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Abstract: Precise air/fuel control is necessary for low emissions in turbocharged (TC)
SI-engines. Observers are often proposed for accurate cylinder air charge estimation in
air/fuel controllers. First it is shown using a structural method that the system is locally
structurally observable using observer-feedback from any measured state. A systematic
method to select observer feedback signals is important as the number of possible sensor
combinations reach 680 when 3 sensors are used which could be placed at 17 different
locations. Here a systematic method based on observability index is proposed that is able
to point out one combination of measured signals as good candidates to observe the states
needed for CAC estimation. Finally the results are valid for all TC SI-engines with the
same structure but the method is generally applicable.Copyright c©2005 IFAC
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1. INTRODUCTION

In spark ignited (SI) engines accurate air/fuel control
is essential to successfully reduce the emissions us-
ing a three way catalyst (Heywood, 1988; Baueret
al., 1996; Kiencke and Nielsen, 2000; Mondt, 2000).
To control the air/fuel-ratio, the mass of fuel to in-
ject is determined given estimates of the cylinder air
charge (CAC). As signals involved in the CAC cal-
culation are subjected to noise and the necessity for
prediction to achieve good transient control motivates
the use of observers for the CAC estimation (Powell
et al., 1998; Choi and Hedrick, 1998). Observers have
been successfully used for CAC estimation on natu-
rally aspirated engines, but here turbocharged (TC)
engines are considered which are more complex and
there are considerably more possible sensor locations
on TC-engines. Also the use of observers enables the
available sensors to be used for observer feedback
which enables more information to be extracted re-
garding the system and perhaps reduce the number of

sensors. The use of few sensors is very desirable for
the cost sensitive automotive industry.

Observers require feedback from one or more sensors.
An important question that arises during the design
phase is: – Given a limited number of sensors, what
sensors and sensor configurations are the best choice?
This question is addressed here. A challenge is that
the number of possible sensor combinations virtually
explode when more than one sensor is used, which
is illustrated in the following example. Here there are
17 possible sensor sources. When two sensors are used
there are

(
17
2

)
= 136 combinations and if three sensors

are used then there are
(
17
3

)
= 680 combinations.

Therefore a systematic method is proposed to select
what sensor(s) to use or at least reduce the number of
possible candidates.

A necessary condition in observer design is that the
system is observable from the selected feedback sig-
nal(s). It is shown that the system is locally struc-
turally observable from any measured state or function



of measured states such as air-mass flows. Thus there
are a vast number of possible sensor configurations.

In the application, CAC estimation, some states are
more important than others. This is taken into account
when a systematic method to select sensors for ob-
server feedback is proposed.

2. ENGINE MODEL

The observer design relies on a nonlinear mean value
engine model of a turbocharged SI-engine, see e.g.
Hendricks and Sorensen (1990) and Erikssonet al.
(2002). Turbocharged engines are similar with respect
to their structure: They have air-filter, compressor, in-
tercooler, throttle, intake manifold, exhaust manifold,
turbine, and an exhaust system. At most of these com-
ponents it is possible to measure pressure and temper-
ature and air-mass flow(s).

The engine modeling methodology is to place control
volumes between restrictions (Erikssonet al., 2002)
and the physical structure of the turbocharged engine
model used is shown in Figure 1 where also some
possible sensor locations are shown. In the model,
described in detail in Andersson (2005), there are
13 states and 5 inputs.
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Fig. 1. A schematic of a turbocharged SI-engine. Ar-
rows pointing out of the engine indicate possible
sensor placements. Arrows inside the engine in-
dicate air-mass flows, of which the air-mass flow
into the cylindersWc is of particular interest for
air/fuel ratio control.

The nomenclature is that pressures are denotedp,
temperaturesT , air-mass flowsW , and the index
shows the location. The locations are: air-filter(af),
compressor(comp), intercooler(ic), intake manifold
(im), exhaust manifold(em), and turbine(t). The
turbocharger speed is indicated byωTC. Next model
inputs, states, and outputs are explained.

2.1 Inputs

Inputs to this model are engine speedN , throttle plate
angleα, the desired air/fuel ratioλ, opening of the
wastegateuwg, together with ambient conditions such
as pressurepa and temperatureTa.

2.2 States and State Equations

The states in the model are six pairs of pressure and
temperature states and the turbocharger speed,ωTC.
Now the engine model is described by the following
system of differential equations.

e1 : ṗaf = fpaf (paf, Taf, pcomp, ωTC, pa, Ta)

e2 : Ṫaf = fTaf (paf, Taf, pcomp, ωTC, pa, Ta)

e3 : ṗcomp = fpcomp (paf, Taf, pcomp, Tcomp, pic, ωTC)

e4 : Ṫcomp = fTcomp (paf, Taf, pcomp, Tcomp, pic, ωTC)

e5 : ṗic = fpic (pcomp, Tcomp, pic, Tic, pim, α)

e6 : Ṫic = fTic (pcomp, Tcomp, pic, Tic, pim, α)

e7 : ṗim = fpim (pic, Tic, Tim, pim, pem, N, α, λ)

e8 : Ṫim = fTim (pic, Tic, Tim, pim, pem, N, α, λ)

e9 : ṗem = fpem (pim, Tim, pem, Tem, pt, N, λ, uwg, Ta)

e10 : Ṫem = fTem (pim, Tim, pem, Tem, pt, N, λ, uwg, Ta)

e11 : ṗt = fpt (pem, Tem, pt, Tt, ωTC, uwg, pa)

e12 : Ṫt = fTt (pem, Tem, pt, Tt, ωTC, uwg, pa)

e13 : ω̇tc = fωTC (paf, Taf, pcomp, pem, Tem, pt, ωTC)

2.3 Measured Signals

Measured signals are outputs of the system which are
states and/or functions of states and inputs:

y = g(x, u) (1)

An example of a function of states and inputs is the
measured air-mass flow after the air-filter which can
be expressed as a function of the pressure after the air-
filter, a constant parameterHaf, and the inputspa and
Ta:

Waf = g( paf︸︷︷︸
x

, pa, Ta︸ ︷︷ ︸
u

) =

√
pa(pa − paf)

HafTa

Thus it depends only on one state, the pressure after
the air-filter. For the other possible air-mass flows in
the intake side the state dependencies are as follows:

Compressor air-mass flow
Wcomp = g(paf, Taf, pcomp, ωTC)

Intercooler air-mass flow Wic = g(pcomp, Tcomp, pic)
Throttle air-mass flow Wth = g(pim, pic, Tic).



Available Sensor Signals and Sensor DynamicsAll
states are considered to be measurable and functions
of states and inputs such as air-mass flows are only
measurable on the intake side. One practical consider-
ation is necessary for temperature sensors as their time
constant is in the order of several seconds compared
to the considerably faster pressure sensors and air-
mass flow sensors. Therefore the system is augmented
with temperature sensor dynamics for each tempera-
ture sensor (Chevalieret al., 2000):

Ṫsensor=
1
τ

(T − Tsensor)

The set of sensors considered here are:

Y = {paf, Taf, pcomp, Tcomp, pic, Tic, pim, Tim,

pem, Tem, pt, Tt, ωTC,Waf,Wcomp,Wic,Wth}
Note that all states are considered measurable, but
for each measured temperature the system has to be
augmented with one state.

3. OBSERVABILITY

Before an observer is designed, it must be determined
whether the system is observable and as the system
is nonlinear, this is not an easy task. One method to
show that the system is at least locally observable
is to linearize the equation system in Section 2.2
in stationary points and then use linear theory to
determine observability. Given thatfx(x, u) is the
partial derivative off(x, u) w.r.t. x, (x0, u0) is a
stationary point, then the linearized system matrices
A,B,C andD are defined as follows:

A = fx(x0, u0) B = fu(x0, u0)
C = gx(x0, u0) D = gu(x0, u0)

The linearized system can now be written as

ẋ = Ax + Bu

and the measured signal(s)

y = Cx + Du

Measured signalsy are selected from the setY. Intro-
duce the standard notation

Oρ =




C
CA

...
CAρ−1




where the matrixO without index meansρ = n,
i.e. O = On. Then the system is observable if and
only if O has full column rank (Kailath, 1980, p. 81).
Unfortunately, the linearized system matrixA is ill-
conditioned due to large differences in time-constants
in the engine dynamics. This makes it hard to numeri-
cally determineO as it involves takingA to the power
of 12.

Definition 1.(Observability index). The observability
index is defined as the smallest positive integerρ such
thatOρ has full rank.

3.1 Observability Index of A Subset of States

Cylinder air charge estimation depends onpim, Tim,
and pem (Andersson and Eriksson, 2004), which are
only 3 out of 13 states and thus the question is asked
whether there are combinations of measured signals
that better observe these variables. We therefore use
observability index of only a part of the state vector as
a metric to evaluate sensor configurations. The metric
is further discussed in Section 5.

We start by partitioning the state vectorx into x =[
x1

x2

]
, wherex1 are the states we want to observe.

The vectorx1 hasn1 states,x2 hasn2 states, andn1+
n2 = n. Now the columns of the observability matrix
O ∈ R

m×n are rearranged intoOn = [O1
n O2

n],
whereO1

n ∈ R
m×n1 andO2

n ∈ R
m×n2 . After the

rearrangement the firstn1 columns inO corresponds
to the states inx1. Next observability of a subset
of states and its associated observability index are
defined.

Definition 2.(Observability of a set of statesx1). The
state vectorx1 is observable if and only ifOn =
[O1

n O2
n] is 1-full rank (Terrell, 2001) w.r.t. then1 first

columns, i.e.

rankOn = n1 + rankO2
n

Using this definition we can also define observability
index for a subset of the states.

Definition 3. (Observability index of a set of states
x1) Let (C,A) be an observable pair, then the observ-
ability index w.r.t.x1 is the smallest positive integer
ρ such thatOρ = [O1

ρ O2
ρ] is 1-full rank w.r.t. then1

first columns, i.e.

rankOρ = n1 + rankO2
ρ

As can be seen in Definition 3 it is possible that
fewer differentiations, and hence lower powers of the
ill-conditionedA will be required, as it is now only
required that the rank ofOρ is at leastn1. Since fewer
differentiations are needed than before the numerical
problems are not as severe for the partial observability
problem.

3.2 Structural Observability

Structural observability makes it possible to avoid the
numerical problems with high powers ofA in On.
Structural observability only considers the structure
of the model and thus only provides anecessary
condition for observability. However, for physically
based models it is reasonable to assume that struc-
tural observability also implies analytical observabil-
ity (Lin, 1974).



Lin (1974) introduced the concept of structure to an-
alyze controllability of linear systems. The approach
is based on the assumption that a qualitative property
such as controllability is determined by the structure
of the model, rather than the values of the actual sys-
tem parameters. Structure here means the zero/non-
zero structure of the model matrices(A,B,C,D).

A dual formulation of the controllability definition in
(Lin, 1974) gives the following definition of structural
observability.

Definition 4.(Structural observability). The pair
(C,A) is structural observable if there exists an ob-
servable pair(C0, A0) with the same structure.

Structural rank, sometimes referred to as generic rank
or normal rank, of a matrixA is here defined as the
maximum rank possible for any matrix with the same
structure asA. Then it is tempting to think that a pair
(C,A) is structurally observable if and only if the
observability matrix has full structural rank. However,
this is not true (Shields and Pearson, 1976; Lin, 1974)
and we will use the following result from (Shields and
Pearson, 1976):

Theorem 1.(Structural observability). LetA ∈ R
n×n

andC ∈ R
m×n. Then the pair(C,A) is structurally

observable if and only if the following[n2 + n(m −
1)] × n2 matrix has structural rankn2.



I −A 0 · · · 0 0
0 I −A · · · 0 0
...

...
...

...
...

0 0 0 · · · I −A
0 0 0 · · · 0 C
0 0 0 · · · C 0
...

...
...

...
...

0 0 C · · · 0 0
0 C 0 · · · 0 0
C 0 0 · · · 0 0




The structural rank of a matrix can be efficiently com-
puted using graph theoretical algorithms for match-
ings in bipartite graphs. In Matlab, the structural rank
is computed using thedmperm command.

4. OBSERVABILITY OF THE ENGINE MODEL

The first question to answer is whether the engine
model is observable using feedback fromY. As there
are numerical difficulties when the analytic observ-
ability matrix is computed the structural approach is
taken instead.

Looking at the structure of the engine model one can
verify that the linearized system only has two struc-
tures over the engines entire operating region. The
cause of the structural change is that for low pressure

ratios over the throttle the pressure and temperature
states before the throttle do not depend on the intake
manifold pressure.

Below all nonzero elements of the A-matrix are shown
using anX, and the elements that can be zero in one
of the two structures are marked using parentheses.

Eqn. paf Taf pcomp Tcomp pic Tic pim Tim pem Tem pt Tt ωTC
e1 X X X 0 0 0 0 0 0 0 0 0 X
e2 X X X 0 0 0 0 0 0 0 0 0 X
e3 X X X X X 0 0 0 0 0 0 0 X
e4 X X X X X 0 0 0 0 0 0 0 X
e5 0 0 X X X X (X) 0 0 0 0 0 0
e6 0 0 X X X X (X) 0 0 0 0 0 0
e7 0 0 0 0 X X X X X 0 0 0 0
e8 0 0 0 0 X X X X X 0 0 0 0
e9 0 0 0 0 0 0 X X X X X 0 0
e10 0 0 0 0 0 0 X X X X X 0 0
e11 0 0 0 0 0 0 0 0 X X X X X
e12 0 0 0 0 0 0 0 0 X X X X X
e13 X X X 0 0 0 0 0 X X X 0 X

Using Theorem 1 it can be verified that the linearized
engine model is structurally observable fromanysin-
gle sensor signal. Thus the system is locally struc-
turally observable using one feedback fromY and as
Y includes all states the system is locally structurally
observable with feedback from any measured state.
This result is valid for all TC SI-engines with the same
structure.

5. SIGNAL SELECTION

To determine what feedback signal(s) or combina-
tion(s) of feedback signals to use it is necessary to
choose a selection metric and here systematic methods
to choose feedback signal(s) are used. The metrics are
based on observability index.

Two scenarios are studied: Signal selection for best
observability of the total system and signal selection
for best CAC observability.

5.1 Signal Selection for Best System Observability

When an arbitrary signal inY is used for observer
feedback the system is locally structurally observable,
as shown in Section 3.2. Given that more than one
signal fromY is selected, is it then possible to find
a combination of measured signals that is most suit-
able, i.e. results in a minimized observability index?
Considerm > 1 feedback signals which result in aC
matrix with m-rows. The total number of rows inO
still have to be at leastn, in order for the rank to ben.
The introduction of more than one measured signal
does not reduce the number of necessary rows inO.
However the lower bound of the observability index
is inversely proportional to the number of feedback
signalsm:

ρ ≥
⌈

n

m

⌉

Consequently, for the total system the lower bound
of the observability index depends on the number of



system states. As slow sensors introduce additional
states it is better to use fast sensors. Further, a spe-
cific combination of feedbacks that would give a min-
imized observability index can not be found using this
metric as it is only possible to give a lower bound of
the observability index.

5.2 Signal Selection for Best CAC Observability

The primary objective in engine air/fuel control is to
observe the states necessary for CAC estimation and
the states involved in the CAC calculation arepim, Tim,
andpem. The criterion for sensor selection is thus to
minimize the observability index, according to Defini-
tion 3, for the subset of statesx1 = {pim, Tim, pem}.
Here this method is illustrated for three feedback sig-
nals, which is a case where there are

(
17
3

)
= 680

combinations.

When three signals are selected fromY for observer
feedback and the observability index for the subset of
statesx1 is evaluated the result are three interesting
groups of feedback signals which all have observabil-
ity index less or equal to 4. These are summarized in
Table 1.

Table 1. Observability index for the subset
x1 = {pim, Tim, pem} using three feedback

signals.

Index Signal 1 Signal 2 Signal 3
2 pim Tim pem

3 pic pim Tim

3 pim Tim Wth

3 pim pem Tem

4 pim pem pt

4 Tim pem Tem

The results from Table 1 are:

• Only one combination with index 2. The obvious
selection to measure the signals inx1 is the best
choice, even though it includes one additional
state for the sensor dynamics. A practical aspect
is that the exhaust manifold pressure is hard to
measure.

• Two combinations with index 3. One of them
is the combinationpic, pim, andTim which are
normally measured signals on TC SI-engines.

• Two combinations with index 4, which both in-
clude temperatures.

In the cases above the highest power ofA is three,
and therefore the numerical problems are avoided.
Thus the analytical method is able to produce a very
short list of good candidates. As the underlying engine
model has physically based parameters it is reasonable
to assume that this result is valid for all TC SI-engines
with the same structure.

6. FUTURE WORK

In order to evaluate the observability index for a subset
of states for fewer feedback signals, it is not possible
to use an analytic method as has been done here. This
is because with fewer measurements, the matrixA
in the observability matrixO needs to be raised to
higher powers. The ill-conditioning of matrixA makes
the computations numerically uncertain. Therefore it
would be beneficial to study structural observability
and observability index also for a subset of states.

7. CONCLUSIONS

The problem of selecting signals for observer feed-
back has been studied. Using a structural method it
is possible to show that the studied system is locally
structurally observable from any measured state or
combination of states. A metric, observability index,
is used to aid the selection of what signals that are
most suitable for observer feedback. Two scenarios
are considered: The entire system and a subset of the
system which is important for CAC estimation.

In the first scenario, observability of the entire system,
it is best to use sensors which do not require the
system to be augmented with sensor dynamics. When
the system is augmented with sensor dynamics the
minimum number of required differentiations increase
and hence the observability index.

In the second scenario, when the application cylinder
air charge estimation is considered, only a fraction of
the state space is required to determine the cylinder
air charge. Therefore the observability index of this
subset of states is used to evaluate which feedback
signal and/or combination of signals that observes
this subset best. When three sensors are used only
5 configurations of 680 possible reach an observability
index less or equal to 3. One unique combination is
best and reaches the observability index 2. It is the
obvious combination of measuringpim, Tim, andpem.
Even though it requires the system to be augmented
with one temperature sensor dynamics it is the best
choice. Also the normally measuredpic, pim, andTim

is a very good combination with observability index 3.

Thus the proposed method provides the observer de-
signer with valuable information during the sensor
selection. An advantage is that no signal-to-noise ra-
tios etc. are necessary inputs to the method. Finally
the method is generally applicable and the results are
valid for all turbocharged SI-engines with the same
structure.
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