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Abstract: Development of efficient control algorithms for the control of automatic transmission
systems is crucial to maintain passenger comfort and operational life of the transmission
components. An optimization framework is developed by state space modeling of a powertrain
including a nine speed automatic transmission, diesel engine, torque converter and a model
for longitudinal vehicle dynamics considering drive shaft as the only flexibility of the driveline.
Emphasis is set on the kinematics of the automatic transmission with the aim of modeling for
gearshift optimal control during the inertia phase. Considering the interacting forces between
planetary gearsets, clutches and brakes in the transmission, kinematic equations of motion are
derived for rotating transmission components enabling to calculate both transmission dynamics
and internal forces. The model is then used in optimal control problem formulations for the
analysis of optimal control transients in two up-shift cases.
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1. INTRODUCTION

Various driveline configurations are utilized in todays cars
while Automatic Transmission (AT) is one of the com-
monly used systems, Wagner (2001). Such transmission
systems consist of planetary gearsets where various gear
ratios are achieved by coupling different components of
planetary gearsets with each other. The coupling takes
place via engagement of oil immersed clutches and brakes,
referred to as shift elements, at the time of gearshift. Using
combinations of planetary gearsets in the transmission,
wide range of gear ratios become available while the com-
pact structure of such transmission makes it favorable for
application in both normal passenger cars, Greiner et al.
(2004), and heavy duty machinery, A40G (2015).

However, as power is transferred through transmission
components during gearshifts, the difference between iner-
tia and rotational speed of the coupled bodies introduces
discontinuities in the powertrain dynamics. Apart from
the long-term destructive impacts of the induced oscilla-
tions on powertrain components, passenger comfort is also
greatly dependent on the gearshift smoothness, see Huang
and Wang (2004) and Horste (1995).

Simultaneous control of off-going and on-going shift ele-
ments during gearshifts determines the shift characteris-
tic which in its turn has direct effects on other vehicle
properties such as drive comfort, fuel efficiency, vehicle
operability and durability of gearbox components. In addi-
tion to the improvement of vehicle properties, proper AT
control strategies also open up the design space for new
transmission concepts with lesser components resulting in
lower total vehicle mass and consequently fuel consump-
tion reduction.

Fig. 1. Cutaway drawing of a nine speed automatic gearbox
and torque converter.

Extensive research has been carried out on the topic of AT
control for ride quality and operating life of shift elements,
see Goetz et al. (2005), Sun and Hebbale (2005), Han and
Yi (2003), Minowa et al. (1999) and Haj-Fraj and Pfeiffer
(2002), concluding that the main criteria for the evaluation
of shift quality are the duration of gear shift process and
emerging oscillations in the powertrain. An efficient and
cost effective approach to obtain suitable strategies for
AT control is to utilize models with a time dependent
structure where the dynamics of different components are
well described during gearshift. Previous AT modeling
efforts can be classified into two different categories. In the
first the focus is on the dynamics of hydraulic actuation
system initiated by the change of actuator lever position
ending in the rise of hydraulic pressure at the brakes
and clutches, see Minowa et al. (1999), Thornton et al.
(2013) and Gao et al. (2010). In the second category,
the kinematics of planetary gearsets before, during and
after gearshifts are of interest while the hydraulic pressures
are considered as control input signals, see Haj-Fraj and
Pfeiffer (2002) and Kim et al. (2003).
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Fig. 2. Schematic view of the powertrain and driveline
components with focus on transmission inputs and
outputs.

In this work, the aim is to develop a framework enabling
optimal control analysis of desirable AT gearshifts during
the inertia phase. A nine speed AT as shown in Figure 1
comprised of a torque converter, five planetary gearsets
and eight shift elements will be considered. Analyzing the
kinematics of rotating bodies and calculating the internal
forces/torques between various components, transmission
dynamics at different gears are obtained as a state space
system which is utilized for optimal control problem for-
mulation. Then the AT transients during the inertia phase
are calculated and analyzed for two example gearshifts to
illustrate the framework applicability in different gearshift-
ing scenarios.

2. DRIVELINE MODEL

Figure 2 shows a schematic overview of the developed pow-
ertrain model where a diesel engine generates the required
power transferred to the wheels via torque converter,
transmission, final drive and a drive shaft. Considering the
large number of AT components and the corresponding
state variables, which will be later introduced, in order
to reduce the number of required state variables for the
complete powertrain kinematics and for simplicity, the
following assumptions and simplification are made during
powertrain modeling:

(1) The turbocharger lag and engine pumping losses
are neglected in diesel engine model assuming that
the engine has already reached high speed when a
gearshift starts.

(2) All components except the drive shaft are considered
without torsional damping or flexibility.

(3) Friction and viscous losses in the planetary gearsets
are neglected.

(4) Component properties are chosen according to the
information available in A40G (2015).

(5) Perfect clutch fill and coordination is assumed. Only
the inertia phase of the gearshift is considered and
therefore, the transmission actuation system is mod-
eled such that the shift element torques are directly
applied as control inputs.

Engine speed ωe, rotational speed of the transmission
components ω1,...,8, torsion of drive shaft xflex and wheel
speed ωw are the state variables of the model which
are described by equations (3), (9)-(16),(21) and (22).
Considering actuation torques from all shift elements,
TB1,2,3,4,5

and TK1,2,3
as depicted in Figure 2, there are

eight choices for the transmission model control inputs
depending on the selected gear. The kinematic analysis
is described for 1-2 up-shift only but similar methodology
can be followed for other gearshifts. Therefore the control
inputs (u1-2) for 1-2 up-shift modeling will be:

u1-2 = {uf , TB5, TK3} (1)

where uf , fuel mass injected per combustion cycle is the
control input to the diesel engine model, and TB5 and TK3

are the torques from brake 5 and clutch 3.
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Fig. 3. Schematic view of a nine speed automatic gearbox
and mechanical links between planetary gearsets com-
ponents, Sun(S)-Carrier(C)-Ring(R), with respect to
clutches and brakes.

Gear K1 K2 K3 B1 B2 B3 B4 B5

1 × × ×
2 × × ×
3 × × ×
4 × × ×
5 × × ×
6 × × ×
7 × × ×
8 × × ×
9 × × ×

Table 1. The shift elements (clutches and
brakes) that are active at each gear.

2.1 Diesel engine

A simplified version of the mean value engine model
(MVEM) in Walström and Eriksson (2011) with properties
according to A40G (2015) is used since continuity and
differentiability of MVEM makes it more appropriate for
optimal control applications. Indicated torque Ti for the
six cylinder diesel engine and engine friction torque Tfr
are calculated as:

Ti =
6× 10−6

4π
ηig qlhv uf (2a)

Tfr = cf1 ω
2
e + cf2 ωe + cf3 (2b)

where ηig is combustion efficiency, qlhv is specific heating
value for diesel fuel and cfi are friction model coefficients.
The diesel engine model has only one state variable, engine
speed ωe, with the dynamics calculated as follows:

dωe
dt

=
1

Je + Jtc,p
(Ti − Tfr − Tp) (3)

where the inertia of the pumping side of the torque
converter Jtc,p is added to the engine inertia Je, and
Tp is the required torque on the pumping side of torque
converter described in the following section.

2.2 Torque converter

In torque converter modeling, the focus is more on the
continuity and differentiability of the model than the dy-
namics of the torque converter components. Therefore the
typical approach as in Haj-Fraj and Pfeiffer (2002) using
torque converter characteristic curves, ξ and MP1000, is
implemented.
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Fig. 4. Torque converter characteristic curves.

Using the characteristic curves, illustrated in Figure 4, the
required torque on pumping side and generated torque
on turbine side of the torque converter are calculated as
follows:

Tp = MP1000(φ) (
ωe

1000
)2 (4)

Tt = MP1000(φ) ξ(φ) (5)

where φ=ωt/ωe and ωt is the turbine shaft speed connected
to the transmission input and ωe in equation (4) is in
(rpm).

2.3 Transmission

The transmission unit is comprised of five planetary
gearsets, three clutches and five brakes illustrated in Fig-
ure 3. The brakes are used to fix a component to the casing
(zeros speed) while clutches connect two rotating compo-
nents with each other. Different gear ratios can be obtained
by activating shift elements according to Table 1. There
are three widely used methods for analysis of automatic
transmissions, Shushan and Peng (2013), namely alge-
braic equation method, lever analogy and matrix methods.
While the first two are handy for transmissions with fewer
(one or two) number of planetary gearsets, the matrix
methods is prioritized for larger transmissions and is also
utilized here. In the next two sections it is first described
how complying dimensions of sun and ring components,
required in matrix method, are calculated and then using
the matrix method, dynamics of the transmission compo-
nents are calculated.

Gearbox model parametrization Dimensions of planetary
gearsets are required for calculation of transmission dy-
namics, however, only the total gear ratio of the transmis-
sion at each gear γi, individual planetary gearset proper-
ties such as ratios and dimensions are in many cases not
publicly available. Therefore it is necessary to calculate the
complying gearset properties such that correct total gear
ratio can be obtained after solving transmission dynamics.
The kinematic constraint due to the mechanical structure
of each planetary gearset is:

ωC (1 + αi) = ωS αi + ωR (6)

where αi is the ratio between sun and ring radius in
gearset i. Considering equation (6) and the mechanical
links between the gearset components illustrated in Figure
3, the total gear ratios can be calculated as the ratio
between input and output speeds of the transmission.
For example in case of the first gear the gear ratio (γ)
calculations is:

ωC4 = ωR5, ωR4 = 0⇒ ωR5 =
α4

1 + α4
ωin (7a)

ωS5 = 0⇒ ωout(α5 + 1) = ωR5 (7b)

⇒ ωin
ωout

=
(1 + α4)(1 + α5)

α4
= γ1 (7c)
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Fig. 5. Graphical representation of exerted torques on
transmission components in a 1-2 gearshift.

where ωin = ωt = ωS3S4 and ωout = ωC5. Performing
similar calculations for all nine gears, the gear ratios γi as
function of αi are obtained as follows:

γ2 =
(1 + α4)

α4
(8a)

γ3 =
(1 + α3)(1 + α4)(1 + α5)

α4 + α3α4 + α3
(8b)

γ4 =
(1 + α3)(1 + α4)

α4 + α3α4 + α3
(8c)

γ5 =
α4 + 1

α4 + g1
, g1 =

α3 + α2α3

α2 + α2α3 + α3
(8d)

γ6 =
α4 + 1

α4 + g2
, g2 =

α3

1 + α3 − 1+α1

1+α2+α1α2

(8e)

γ7 = 1 (8f)

γ8 =
α3(1 + α4)(1 + α5)

(α3 + α4 + α3α4)g3 − α4(1 + α1)
(8g)

γ9 =
γ8

1 + α5
, g3 = 1 + α1 + α1α2 (8h)

Using the gear ratios, γi and equation (7c)-(8h) the un-
known αi can be calculated. Knowing that the transmis-
sion is almost one meter long and using this as a scale, the
radii of sun gears (Si) are read from Figure 1 and then the
radii of the ring gears (Ri) are calculated from Ri = Si/αi.

Applying the matrix method Mechanical links between
gearset components are shown in Figure 3. In order to
reduce the required number of state variables for de-
scribing all component dynamics, the linked components
of different gearsets namely sun(S)-ring(R)-carrier(C)
are considered as a single body resulting in the following
inertias:

J1 : S1 J2 : R1C2R3 J3 : C1S2 J4 : R2C3R4

J5 : C4R5 J6 : S3S4 + JTC,t J7 : C5 J8 : S5

where Jtc,t is the inertia of torque converter on the turbine
side, the output shaft inertia is lumped into J7 and the
inertia of clutch and brake components are neglected.

A schematic view of the transmission components includ-
ing applied torques from active shift elements during first
and second gear operation together with the input and
output torque of the transmission is depicted in Figure 5
where Si and Ri are the sun and ring radii and Fi
represents the internal force in each planetary gearset.
Considering Newton’s second law for all eight rotating
bodies of the transmission, the dynamics are obtained as
follows:



J1
dω1

dt
− F1S1 = 0 (9)

J2
dω2

dt
− F1R1 + F2(S2 +R2) + F3R3 = 0 (10)

J3
dω3

dt
+ F1(S1 +R1)− F2S2 = 0 (11)

J4
dω4

dt
− F2R2 − F3(S3 +R3) + F4R4 = TB4 (12)

J5
dω5

dt
− F4(S4 +R4) + F5R5 = 0 (13)

J6
dω6

dt
+ F3S3 + F4S4 = Tt (14)

J7
dω7

dt
− F5(S5 +R5) = −TK3 − Tf (15)

J8
dω8

dt
+ F5S5 = TK3 + TB5 (16)

The dynamic equations can be written in the following
matrix form:

[
I K
KT 0

]
Ω =

[
κ
0

]
T (17)

with I = diag(J1, J2, · · · , J8), Ω = [ω̇1, . . . , ω̇8, F1, . . . , F5]
T

,

K =



−S1 0 0 0 0
−R1 R2 + S2 R3 0 0

R1 + S1 −S2 0 0 0
0 −R2 −R3 − S3 R4 0
0 0 0 −R4 − S4 R5

0 0 S3 S4 0
0 0 0 0 −S5 −R5

0 0 0 0 S5


,

κ =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 −1 0 −1
0 0 1 1 0


and T =


Tt
TB4

TK3

TB5

Tf

.

where Tf is the transferred torque from the transmission
to the final drive and is calculated in the next section.
Rearranging equation (17) into (18), the speed dynamics
of every rotating component and the internal forces in each
planetary gearset can be calculated from the following:

Ω =

[
I K
KT 0

]−1 [
κ
0

]
T (18)

The dynamic equations of the transmission components
can be simplified during stationary operations (dωi

dt = 0)
and also when a component is fixed by means of shift
elements to another component or to the transmission
housing such that it has same dynamics as another com-
ponent or is stationary. For example during 1-2 up-shift
equation (12) can be removed from dynamic equations
since TB4 fixes R2C2R1 to the transmission housing and
ω4 = dω4

dt = 0. The transmission dynamics can then be
calculated by removing J4 from I, ω̇4 from Ω, fourth row
of matrix K, second column of κ and TB4 from T vector.

The required TB4 can then be calculated from equation
(12) after obtaining F1,2,3 from equation (18) which can be
useful for estimation of required torque bandwidth in brake
4. Therefore TB4 is not used as a control inputs during
the 1-2 up-shift and with same reasoning the control
inputs during 4-5 up-shift are reduced to {uf , TB5, TB3}
by omitting TK3.

2.4 Drive shaft flexibility and Longitudinal Dynamics

According to Eriksson and Nielsen (2014)-chapter 14, the
main flexibility of driveline is located in the drive shaft
connecting the final drive to the wheels. Therefore the
drive shaft is modeled as a damped flexibility with stiffness
k and damping coefficient of c with the output and input
torques Tw and Tf as follows:

Tw = k xflex + c (
ω7

γfd
− ωw) (19)

Tf =
Tw
γfd

(20)

where γfd is the final drive ratio and xflex is the state
variable describing the drive shaft torsion which can be
obtained as follows:

dxflex
dt

=
ω7

γfd
− ωw (21)

The wheel speed ωw is the last state variable in the com-
plete driveline model calculated from the vehicle longitu-
dinal dynamics for level road condition according to:
dωw
dt

=
1

mr2w + Jw

(
Tw −

1

2
ρ cdAω

2
wr

3
w −mg cr rw

)
(22)

where rw, m and A are wheel radius, vehicle mass, and
vehicle frontal area, cr and cd are rolling resistance and
aerodynamic drag coefficients and g represent the earth
gravity.

3. OPTIMAL CONTROL PROBLEM FORMULATION

Using the developed state space model, optimal con-
trol problems are formulated and solved for optimization
of gearshift transients. There are several properties of
gearshift which can be considered as the optimization
objective, see Haj-Fraj and Pfeiffer (2002) and Haj-Fraj
and Pfeiffer (2001) for a discussion. Here shift duration (T )
corresponding to the operating life of shift elements and
changes in the vehicle acceleration (jerk) corresponding
to the passenger comfort, are focused. The shift duration
as one of the objectives in the optimal control analysis is
represented by:

T =

∫ t

0

dt (23)

where t denote the duration of the gearshift. The jerk, A,
is represented by integrating the squared derivatives of the
vehicle accelerations during the gearshift as follows:

A =

∫ t

0

(
da

dt
)2dt (24)

where a = dωw

dt .

To obtain the trade-off between minT and minA solu-
tions, the optimal control problem objective is often for-
mulated as the weighted sum of the time and jerk terms



(v1T + v2A, v1 + v2 = 1) where the points on the trade-
off are calculated by solving with different weights (v1,2).
However, considering the large difference in the order of
magnitude between the two objectives, when formulating
the weighted sum, A and J have to be normalized with
respect to their maximums. This makes the solution of the
weighted sum sensitive to the normalization and weight
values, which makes it difficult to calculate the trade-off
with an acceptable spread of points.

Another approach is used here where after solving the
minT and minA solutions as the start and end points
on the trade-off, a time grid is selected on the interval
between these two solutions. Then, the gearshift duration
t is repeatedly set equal to the grid times and equation (24)
is solved to obtain the A values. The first point on the time
grid is obtained by solving the minT problem, but there is
no unique solution in time when solving the minA problem
(v1 = 0) since after a certain gearshift duration, zero jerk
can be obtained for various gearshift lengths. Therefore,
to obtain the shortest time where zero jerk gearshift is
possible, equation (23) is chosen as the objective and the
problem is solved including an additional a = 0 constraint
in the optimal control problem formulation. The calculated
gearshift duration is then used as the end point of the time
grid.

Considering the 1-2 up-shift, state vector x can be sum-
marized as:

x = {ω1,2,3,5,6,7,8, ωe, ωw, xflex} (25)

while the state dynamics f(x(t), u(t)) are obtained by the
differential equations presented in the previous sections.

The complete optimal control problem formulation for
different scenarios stated earlier can be summarized as
follows:

min
x(t),u(t),γ(t)

T or A (26)

s.t. ẋ(t) = f(x(t), u(t))

umin ≤ ui(t) ≤ umax
xmin ≤ xi(t) ≤ xmax

Te(ωe, uf (t)) ≤ Te,max
x(0) = x0
x(T ) = xT
ẋ(0) = 0

ẋ(T ) = 0

a = 0, when solving for minT |A=0

where the min and max are the upper and lower limits for
states and controls and x0 and xT correspond to the state
values at the end of the first gear and beginning of the
second gear operation, respectively. These are calculated
in similar manner as described by equations (7a)-(7c) for
rwωw=6 km/h and rwωw=15 km/h in 1-2 and 4-5 up-
shifts respectively. The requirements on ẋ at the beginning
and end of the gearshift are applied to guaranty that the
gearshift starts and ends at stationary condition.

It should be noted that the kinematic constraint men-
tioned in equation (6) does not need to be added to
problem constraints as their effect is already present in
the dynamic equations of states via internal forces Fi.

Implementing direct multiple shooting method, the formu-
lated optimal control problem is transformed into a nonlin-
ear program (NLP). The NLP is then solved by CasADi,
Andersson (2013), which is an open source optimal control
framework using Ipopt, Wächter and Biegler (2006), and
the powertrain transients are obtained. The results of this
optimization are presented and analyzed in the following
section.

4. OPTIMAL CONTROL RESULTS

Gearshifting transients are optimized for 1-2 and 4-5 up-
shifts where in both cases there are one off-going and one
in-coming shift element. The major phenomena observed
in the calculated optimal transients are described in the
following sections.

4.1 Trade-off between jerk and time

Figure 6 shows the trade-off between minT and minA so-
lutions for both gearshift cases where the dashed-lines are
obtained by interpolation between the calculated points.
The trade-offs show that small increase of gearshift du-
ration from the time optimal solution can largely reduce
the jerk. For example, at C12 and C45 a good compromise
is achieved between the two objectives as the gearshift
duration in the 1-2 and 4-5 up-shifts has increased only
0.22 % and 4 % while the jerk has reduced as much as
64.7 % and 55.9 % respectively. However, the gain in the
jerk reduction reduces when the gearshift time increases
further.
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Fig. 6. The trade-off between time and jerk for 1-2 and 4-5
up-shifts. At C12,45 there is a compromise between the
two objectives.

4.2 Optimal transients for 1-2 and 4-5 up-shifts

The minT , minA and C12,45 state and control input
transients for 1-2 and 4-5 up-shifts are illustrated in
Figures 7, 8, 9 and 10. According to Figures 7 and
9 it is both time and jerk optimal to release the off-
going shift element, ub5 and ub3 for 1-2 and 4-5 cases
respectively, as soon as the gearshifts starts. Also in the
minA case, it is optimal to reach the maximum torque
capacity of the in-coming shift element, uk3 and ub1 for 1-
2 and 4-5 up-shifts, immediately after gearshift starts such
that the initial torque phase is completely avoided. This
requirement for fast actuation of in-coming shift elements
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Fig. 7. Optimal control transients for minT , minA and
C12 cases in a 1-2 up-shift.
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Fig. 8. Optimal state transients for minT , minA and C12

cases in a 1-2 up-shift where ωout=ω7 and ωin=ω6.

can be considered when designing the hydraulic actuation
system.

Considering C12,45 transients, the magnitude of distur-
bances in the vehicle speed, ωw, is reduced compared to
the minT solution especially in case of the 1-2 up-shift
which can also be verified comparing the dωw/dt values in
Figure 11. The required energy in b1 and k3 shift elements

calculated as
∫ T
0
ub1ω2 dt and

∫ T
0
|uk3ω8| dt is also 8.8 %

and 12.11 %, respectively, lower than the minT case.

Figure 11-top shows the input torque to the transmission.
The transients are similar for both up-shift cases in the
minA solutions in a sense that the fuel injection umf is
cut off so that the absence of an input torque on the engine
side of the torque converter together with the constant
torque from the in-coming shift element, smoothly reduce
the kinetic energy of the transmission components down
to the level required for the engagement of the next
gear. However, in the minT case of both up-shifts, in
addition to the fuel cut-off, the bang-bang type dynamics
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Fig. 9. Optimal control transients for minT , minA and
C45 cases in a 4-5 up-shift .
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Fig. 10. Optimal state transients for minT , minA and C12

cases in a 4-5 up-shift where ωout=ω7 and ωin=ω6.

of the in-coming shift elements introduce disturbances
into the driveline such that the induced excitation is
transferred to the vehicle mass at wheels via the the
drive shaft. These excitations get partially damped by the
drive shaft flexibility, vehicle mass and wheel inertia which
increases the rate of reduction in the kinetic energy of the
transmission components and shortens the time before the
next gear can be engaged.

Subtracting the total kinetic energy of all transmission
components (0.5

∑
Iiω

2
i ) at the beginning and end of the

gearshifts, the difference is 25.17 % larger in case of the
1-2 up-shift which could be the main reason for the slower
transients compared to the 4-5 case as more reduction in
the kinetic energy is required before the next gear can be
engaged.
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Fig. 11. Transmission input torque and vehicle accelera-
tion/decceleration in minT , minA and C45 solutions
of 1-2 and 4-5 up-shifts.

5. CONCLUSION

A framework is developed for gearshift transient optimiza-
tion during inertia phase via state space modeling of a
nine speed heavy duty automatic transmission. Using the
developed model and in order to analyzed the minimum
time/jerk transients and the trade-off between these, op-
timal control problems are formulated and solved. Two
example up-shifts are considered and in order to calcu-
late the trade-off between time and jerk objectives while
avoiding objective function normalizations difficulties, the
minimum jerk problem is iteratively solved for various
preselected gearshift durations.

The results show that the developed framework is appli-
cable for efficient optimization of inertia phase gearshift
transients. As future model developments, hydraulic ac-
tuation dynamics can be included and sensitivity of the
gearshift transients with respect to the parameters such
as clutch fill dynamics, components’ inertia and driveline
flexibilities can be analyzed.
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