
given by:

r(y, u) ≈
lf∑
i=1

∂r

∂fi
fi +

lδ∑
j=1

∂r

∂δj
δj . (21)

The partial derivatives ∂r
∂fi

and ∂r
∂δj

are computed using (19).
Note that if a residual r is not sensitive to a fault or uncer-
tainty then the corresponding partial derivative is zero.

When quantifying the detectability performance of a
residual r with respect to a fault fi the relative effect of the
fault is compared to the total effect of the uncertainties δ.
Since the actual magnitudes of the fault and uncertainties
are unknown, the maximum values of the magnitude of un-
certainties and minimum magnitudes of a fault fi are used
for the calculations. This gives us the worst case scenario of
the difficulty in detecting a fault. We use a quantitative mea-
sure of detectability performance defined in previous work
[Khorasgani et al., 2014] as follows.

Definition 1. (Detectability Ratio) Given a dynamic system
(1) the detectability ratio of a fault fi for a residual r (3) is
defined as:

D(fi|r) =

∣∣∣ ∂r∂fiFmin∣∣∣∣∣∣ ∂r∂fiFmin∣∣∣+
lδ∑
j=1

∣∣∣ ∂r∂δj ∆j

∣∣∣ , (22)

where ∆j is the upper bound of uncertainty δj and Fmin
is an absolute minimum fault magnitude of fi to detect. If∣∣∣ ∂r∂fiFmin∣∣∣ = 0 then D(fi|r) = 0.

The detectability ratio has a value in the interval [0, 1],
where 0 corresponds to the situation where the residual is
not sensitive to the fault fi and 1 if there are no uncertainties
affecting the residual’s ability to detect the fault. If the effect
of a fault is larger than the total effect of all the uncertainties
thenD(f |r) > 0.5, which means that the fault is detectable.

Table 1 lists parameters for the running example. Consid-
ering the parameters, v = 10V , 1% uncertainty in each pa-
rameter and the sensors, and Fmin = 25%, the detectability
ratio of r1, r2, r3, r4, r5, r6, r7, and r8 are plotted in Fig-
ure 3. We can see in this figure that r4 has the highest
detectability ratio and is the best choice to detect fault fg .
This is not surprising because r4 is a function of only one
parameter and two known variables and when all the ele-
ments have the same percentage of uncertainty, the residuals
with fewer number of parameters and known variables pro-
vide the better performance. However, in the general case
each element can have different level of uncertainty and we
need to perform sensitivity analysis to find the residual that
is most sensitive to the fault and has the greatest robustness
to the uncertainties. The other interesting observation is that
all of the eight residuals have detectability ratio higher than
0.5, so they can be used to detect a fault with magnitude,
Fmin = 25%. But if we wish to detect smaller faults we
need to use residuals that have a higher detectability ratio.

In this simple example we only considered the system op-
eration in steady state, but in general a dynamic system can
have different trajectories which lead to different detectabil-
ity ratio for each residual over different intervals of time.
In the next section, we will discuss the problem of residual
selection when we have more complicated trajectories.

Table 1: Running Example Parameters

Parameter Value and unit
Ra 1Ω
Ka 0.5 N.m/Amp
Kf 0.68 Volt/(rad/sec)
N1

N2
0.5

B 0.6 N.m.s/rad
J 0.4 kg.m2

Figure 3: Detectabilty ratio of fault fg for different residuals
in the running example.

5 Algorithm for residual selection
In this section we present two methods for residual selec-
tion. The first one is the solution to the problem we pre-
sented in (5). The second approach adds a constraint to the
problem but instead of the best performance it only satisfies
a minimum required performance.

5.1 Best performance with minimum number of
residuals

To address problem (5) we have to choose a subset of resid-
uals provide the best performance in different working re-
gions and switch between them accordingly as the system
behavior transitions from one region to the next. In other
words, we compute the detectability ratio of all the residual
candidates off-line and choose a subset of residuals that con-
tains the residuals with the best detectability ratio in each
working range. When operating on-line we only need to
compute the detectability ratio of this subset of residuals
and switch between them. This method is straight forward
and guarantees the best performance in on-line fault detec-
tion. However, there is no limitation on the number of re-
quired switchings between the residuals in on-line scenarios



to achieve this performance.

5.2 Required performance with minimum
number of switching between residuals

Switching between residuals can be computationally expen-
sive and in some applications where the system has a fast
dynamic or the performance of residuals are similar ensur-
ing minimum amount of switching between the residuals is
a reasonable criterion to impose on the choice of residuals.
In this section we propose an algorithm to choose a set of
residuals that guarantee the required detectability ratio with
minimum number of residual switching for a given trajec-
tory.

Note that to achieve global minimum switching between
the residuals, we have to consider all the possible faults and
all the residuals sensitive to them simultaneously as one op-
timization problem. However, to simplify the problem, in
this paper we consider the problem for each individual fault
separately. Therefore, there is no guarantee that the final an-
swer gives us the global minimum switching for the system
but if the number of possible faults are small in the system
the answer is close to the global optimal.

Let R denote a set of residual candidates for fault de-
tection. The purpose is to find a subset of residuals Ri
which fulfils a minimum required detectability ratio Dreq

for detecting fault fi, and requires the minimum number
of switching between the residuals for a given time inter-
val T which in general represents a set of different operat-
ing ranges. For example, consider the case that we have a
residual that gives us acceptable performance in the current
system working range and then the system behavior changes
to another region. We prefer to make no change if the cur-
rent residual still provides sufficient performance. If the per-
formance falls below a threshold, then we prefer to change
to a new residual such that its performance will stay above
the threshold for the longest possible period of time . This
should minimize subsequent residual switching in the fu-
ture. The problem is presented as follows.

min (|rj → rk| |rj , rk ∈ Ri)
s.t. ∀t ∈ T∃r ∈ Ri : D(fi|r(t)) ≥ Dreq

Ri ⊆ R

R =

lf⋃
i=1

Ri,

(23)

where rj → rk represents switching from residual rj to
rk and we want to minimize the total number of required
switching, denoted |rj → rk|, between the residuals r ∈ Ri
while keeping D(fi|r) above Dreq for the given trajectory.
We can easily change this problem to the problem of finding
shortest path in graphs [Cherkassky et al., 1996] and use one
of the well developed polynomial algorithms for the short-
est path problem to solve it. The process is summarized as
follows.
1- Consider a source and a terminal node for the graph.
2- For each region of operation, consider a layer in the

graph and for each residual that has detectability ratio
above the threshold in that region of operation consider
a node in that layer.

3- Connect the source node to the nodes of layer one with
weight zero.

4- Connect each node in each layer to all of the nodes in
the next layer. If start and end node of a connection
represent the same residual assign weight zero to that
connection, otherwise assign weight one to the connec-
tion.

5- Connect the nodes in the last layer to the terminal node
with weight zero.

We elaborate on this process using an example in the fol-
lowing section.

5.3 Example for residual selection
To increase DC motor rotational speed we can reduce the
field flux, this is equivalent with decreasing Kf in (6). To
show how different trajectories can change the detectability
ratio of the residuals in this simulation, we decrease the flux
field at a constant rate from 40s to 50s to 10% of its origi-
nal value. All the parameters have the same values reported
in Table 1. The maximum uncertainty in each sensor and
parameter considered is 1%, Fmin = 25% and Dreq = 0.8.
Figure 4 shown the detectability ratios and the required de-
tectability ratio for each residual.

 

Transition Before Transition After Transition 

Figure 4: Detectability ratio and minimum required de-
tectability ratio of fault fg for different residuals in the run-
ning example.

Residual selection for best performance with minimum
number of residuals
For the given trajectory the system has three main work-
ing ranges: before transition, transition, and after transition.
To choose the best performance with minimum number of
residuals we consider these three time intervals as the three



operating regions. Before the transition r4 has the highest
detectability ratio, during the transition r5 has the highest
detectability ratio and after transitions r7 is the best choice.
Therefore, the subset (r4, r5, r7) is enough to achieve the
best possible performance. The total number of switching
with these residuals for the given trajectory is two, the first
one from r4 to r5 and the second one from r5 to r7.

Residual selection for required performance with
minimum number of switching between residuals
To minimize the number of switching between residuals we
consider the second problem. Before transitioning to a new
region r3, r4, r5 and r6 have detectability ratios higher than
the minimum requirement so we need one of them in our
final set. In the second region, r5 and r7 are our choices
and finally for the last interval we need to choose one from
r2, r4, r7. As we mentioned earlier, we can look at the prob-
lem as finding the shortest path in a graph. As is shown in
Figure 5, we consider a source and a terminal node and then
for each residual switching we consider an edge of weight
1. If we find the shortest path from the initial region of op-
eration to the final region of operation we have found the
residual set with minimum required switching.
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Figure 5: Residual selection as a shortest path problem.

In this example, the shortest path gives us one of the fol-
lowing residual pairs:

(r3, r7), (r4, r7), (r5, r7), (r6, r7), (r5, r2), (r5, r4). (24)

Note that the total weight of each path is equal to 1 which
means only one residual switching is required for the given
trajectory. In this example, we only have one possible fault,
therefore, the answer is the global optimal answer.

6 Isolability problem
In diagnosis systems, fault detection is typically followed
by fault isolation. To isolate a fault fi from the other possi-
ble faults in the system, we need a residual that is sensitive
to fault fi but invariant or robust to others. However, the
effects of faults and uncertainties in the residuals are un-
known, and we have to, like before, estimate them using
sensitivity analysis.

Making the single fault assumption, it is assumed that
only one of the possible faults occurs, and we want to quan-
tify the performance of each residual to isolate that specific
fault from the others. The magnitudes of the possible faults
and uncertainties are unknown, therefore, to quantify the

performance of residual r to isolate fault fi from another
fault fj , the minimum magnitude of fi and the maximum
magnitude of fj and uncertainties are considered. That is,
the other fault fj is considered as an uncertainty. Then,
isolability ratio is defined, using equation (21), as a quan-
titative measure of isolation performance as follows.

Definition 2. (Isolability Ratio) Given the dynamic system
(1) the isolability ratio of a fault fi from another fault fj ,
given residual r is defined as:

I(fi|r, fj) =

∣∣∣ ∂r∂fiFmin∣∣∣∣∣∣ ∂r∂fiFmin∣∣∣+
∣∣∣ ∂r∂fj Fj∣∣∣+

lδ∑
k=1

∣∣∣ ∂r∂δk∆k

∣∣∣ , (25)

where ∆k and Fj are the upper bound of the uncertainty δk
and the fault fj respectively, and Fmin represents an abso-
lute minimum fault magnitude of fi.

If I(fi|r, fj) > 0.5 means that the effect of a fault fi on
r is always larger than the total effects of the uncertainties
and the fault fj and we can use r to isolate fi from fj . Note
that if r is sensitive to fj and we do not know the maximum
magnitude of fj , i.e. "Fj = ∞" , then r can not be used to
isolate fi from fj and I(fi|r, fj) = 0.

To demonstrate the performance of the isolability ratio
consider the running example with possible fault fu in the
volt-meter.

u = (1 + fu)(1 + δu)v (26)

Figure 6 represents the isolability ratio of gear fault fg from
volt meter fault fu when the minimum magnitude of fg is
25%, maximum magnitude of fu is 100%, v = 10 and sys-
tem parameters are represented in Table 1. Residuals r3, r4

Figure 6: Isolability ratio of fault fg from fault fu.

and r8 have isolability ratio higher than 0.5 and can be used
to isolate fault fg from fault fu. Among them r4 has the



highest isolability ratio and is the most reliable residual to
isolate fg from fu in the presence of uncertainties.

Note that isolability ratio is simply a generalization of de-
tectability ratio. In fact, the detectability ratio of fault fg
is the isolability ratio of fg from the no fault case. There-
fore, we can extend the algorithms developed for residual
selection, to address the problem of residual selection with
required isolability performance of fault fg from fault fu by
considering I(fg|r, fu) as the quantitative measure.

7 Conclusion
There are several methods for fault detection and isolation.
These methods suggest automated algorithms to determine
a set of minimal residuals to maximize diagnosability of the
system. However it is often not clear how the performance
of each method is affected in the presence of uncertainties
in the system. In this paper, we used the detectability ratio
to select a set of residuals that guarantee a required perfor-
mance for a given trajectory. Two approaches, one based
on maximizing performance, and a second based on min-
imizing switching between residuals, but still maintaining
detectability performance above a pre-specified threshold
are presented. We also extended the measure for fault de-
tectability to a fault isolability measure to determine the
ability to isolate one fault from another. The algorithms
developed in this paper are for off-line analysis and selec-
tion. Therefore, the computational problem of the sensitiv-
ity analysis was not considered to be a central issue.

The detectability and isolability ratios give useful infor-
mation of how diagnosability performance varies in dy-
namic systems. This can be used to design diagnosis sys-
tems which adapts to different operating conditions as dis-
cussed in this work but also other applications such as op-
timizing input signals for active fault diagnosis. Using sen-
sitivity analysis, makes the method capable to address addi-
tive and multiplicative faults and uncertainties, however, it
reduces the accuracy of the method dealing with high fre-
quency signals. In future work, we will investigate other
possible methods to take noise and time-varying faults and
uncertainties into consideration in the diagnosability analy-
sis.
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