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Abstract: In powertrain analysis, simulation of driveline models are standard tools, where
efficient and accurate simulations are important features of the models. One input signal with
high impact on the accuracy is the road slope. Here it is found that the amplitude discretization
in production road-slope sensors can excite vehicle shuffle dynamics in the model, which is
not present in the real vehicle. To overcome this problem road-slope information is analyzed
with the aid of both measured and synthetic road profiles, where the latter are generated from
regulatory road specifications. The analysis shows that it is possible to separate vehicle shuffle
resonances and road-slope information, and designs are proposed for on- and off-line filtering
of the road-slope-sensor signal in spatial coordinates. Applying the filter to measured data
shows that vehicle shuffle is significantly attenuated, while the shape of the road slope profile is
maintained. As a byproduct the use of smoothing the rolling resistance is shown.
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1. INTRODUCTION

When analyzing powertrains and their controls, the results
will of course depend on the model but also on the input
signals. The quality of the input signals have a big impact
on simulation results, e.g. noise components in the inputs
can have a profound effect on the outputs. A motivating
example is given in Figure 3 where powertrain oscillations
are induced due to sensor discretization levels, of integer
percentage points, in road slope.

This example of discretization noise in the road-slope sig-
nal and how it influences simulated dynamics of a driveline
is in focus here. Attention is also given to how a measured
road-slope-sensor signal can be filtered so that the high
frequency content, that can excite driveline dynamics and
might result in vehicle shuffle, is removed while the rel-
evant information is maintained. This is of importance
when powertrains are simulated for control applications
where vehicle shuffle has to be avoided. Examples of such
control applications are vehicle-speed control, (Pettersson
and Nielsen, 2002), driver-filter design, (Gerhardt et al.,
1998), gear-shift control, (Fredriksson and Egardt, 2003),
(Pettersson and Nielsen, 2000), and launch control, (Garo-
falo et al., 2002), (Dolcini et al., 2008).

Little work exists in the area of analyzing and filtering road
slope data, even though road-grade information is used
in different applications. For example Gao et al. (2011)
studies road slope estimation and also how an incorrect
estimation of the constant road slope effects the control
of clutch disengagement. Estimation of the road slope for
various applications is also treated in e.g. Lingman and
Schmidtbauer (2002), Sebsadji et al. (2008) and Bae et al.
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(2001). In Sahlholm (2011), where a road slope estimator
is developed, low frequency errors are introduced to study
the effect on look-ahead control and motivate the need of
a good road grade estimator. Sahlholm (2011) filtered the
road data using a third-order Butterworth low-pass filter
with spatial cut-off frequency of 9 · 10−3 m−1 before being
used. In the related literature there is no quantitative
analysis of the frequency content in the road-slope data.

A driveline model is developed for analysis of the inter-
action between road-slope data and vehicle shuffle. Mea-
surement data is collected from a heavy duty truck, in
order to both validate the model and to get realistic
signals for the study. In addition the frequency content of
different roads is analyzed, both theoretically and through
measured road-slope data.

2. POWERTRAIN MODEL

In order to investigate how the quality of the road-slope
signal affects simulation, a simulation model is required.
A longitudinal model of a heavy-duty truck has therefore
been developed. The model has to capture important dy-
namics in the driveline and how they make the truck shuf-
fle. The model is an extension of the model in Pettersson
(1997) that was used for evaluation of oscillation damp-
ing by engine control during tip-in maneuvers. Pettersson
(1997) identified the important flexibilities in the driveline
that cause vehicle shuffle and therefore the same model
structure is used here. The model is built in a modular
way and then condensed into a state space model.

An overview of the different modules and their information
exchange is given in Figure 1, which also defines the
nomenclature used in this paper. Each module corresponds
to a part in the powertrain, Internal Combustion Engine



(ICE), clutch, gearbox, propeller shaft, final drive, drive
shafts and vehicle dynamics.
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Fig. 1. Sketch of the subsystems and their information
exchange in the truck model.

2.1 Internal Combustion Engine

The ICE produces the engine torque, Me, that is given as
model input. Note that this is the net (brake) torque of
the ICE, e.g. Me = 0 with open clutch will keep the engine
speed constant.

2.2 Clutch

The clutch is modeled in three separate parts. The actua-
tor, the clutch disc where slip might occur, and a torsional
part that is flexible.

Clutch Actuator The clutch position, x, is normalized by
its maximum stroke, xmax to get a relative position. The
relative position is assumed to have an effective range, xeff

where the resulting normal force between the clutch plates
are unsaturated. This effective range is transformed so
that 0 corresponds to zero normal force and 1 corresponds
to maximum normal force. This transformed signal is
assumed to be proportional to the applied normal force.

The natural output from the actuator is the clamping
force, FN . Nevertheless the clamping force is directly
recalculated into a transmittable torque, Mtrans = kµFN ,
that is used as actuator output. There are two friction
coefficients, one static, µs, and one dynamic, µk. Let µk
be part of kclutch and define the ratio of the friction
coefficients, kµ = µs

µk
. Then the equations for the clutch

actuator become:

xeff =


Ll,

x
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x

xmax
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x

xmax
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Lu, Lu <
x

xmax

(1)

Mtrans,k = kclutch
Lu − xeff

Lu − Ll
(2)

Mtrans,s = kµMtrans,k (3)

Note that (2) is a simple model of the slipping clutch
compared to Myklebust and Eriksson (2012).

Clutch Disc The modeled clutch is a single-plate dry
clutch with two contact surfaces. Torque is transferred
between the clutch disc and flywheel through friction.
The friction is modeled as coulomb friction with stick-slip
behavior. Torque from the ICE, Me, and driveline, Mc, are
inputs and angular velocity & angle on both sides, θ̇e &
θe and θ̇c & θc, respectively, are outputs.

The clutch model has two modes, locked and slipping
mode. While in locked mode, the clutch behaves as one
rigid body, whereas during slipping the clutch consists of
two bodies where each one has an angular velocity and
position. The condition for the transition from slipping
to locked mode is that the speed difference is zero and
the transmitted torque, Mtrans is less than the static
transmittable torque,Mtrans,s. The condition for transition
from locked to slipping mode is when Mtrans rises above
Mtrans,s.

Using θe, θ̇e, θc, and θ̇c as states gives the following
equations for the clutch disc:

Conditions for switching from slipping to locked mode:

θ̇e = θ̇c (4)

Mtrans ≤Mtrans,s (5)

Equations for the clutch in locked mode:

Me −Mc = (JICE + Jfw + Jc) θ̈e (6)

θ̇c = θ̇e (7)

Mtrans =
MeJc +Mc (Je + Jfw)

Je + Jfw + Jc
(8)

Conditions for switching from locked to slipping mode:

Mtrans ≥Mtrans,s (9)

Equations specific to the clutch in slipping mode:

Mtrans = sgn
(
θ̇e − θ̇c

)
Mtrans,k (10)

Me −Mtrans = (Je + Jfw) θ̈e (11)

Mtrans −Mc = Jcθ̈c (12)

Torsional Part The main flexibility of the clutch is in
the torsion springs in the clutch disc. They are located
on the vehicle side of the friction surfaces. Therefore the
flexibility of the clutch is modeled as a separate part of
the clutch, located on the transmission side of the clutch
disc, like in Moon et al. (2004).

The clutch torsional part is modeled as a torsional spring
and damper. It takes speed & angle from the clutch disc,
θ̇c & θc, and the input shaft of the transmission, θ̇t & θt,
as input and returns a torque, Mc. The equation for the
torsional part is:

Mc = cc(θ̇c − θ̇t) + kc(θc − θt) (13)



2.3 Transmission

The gear number (input) is converted to a gear ratio, it,i,
and gearbox inertia, Jt,i. The gear ratio scales the input-
side torque, Mc, & inertia into output-side torque, Mt,
& inertia, Jt. The speed is calculated from the output
side to the input side and then integrated to an angle,
θt. There is also a speed proportional (viscous) friction in
the transmission. On the output side the outputs torque
& inertia are summed with the propeller shaft torque, Mp,

& inertia, Jp, to produce the outputs speed, θ̇p, & angle,
θp using Newton’s second law.

Note that no synchronizers are modeled and the model can
not engage neutral gear. Therefore gear shifting will be
instantaneous. This is an acceptable approximation when
the clutch is disengaged, since the transmission input side
has low inertia compared to the rest of the vehicle.

With the states θ̇p, θp, and θt the equations become:

Mt = Mc it,i (14)

(Jt,i + Jp) θ̈p = Mt − btθ̇p −Mp (15)

θ̇t = θ̇pit,i (16)

2.4 Propeller Shaft

The flexible propeller shaft is modeled in the same way as
the clutch flexibility, (13). The equation for the propeller
shaft is:

Mp = cp(θ̇p − θ̇f ) + kp(θp − θf ) (17)

2.5 Final Drive

The final drive with differential is assumed to act symmet-
rically on the drive shafts. Therefore it can be modeled as
the transmission but with fixed gear ratio, if , and inertia,

Jf . With the states θ̇d, θd the equations become:(
Jpi

2
f + Jf + Jd

)
θ̈d = Mpif − bf θ̇d −Md (18)

θ̇f = θ̇dif (19)

2.6 Drive Shafts

The flexible drive shafts can, with the symmetrical differ-
ential, be lumped into one and modeled in the same way
as the clutch flexibility, (13). The equation is:

Md = cd(θ̇f − θ̇w) + kd(θf − θw) (20)

This is the main flexibility in the driveline.

2.7 Vehicle Dynamics

The non-driveline parts that affect the longitudinal dy-
namics are modeled in this block. That is, the wheels and
vehicle. Tire dynamics are neglected and rolling condition
is assumed. The wheels simply consists of a radius, rw, an
inertia, Jw and a rolling resistance force, Fr.

Model inputs that directly affect the vehicle dynamics are
braking force and road-slope angle, α (in radians). The
road-slope angle is used to calculate the gradient force
that is added with the braking force, rolling resistance and
aerodynamic drag. The sign of the vehicle velocity is used

so that rolling resistance, braking force and air resistance
will oppose the vehicle movement.

The drag forces are subtracted from the drive shaft torque
and divided by the vehicle mass, m, in order to calculate
the vehicle acceleration, a, which is integrated to velocity
and fed back to the drive shafts as angular velocity.

Discontinuity of Rolling Resistance The rolling resis-
tance has a static component that changes sign with the
velocity of the vehicle. Around zero velocity this leads to
a large discontinuity in the rolling resistance. If this is
not properly handled there can be significant oscillations
in the vehicle velocity and loading torque. See Figure 2
for a simulation example of this. One possibility is to
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Fig. 2. In the upper right plot it is seen how the rolling
resistance is constantly switching sign during the first
ten seconds of the simulation. In the lower left plot it
is seen in addition how the acceleration is switching,
while the speed is practically zero, upper left plot.

use a state machine to control the states and transition
between rolling and stand still. Another simpler cure to
this problem is to smooth the rolling resistance using e.g.
the following smoothing function

f(v) = 1− e−csrv
2

(21)

where v is the vehicle speed (in m/s) and csr is a tuning
parameter. A smaller csr gives more smoothing, which
speeds up the simulation more but affects the rolling
resistance higher up in the speed range. Here csr = 16 is
selected as an empirical value that gives large reductions in
simulation time without a significant effect on the rolling
resistance at speeds above 0.5 km/h, see Figure 3. The
simulation time was reduced with up to 85% when the
smoothing function was used in cases similar to that in
Figure 3.

With the states v (v̇ = a) and θw the equations become:

Fa =
1

2
ρacwAfv

2, Fg = mg sin(α) (22)

Fr = f(v)(cr1 + cr2|v|)mg, θ̇w = v/rw (23)

Md

rw
− sgn(v)(Fr+Fa + Fb)− Fg =

=

(
m+

Jw + Jd
r2
w

)
a (24)
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Fig. 3. Simulation with the smoothed rolling resistance
model. In the upper right plot it is seen that the
rolling resistance does not increase until the velocity
starts to increase (upper left plot). Moreover the
acceleration can be seen to be zero until movement
starts. Moreover it can clearly be seen that when the
driving resistance, due to discretization levels of road
slope signal, makes steps, at 110 s and 120 s, there
are longitudinal oscillations.

2.8 State-Space Model

The vehicle speed, y = v, is the output and the velocities
and torsions are chosen as state variables

x = (x1, x2, x3, x4, x5, x6, x7)
T

=

= (ωe, θe − θt, ωp, θp − θf , ωd, θd − θw, ωw)
T

(25)

In order to get a compact representation of the model,
the engine torque, g1 = u1 = Me, and driving resistance,
g2 = Fdr = Fr +Fa+Fg +Fb = Fr +Fa+u2, are collected
into two separate signals. In the analysis in Section 3 the
clutch is closed, gear is fixed, and velocity is positive. Then
the system can be conveniently written as:

ẋ = Ax + B g(x, u)
y = C x

(26)

with,

g(x, u) =

[
u1,

ρacwAfr
2
wx

2
7

2
+ (cr1 + cr2rwx7)mg + u2

]T
,

A =



−cc
J1

−kc
J1

ccit
J1

0 0 0 0

1 0 −it 0 0 0 0
ccit
J2

kcit
J2

−c1
J2

−kp
J2

cpif
J2

0 0

0 0 1 0 −if 0 0

0 0
cpif
J3

kpif
J3

−c2
J3

−kd
J3

cd
J3

0 0 0 0 1 0 −1

0 0 0 0
cd
J4

kd
J4

−cd
J4


,

J1 = Je + Jc, J2 = Jt + Jp, (27)

J3 = Jpi
2
f + Jf + Jd, J4 = mvr

2
w + Jw + Jd,

c1 = cci
2
t + bt + cp, c2 = cpi

2
f + bf + cd,

BT =

 1

J1
0 0 0 0 0 0

0 0 0 0 0 0
−rw
J4


C = (0 0 0 0 0 0 rw)

Note that (26) is a non-linear system as g2 depends on x2
7.

2.9 Linearization

The Bode diagram is used to analyze the gain and reso-
nances in the system, and to facilitate this the system is
linearized. Noting that the only non-linearity in the state-
space model is in g2 we can easily do the linearization by
augmenting the A-matrix. This is done by doing the first-
order Taylor expansion around v0 of the aerodynamic drag

Fa =
1

2
ρacwAf (2v0v − v2

0) +O
(
(v − v0)2

)
(28)

giving the addition

∆a7,7 =
−r2

w(cr2mg − ρacwAfv0)v

J4
(29)

to element a7,7 in A. The constant terms in the lineariza-
tion are taken care of by the torque and torsions that
correspond to steady state at v0.

ẋ∆ = Aaug x∆ + B u∆

y∆ = C x∆
(30)

were Aaug is the A-matrix augmented with ∆a7,7.

2.10 Model Validation

The modular truck model has been validated using mea-
surements from tip-in and tip-out maneuvers. Measure-
ments of engine torque and road grade have been used as
input for open-loop simulation of the model. Note that
it is of great importance to have accurate road-grade
information, when simulating the system. Otherwise the
vehicle speed would have a large drift compared to the
measurement. The model agrees well with measurement
data for low gears, see Figure 4, and quite well for high
gears, see Figure 5. In the latter case there were some
small high frequency oscillations that were not captured in
the model. Nonetheless the main vehicle shuffle frequency
and amplitude have been captured in both cases. Therefore
the model is suitable for simulations of cases where vehicle
shuffle is a concern.

Fig. 4. Model validation using tip-in/tip-out maneuvers for
fifth gear. The model is run in open loop and it agrees
well with data.



Fig. 5. Model validation using tip-in/tip-out maneuvers
for ninth gear. The model is run in open loop and
it captures the trends in speed variations as well as
the shuffle oscillations well. There are some quick
oscillations that are missed.

3. SLOPE SIGNAL EFFECT ON SIMULATION

The linearized state-space model (30) is used to investigate
the effect of a discretized slope signal on vehicle shuffle.
First, no braking is assumed. Second, for slopes less
than 20%, sin(α) can, with great accuracy, be considered
equal to the road slope in percent (= tanα). Since
roads made for heavy duty trucks in Sweden have a
maximum slope of 12% (highways have a maximum of
8% slope), (Swedish Road Administration, 2004), this is
a very sound simplification. These two assumptions make
u∆,2 proportional to the road slope, and therefore suitable
as input signal for this study.

The truck has been simulated, in first gear with constant
engine torque, using a measured driving resistance as
input. The measured driving resistance contains three
pulses, one long and two short, see Figure 6. The changes
in driving resistance are due to that the road-slope signal
is discretized in amplitude. This kind of signal contains a
very wide frequency range. Therefore it induces oscillations
in the driveline that are visible alongside the ramp changes
in velocity. This can be explained by viewing the Bode plot
of the system found in Figure 7. In the bode plot, there is
a resonance peak in the transfer function from Fdr to v.
This peak is the reason for the oscillations, however the
peak has a low amplitude compared to the low frequency
gain. Therefore the ramp changes in velocity are much
greater than the oscillations. Note that also the transfer
function from Me to v has a resonance peak that can
result in driveline oscillations. Consequently if the system
is under feedback, e.g. speed control, then both resonance
peaks can be excited by a slope step, leading to even more
driveline oscillations.

To highlight this a PI-controller for engine speed control
is introduced

e = θ̇e,ref − θ̇e (31)

ẋ8 = e (32)

Me = KP e+KIx8 (33)

where KP and KI are the controller parameters. With the
speed controller the results in Figure 7 and Figure 8 are
obtained. The driveline oscillations are now more clearly
seen as well as the resonance peak in the transfer function
from Fdr to v, which now also attains its maximum at the

resonance. A better tuning or a more advanced controller
could perhaps avoid the oscillations in the closed loop case,
but this would only cure the symptoms and not the cause,
which is the high frequency content in the input. It can
thus be concluded that some kind of filtering should be
applied to the road slope signal.

It should however be noted that the occurrence of the
sharp resonance peak, and therefore the need for filtering,
is dependent on the selected gear. In the closed loop case,
higher gear means that the peak in the transfer function
moves towards lower frequencies, while in the open loop
case it moves slightly towards higher frequencies. The peak
also becomes less pronounced with higher gear numbers
and vanishes at gear eight. So no filtering is needed for
gears higher than seven.

Fig. 6. Showing how a one percentage point step in road
slope affects truck behavior in 1st gear when engine
torque is constant. A change in vehicle velocity with
an oscillation superimposed can be seen.

4. ROAD FREQUENCY

When filtering the road-slope signal, it is of great interest
to keep the important information in the signal. In order
to achieve this it must be understood how a road-slope
profile typically looks like.

According to official road-design policies (see Swedish
Road Administration (2004) for Swedish and AASHTO
(2004) for US), the road segments between constant slopes
have a parabolic shape,

z =
x2

2R
(34)

where z is the elevation, x the longitudinal position and
R the curve parameter. The parabola works as an approx-
imation of a circle with radius R. For Swedish highways
(89 km/h for heavy duty trucks) R can be as low as 1250 m
and in cities (50 km/h) R can be as low as 300 m. The slope
can be calculated as,



Fig. 7. Bode plot of the open-loop system (black) and
the closed-loop system (cyan), both systems in first
(solid), sixth (dashed), and eighth (dotted) gear. Spa-
tial frequency is used in order to enable comparisons
with the road spectra in Section 4. The spatial fre-
quency has been calculated using the maximum speed

of each gear. For the open loop system u = [Me Fdr]
T

and for the closed loop system u = [we,ref Fdr]
T

. For
both cases y = v. It can be seen that the resonance
peaks vanishes at eighth gear. For the closed loop
case, in the right plot, the peak moves towards lower
frequencies as the gear number is increased.

Fig. 8. Oscillations in vehicle speed (longitudinal shuffle)
can be seen when one-percentage-point pulses in road
slope are present. Engine speed is kept constant by a
PI-controller.

tanα = lim
x2→x1

(
z2 − z1

x2 − x1

)
= lim
x2→x1

(
x2

2 − x2
1

2R(x2 − x1)

)
=

= lim
x2→x1

(
x2 + x1

2R

)
=
x

R
(35)

As stated earlier, slopes can be considered small and
together with x ≈ vt it yields,

α =
v

R
t (36)

This means that the slope varies as a piece-wise linear
and continuous function. A piece-wise linear function con-
tains sharp knees and has an infinite frequency content
but the amplitude decreases with frequency. To get an
idea of the spectrum a synthetic road is constructed by

picking a number of random inclinations with random
lengths, then connecting these slopes with vertical curves
of random radii. For simplicity reasons uniform distribu-
tions are assumed for all variables. The inclinations have
been selected from the range dictated by Swedish Road
Administration (2004). The radii have been selected from
a narrow range above the minimum value. The range of
the slope-length distributions are set exponentially with
respect to the inclination, with flat ground giving the
widest range. This is to mimic that in reality flat segments
usually are longer then steep slopes. These assumptions are
used to construct an approximation of a worst-case road.
The resulting frequency spectrum is seen in Figure 9. Most
of the power is in spatial frequencies below 3 · 10−4 1/m.

This theoretical ”worst-case road” has been complemented
with frequency spectra of different measured road seg-
ments 1 that indicate similar cut-off frequencies and roll-
off rates, Figure 9. This indicates that the synthetisation
method is sound and therefore it has been used for making
a city road (50 km/h speed limit). The different limitations
on maximum slope and R results in a road with higher
frequency content. The main power is below 1 · 10−3 1/m.

Fig. 9. Frequency spectra for five measured highways
(blue solid), one synthetic highway (cyan dashed),
and one synthetic city road (green dotted). They
all have similar shapes and most of their energy in
frequencies below 1·10−3 1/m. The two shorter curves
correspond to segments of the longer roads. The two
black vertical lines mark the cut-off frequency and the
-30 dB frequency of the filter.

Looking at the data for the road slope frequency content,
Figure 9, and the Bode diagram for the model, Figure 7,
one sees that the road data starts to fall off for frequencies
below the resonance frequency of the driveline. This pro-
vides an opportunity to reduce the problem of oscillations
by filtering the road slope signal. Especially since the Bode
diagram represents the case with lowest spatial frequency
(highest speed for each gear), which represents the worst
case with minimum separation between frequencies.

1 The road segments are the Järna segment, Jönköping-Linköping,
Koblenz-Trier, Norrköping-Södertälje and the Olstorp segment
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Fig. 10. Original slope signal with its simulation response in solid blue. The acausally filtered signal and its response
are shown in dashed green. Triangles are seventh gear and circles are first gear. The velocity response in first gear
has been scaled. The oscillations are successfully filtered. Note that in first gear the slope signal is filtered more
since the pulses are shorter in spatial coordinates.

5. FILTER DESIGN

The design rules for the filter are that it should have little
impact on the naturally occurring road frequencies and
damp those that could excite driveline oscillations.

According to the investigation in the previous section the
important road frequencies lie below 1 · 10−3 1/m, the
location of the knee of the synthetic city road. However
note that the two shorter segments in Figure 9 have a
later roll off than the long roads because these particular
segments are rich on high frequency content. Likewise
choosing the filter cut-off frequency at the knee of the city
road profile might lead to filtering of naturally occurring
frequencies on a segment of this profile. Therefore the cut-
off frequency is taken with one decade of margin compared
to the knee, i.e fco = 4 · 10−3 1/m. However there is never
any guarantee that no real frequencies will be filtered as
the theory have shown an infinite frequency content.

Frequencies that need to be damped are those around the
resonance peak, see Figure 7, that exists for gear seven or
lower. Maximum speed in seventh gear is about 50 km/h so
it makes sense to choose fco from the city road. The lowest
frequency for any resonance peak is flo = 2 · 10−2 1/m,
which is that of gear seven in closed loop. As the resonance
peak is quite low in seventh gear, -30 dB of attenuation is
chosen at flo. The filter will naturally attenuate more at
the peaks for lower gears.

These requirements can be fulfilled by, for example a third
or higher order low pass Butterworth filter with a cut-off
frequency of 4 · 10−3 1/m (-40 dB at flo). Note that while
on one hand higher order gives a steeper gain curve and
more margin to the requirements, on the other it gives

more phase lag, i.e. time delay. In addition a higher filter
order is more complex so computation time will increase.
Therefore the lowest possible order is desirable in an on-
line application. It might also be desirable to filter in
the time domain, in that case the filter will be speed
dependent. In an off-line application computational time
is of less importance and the signal can be filtered both
in the forward and reverse direction in order to get a zero
phase filter.

6. RESULTS

Figure 10 shows that third order filtering of driving re-
sistance effectively eliminates the oscillations in both first
and seventh gear. In Figure 11 it can be seen that the
high frequency content in the road slope sensor is sig-
nificantly reduced whereas the real road profile is essen-
tially the same. A road profile together with causally and
non-causally filtered versions are displayed in Figure 12,
showing that the general behavior of the road profile is
preserved. It can thus be concluded that the filter design
works as intended. Furthermore a third order filter is
sufficient even in the off-line application, where it would
be trouble free to increase the order.

7. CONCLUSIONS

In this paper a model that describes vehicle shuffle of a
heavy duty truck has been summarized and validated. Spe-
cial emphasis was given to the interaction between drive-
line and road. In particular it was shown that smoothing
the rolling resistance around zero speed gives a significant
reduction in simulation time for driving with start and
stop scenarios.



Fig. 11. A real road profile in solid. With its filtered di-
tos in dashed-doted (non-causal) and dotted (causal)
slightly below (hard to tell apart). The short mea-
sured slope signal is also found in solid. It too has its
filtered dito in dashed-doted (non-causal) and dotted
(causal) below. The measured signal has lost a lot of
its high frequency content whereas the road profile
has kept its low frequency content. Just as intended.
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Fig. 12. The road profile as function of position. Unfiltered
in dotted green, causally filtered in dashed red and
non-causally filtered in dash-dotted blue. The three
signals are practically the same.

Furthermore, experimental data from a production road
slope sensor was shown to have a big impact on the simu-
lation of the vehicle. In particular the high frequency con-
tent, introduced by amplitude discretization in the sensor,
was shown to excite driveline oscillations. The oscillations
also become more pronounced when the driveline had a
feedback speed controller.

The frequency content in a theoretical worst-case road and
measured roads, have been investigated and found to be
below the resonance frequency of the model in every gear.
It was also shown that the frequency separation was large
enough to make a low-pass-filter design possible for the
road-slope sensor.

Finally a design is proposed for a filtering method con-
sisting of a low pass Butterworth filter in the spatial
domain that eliminates erroneous behavior caused by high
frequency disturbances in the slope signal, e.g. discretiza-
tion. Applying the filter to measured data shows that the
driveline oscillations are significantly attenuated, while the
shape of the road-slope profile is maintained.

REFERENCES

AASHTO (2004). A policy on geometric design of high-
ways and streets: 2004. American Association of State
Highway and Transportation Officials.

Bae, H.S., Ryu, J., and Gerdes, J.C. (2001). Road grade
and vehicle parameter estimation for longitudinal con-
trol using gps. In 2001 IEEE Intelligent Transportation
Systems.

Dolcini, P., de Wit, C.C., and Béchart, H. (2008). Lurch
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