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Abstract: In northern Europe the electricity price is set by hourly rates one day in advance.
The price fluctuates due to supply and demand, and these fluctuations are expected to increase
when solar and wind power are increased in the energy system. The potential in cost reduction
for heating a house and charging of an electrified vehicle by using a smart energy management
system in a household is investigated. Dynamic programming is used and a simulation study
of a household in Sweden comparing this optimal control scheme with a heuristic controller
is carried out. The time frame in the study is one year and a novel way of handling the fact
that the vehicle is disconnected from the grid at some times is developed. A plug-in hybrid
electric vehicle is considered, but the methodology is the same also for pure electric vehicles.
It is found that the potential in energy cost reduction for house heating and vehicle charging
is significant and that using a smart energy management system is a promising path of cost
reduction, especially with the introduction of electrified vehicles.

Keywords: Electricity price optimization, Electric vehicle, Plug-in electric vehicle, Household,
Smart energy management

1. INTRODUCTION

Today, Swedish households can buy electricity with varying
hourly rates, and these rates are determined for the coming
day at lunchtime and are based on electricity producers’
capacity to supply electricity and consumers’ predicted
demand. Since the electricity prices vary throughout the
day and are known in advance, it is possible to reduce the
cost of household electricity by moving a portion of the
energy consumption to times when it is cheaper. Domestic
heating and electric vehicles are examples of large electric
loads where the energy consumption could be shifted in
time. This paper studies how much electricity costs and
energy consumption could be reduced for a household by
introducing smart energy management based on, among
other things, varying electricity prices and weather. How
much the electricity price varies over the days differ, but in
general the electricity price is cheaper during the nights and
most expensive in the mornings and evenings, see Figure 1
where the average electricity price for each hour of the day
during 2013 is presented.

Advanced energy management provides besides lowering
the cost of electricity also other advantages. Electricity
price and total power demand is strongly correlated as
can be seen by comparing the electricity price in Figure 1
with the power consumption per hour in Figure 2. When
electricity prices are high and demand for energy is high,
back-up generators such as gas turbines and coal plants are
used to a greater extent. A reduction of the energy output
during these times makes the electricity production more
environmentally friendly and less dependent on fossil fuels.
In addition to lowering the cost of electricity the knowledge
that electricity is produced in a more environmentally

friendly way could be an important incentive for consumers
to invest in smart energy management. Furthermore, if
many households start to use smart energy management
it would have a peak shaving effect and the capacity of
back-up power plants can be reduced.

A simulation study has been conducted to estimate the
reduction in electricity costs for a household with an electric
or plug-in hybrid electric vehicle. A large part of the
energy consumption for a Swedish household is used for
heating and the indoor temperature depends on several
factors. Here we consider heating, household electricity,
weather such as solar radiation and outside temperature,
and the building’s thermal inertia. In order to obtain a
representative value that takes into account the effects of
different seasons, the household has been simulated for
one year with conventional heating and direct charging
and compared it with the cost of electricity when smart
energy management is used. Several approaches have been
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Fig. 1. Average spot price per hour of the day in the
Swedish price area SE3 during 2013.
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Fig. 2. Mean power consumption per hour in Sweden 2013
for different months.

used previously; In Logenthiran et al. (2012) heuristic
optimization is used to control the domestic electricity
demand, in Mohsenian-Rad et al. (2010) game theory
is used to control the household loads, and in Sarabi
and Kefsi (2014) dynamic programming is used to charge
electric vehicles in order to reduce the overall peak power
in the system. In this study dynamic programming is
used to minimize the electricity cost, and to illustrate the
optimization a typical Swedish house has been considered.
Few houses in Sweden are equipped with air cooling systems
and therefore cooling has not yet been considered.

The outline of the paper is as follows. First, Section 2
provides an overview of the household including an electric
vehicle and a formalization of the energy management op-
timization problem to be solved. Section 3 describes a ther-
modynamic model of a house and an electric vehicle model
designed with dynamic programming in mind. Section 4
describes and discusses how smart energy management is
included in the dynamic programming framework such as
vehicle charging, heating, and the choice of state and time
discretization. The optimization assumes future electricity
prices, weather, and household energy consumption to be
known which gives an upper limit of the gain introducing
smart energy management. Section 5 shows the results of
simulations of a typical household with and without smart
energy management. The optimal solution is shown and
characteristics of it discussed. Finally some conclusions are
drawn in Section 6.

2. PROBLEM FORMULATION

The purpose of the paper is to investigate possible electric-
ity cost savings by introducing smart energy management to
a household with an electric vehicle. This section provides
a more detailed description of the studied optimization
problem.

Figure 3 shows a control oriented view of a household in-
cluding an electric vehicle. The control variables considered
here are heating power Pheat used for controlling indoor
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Fig. 3. Control oriented view of a household with an
electric vehicle.

temperature Tin and vehicle charging power Pcharge used
for state of charge (SoC) control. The control objective
is to minimize electricity cost while keeping the indoor
temperature Tin above a specified minimum temperature
and to reach a fully charged state of the electric vehicle
before a user specified time. The total power consumption
of the household is assumed to be bounded to a specified
value Pmax, i.e.,

Pmax ≥ Pheat + Pcharge + Pelectric

where Pelectric denotes the total power of household elec-
tricity including all electric loads except for heating and
vehicle charging.

Household electricity is from a control perspective con-
sidered as an uncontrollable disturbance both because it
influences the power available for heating and charging, but
also because it generates heat in the house. The weather
condition is another disturbance influencing indoor temper-
ature. Here two weather related signals are considered, the
outside temperature Tout and the solar radiation intensity
I.

The inputs to the controller are measured indoor tempera-
ture Tin, estimated state of charge SOC, future electricity
price, measured household electricity power Pelectric and
outside temperature Tout. The energy management system
could also benefit from using weather forecasts and pre-
dicted user behavior, such as predicted household electricity
and vehicle charging behavior including when the vehicle
is connected to the household and at what initial SoC and
at what time the vehicle is expected to be fully charged.

In this paper the performance of an ideal control scheme is
studied to investigate the potential savings for such a smart
energy management system in terms of electricity cost.
Therefore, dynamic programming is used to find the cost
optimal solution given that weather, household electricity,
and vehicle charging behavior is known by the controller
in advance.

3. MODELS

This section describes the thermodynamic house model
and the electric vehicle model that will be used for the
electricity cost optimization of the household.

3.1 Thermodynamic house model

The thermodynamic house model is used to simulate
the temperature variations with different heating control



systems. The computational complexity of dynamic pro-
gramming is rapidly increasing with the number of states
(Sniedovich, 2010). For that reason we use a thermodynamic
house model with only one state, the indoor temperature
Tin that is assumed to be equal throughout the house.
The indoor temperature is affected by heating power Pheat,
household electrical power Pelectric, solar radiation power
through windows Pradiation, heat losses due to transmission
through walls etc Ploss, and the ventilation losses Pvent. If
the thermal capacity of the house is Rtot we get

dTin
dt

=
Pheat − Ploss + Pradiation + Pelectric − Pvent

Rtot
(1)

The used model is similar to the model presented in
(Muratori et al., 2012), but the model used here is easier
to parametrize since the losses are modeled separately for
different elements of the building.

3.2 Heat transfer losses

Heat loss Ploss through walls, windows, doors, ceilings,
floors etc, is modeled as heat transfer by conductance.
Different building elements have different transmission
coefficient Ui and here we consider separate U-values for
the roof, walls, windows, and floor. For a building element
with conductance Ui and area Ai the heat transfer per unit
time Pi is computed by Fourier’s law as

Pi = AiUi(Tin − Tout) (2)

where Tin is the indoor temperature and Tout is the outdoor
temperature. When considering (2) for the floor the outdoor
temperature is equal to the ground temperature. The total
transmission heat loss is the sum of heat losses through
each building block, i.e., Ploss = ΣiPi.

3.3 Ventilation losses

Heat loss due to ventilation with heat recovery can be
expressed as

Pvent = Vairγventρaircp (1− ηvent) (Tin − Tout) (3)

where Vair is the air volume in the house, γvent the air
exchange rate, ρair the air density, cp the specific heat
capacity of air, and ηvent the heat recovery efficiency.
Without heat recovery ηvent = 0 and for some heat recovery
systems the efficiency can be greater than 0.8. Infiltration
due to leakage in the building could partly be included in
the ventilation losses. However, infiltration also depends
on wind and this dependency has not been considered.

3.4 Solar radiation through windows

The total solar radiation through all windows in a house
Pradiation is the sum of radiation power through each
window. The solar radiation power P through one window
with area A directed with surface azimuth angle α measured
clockwise from north can be computed as

P = IA cos(θ)g (4)

where I is the solar radiation intensity, θ the angle of
incidence, and g the fraction of radiation power transmitted
through the window. The solar radiation intensity is
dependent on the local weather conditions and historical
data for locations in Sweden can be obtained from Swedish
Meteorological and Hydrological Institute (SMHI).

The angle of incidence θ is a function of the surface azimuth
angle α and can be computed as

cos(θ) = sin(δ) cos(φ) cos(α)− cos(δ) sin(φ) cos(α) cos(ω)

− cos(δ) sin(α) sin(ω)

where ω is the hour angle in the local solar time, δ the
current declination of the sun, and φ the local latitude.

The declination of Earth is computed by

δ = 23.45◦ sin((n− 81)360◦/365) (5)

where n is the day number of the year, such that n = 1 is
the first of January. The hour angle is computed as

ω = t
360◦

24
− 180◦ (6)

where t is the time of the day in hours.

The window transmission coefficient of radiation, g, de-
pends on the inclination angle θ and on the design of the
window. In (Caram et al., 2001; Karlsson and Roos, 2000)
it is shown that the transmission coefficient is relatively
constant for small angles and than drops fast to zero for
large angles. A coarse model that capture this behavior
has been adapted here. It assumes a constant transmission
g0 for inclination angles below a threshold θ0 and zero
transmission for angles above the threshold, i.e.

g =

{
g0, θ < θ0
0, else

(7)

3.5 Electric Vehicle Model

The electric vehicle is modeled with one state, the state
of charge (SoC) of its battery pack xSOC. The vehicle
model describes the battery only when connected to the
household energy management system, i.e., during charging.
Let Pcharge be the charging power of the vehicle and Q the
energy capacity of the battery, then the SoC of the battery
can be integrated by using

dxSOC

dt
= η

Pcharge

Q
(8)

where η is the charging efficiency.

4. METHOD

As stated earlier, the optimization method used to find the
lowest energy cost for heating and electric vehicle charging
is dynamic programming. The basic idea in this approach
will first be described, and then some modifications to the
standard algorithm to handle the fact the electric vehicle
is not connected to the electric grid at all time points is
described in more detail.

Using dynamic programming the time is discretized as well
as the states and control signals. As stated in Section 3
the states X ∈ Rm×n in the optimization are the indoor
temperature Tin and the SoC xSOC, and m and n are the
number of discrete levels in respectively state. The control
signals U ∈ Ro×p are heating power Pheat and charging
power Pcharge and o and p the number of discretization
points in the control signal respectively. The initial values
of the states are denoted Tin,0 and xSoC,0 and the final
states should not be lower than these values.

The first step in dynamic programming is to find a minimal
cost to go from each point in the grid of time points and



states. The algorithm starts at the end time point and the
final cost, Jn, is assigned to avoid ending up in a too low
state value. In the algorithm k is the time index, Xk the
set of possible states at time index k, gk(uk) the cost to
go from time step k to time step k + 1 where uk is the
control signal, fk(xik, uk) the state in time step k + 1, and
Jk+1(fk(xik, uk)) is the cost to go from time instant k + 1
to the end (i.e. time step N). To avoid ending up in a lower
xSoC than the initial SoC, denoted xSoC,0 and in a lower
indoor temperature Tin than the initial Tin, denoted Tin,0,
JN is assigned as in point 1 in the computations below

(1) Let JN =

{
∞, xSoC < xSoC0

or Tin < Tin,0
0, else

(2) Let k = N − 1.
(3) For all xik ∈ Xk:

Jk(xik) = minuk∈Uk

{
gk(uk) + Jk+1(fk(xik, uk))

}
(4) Repeat 3. for k = N − 2, N − 3, ..., 0.

where the value of Jk+1(fk(xik, uk)) is found by bi-linear
interpolation since this function only is known in the grid
points of the state grids.

The cost to reach the final time step from each time and
state grid point is known and stored in J . This information
is now used to find the optimal state trajectory, x∗, and
control signals, u∗, given an initial value of the states.
This is done by starting at the first time step and proceed
according the following algorithm

(1) Let k = 0, x∗0 = x0
(2) Let u∗k = argmin{gk(uk) + Jk+1(fk(x∗k, uk))}
(3) Let x∗k+1 = f(x∗k, u

∗
k)

(4) Repeat 2. and 3. for k = 1, 2, ..., N − 1

where, once again, bi-linear interpolation is used to find
the value of Jk+1(fk(x∗k, u

∗
k)).

4.1 Constraints in SoC

There are several ways to implement that the vehicle should
be fully charged before usage in the optimization. In e.g.
Rotering and Ilic (2011) it is used that the vehicle is a plug-
in hybrid vehicle since the difference between the electricity
and gasoline costs, including powertrain efficiencies, is used
to compute a final cost if the vehicle is not fully charged.
Here it is instead stated that the vehicle must be fully
charged at a time tfc every day. This is implemented by that
the cost to go to at time tfc is infinite if xSoC(tfc) < 1. This
results in that the only valid solution is that xSoC(tfc) = 1,
but the discretization in the control signal, i.e. the charging
power, leads to that this level most likely cannot be achieved
in the optimization, see Figure 4. One possible solution
is to charge the battery with a too high power to achieve
a xSoC > 1, but limit the state value so xSoC(tfc) = 1.
However, this would result in that the cost to go to this
time step is non-physical and too high. Therefore, the
energy required to charge the battery to achieve xSoC = 1
is computed if xSoC > 1, even though the power required
to achieve this is not included in the discretization set of
the control signal. To illustrate this an example is used.

Example 1. Assume that tk = tfc, Pcharge ∈ {0, 1, 2, 3}kW,
xSoC,k−1 = 0.85, Q = 10kWh, and the sample time one
hour. Charging with 1kW then results in x1kWSoC,k = 0.95

and charging with 2kW results in x2kWSoC,k = 1.05. Ending

x_SoC	  

'me	  tfc	  

xSoC,N-‐2	  

xSoC,N	  

xSoC,N-‐1	  

Pcharge,j+1	  

Pcharge,j	  

Fig. 4. Figure illustrating the aspect of achieving a fully
charged vehicle when the control signals are dis-
cretized.

up in x1kWSoC,k = 0.95 is not a feasible solution since the

battery is not fully charged. The solution x2kWSoC,k = 1.05
uses the lowest charging power to achieve xSoC,k ≥ 1, and
the energy used in this time step is computed based on the
difference between xSoC,k−1 and xSoC,k. In this case this
results in a mean power of 1.5kW since the losses in the
battery charging are constant.

The charging of the batteries in a vehicle can typically
only be done at discrete powers. Therefore, it is assumed
that the charging is made with the power Pcharge,j+1 in
Figure 4, where j is the index of possible charging powers,
for some time in the time interval between tk−1 and tk in
the example above, and that the charging is switched off
during the rest of the time. This may affect the solution
since the maximum power in the household is limited. This
is of course included both in the backward and forward
computations in the algorithm.

4.2 Vehicle SoC after driving

At the time instant the car is coming back home after
driving, tad, xSoC needs to be reinitialized. The algorithm
can handle a day to day variation of tad, but here a fixed
value of tad is used for simplicity. The value of xSoC at tad
is assumed perfectly known, but to model different usage of
the vehicle every day the value of xSoC(tad) is set by using
random numbers between zero and one that are available
in the optimization. In the optimization xSoC(tad) is set to
the value of the SoC of the vehicle for that specific day.

5. RESULTS

The input data used in the simulations is from year
2013 and the location is Linköping. Measured outdoor
temperature and solar radiation intensity are publically
available and are collected from Swedish meteorological
and Hydrological Institute (SMHI, 2015) and measured
household electricity is provided by Tekniska verken that
is a regional company providing electricity and district
heating (Tekniska verken, 2015). The electricity spot price
in Northern Europe is publicly available at Nord Pool Spot
(Nordpool, 2015), and the model parameters used are given
in Appendix A.



Two control schemes are compared. The first scheme is
a heuristic controller and the second scheme is based on
dynamic programming finding the globally minimal cost
to fulfill the criteria on charging and indoor heating. Both
these schemes are based on the same states, Tin and xSoC,
which are computed based on the model described in
Section 3, i.e. f is computed by (1) and (8) respectively.
In the case with the heuristic controller it is assumed
there is a 10kW thermostatic controlled radiator for the
heating of the house. This leads to that there is only two
heating powers P h

heat available, namely 0kW and 10kW for
this control scheme. Further, the vehicle is assumed to be
plugged in at tad every day and maximum charging power
is used until the vehicle is fully charged, in this case 16A
single phase.

The optimal solution minimizes the energy cost, i.e.

g(uk) = (Pheat + Pcharge)(tk+1 − tk)ck (9)

where tk is the time at index k and ck is the electric
price per energy unit at time k. There are constraints
that the indoor temperature is not to be below a minimal
temperature, Tmin, the vehicle should be fully charged at
tfc, and the total power is to be below Pmax. The charging
power, P o

charge, and heating powers, P o
heat, are discretized

in optimal control scheme as

P o
charge ∈ {0, 1, 2, 3}kW

P o
heat ∈ {0, 2, 4, 6, 8, 10}kW

and the states Tin and xSoC are discretized as

T grid
in ∈ {19, 20, ..., 29, 30}◦C
xgridSoC ∈ {0, 0.1, ..., 0.9, 1}

The discretization in time differs in the two control schemes.
In the heuristic controller the time step used is ten minutes
and in the optimal controller one hour is used. The reason
for this is that the fluctuations in indoor temperature is
too high in the heuristic controller when one hour sample
time is used since the heater is either fully on or off. In the
smart controller there are more steps in power resulting in
approximately the same indoor temperature fluctuations
comparing the two controllers.

A zoom in of the results from the simulations are presented
in Figure 5. This figure presents the different signals from
the morning of January 2 till the morning of January 3. As
can be seen the vehicle is charged when the spot price is at
minimum in the optimal controller, but also that the indoor
temperature is increased when the electricity price is low.
This has the disadvantage that the heat losses increase
and thereby also the energy consumption for heating.
However, in this case it is more economical to increase
the temperature of the house before the electricity price
increases. Further, even though the sample time is lower in
the heuristic controller, it can be seen that the indoor
temperature fluctuates more compared to the optimal
solution. This fluctuation decreases when the outdoor
temperature is lower since the heat power required is higher.

The results presented in Figure 5 are general in the sense
that the electric vehicle often is charged at night time using
the optimal controller, as can be seen in Figure 6 where
the accumulated energy consumption for every hour of the
day during the year is presented. In this figure it can also
be seen that the heater is used more between three o’clock

Table 1. Energy consumption for the household
during one year using the heuristic controller

and the smart energy management.

Heuristic Optimal Cost
reduction

Charging energy [kWh] 1805 1806
Charging energy cost [SEK] 681 507 26%
Heating energy [kWh] 10573 10486
T̄in [◦C] 20.5 20.6
Heating energy cost [SEK] 3839 3410 11%
Total energy cost [SEK] 4520 3917 13%

and five o’clock in the morning due to the lower electricity
price and the thermal inertia of the house is used for energy
storage.
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Fig. 5. Control signals and states compared during one
day using the heuristic controller and the optimal
controller.
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Fig. 6. The total energy consumption for heating and
charging at different times of the day during the
year. The left bars (black and white) represent the
consumption using the heuristic controller, and the
right bars (blue and yellow) represent the consump-
tion using dynamic programming.

The results from the simulations are also presented in
Table 1 where it can be seen that the cost for charging the
electric vehicle is decreased by 26 % while the reduction
in heating cost is lower. The reason for this is that in
order to achieve a cost reduction for heating and still
achieve an indoor temperature above the specified minimum
temperature at all times, the heating power needs to be
increased in advance when the electricity price is cheap.
This results in a higher indoor temperature and the heating
losses from the house increases by doing so, see (2) and (3).
This disadvantage is not the case with the charging of the
vehicle since the efficiency is modeled to be independent of
the charging power, see (8), and there are no losses due to
storing energy in the battery when there is no charging or
discharging.

6. CONCLUSIONS

A method evaluating the potential in cost saving of using
smart energy management for heating and electric vehicle
charging is presented. The evaluation spans over an entire
year and a novel way of handling the fact that the
electric vehicle is disconnected to the grid at some times is
developed. The simulations show that the cost reduction is
significant using this smart energy management approach,
in overall 13%. However, this potential is even higher using a
heating system with an energy storage, e.g. water radiators
in combination with a water tank, as well as including the
water boiler for hot water production in the smart energy
management for the household.
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Appendix A. MODEL PARAMETERS

Table A.1. Model parameters used in the sim-
ulation study.

Parameters Value

Uwall 0.33 W/m2K
Ufloor 0.3 W/m2K
Uroof 0.24 W/m2K
Uwindows 1.2 W/m2K
Awall 121.6 m2

Afloor 125 m2

Aroof 125 m2

Awindows,south 7 m2

Awindows,west 6 m2

Awindows,east 2 m2

Awindows,north 9 m2

γvent 0.5
φ 58.41◦

θ0 70◦

g0 0.55
Tground 8◦C
Rtot 6 kWh/K
cp 1.0 kJ/kg·K
ρ 1.3 kg/m3

Q 10 kWh
η 0.8
Pmax 15 kW


