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Email: vaheed.nezhadali@liu.se, larer@isy.liu.se

NOMENCLATURE

TABLE I
VARIABLES USED IN THE PAPER.

Symbol Description Unit
x State variable -
u Control input -
θ Angle rad
t Time s
F Force N
R Gas constant N·m/kg·K
p Pressure Pa
T Temperature K
M Torque N·m
k Stiffness coefficient N·m/rad
b Damping coefficient N·m·s/rad
ω Rotational speed rad· s−2

α Rotational acceleration rad/s
β Road slope rad

m, ṁ Mass, Mass flow kg, kg/s
P Power W
E Energy J

umf , uwg , Pgen Control signals mg/cycle, -, W
J Inertia kg · m2

ρ Density kg · m−3

r Radius m
A Vehicle frontal area m2

BSR Blade speed ratio -
λ Air/fuel equivalence ratio -
φ Fuel/air equivalence ratio -
i Gear ratio -
η Efficiency -
Π Compression ratio -
c Constant coefficient -
ψ Electrical energy penalty coefficient -
δ Energy penalty coefficient -

(A/F )s Stoichiometric Air to fuel ratio -

TABLE II
SUBSCRIPTS USED FOR VARIABLES.

Index Description Index Description
im Intake manifold em Exhaust manifold
gen Generator wg Wastegate
e Engine a Air
ds Drive shaft v Vehicle

mf, conv Fuel conversion mf Fuel mass
loss Losses tot Total
mech Mechanical tc Turbocharger
w Wheel gb Gearbox
fd Final drive resist Resistant forces
c Compressor ac Air into cylinder
0 Initial f Final
r Radius gs Genset

Abstract—Optimal transients of a hybrid powertrain are
calculated with the aim to give a smooth and time efficient
acceleration. It is shown that there is a trade-off between
time and driveline oscillations where high oscillations can
be avoided by slightly longer acceleration time and proper
control of the electrical and diesel power sources. During a low
oscillation acceleration, there is still the possibility to reduce
the amount of total consumed electrical and fuel energy.
This is investigated by calculation of optimal controls during
acceleration for a fixed time while penalizing the usage of
energy in a low oscillation acceleration. The balance between
electrical and diesel energy usage during the acceleration
is also investigated. The results show that to avoid extreme
transients by optimal control, a multidimensional formulation
of the objective function including different properties should
be considered.

I. INTRODUCTION

Hybridization of powertrains opens up new opportunities
for faster and more efficient vehicle acceleration. With an
electric power source assisting a diesel engine, there is
an extra degree of freedom in powertrain control while
the simultaneous control of the diesel and electric power
sources becomes more complex.

Tip-in maneuver is referred to the situation where the
driver suddenly asks for a fast vehicle acceleration by
pressing accelerator pedal. This is a highly demanding
and transient operation in a diesel-electric powertrain. The
controls during this period can be optimized with respect
to energy consumption or the operations time similar to
[1], [2] and [3]. Passenger comfort is also important when
considering powertrain transients and can be accounted for
by taking the driveline oscillations, referred to as Jerk,
into account. The Jerk is also important considering its
effects on the life length of driveline components, for more
discussion see [4] and [5]. In real world applications, not
a single but all of these objectives are of importance and
therefore it is desirable to obtain a compromise between
these objectives by proper control of the powertrain.

The contribution of this paper is the development of a
methodology for the calculation of efficient hybrid pow-
ertrain transients with the aim to obtain a compromise
between time-energy-Jerk objectives during a tip-in ma-
neuver. Numerical optimal control is used as an enabler
for this where first the extreme transients obtained by
improper objective function formulations are presented.
Then the trade-off between time-Jerk and Jerk-energy are
calculated. The problem is solved for different road slopes



representing various loading scenarios. The analysis is
extended by investigation of powertrain transients and the
balance between usage of diesel and electric energy sources
is analyzed.

II. POWERTRAIN MODEL

To enable optimal control problem (OCP) formulation,
a model for the powertrain and driveline components
is needed. The powertrain model representing a hybrid
bus is comprised of a diesel engine and an electric
motor/generator working in parallel. The dynamics are
described by a mean value engine model (MVEM) and
a model for generator efficiency in a validated diesel-
electric powertrain (genset) model from [6]. The powertrain
dynamics are described by four state variables as ωe(t),
pim(t), pem(t) and ωtc(t). Two additional states describe
the dynamics of the driveshaft twist angle θds(t) and
wheel speed ωw(t). The model has three control inputs
for injected fuel during each combustion cycle umf (t),
wastegate position uwg(t) and the the electric power of
motor/generator Pgen(t).

Dynamics of the four genset state variables are described
by the following differential equations:

dωe
dt

=
1

Jgs
(Mgs −Mgs,load) (1)

dpim
dt

=
RimTim
Vim

(ṁc − ṁac) (2)

dpem
dt

=
RemTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (3)

dωtc
dt

=
Ptηmech − Pc

ωtcJtc
(4)

The flexibilities in the driveline are lumped into one
single flexibility in the driveshaft according to [7], and the
torque transferred by the driveshaft is described using the
stiffness and damping coefficients as follows:

Mds = kds θds + bds
dθds
dt

(5)

dθds
dt

=
ωe

igb ifd
− ωw (6)

where (6) is used to describe the driveshaft deflection
dynamics.

Considering rolling and aerodynamic resistances and
gravitational force, as well as constant gearbox and final
drive ratios, the wheel speed dynamics are calculated using
Newton’s second law of motion as follows:
dωw
dt

=
Mds −Mresist

Jw +mvr2
w

(7)

Mresist = 0.5 ρair caAω
2
wr

3
w +mv g rw(cr cos(α) + sin(α))

(8)

The utilized electric and diesel energy are represented
by the following integral states:

Egen =

∫ tf

t0

Pgen dt (9)

Emf
= qhv

∫ tf

t0

umf ωe ncyl
10−6

4π
dt (10)

When formulating OCPs, the oscillations in the rota-
tional speed of the transmission shaft is used to represent
the driveline oscillation. These oscillations are referred to
as Jerk that is defined as follows:

Jerk =

∫ tf

t0

α̇2
tr dt (11)

αtr =
dωe
dt

1

igb
(12)

III. PROBLEM FORMULATION

In this section, first definition of the tip-in problem in
terms of boundary conditions and constraints is described
and then the objective function formulation for the OCPs
are presented.

A. Tip-in problem constraints

1) Boundary conditions for the tip-in problem: The tip-
in starts from a stationary operating condition at constant
vehicle speed of 10 km/hr and the final condition is that
the speed should reach 15 km/hr. The states and control
inputs should remain within the allowed limits during the
operation while the integral states and generator power are
assumed to be zero at the beginning. All these can be
summarized as:


ωw(t0) = ωe(t0)

ifd×gb
= 10

rw
1

3.6 , ẋ(t0) = 0,

ωw(tf ) = 15
rw

1
3.6 ,

Egen(t0) = Emf
(t0) = Pgen(t0) = 0,

umin ≤ u ≤ umax, xmin ≤ x ≤ xmax

(13)

2) Path constraints during tip-in: The problem is solved
for a hybrid buss where the maximum acceleration of 1
m/s2 according to the limits in SORT [8] are used as
the highest allowed acceleration. The SORT standard is
used in Europe to design on-road test cycles in order
to measure fuel consumption of buses. There are also
constraints regarding the turbocharger operation to avoid
surge, and operational region for the turbine blade speed
ratio. The maximum engine power is limited according to
the maximum power curve at different engine speeds and
finally, the air to fuel ratio should satisfy the smoke limit
constraint λmin. There is also a mechanical limit on how
fast the wastegate can be actuated and the rate of change
in generator power. These constraints are summarized as:


dωw

dt × rw < 1, Πc ≤ Πc,surge,
BSRmin ≤ BSR(x, u) ≤ BSRmax,
Pe(x, u) ≤ Pe,max(x), ṁac

ṁf
(A/F )s ≤ 1

λmin
,

|u̇wg| ≤ cwg, |Ṗgen|/ωe ≤ cgen

(14)

B. Optimal control problem formulation

In analysis of powertrain dynamics during tip-in, one
objective is to calculate the minimum time transients of
the powertrain. For this, OCPs with objective function of
the following form are solved:

min
(x,u)

∫ tf

t0

dt (15)



The trade-off between minimum time and minimum Jerk
transients will be calculated by first calculating the shortest
time via solving the minimum time problem, and then,
minimizing the Jerk using a fixed tf . The time is then
increased step wise compared to the calculated minimum
time duration. The OCP formulation in this case looks as
follows:

min
(x,u)

∫ tf,fix

t0

Jerk dt (16)

The energy from fuel and electrical sources during the
vehicle acceleration can be minimized solving for:

min
(x,u)

∫ tf,fix

t0

(Emf
+ Egen) dt (17)

In [9] it is discussed that after minimizing the Jerk in a
fixed time OCP, energy consumption minimization is the
next dimension that can be analyzed for a low Jerk solution.
This is done by calculating the Jerk optimal control tran-
sients including a penalty δ on energy consumption while
using a fixed time. The penalty on the energy consumption
is increased iteratively and the problem is solved several
times to obtain the trade-off between Jerk and energy
objectives. The objective function formulation for this case
is:

min
(x,u)

∫ tf,fix

t0

Jerk + δ × (Emf
+ Egen) dt (18)

There is still another dimension to the optimization prob-
lem which is the balance between usage of diesel and
electrical energy during the acceleration. To investigate
how such balance affects the system transients, the energy
consumption is reformulated including a penalty ψ on
the electrical energy consumption. The objective function
formulation then looks as:

min
(x,u)

∫ tf,fix

t0

Jerk + δ × (Emf
+ ψ × Egen) dt (19)

The problem in (19) is solved with various combinations
of δ and ψ penalties.

Finally, the complete OCP formulation using the men-
tioned objective functions becomes:

Objective function in (15) or (16) or (17) or (19)

subject to:
ẋ = f(x, u)

Constraints in (13) and (14)
(20)

C. Numerical solution of optimal control problems

To solve the formulated OCP in the previous section,
a direct multiple shooting method using CasADi software
package [10] is used. The dynamics in each discretization
interval are forward integrated using a 4 step Runge-
Kutta integrator. After discretization of constraints, objec-
tive function and the dynamics, a nonlinear programming
problem (NLP) is formulated and solved using IPOPT [11]

to obtain the optimal controls and corresponding state
transients.

To ensure that the solutions are not affected by the
number of discretization intervals, the problem is solved
with different values. It is seen that the transients remain
unchanged for intervals close to and more than 300 so this
is chosen as the number of discretization intervals.

IV. OPTIMAL CONTROL RESULTS

A. Extreme transients

To show the importance of finding a compromise be-
tween time, Jerk, and energy objectives, the state and
control transients are first presented for extreme cases
where only one of these are considered in the optimization.
These transients are obtained by solving for (15), and (16)
and (17) the latter two with tf,fix = 2 s..

The min T transients, illustrated in Figure 1, are very
oscillatory at the beginning for all controls and such
control strategy would have severe negative impacts on the
passenger comfort as well as the life length of genset and
driveline components. For the buss to be able to smoothly
continue its movement after reaching the final speed, the
twist angle in the driveshaft should match the required
torque and acceleration at wheels. In min T transients, due
to the high deflection in the driveshaft, the vehicle speed
even at the end of the acceleration is still increasing at a
high rate. A transition from this high acceleration to a low
acceleration would be undesirable in terms of passenger
comfort standards.

The minimum energy transients are less oscillatory but
diesel engine power is not used for vehicle propulsion
and all required power is provided only by the electric
motor. The very low engine speed at the end of the
minimum energy transients, increases the risk of engine
stall when the diesel engine is going to take over the power
production after the acceleration which makes the controls
less applicable in real world applications.

For min Jerk transients, the undesirable non-smooth
speed transition at the end time is similar to the min T
case. The controls are less oscillatory compared to the min
T case, but the bang-bang looking controls are what the
manufacturers are less willing to implement because of the
issues with component wear and durability accompanied
with such control strategies.

Considering the mentioned drawbacks, these solutions
are considered extreme and less applicable for control
design in real world applications. In the following sections,
the transients obtained by the suggested methodology for
finding proper compromise between time-energy-Jerk ob-
jectives are presented and analyzed.

B. Compromise between time, Jerk and energy

Figure 2 shows the trade-off between time and Jerk
objectives calculated by solving (16) as stated in sec-
tion III-B for three different road slopes. The Jerk in min
T solution, calculated by solving (15), is extensively larger
and therefore is not illustrated on the trade-offs. However,
the Jerks in Figure 2 are normalized with respect to the
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Fig. 1. Optimal state and control transients for the extreme cases during
acceleration (Etot = Emf + Egen).

largest Jerk belonging to the min T solution of 0 degree
slope case which is referred to as Jerkmax. It is seen that
the Jerk can be extensively decreased compared to the min
T solution for all road slopes. It is desirable to have small
Jerk during operation specifically in a city bus application.
Therefore, duration of 2 [s] where the Jerk approach near
zero values for all road slopes is chosen as the fix time
duration for which the energy-Jerk trade-off is calculated.

C. Jerk-Energy trade-off

To investigate the energy balance during the genset
operation, different energy components and fuel conversion
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Fig. 2. Trade-off between Jerk and time objectives.

efficiency are defined as follows:

Etot = Emf + Egen (21)
Eloss = Emf + Ee (22)

Ee =

∫ tf

t0

Meωe dt (23)

ηmf,conv =
Ee
Emf

(24)

where Ee represents the net energy from the diesel engine
which is used for acceleration, and Eloss represents the
losses such as engine friction and pumping work.

To obtain the trade-off between Jerk and energy for
different road slopes, (19) is solved while increasing δ and
ψ. The results for the three road slopes are presented in
Figure 3. Reminding that the purpose of applying energy
penalties is to avoid “extreme” low Jerk transients, a point
with slightly increased Jerk on the trade-offs is chosen as a
“candidate” case for which the energy balance is presented
in Figure 4. Independent of what power is required for
acceleration, the total required energy shows a decreasing
trend when the penalty δ is increased. Also, when the
penalty ψ is increased, meaning that the usage of electrical
energy becomes more costly in the (19), more power is de-
livered by the diesel engine which has a low efficiency and
therefore the total required energy for vehicle acceleration
increases. As seen in Figure 4, for larger ψ values, less
electrical energy is used and when total required energy
for acceleration is low, the 0 degree case, diesel engine
power is even used to produce electrical energy in addition
to vehicle acceleration.

In case of the 0 degree slope, the required energy for
the ψ = 0 remains unchanged for all δ values. This is
because this operating condition requires smaller amount
of energy compared to other cases while ψ = 0 in (19)
implies that it does not have any cost to use electrical
energy. Low efficiency of the diesel engine compared to the
generator and the cheapness of electrical energy makes it
optimal to perform the acceleration using only the electrical
energy with no regard to the penalty δ on total energy
consumption. This can be verified comparing the ψ = 0
energy balance for the three road slopes in Figure 4.

The first time diesel power is used for acceleration in the
0 degree slope is at ψ ≈ 2.05. At this operating condition, a
sudden decrease in Etot takes place according to Figure 4.
Moving from the first point on the ψ = 2.05 to the second
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Fig. 3. The trade-off between Jerk and energy with different energy
penalties and road slopes.

point of the curve in Figure 3, the increase in δ makes
the contribution from the energy term larger than the Jerk
term in (19). As a result, a higher efficiency in energy
consumption is favored. Since usage of the fuel energy
accompanies high losses, achieving higher total efficiency
is facilitated by altering the contribution of energy sources
from very low electrical energy usage, similar to ψ = 2.08
in the 0 degree slope of Figure 4, into nearly equal
contribution from the electrical and fuel energy sources,
in ψ = 2.05.

Considering the fuel conversion efficiencies presented in
Table III, the efficiency is lower at low loads corresponding
to the 0 degree slope and when electrical energy is cheaper
to use (smaller ψ values). Other than this, an efficiency
close to 40 % is maintained at different loading conditions.

TABLE III
FUEL CONVERSION EFFICIENCY.

road slope ψ 0 2.05 2.08 2.5 4
0 [deg] ηmf,conv[%] -16.6 34.7 39.9 40.6 40.3

road slope ψ 0 2.02 2.05 2.2 4
4 [deg] ηmf,conv [%] 28.74 38.02 40.16 40.86 40.13

road slope ψ 0 2.1 2.2 2.5 4
8 [deg] ηmf,conv [%] 39.6 40.94 41.08 40.59 39.43

D. Efficient state and control transients

The efficient state and control transients for the candidate
points of the 0 degree slope case in Figure 3 are presented
in Figure 5.
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According to the figures, as the cost for using electrical
energy increases (larger ψ), the diesel engine transients are
largely changed. for example comparing the ψ = 0 and
ψ = 4 cases, when ψ = 0 fuel is cut-off, diesel engine
power is not used and only electrical power accelerates
the vehicle. But for ψ = 4, not only usage of the costly
electrical energy is avoided but also parts of diesel engine
power is used to store electrical energy at the end of the
acceleration. Increasing the fuel conversion efficiency in
the diesel engine operation is the main priority here and
for that, fuel injection is selected such that the engine
operates at the smoke limit delivering as large power as
possible. This is similar to the discussion in [12] and [3]
stating that the smoke limit dictates the solution during
large parts of the transients. After an initial high power
production which has facilitated fast vehicle acceleration,
the wastegate which has been kept closed until this point,
is opened at ca 1.7 [s] to lower the pumping work losses.
Vehicle acceleration is reduced and less power from the
engine is required to meet the final speed constraint.
Instead, the engine power is used to build up electrical
energy.

Considering the points mentioned about the extreme
transients such as oscillatory controls or large acceleration
at the end time, according to Figure 5, the transients for the
ψ ≈ 2.05 can be an example of improved control strategy
with simple control transients and smooth vehicle speed
transients at end time.

V. CONCLUSIONS

Optimal control of a diesel-electric powertrain during a
tip-in acceleration is analyzed while importance of proper
objective function formulation is highlighted. The extreme
transients resulting from minimization of only jerk or time
or energy are presented and the drawbacks in terms of
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Fig. 5. Optimal state and control transients during tip-in calculated for
the candidate points in Figure 3.

oscillatory control signals are discussed. It is shown that
by calculation of the trade-off between time and Jerk, low
Jerk transients can be obtained. By applying penalties on
energy consumptions in the Jerk minimization problem and
solving for various fuel and electric energy weights in the
objective function formulation, energy efficient transients
are obtained. The calculated transients using this approach
are presented which are simpler and more insightful for
control design in real world applications. At the same
time, the proposed controls maintain low Jerk and energy
consumption compared to the extreme cases.
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