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Abstract— Structural methods in model-based fault diag-
nosis applications are simple and efficient tools for finding
candidates for residual generation. However, the structural
methods do not take model uncertainties and information about
fault behavior into consideration. This may result in selecting
residual generators with bad performance to be included in the
diagnosis system. By using the Kullback-Leibler divergence, the
performance of different residual generators can be compared
to find the best one. With the ability to quantify diagnostic
performance, the design of residual generators can be optimized
by, for example, combining several residual generators such
that the diagnostic performance is maximized. The proposed
method for residual generation selection is applied to a water
tank system to show that the achieved residual performance is
improved compared to only use a structural method.

I. INTRODUCTION

Designing a diagnosis system to monitor a physical system
is a complex engineering task involving many aspects [1].
A model based diagnosis system is based on residuals, and
there will most likely be thousands of residual generator
candidates to be included in the system. The selection of
which of these candidates to include in the diagnosis system
is a key issue to achieve good fault detection performance.
There are several works considering methods for finding
subsets of model equations with analytical redundancy to be
used for residual generation, see e.g., [2]. These methods
are helpful to find candidates of possible residuals, but it is
time consuming to manually evaluate the residual generator
candidates and single out the good residual generators.

In [3], that is based on [4], a structural method for finding,
generating residuals, and evaluating algebraic and dynamic
properties of the residual generators is proposed. This is a help
for an engineer in the design process of the diagnosis system
to, e.g., avoid algebraic loops. However, no information about
the sensitivity to fault and noise in the residuals is considered.
If fault detectability performance of the different residuals
could be quantified, the best residual with a certain isolability
property can automatically be selected.

The performance of a set of diagnostic tests, e.g., residuals
and thresholds, is commonly evaluated using fault detectability
and isolability which are deterministic properties, see [5], [6],
or evaluated using data from a set of fault scenarios, see
references in [7]. The performance of a single test quantity
is often evaluated using ROC-curves [8], or power functions
[9]. However, early in the design process of the residuals, i.e.
before choosing a threshold function, these previous methods
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are not sufficient to compare the performance of the residual
generator candidates. A quantitative measure of diagnosability
performance given a residual generator is necessary, which
is not dependent on the use of a threshold function.

In [10] and [11], quantitative detectability and isolablity
performance are considered based on the Kullback-Leibler
divergence. The possibility of using a quantitative measure of
fault diagnosability opens up for performance optimization of
diagnosis systems, such as sensor placement, linear residual
generation, and automatic test selection, see [12].

Here, an automated method for finding and designing
residual generators, combined with a quantitative measure
of diagnosability performance, is proposed to optimize the
selection of residual generators for improved performance.
For evaluation of the method, a model of a watertank system
is analyzed to find and design residual generators.

The outline is as follows. First, an illustrative example is
considered in Section II where optimal residual generation of
a triple-redundancy system is analyzed. Then, a method for
automatic construction of residual generators is described
in Section III and quantitative diagnosability analysis in
Section IV. Optimizing residual generators to improve per-
formance is discussed in Section V. Then, a case-study
considering a watertank system is performed in Section VI
and finally the conclusions are presented in Section VII.

II. ILLUSTRATIVE EXAMPLE

As a motivation to the topic of this paper, an example of
triple redundancy is used. Triple redundancy is a hardware
redundancy approach for fault-tolerant system design which
is commonly used in e.g., air planes [13]. The simplest form
of triple redundancy is that three sensors, y1, y2, and y3,
measuring the same signal x. A fault in a sensor is here
modeled by an additive signal fi, and the sensor noise is
assumed to be additive independent and identically distributed
(i.i.d.) Gaussian, which is denoted νi ∈ N (0, σi), as

e1 : y1 = x+ ν1 + f1
e2 : y2 = x+ ν2 + f2
e3 : y3 = x+ ν3 + f3.

(1)

There is a freedom in the design process of the residual
generators to be used in the diagnosis system. Below are all
combinations of the linear residual generators that can be
designed, given that α, β, and γ are constants, as

r = αy1 + βy2 + γy3. (2a)

To achieve E[r] = 0, the following condition needs to be
fulfilled

0 = α+ β + γ. (2b)
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Fig. 1. Example comparing a residual computing the difference of two
sensors pair-wise and the residual with maximum fault to noise ratio.

The distribution of r is

r ∈ N
(
αf1 + βf2 + γf3,

√
α2σ2

1 + β2σ2
2 + γ2σ2

3

)
, (3)

leading to that the fault to noise ratio, Γ, for f1 e.g., is
expressed as

Γ1 =
αf1√

α2σ2
1 + β2σ2

2 + γ2σ2
3

. (4)

It is wanted to maximize the fault to noise ratio to achieve a
sensitive diagnosis system. In the example for f1 in (4), this
leads to the following conditions for β and γ

β = − σ2
3

σ2
2 + σ2

3

α (5a)

γ = − σ2
2

σ2
2 + σ2

3

α. (5b)

The efficient structural method used to design residual
generators, described in e.g. [2], finds minimal sets of
equations with redundancy one. Such sets are referred to
as a Minimally Structurally Overdetermined (MSO) set of
equations, i.e., a set of equations with one more equation
than variables and where no proper subset of the equations is
structurally overdetermined. Given (1), there are three MSO
sets: {e1, e2}, {e1, e3}, and {e2, e3}. Here, it is possible to
generate any residual in the form (2a) by taking a linear
combination of the three MSOs.

Two residuals to detect f1 are compared, one based on the
MSO {e1, e2}, r1 = y1 − y2, and one is the linear residual
with best fault to noise ratio, given that f1 = 50 and σi = 1,
i = 1, 2, 3. The residual with optimal fault to noise ratio for
f1 is r2 = y1− 0.5y2− 0.5y3, which gives Γ1 = 50

√
2
3 , but

Γ1 = 50 1√
2

for r1. The two residuals are shown in Fig. 1, and
it is visible that the optimized residual r2 is more sensitive
to f1 than r1. Thus, the example shows that the detectability
performance can be improved by taking model uncertainties
and measurement noise into consideration when designing a
residual generator.

III. AUTOMATIC RESIDUAL GENERATOR CONSTRUCTION

In this section, a method for automatically compute residual
generator candidates to be included in a diagnosis system is

presented. The inputs to the method are the model equations
of the system and data from actuators and sensors in both the
fault free case and the faulty cases. The residuals computed
are in Sections IV and V evaluated and compared.

Residual generators can be constructed using different
methodologies, e.g., parameter estimation [14], and state-
observer [15] techniques. However, here a method based on
computation sequences of the unknown variables is used
[16], and is called sequential residual generators by [4]. A
sequential residual generator consists of a set of equations
with analytical redundancy where a subset of the equations
are used to solve the unknown variables included in these
equations, and then the redundant equations are used to
investigate the consistency between the observations and the
set of model equations. The basic principle is illustrated with
a small example.

Example 1: Consider the model

e1 : x1 = g1(x2)

e2 : x2 = g2(u)

e3 : y = x1

with 3 equations, 2 unknown variables x1 and x2, known
input variable u, measurement variable y, and non-linear
functions gi. Here, both e1 and e3 can be chosen as the
consistency relation, or analytical redundancy relation (ARR)
[17], resulting in the two residual generators

x2 := g2(u) x2 := g2(u)

x1 := y x1 := g1(x2)

r1 := x1 − g1(x2) r2 := y − x1
respectively. �
In the simple example above, the different choices of
consistency relations result in equivalent residual generators.
However, in general the choice may strongly affect the
performance of the diagnosis system, which is shown in
Section VI.

The method used to automatically generate the sequential
residual generators is described in [3], that is based on [4],
but the key ideas are briefly described below.

The first step is to find sets of equations with analytical
redundancy one. This is here done by using structural analysis
of the model [18]. Structural methods analyze the model
structure, i.e. only information about which variables that are
included in each equation is used, which is an efficient tool
compared to analyzing the algebraic equations.

The set of equations used to construct a residual generator
is denoted Ē, and it is possible to construct as many sequential
residual generators as there are equations in each MSO. This
is since every equation in Ē can be selected as the redundant
equation ei, and the just determined set of equations Ē \ ei
is used to compute all unknown variables, X ′, included in
the specific MSO.

The second step in the method is to find a computation
sequence for each residual generator based on the structural
analysis, i.e. in which order to compute the unknown variables
xi ∈ X ′ and from which equation each variable is to be



computed. An algebraic tool is used to rewrite the equations
used in the computation sequence to find expressions for the
unknown variables. When a nonlinear system is considered, a
unique solution for the unknown variables is not guaranteed.
Consider e.g. the equation

0 = x1 − x22. (6)

It is possible to compute a unique value for x1 from (6),
but there are two solutions for x2. Methods for handling
multiple solutions are available [3], but in this work only
unique residual generators are considered.

Dynamic residual generators often occurs when monitoring
physical systems. Integrating a signal is straight forward in
the computational sequences, but there are several methods
for differentiating a signal, see e.g. [19]. The selection of
the differentiation algorithm affects the resulting residuals. A
differentiated variable here is computed by comparing two
time steps and divide by the time step

ẋi =
xi − xi−1

∆t
(7)

but any other differentiation algorithm can easily be imple-
mented in the computational scheme of the residuals.

Finally, numerical values for the residuals are computed
using the known signals, i.e. control signals and measure-
ments.

IV. QUANTITATIVE DIAGNOSABILITY ANALYSIS

The fault detection performance of a residual generator r
is related to how likely an observation of r can be explained
by the system being in a faulty state, i.e., fi 6= 0, compared
to the fault-free state NF (No Fault), i.e., fi = 0, ∀i. The
diagnosability performance of r can be quantified by taking
the distributions of r during the faulty and fault-free cases
into consideration using the Kullback-Leibler divergence.

A. Kullback-Leibler divergence

To evaluate and compare the diagnosability performance
of different residual generators, a quantitative measure is
necessary. The Kullback-Leibler divergence is here used as
the quantitative measure, and the benefit of this measure is
that performance of the residual generators can be evaluated
without considering any specific threshold function [12].

The Kullback-Leibler divergence from a probability density
function (pdf) p to another pdf q is defined as

K(p‖q) = Ep

[
log

p

q

]
(8)

and q 6= 0 where p 6= 0. The Kullback-Leibler divergence
is a non-negative, non-symmetric measure, i.e., normally
K(p‖q) 6= K(q‖p). Let p be the pdf of r in the faulty
case and q the pdf in the fault-free case. Then, (8) can be
interpreted as the mean value of the log-likelihood ratio test
if p is the true case, i.e., how likely it is to correctly detect
a fault. A higher log-likelihood in average represents better
detectability performance.

If p, q ∈ Rk are multivariate Gaussian distributed, p ∼
N (µp,Σp) and q ∼ N (µq,Σq), then (8) can be computed
analytically as [9]

K(p‖q) =
1

2

(
tr
(
Σ−1q Σp

)
+ (µq − µp)T Σ−1q (µq − µp)

−k − log

(
det Σq

det Σp

))
(9)

where k is the dimension of p and q.

B. Quantitative residual performance analysis

By using the Kullback-Leibler divergence, the performance
of different residual generators can be compared. Since only
the distributions of the residual generators are necessary,
and not a threshold which determines if a fault is detected,
different solutions of residual generators can be compared
early in the design process.

As an example, Fig. 2 shows the pdfs of two residuals
sensitive to the same fault fi. The goal is to use the best
residual generator to be used in a diagnosis system. The figure
shows histograms of the measurements, in the faulty case and
the fault-free case, and Gaussian approximations of the data.
The two residuals, r1 and r2, have the same pdf in the fault-
free case, q, but different pdfs when the fault occurs, p1 and
p2 respectively. Computing the Kullback-Leibler divergence
for the both cases using (9), gives that r1 has a higher value
(K(p1‖q) = 159.7) than r2 (K(p2‖q) = 93.2).

When comparing the distributions for the two residuals in
the faulty case, it is clear that the output of r1 in the faulty case
is much more separated from the fault-free case compared to
r2. Thus, r1 gives better detectability performance compared
to r2 which also is shown by comparing the Kullback-Leibler
divergences.
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Fig. 2. Histograms and Gaussian approximations of the distributions of r1
and r2. The Kullback-Leibler divergence is computed based on the Gaussian
approximations and shows that r1 has a higher divergence than r2.

The residual generator selection problem can be formulated
as an optimization problem where only the residual with the
highest Kullback-Leibler divergence is selected. As in the
previous example shown in Fig. 2, the residual generator
with the best performance r∗ for detecting a fault fi can be
found from a set of residual generator candidates. Let R =
{r1, r2, . . . , rk} be the set of residual generator candidates



sensitive to fi. Then r∗ is found by solving the problem

r∗ = arg maxri∈RK(pi‖qi), (10)

where pi is the distribution of ri in the faulty case and qi in
the fault-free case.

Comparing the performances for all possible fault realiza-
tions, which result in different pdfs pi, to get a general com-
parative measure is difficult or even impossible. Especially, for
non-linear systems where detectability performance depend
on the operating point. Instead, measurements or simulations
from a scenario covering interesting system operating points
and a representative fault realization is used as a reference.
The design of such a scenario, depend on application and
which fault realizations that are interesting to detect.

The Kullback-Leibler divergence is not only useful when
comparing residual generator candidates. It can also be used
to design new candidates which will be discussed next.

V. METHOD

Here, the Kullback-Leibler divergence is used to define
an optimization problem to find new residual generator
candidates with improved performance.

A. Optimizing residual generators

Structural methods, see e.g. [20], are used to find MSOs
used to design residual generators. As described in Section III,
an MSO only utilizes a minimal set of model equations to
achieve analytical redundancy of order one. Thus, all possible
MSOs for a given model can only generate a subset of all
possible sequential residual generators, which also limits the
quantitative diagnosability performance that can be achieved.
By weighting residual generators based on different MSOs,
thus utilizing more sensors, new residual generators with
better performance could be found.

Let r̄ = (r1, r2, . . . , rn)T , where ri ∈ R, be a vector of
the available residual generators. Then the objective is to
find weights w ∈ Rn such that faulty data is as separated as
possible from fault-free data by solving

max
w

K(p(wT r̄)‖q(wT r̄)) (11)

The value of (11) is invariant of the norm ‖w‖ > 0, but
note that (11) will be 0 when ‖w‖ = 0. However, a convex
search space is defined by ignoring the origo and selecting
the search space as the box −1 ≤ wi ≤ 1, i = 1, . . . , k.

By solving (11), the goal is to find a new single residual
r such that detectability of a fault mode fi for a given fault
realization is maximized. The optimization problem (11) has
a non-convex objective function which can have several local
optima. Here the function fmincon in Matlab is used to
apply a local interior point search method.

Example 2 (Triple-redundancy system): As a small exam-
ple of numerical residual generator optimization, the triple-
redundancy example in Section II is considered. Assume that
three residuals have been developed to be able to detect faults

in each of the three sensors given by

r1 = y1 − y2
r2 = y1 − y3
r3 = y2 − y3.

Each of these three residual generators are based on one of
three MSOs of the system (1), and are found by using the
method presented in [20]. A fault in sensor y1 of magnitude
1 is considered.

A Monte Carlo analysis of the optimization problem (11),
where w = (w1, w2, w3)T and r̄ = (r1, r2, r3)T , is made by
performing the optimization for different noise realizations
to analyze the robustness. The noise is approximated as i.i.d.
Gaussian and 10000 samples are used here for the faulty
and fault-free case. The results from the optimizations are
summarized in Fig. 3 and Fig. 4, which shows that the weights
w and the achieved Kullback-Leibler divergence, computed
by using (9), varies around the theoretical optimal value. The
optimal value is computed based on the relation between the
fault to noise ratio Γ and the Kullback-Leibler divergence
given by K(p‖q) = 0.5(Γ)2 when p and q have the same
variances [11], and is marked in Fig. 4 by the dashed line.
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Fig. 3. Optimized parameters w from different noise realizations. More
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Fig. 4. The achieved Kullback-Leibler divergence when optimizing the
weights w for different noise realizations. The optimal value is marked by
the dashed line.

In more than 87% of the cases, the optimized weights w
from the different realizations have an Euclidean distance



less than 0.07 from the theoretical optimum. Also, the com-
puted Kullback-Leibler divergence lies around the theoretical
optimum. The results depends on the number of samples
available to estimate the different pdfs where less samples
increases the variances of the results in Fig. 3 and Fig. 4. �

VI. SIMULATION STUDY

Here, residuals to monitor a system of two water tanks are
automatically constructed, optimized, and evaluated.

A. Watertank system

To evaluate the proposed method, a model of two serially
connected watertanks as in Figure 5 is considered. The system
has one known actuator signal u, representing the inlet flow
in tank one, and four sensors y1, . . . , y4. Sensors y1 and y2
measure the water levels h1, h2 and y3 and y4 measure the
outlet flows of the two tanks. The sensor noises are modeled
as i.i.d. Gaussian distributed, and the equations describing
the model are given in (12). The flows are denoted Q, the
different faults f , and a and b are parameters describing the
geometry of the tanks and effective area of the pipes. The
numbers in the subscripts indicate what part of the system that
is considered, see Fig. 5, and some of the flows are divided
into several variables using two numbers in the subscripts
to be able to model several faults. The faults considered are
actuation error in the pump, fa, sensor faults, fh and ff ,
leakage, fl, and clogging in the pipes, fc.

e1 : 0 = Q1 − u1 − fa
e2 : 0 = Q2,1 − a1

b1

√
h1(1− fc,1)

e3 : 0 = Q2,2 −Q2,1(1− fl,1)
e4 : 0 = Q2,3 −Q2,2(1− fl,2)
e5 : 0 = Q3,1 − a2

b2

√
h2(1− fc,2)

e6 : 0 = Q3,2 −Q3,1(1− fl,3)

e7 : 0 = ḣ1 − b1Q1 + b1Q2,1

e8 : 0 = ḣ2 − b2Q2,3 + b2Q3,1

e9 : 0 = y1 − h1 − fh,1
e10 : 0 = y2 − h2 − fh,2
e11 : 0 = y3 −Q2,2 − ff,1
e12 : 0 = y4 −Q3,2 − ff,2

(12)

Simulated data from the fault-free case and the faulty
modes are generated from the system given the same initial

Q1

y3Q2,2

y4Q3,2

u

h1y1

h2y2

Fig. 5. The configuration of the water tank system.

water levels and reference value of h1 used in the feedback
controller. Each simulation is 40 seconds and a fault is
modeled as a ramped step with start at 15 seconds and
maximum amplitude at 17 seconds. For quantifying the
performance of each residual generator, faulty data from
the period 17-40 seconds is used to calculate the distribution
which is approximated as i.i.d Gaussian. The Kullback-Leibler
divergence is then computed using (9) where p is the pdf of
data from the faulty-case and q from the fault-free case.

B. Results

The structural analysis results in 17 possible MSOs where
the fault sensitivity of each MSO is shown in Table I. The
table is called a decision matrix and an X at position (i, j)
corresponds to that MSOi is sensitive to fault j.

TABLE I
DECISION STRUCTURE SHOWING THE FAULT SENSITIVITY OF EACH MSO

DERIVED FROM (12).

fa fh,1 fh,2 ff,1 ff,2 fl,1 fl,2 fl,3 fc,1 fc,2
MSO1 X X X X
MSO2 X X X X X
MSO3 X X X X
MSO4 X X X X X
MSO5 X X X X
MSO6 X X X X X X X
MSO7 X X X X X X
MSO8 X X X X X X X
MSO9 X X X X

MSO10 X X X X X X X
MSO11 X X X X X X
MSO12 X X X X X X X
MSO13 X X X
MSO14 X X X X
MSO15 X X X X X X X
MSO16 X X X X X X
MSO17 X X X X X X X

The table shows that there are several MSOs that can be
used to detect each fault. However, the information in Table I
does not include which MSO that is the best at detecting each
fault, nor which sequential residual generator based on an
MSO that performs best. In Fig. 6, the fault fh,1 is induced
at 15 seconds and the eight residuals based on MSO6, which
are sensitive to the fault, are plotted. The performance of the
residuals are different from each other where one residual is
clearly better than the other seven. The result shows that the
design of the residual generator based on the MSO clearly
affects the achieved performance.

By using the previous approach described in Section 4 for
all MSOs, the best residual generator for each MSO can be
selected for each fault, and the single best residual generator
can be found by comparing the different solutions. However,
the MSOs are based on a minimal set of sensors, thus only
a limited amount of information is used to detect a fault.
New residual generators can be optimized to improve the
detectability performance as described in Section V. Here,
detection of a sensor fault fh,1 is considered where the best
residual generators from each of the 17 MSOs are used in
the optimization.
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Fig. 6. The residual generators based on MSO6 when fh,1 has occurred
at t = 15 s. There are eight residual generators, where one clearly deviates
from zero.

To visualize the achieved performance of the optimization,
Fig. 7 compares two residuals. One residual is the best residual
possible to design based on any MSO, and the other residual
is optimized using (11). Both tests are normalized to have
the same noise variance in the fault-free case. The results
show that the optimized residual generator achieves better
performance compared to the single best sequential residual
generator.

In Fig. 6, the single best residual generator based on
MSO6 looks like a ramp. However, when comparing the
best residual generators for each MSO, the residual generator
based on MSO13 is the best because of higher Kullback-
Leibler divergence. This residual is shown in Fig. 7 and
responds as a step to the fault. When weighting the residual
generators together using (11), the fault to noise ratio Γ is
increased and the new optimized residual generator is better
than the residual generator based on only one MSO, and
behaves like a ramp when the fault occurs.
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VII. CONCLUSIONS

A structural method for generating residual generators
based on MSOs is improved by using the Kullback-Leibler
divergence to quantify the diagnosability performance. Thus,
different residual generators can be compared and the best
one can be automatically selected. An example of triple
redundancy is used to show that performance can be improved

by weighting all available sensors in an optimal way instead
of only doing pair-wise comparison.

Also, by weighting several residual generators together
using an optimization algorithm, new residual generators
with better performance can be found. The proposed method
is evaluated on a model of a watertank system. Results
show that the achieved performance can be significantly
improved by taking quantitative diagnosability performance
into consideration when selecting the residual generator. The
proposed method can be used for improving performance of
automatically designed diagnosis systems.
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