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Abstract: Most model-based diagnosis approaches reported in the literature adopt a generic
architecture and approach. However, the fault hypotheses generated by these methods may
di↵er. This is not only due to the methods, but also on the basic assumptions made by
di↵erent diagnostic algorithms on fault manifestation and evolution. While comparing di↵erent
diagnosis approaches, the assumptions made in each case will have a significant e↵ect on fault
diagnosability performance and must therefore also be taken into consideration. Thus, to make
a fair comparison, the di↵erent approaches should be designed based on the same assumptions.
This paper studies the relation between a set of commonly made assumptions and fault isolability
performance in order to compare di↵erent diagnosis approaches. As a case study, five developed
diagnosis systems for a wind turbine benchmark problem are evaluated to analyze the type of
assumptions that are applied in the di↵erent designs.
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1. INTRODUCTION

In model-based diagnosis, a mathematical model of the
system to be supervised is developed. Then, to detect
faults, residuals are designed based on analytical redun-
dancy in the model. Residuals are then commonly designed
using, for example, analytical redundancy relations (ARR)
(Staroswiecki and Comtet-Varga, 2001; Cordier et al.,
2004), possible conflicts (PC) (Pulido and González, 2004;
Bregon et al., 2013), or observer-based methods (Frank,
1996; Isermann, 1997). Then a fault isolation algorithm,
using some decision logic, computes one or several fault
hypothesis based on the residual outputs (or features).
A fault hypothesis is a set of faults that can explain the
observed residual outputs.

In many applications, full knowledge about the fault type
and the nature of fault manifestation, for example, possible
faults and fault profiles (i.e., the temporal characteristic
of the fault) are not available. Most of the time, only
data from the nominal system behavior is available in
practice as the model, describing the faults, is constructed
mathematically alongside the equations for the system
under supervision. Therefore, the conclusions made by the
diagnosis system are based on some set of assumptions
made about the faults. As a result, it is di�cult to make
a fair comparison amongst di↵erent diagnosis approaches
as various design choices can be utilized by each method
on the assumptions about the faults.
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Some common assumptions made in di↵erent diagnosis
approaches are, for example, single-fault assumption and
exoneration. The exoneration assumption means that a
fault will always trigger all residuals sensitive to that
fault, i.e. there will never be only a subset of residuals
sensitive to the fault that will trigger. The same type
of fault assumption can be applied in di↵erent diagnosis
algorithms to di↵erent extends. The type of assumptions
that are applied will not only have a significant impact
on the fault isolability performance and robustness of
the diagnosis system, but also the risk of fault mis-
classifications. This has previously been highlighted in
Cordier et al. (2004) when discussing the bridge between
model-based diagnosis approaches from the FDI and DX
communities. In contrast to the previous work which focus
on assumptions made in specific diagnosis approaches from
the two communities, this paper analyzes the relations
between assumptions and the measurement as well as the
residual output spaces using a more general framework.

Previous works, such as Gertler (1991); de Kleer and
Kurien (2003); Cordier et al. (2004, 2006); Llobet et al.
(2009); Bregon et al. (2013) have discussed frameworks
that bridge the approaches developed by the di↵erent
research communities. The main focus of these papers
have been on studying the similarities and di↵erences
between methods developed by the FDI (system diagnosis)
and the DX (AI approach to diagnosis) communities. In
contrast to previous works, this paper analyzes the relation
between some common assumptions which is important
when comparing di↵erent diagnosis solutions.
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One main contribution is the analysis of why di↵erent di-
agnosis approaches can generate di↵erent fault hypotheses
from the same system. In order to analyze the di↵erent
approaches, diagnosability properties are considered given
the spaces of possible measurements and residual outputs
(features). The focus is not to analyze the properties of
di↵erent residual-design methods but instead the e↵ects of
assumptions made. As a case study, five diagnosis systems
developed to monitor a wind turbine benchmark model,
which participated in a diagnosis competition (Odgaard
and Stoustrup, 2012), are analyzed.

Benchmark problems have been used in academic com-
petitions to compare the performance of di↵erent imple-
mented approaches (Bartyś et al., 2006; Kurtoglu et al.,
2009; Odgaard et al., 2009). Benchmark problems produce
results that are useful in practical applications. However,
since the comparison is based purely on performance met-
rics, the results are biased because di↵erent solutions are
based on di↵erent assumptions about the system dynamics
and fault manifestations. These papers make no attempt
to explain the underlying causes or di↵erences between the
di↵erent diagnosis methods.

The outline of this paper is as follows. First, the prob-
lem formulation is presented in Section 2. Definitions of
diagnosability properties are presented in Section 3 and
an analysis of di↵erent assumptions is made in Section 4.
Then, the case study is presented in Section 5 and the
results from the analysis are discussed in Section 6. Fi-
nally, some conclusions and future work are presented in
Section 7.

2. PROBLEM FORMULATION

The goal is to analyze how the assumptions a↵ect the
fault isolability performance of a diagnosis system, such
as: which other faults a fault can be isolated fromHere, the
assumptions considered are design parameters used during
the development of the diagnosis system to simplify the
fault isolation problem.

To limit the analysis, di↵erent assumptions made in the
residual design, such as noise distributions and uncer-
tainties, are not considered here. The e↵ects of applying
assumptions that are not valid for a given problem are also
not examined. Also, the e↵ects in dynamic systems, such
as fault propagation causing delays of di↵erent residuals
before triggering, are not considered in the analysis.

A short description of the assumptions considered here is
as follows. Note that this list is in no way exhaustive but
covers a set of the most common assumptions made in
di↵erent model-based diagnosis approaches.

Closed world assumption The closed world assumption
means that the diagnosis system has full knowledge of all
possible faults that could occur in the system.

Single-fault assumption In many practical cases multiple
faults occur rarely. Therefore, it is commonly assumed that
maximally one fault can be present in the system at any
given time.

Exoneration The assumption that a fault always triggers
all the residuals that are sensitive to the fault.

Limitation of possible fault realisations In many ap-
plications, the number of possible fault magnitudes and
manifestations are limited, which then limits the set of
possible measurement values that can be made for each
fault mode. For example, a fault representing an increase
in mechanical friction can not be negative. There are also
other common assumptions made, such as faults occur
either abruptly, are slowly varying, or always have the
same magnitudes as a given set of training data.

3. BASIC DEFINITIONS ON FAULT
DETECTABILITY AND ISOLABILITY

Here, fault detectability and isolability are defined as
properties of the set of possible measurements from the
system. Then, these definitions are extended to properties
of residual outputs. The goal is to have a set of definitions,
which are independent of diagnosis approach to describe
the e↵ects of assumptions made. First, the general design
of diagnosis systems considered here is described.

3.1 Diagnosis system

The type of model-based diagnosis approaches considered
here are consistency-based where the diagnosis system
structure can be represented by Fig. 1. The monitored
system can be a↵ected by a combination of possible faults
{f1, f2, . . . , fnf }. A fault mode Fi ✓ {f1, f2, . . . , fnf }
represents a specific set of faults that is present in the
system, which can be both single faults and multiple faults.
The fault mode representing the nominal fault free case
is explicitly denoted as NF (No Fault). Note that all
faults might not be known by the diagnosis system. The
figure shows how a fault that occurs in the system will
result in di↵erent possible measurements represented by
the di↵erent ellipses. There can be several fault modes
that that can cause the same measurements which are
represented by the overlapping ellipses. The measurements
z = (y, u) from the system are a combination of available
sensors y and known actuators u. The measurements
from the fault-free systems are represented by the dark
ellipse. Note that fault analysis such as, what specific type
of fault realizations that are causing the measurements,
for example fault magnitudes and trajectories, is not
considered here, only which measurements that can be
explained by di↵erent types of fault modes.

Then, residuals T = {T1(z), T2(z), . . . , Tp(z)} are used
to map the measurements to some residual outputs, or
features. Note that the number of residuals can be one,
several, or dynamic over time. The features also have
di↵erent possible values that can be explained by the
system being in di↵erent fault modes which are also
represented by ellipses corresponding to the measurement
sets. Di↵erent residuals maps di↵erent measurements to
di↵erent feature sets. The features are used in di↵erent
hypothesis tests to determine if a fault has occurred or
not.

Model uncertainties, measurement noise, and process noise
complicate distinguishing faults from nominal system be-
havior. Therefore, one or more hypothesis tests based on
the residual outputs are used to determine if a fault has
occurred. A common type of hypothesis test is the use of
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a threshold, where the threshold can be established using
more or less sophisticated methods, such as maximum
likelihood estimators or CUSUM tests (Basseville and
Nikiforov, 1993). A fault isolation algorithm using some
decision logic computes one or several fault hypotheses
based on the residual outputs. There are many di↵erent
methods for fault isolation, see for example De Kleer and
Williams (1987); Cordier et al. (2004); Mosterman and
Biswas (1999).
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Fig. 1. The diagnosis systems considered here computes
diagnosis candidates based on a set of residuals.

3.2 Fault diagnosability given a system

Consider a system S. Let ⌦S denote the multi-dimensional
observation space of all possible measurements z of S, i.e.
z = (y, u) 2 ⌦S . This notation for representing obser-
vations consistent with di↵erent fault modes is similar to
the observation sets used in for example Nyberg and Frisk
(2006).

Let Fall = {NF,F1, F2, . . . Fq} be the set of all possible
fault modes the system S can be in. However, since all fault
modes are not always known, the subset of known fault
modes when developing the diagnosis system is denoted
F ✓ Fall. Given the closed world assumption, F = Fall.

The fault mode the system is in will a↵ect the measure-
ments made, i.e. di↵erent fault modes can generate di↵er-
ent measurement values. For each Fi 2 F , let �S(Fi) ✓ ⌦S
represent the subset of measurement values consistent with
(the system being in) fault mode Fi.

Example 1. Consider a system of two sensors, y1 and y2,
measuring the same real-valued quantity, i.e. y1, y2 2 R.
The fault-free case corresponds to all measurements where
the two sensors have the same output, i.e. y1 = y2.
However, a fault in any of the sensors can result in di↵erent
outputs from the two sensors, i.e., y1 6= y2. However, a
fault in a sensor is not always visible, for example if the
sensor have glitches. Another case is when the two sensors
have the same fault, resulting in the same bias in both
sensors. In both cases, the two sensors can have the same
outputs even though at least one of them is faulty, i.e.,
y1 = y2 can also be explained by a faulty sensors. Let
F1 denote the fault mode when y1 is faulty, F2 when y2
is faulty, F3 when both sensors are faulty, and NF the
fault-free case. Then, ⌦S = {8y1 2 R, 8y2 2 R}, and
the measurement sets corresponding to the di↵erent fault
modes can be defined as

�S(NF ) = {8y1 2 R, 8y2 2 R : y1 = y2}, and
�S(F1) = �S(F2) = �S(F3) = ⌦S .

⇤

Given the closed world assumption, it is assumed that each
z 2 ⌦S can be explained by at least one fault mode Fi, i.e.

[

8Fi2F
�S(Fi) = ⌦S . (1)

Based on the measurement subsets �S(Fi) for each fault
mode Fi 2 F , a fundamental criteria for fault detectability
and isolability is defined.

Definition 2. A fault mode Fi is isolable from Fj if

�S(Fi) 6✓ �S(Fj). (2)

A fault mode Fi is said to be detectable if it is isolable
from NF . ⇤

Thus, in order for a fault mode Fi to be isolable from
another fault mode Fj there must exist a measurement z
that can be explained by Fi but not Fj .

In Trave-Massuyes et al. (2006), a definition related to
isolability in the observation space is used, called discrim-
inability. Discriminability is defined for a pair of faults
and three levels are considered: strongly, weakly, and non-
discriminable fault pairs. Weakly and non-discriminable
fault pairs are covered by the isolability definition in
Definition 2. However, strong discriminability is more re-
strictive than the definition of isolability and is defined as
follows.

Definition 3. Two fault modes, Fi and Fj , are strongly
discriminable from each other if

�S(Fi) \ �S(Fj) = ;. (3)

⇤

The definition of strong discriminability says that two
strongly discriminable faults will never generate the same
measurements from the system. Strong discriminability is
symmetric, in contrast to isolability, as shown in Fig. 2,
and is closely related to the exoneration assumption that
will be discussed later.

a) ⌦S

Fi

Fj

b) ⌦S

Fi

Fj

c) ⌦S

Fi

Fj

Fig. 2. In case a) Fi and Fj are isolable from each other, in
case b) Fi is isolable from Fj but not vice versa, and
in case c) Fi and Fj are strongly discriminable from
each other.

Often the knowledge about ⌦S and all subsets �S(Fi)
is limited. This includes information about which faults
that could occur and how they manifest in the system
and evolves over time. The lack of knowledge is often due
to lack of available data from di↵erent fault modes since
faults occur rarely. Also, collecting data that describes
all possible measurements is not feasible. It is often di�-
cult to use the measurements without post-processing for
detecting faults. Therefore, residuals are designed where
the outputs are easier to interpret than the measurements
whether there are faults present in the system or not.

3.3 Fault diagnosability properties of diagnosis tests

Each diagnosis test (residual) Tk : ⌦S ! ⌦Tk in T maps
the observation set ⌦S to the feature set ⌦Tk which is the
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set of all possible values of Tk. For each fault mode Fi, let
�Tk(Fi) denote the projection of the subset �S(Fi) using
Tk, i.e., Tk : �S(Fi) ! �Tk(Fi). Fault isolability for a
given diagnosis test Tk is then defined as follows.

Definition 4. A fault mode Fi is isolable from Fj with a
test Tk if

�Tk(Fi) 6✓ �Tk(Fj). (4)
A fault mode Fi is said to be detectable with a test Tk if
it is isolable from NF . ⇤

If a fault mode Fi is detectable with a test Tk, it is said
that Tk is sensitive to Fi. A graphical interpretation of
fault isolability with a test Tk is shown in Fig. 3. The
figure represents that if a fault mode Fi is isolable from
another fault mode Fj then there are measurements that
can be explained by the system being in fault mode Fi but
not Fj . Then, if a residual can isolate a fault mode Fi from
another fault mode Fj then there are residual outputs that
can be explained by the system being in fault mode Fi but
not Fj .

⌦S ⌦Tk

NF

Fi

Fj

Tk

NF

Fi

Fj

Fig. 3. Two fault modes Fi and Fj are isolable from each
other with a test Tk if the observations in ⌦S that
can be explained by each fault mode, are mapped to
di↵erent subsets of ⌦Tk .

In model-based diagnosis, a common approach to perform
fault isolation is to design a set of diagnosis tests which
are sensitive to di↵erent sets of fault modes, such as struc-
tured residuals (Gertler and Singer, 1990; Staroswiecki and
Comtet-Varga, 2001). If Tk is not sensitive to a fault mode
Fj it is said that Fj is decoupled and is here defined as
follows.

Definition 5. (Fault mode decoupling). A fault mode Fj is
said to be decoupled from Tk if

�Tk(Fj) = �Tk(NF ). (5)

⇤

A graphical interpretation of decoupling faults is shown
in Fig. 4 where the measurements of fault mode Fj ,
decoupled from Tk, is projected to a subset of the projected
features from the fault-free mode. Commonly in residual-
based approaches, it is assumed that �Tk(Fi) = �Tk(Fj)
if Fi and Fj are non-decoupled fault modes of Tk, and
sometimes also �Tk(NF ) ✓ �Tk(Fi) for all fault modes
Fi 2 F . In this case, fault decoupling is necessary to isolate
fault modes from each other and to identify the true fault
mode. This case is discussed more in the next section.

4. EFFECTS OF ASSUMPTIONS ON FAULT
DIAGNOSABILITY PROPERTIES

Here, the definitions from the previous sections are used to
describe how the di↵erent measurement sets and residual
output sets are related to di↵erent common assumptions
about faults.

⌦S ⌦Tk

NF

Fi

Fj

Tk

NF,Fj

Fi

Fig. 4. The fault mode Fj is decoupled from Tk, �Tk(Fj) =
�Tk(NF ).

4.1 No assumptions

First, consider the case where no assumptions are made
about faults (except the closed world assumption). One or
several of the possible faults could occur at the same time
and there are no limitations assumed about fault mag-
nitudes or manifestations. This means that any residual
output can be explained by all the fault modes the residual
is sensitive to. Thus, conclusions used for fault isolation
are only made when a residual deviates from the fault-free
case and decoupled fault modes.

Given the no assumptions case where all fault modes Fi,
each residual Tk is sensitive to, are consistent with any
value of Tk, i.e. �Tk(Fi) = ⌦Tk , then for each fault mode
F̄i there exists a relation such that when Fi ✓ F̄i, then

�S(Fi) ✓ �S(F̄i). (6)

This indicates that should there be no assumptions made
about the residual output spaces of non-decoupled fault
modes. Also, if Tk is sensitive to Fi, then Tk is sensitive
to all fault modes F̄i representing a superset of faults. For
example, if {f1} is a fault hypothesis, so is also {f1, f2}.
This means also that any set of faults is a fault hypothesis
during the fault-free case since faults might not always
be visible in the measurements or several faults might be
canceling out each other. The no assumption case is found
in the fault isolation algorithms discussed in De Kleer and
Williams (1987) where only residuals deviating from the
nominal case are used for fault isolation.

4.2 Assumptions about possible fault modes

One common assumption is that no other unknown fault
mode can occur beside the defined set of known fault
modes, which is called the closed world assumption.

Note that if it is assumed that any combination of the
possible faults in Fall can be present in the system at the
same time, then the number of fault modes is 2nf , i.e.
the number of fault modes grows exponentially with the
number of faults. In order to reduce the complexity of
the fault isolation procedure, the number of fault modes
can be reduced, for example by only consider a subset of
faults F ⇢ Fall and use the closed world assumption. One
assumption is that only certain types of faults can occur,
such as, sensor faults or actuator faults.

Another common assumption is that only one fault can be
present at any given time, i.e. each fault mode represents
only one fault, called the single fault assumption. Then, the
number of fault modes is equal to the number of possible
faults in the system (plus the fault-free case), i.e. F =
{NF,F1, F2, . . . , Fnf } where Fi = {fi}, 8i = 1, 2, . . . , nf .
An example where the set of possible fault modes is limited
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is when using a bank of Kalman filters to model each
possible fault mode, see Isermann (1997). Then, the bank
of Kalman filters is used to identify which Kalman filter
which do not deviate from the nominal behavior when one
of the fault modes occurs.

4.3 Exoneration

In some cases, it is assumed that a fault will always cause
a diagnosis test to deviate from the fault-free case which
is called exoneration (Cordier et al., 2004). In dynamic
systems the fault propagation can cause delays between
when di↵erent diagnosis tests will trigger to the fault.
Therefore, in these cases, the exoneration assumption can
be considered such that the diagnosis tests should trigger
within a given time interval. However, for the analysis in
this work, only the static case is considered. Exoneration is
considered both in the single-fault case and multiple-fault
case and is defined as follows.

Definition 6. (Exoneration). Exoneration means that for
each non-decoupled fault mode Fi of a test Tk,

�Tk(Fi)
\

�Tk(NF ) = ;. (7)

⇤

Equation (7) shows that if the value of a residual r 2
�Tk(NF ), then the fault mode Fi can not explain the
residual outputs. This means that the exoneration as-
sumption allows conclusions to be drawn from residuals
which have outputs that have not deviated from nominal
behavior, which was not the case in the no assumption
case in Section 4.1.

Note that since exoneration assumes that a fault will
always trigger the residual outputs to deviate from
�Tk(NF ), then the following can be stated about ⌦S .

Theorem 7. Assume that the exoneration assumption is
valid for a set of diagnosis tests T . If there exists a
diagnosis test Tk 2 T , sensitive to Fi but not Fj , then

�S(Fi)
\

�S(Fj) = ;, (8)

i.e. the fault modes Fi and Fj are strongly discriminable
from each other. ⇤

Proof. Theorem 7 is proved by contradiction. If there
exists a diagnosis test Tk that is sensitive to Fi where Fj

is decoupled, then

�Tk(Fi)
\

�Tk(Fj) = ;. (9)

Assume that there exists an element z in both �S(Fi)
and �S(Fj). Since Tk : �S(Fi) ! �Tk(Fi) and Tk :
�S(Fj) ! �Tk(Fj), then the projection of z should lie
in both �Tk(Fi) and �Tk(Fj), which is a contradiction. ⌅

Theorem 7 shows the close relation between the exon-
eration assumption and strong discriminability of fault
modes. A graphical interpretation of exoneration is shown
in Fig. 5 where fault mode Fi fulfills the exoneration
assumption since no measurement values given fault mode
Fi overlaps with measurement values from the other fault
modes. That is, there are no measurements or residual
outputs when the system is in fault mode Fi that can be
explained by any other fault mode.

⌦S ⌦Tk

NF

Fi
Fj

Tk

Fi

NF,Fj

(Exoneration)

Fig. 5. If Fj is decoupled from Tk, then exoneration means
that for fault mode Fi, which is not decoupled, it can
be expressed that �Tk(Fi)

T
�Tk(NF ) = ;.

In Cordier et al. (2000), a slightly di↵erent definition of
exoneration is proposed where only single fault is consid-
ered. To assure that two or more faults do not “cancel
out” each other, another assumption is also considered
together with exoneration, called no compensation. This
assumption states that if there are two or more faults
present in the system, the e↵ects of the faults can not
cancel each other out in any of the diagnosis tests. This
situation is included in the exoneration assumption in
Definition 6 since single fault and multiple faults are just
considered as di↵erent fault modes.

4.4 Fault magnitudes and manifestation

Another approach to improve isolability performance is to
specify possible fault magnitudes and manifestations that
a fault could have, e.g., only steps or ramps (Frank, 1990).
In many situations, faults can only a↵ect a system in a
certain way. For example, leakages often induce a mass
flow following a pressure gradient, increased friction in
a joint implies an increase of the friction parameter and
not a decrease, etc. This type of knowledge or assumption
about faults is useful to isolate faults when some faults
can not be decoupled. This type of assumptions will limit
the measurement sets of di↵erent fault modes such that
the measurement sets or residual output sets are not
overlapping as much as they would otherwise.

Methods designed using training data from both fault-free
and faulty cases are also considered here since it is often
assumed that the training data covers all necessary cases
from di↵erent fault realizations to perform detection and
isolation. Thus, the measurement set or residual output
set is determined by the training data. However, it is
not considered here that any assumption about fault
magnitudes or manifestations is applied if only fault-free
data is used in the diagnosis system design. This is because
model development is usually made using data from the
fault-free system and the assumption would include all
model-based diagnosis methods.

5. CASE STUDY: WIND TURBINE BENCHMARK
COMPETITION

This analysis is performed based on an analysis of the
papers from the five participants in the wind turbine
benchmark competition (Odgaard and Stoustrup, 2012).
The benchmark describes a wind turbine model and a
number of faults that can occur in the system is found in
Odgaard et al. (2009). Also, a simulation model to generate
data and a set of fault scenarios is provided covering eight
single fault scenarios and one double fault scenario. A short
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evaluation of the performances of the di↵erent solutions is
presented in Odgaard and Stoustrup (2012).

The analysis here is made based on the presentations of
each solution in each corresponding paper. Each diagnosis
system solution is evaluated on, whether they apply any
of the assumptions discussed in Section 4 or not, denoted
closed world (CW), single fault (SF), exoneration (EX),
and fault manifestation (FM) respectively. The analysis
focuses on the type of conclusions made when residuals
have or have not been triggered. Several solutions apply
combinations of di↵erent design methods and some as-
sumptions are only partially made for a subset of tests or
fault modes. The results presented here are based on the
authors analysis of the solutions presented in each paper.

5.1 Analyzed diagnosis systems

The same notation is used here as in Odgaard and Stous-
trup (2012) when referring to the di↵erent solutions GKSV
for Laouti et al. (2011), EB for Zhang et al. (2011), UCB
for Ozdemir et al. (2011), COK for Chen et al. (2011),
and GFM for Svärd and Nyberg (2011). A short summary
of the analysis of the di↵erent solutions is presented. All
methods are designed based on the CW assumption where
all possible faults are given by the benchmark.

GKSV The diagnosis tests are designed using support
vector machines (SVM) to classify if a fault is present. For
training of each test both fault-free data and faulty data
are used as training data using the FM assumption. Most
tests are designed to detect only one fault. In some cases
where one test is sensitive to two faults, a second test is
activated to identify which fault is present. In these cases,
the SF assumption is applied since the isolation test is
expected to identify only one present fault.

EB The SF assumption is explicitly assumed where a set
of observers, modeling each fault mode, are used to isolate
the present fault. Di↵erent subsets of faults are isolated
by comparing the estimated parameters of the di↵erent
observers. In some cases, the decision logic identifies the
fault by identifying which parameter estimation errors
that are close to zero and which has significantly deviate
from zero. Each fault corresponds to one combination of
estimation errors, i.e. one fault signature, used to classify
the present fault which implies EX.

UCB A combination of model-based and hardware
redundancy-based residuals are used to detect faults. One
residual to detect a drivetrain system fault is developed
using a data-driven approach. However, the design of the
residual is only based on fault-free data and thus the FM
assumption is not applied. Fault isolation is performed au-
tomatically for some residuals since they are only sensitive
to one fault. For some faults, a fault symptom table is used
to identify the present fault, i.e. SF is applied. However,
it is not clear when reading the paper if the decision logic
for the fault signature matrix draws conclusions from non-
triggered residuals, i.e. if it applies EX or not.

COK This solution is based on a set of Kalman filters
and observers with di↵erent fault sensitivities. Fault detec-
tion is performed for a moving time window of data and

the fault isolation logic uses a column matching approach
to identify the present fault given a set of residual outputs.
Faults in di↵erent subsystems are isolated independently
from each other which implies both EX and SF assump-
tions for each subsystem, but not generally for the whole
system.

GFM A set of automatically designed model-based
residuals with di↵erent fault sensitivities are used. No
knowledge about faults is assumed to be known and faults
are detected by comparing residual distributions to dis-
tributions from fault-free training data. Thus, FM is not
applied since no faulty data is used. Only triggered resid-
uals are considered in the the fault isolation algorithm,
which computes all fault hypotheses of minimal cardinality
and considers multiple-faults if no single fault can explain
the triggered residuals, i.e no EX or SF assumptions are
applied.

5.2 Comparing assumptions in di↵erent solutions

The five diagnosis system solutions are using di↵erent
combinations of the considered assumptions. Also, the
assumptions are applied di↵erently in the di↵erent solu-
tions. However, the purpose of applying the assumption
to the fault isolation problem in each solution is similar.
The closed world assumption is applied in all diagnosis
system solutions since the benchmark problem specifies
which faults that can occur in the system.

All solutions except GFM are using the SF assumption.
In some solutions, the SF assumption is not used in the
whole diagnosis system but only when isolating some of the
faults. In GKSV, the SF assumption is used in those cases
where no diagnosis test can be designed to be sensitive to
a single fault to classify which fault that is present. When
one of those faults occurs, the first diagnosis test which
is sensitive to several faults triggers. Then the test used
for isolation is activated where the test is used to classify
which of the possible faults that have occurred. The design
of the solution in EB is based on the SF assumption since
each observer models and estimates one specific fault. The
UCB and COK solutions uses the SF assumption when
they define and use the fault signature matrix together
with column-matching during fault isolation. Thus, SF
assumption is used in the GKSV, UCB, and COK solutions
in cases where the fault isolability requirements are not
otherwise fulfilled.

The EX assumption is applied in at least the EB and COK
solutions. EX is applied when using column-matching in
the fault signature matrices during fault isolation since all
diagnosis tests sensitive to the fault are expected to trigger
to accurately isolate the present fault. For example in EB,
a fault in one of two sensors or an actuator is isolated
depending on how two tests triggers. If one of them triggers
it is one of the sensors that is faulty and if both triggers
it is the actuator that is faulty.

Since GKSV uses support vector machines to design the
diagnosis tests, which requires both fault-free data and
faulty data, the solution is based on the FM assumption.
The UCB solution uses fault-free data to design one of
the residuals and GFM use fault-free data to design the
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hypothesis tests. However, since no faulty data is used, the
FM assumption is not considered to be used in these cases.

When comparing the di↵erent solutions it is clear that
there is a di↵erence in how di↵erent assumptions are used.
The first case is when the method is designed based on a
given assumption, for example in CKSV where faulty data
are required to train the support vector machines, or in EB
where the bank of Kalman filters is selected based on the
SF assumption. In the second case, the assumptions can
be viewed as tools during the diagnosis system design that
are used when necessary, for example, to achieve isolability
requirements which are otherwise not fulfilled.

5.3 Results

A summary of the analysis is presented in Table 1 where
an X represents that an assumption is made in the di-
agnosis system solution. In cases where an assumption
is only applied partially in the diagnosis system, this is
marked using (X). As for the case where it is not clear
if an assumption is applied or not, * is used. Note that
all training and evaluation scenarios of the benchmark
problem mainly consider single faults. The result of the
competition is available at com (2014) and the top three
positions are presented in Table 1.

Table 1. A summary of which assumptions,
described in Section 4, that are utilized in

di↵erent diagnosis system designs.

Design CW SF EX FM Position

GKSV X (X) X 1
EB X X (X) 2
UCB X (X) * 3
COK X (X) (X)
GFM X

This simple analysis indicates that the di↵erent solu-
tions are utilizing di↵erent assumptions about faults when
performing fault isolation. Since the benchmark problem
mainly considers single fault scenarios, this is also imple-
mented in almost all solutions. Exoneration is applied at
least partially in two of the fault isolation logics in order
to isolate the present fault. The SVM design in GKSV
is based on training data from the faulty system. The
GFM solution applies a few assumptions and is described
in Odgaard and Stoustrup (2012) as having relatively slow
fault detection. However, it also mentions that it generally
performs relatively better when faults occurs at other
conditions compared to training data.

6. DISCUSSION

The case study is a good example to show that the solution
space of possible diagnosis system designs for a given
application is huge. Some assumptions have traditionally
been widely used in di↵erent research areas, such as the
exoneration and single fault assumptions in the FDI com-
munity (Cordier et al., 2004). In Section 4, the examples
have shown that the assumptions applied in di↵erent di-
agnosis approaches can have a significant impact on both
detectability and isolability performance of the developed
diagnosis system. Di↵erent problems and applications can
justify the use of di↵erent assumptions in order to improve

diagnosability performance without significantly increas-
ing the risk of making faulty conclusions. However, if the
applied assumptions are not valid for the given system,
the conclusion made by the diagnosis system can not
be trusted. Balancing diagnosability performance against
robustness with respect to the assumptions made about
the system is an important factor in the diagnosis system
design. Therefore, it is di�cult to make a fair comparison
of di↵erent solutions without taking the assumptions made
in each case into consideration.

When comparing the performance of di↵erent solutions
using benchmark systems, there are sometimes uncertain-
ties when analyzing which assumptions they have utilized.
An analysis, made as in the previous section, could be a
complement to other performance metrics as a measure of
robustness. Another solution is to have clear specifications
of all performance requirements, such as: minimum fault
magnitudes, fault time profiles, how many faults that could
occur at the same time, etc. Then, it is more clear which
assumptions that are valid in each problem. Especially,
if the available data from di↵erent fault scenarios do not
cover all requirements. In this way, it is easier to evaluate
which assumptions are more suitable for a given problem,
and also which diagnosis approaches that works well for
di↵erent problem formulations.

7. CONCLUSIONS AND FUTURE WORK

A framework has been proposed to analyze di↵erent
model-based design strategies of diagnosis systems based
on how the observation and feature spaces of residuals
are defined. Di↵erent diagnosis approaches apply di↵erent
assumptions about the observation and residual output
spaces which have a significant impact on the design as well
as the fault hypotheses that are generated. The case study
shows that many di↵erent solutions can be designed for
the same problem where di↵erent assumptions are applied.
To make a fair comparison of the di↵erent solutions it is
important to take the di↵erent applied assumptions into
consideration since they have a significant impact on the
performance of each solution.

Future work includes extending the framework to cover
other diagnosis approaches which are not covered here, for
example, multi-dimensional test quantities or data-driven
methods. Also, di↵erent benchmark systems proposed in
the literature should be analyzed and compared with
respect to motivated assumptions.
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