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Abstract: To fully utilize the fuel reduction potential of a hybrid powertrain requires a careful
design of the energy management control algorithms. Here a controller is created using map-
based equivalent consumption minimization strategy and implemented to function without any
knowledge of the future driving mission. The optimal torque distribution is calculated offline and
stored in tables. Despite only considering stationary operating conditions and average battery
parameters, the result is close to that of deterministic dynamic programming. Effects of making
the discretization of the tables sparser are also studied and found to have only minor effects on
the fuel consumption. The controller optimizes the torque distribution for the current gear as
well as assists the driver by recommending the gear that would give the lowest consumption.
Two ways of adapting the control according to the battery state of charge are proposed and
investigated. One of the adaptive strategies is experimentally evaluated and found to ensure
charge sustenance despite poor initial values.
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1. INTRODUCTION

A hybrid powertrain utilizes at least two separate energy
converters. This has the potential to significantly increase
the efficiency of the powertrain. The key to utilizing
the full potential of the powertrain lies in the design
of the control algorithm. The goal in hybrid powertrain
control is normally to minimize the fuel consumption while
maintaining the battery State of Charge (SOC) within
prescribed limits, sometimes with addition of constraints
regarding emissions.

This paper develops an adaptive Equivalent Consumption
Minimization Strategy (ECMS), based on Musardo and
Rizzoni (2005), and applies it to the Haldex electric Torque
Vectoring Drive (eTVD). The optimal torque distribution
is calculated offline and stored in tables and the effects
of discretization on the fuel consumption is studied. Then
two ways of adapting the control to maintain the SOC
within the desired limits are investigated.

1.1 The Haldex eTVD and the test vehicle

The system used for modeling, simulation, and experimen-
tal evaluation is a SAAB 9-3 XWD with a 2.0L turbo
charged spark ignited combustion engine and a six-speed
manual gear-box (GB), fitted with the eTVD.

The eTVD is a system designed to combine all-wheel
drive (AWD) with hybrid functionality. It also has the
ability to control the torque distribution on the rear
wheels individually, which is useful to prevent under-
and over-steering. In the eTVD concept the combustion
engine (ICE) and main electric motor (EM) are connected
electrically to each other via the generator (ISG) and

Fig. 1. The architecture of the Haldex eTVD concept. The
EM is labeled Haldex in the figure. There are two
energy paths between the ICE and EM.

mechanically via the wheels, see Fig. 1. The architecture
of the system thus resembles that of a split hybrid but
since the components in the test vehicle are dimensioned
for AWD the series hybrid functionality of the vehicle is
reduced. A more fitting description would be advanced
parallel hybrid since the powertrain can be viewed as a
parallel hybrid with an extra degree of freedom in choosing
which energy converter to use during load shifting since the
ISG is added to the powertrain.

2. VEHICLE MODEL

For the purpose of investigating different control strategies
and their fuel consumptions, a quasistatic model approach
is used. This is partly due to simplicity but also because it
is well suited for both DDP and ECMS. In a backward fac-
ing quasistatic approach the speed is known from the driv-
ing cycle. When the speed is known the torque required at
the wheels to follow the driving cycle is calculated through
a longitudinal vehicle model:
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where Fair is the aerodynamic drag, Froll the rolling
resistance, Fwi the inertia of the wheels, and Facc is the
acceleration force. Force from road grade is neglected.

2.1 Components

The control signals of the system are the energy converter
torques TICE , TISG, TEM , and gear γGB . The components
(ICE, EM, ISG and GB) are all modeled with a power
balance and efficiency, Pout = Pinη, where the efficiencies,
η, are assumed to be known and account for all losses in the
component. The efficiency ηGB is assumed constant while
the efficiencies of the energy converters are shown in Fig. 2.
The battery is modeled as a Thevenin equivalent circuit
with open circuit voltage Uoc(SOC), coloumbic charge
efficiency ηc(SOC), and constant internal resistance Ri.
The battery in the test vehicle outputs its SOC, thus
the SOC is assumed to be known. The power required by
the auxiliary units, Paux, is assumed constant. For more
details about the modeling see Sivertsson (2010).

3. REFERENCE CONSUMPTIONS

As a reference for the implemented optimization, deter-
ministic dynamic programming (DDP) as described in
Guzzella and Sciarretta (2007) is used. Time and SOC are
discretized with a step length of 1s and 0.02h respectively.
The SOC discretization is chosen so that one step roughly
equals the change in SOC from the auxiliary units during
1s. The operating points from the DDP solution to NEDC
are shown in Fig. 2. Interesting to note is the efficient
use of the ISG in load shift and that almost all the EMs
operating points during braking are on, or close, to the
torque limit. This is a result of the EM and ISG primarily
being designed for torque vectoring and AWD and not fuel
economy.

To evaluate the performance of the real-time control, the
consumption as a strictly AWD vehicle is used. For that
purpose a control is used where the gear that results in
the lowest consumption at each time is engaged. The EM
is assumed to be unused both in traction and braking, thus
this mode corresponds to pure ICE propulsion.

4. THE ECMS

In ECMS, proposed in Paganelli et al. (2001) and Paganelli
et al. (2002), the sum of fuel and fuel equivalent of the
electrical power is minimized. Since fuel and battery power
are not directly comparable an equivalence factor, λ, is
used. The function to be minimized can be written as:

H = Pf (TICE , γGB) + λ(t)Pbatt(TEM , TISG, γGB) (2)

Under the assumption that the battery efficiency is in-
dependent of SOC, the equivalence factor λ remains ap-
proximately constant along the optimal trajectory. There-
fore the optimization problem is reduced to finding the
constant λ that approximates the optimal trajectory of a
given driving cycle. Since the characteristics of the battery
depends on if the battery is charging or discharging, λ
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Fig. 2. Efficiencies of the ICE, EM, and ISG, as well as the
operating points of the three energy converters on the
NEDC from the DDP solution

is sometimes replaced by two constants. It is however
shown in Musardo and Rizzoni (2005) that one constant
suffices to get a good approximation on a given driving
cycle, which is the approach selected here. For more details
on ECMS see Guzzella and Sciarretta (2007); Pisu and
Rizzoni (2007); Sciarretta et al. (2004).

As a consequence of the discussion above the strategy for
selecting the control inputs becomes:

[TICE , TISG, TEM , γGB ] = argmin(H) (3)

Subject to:

Treq = ηGBγGB (TICE − γISGTISG) + γEMTEM (4a)

TEM,min(ωEM ) ≤TEM ≤ TEM,max(ωEM ) (4b)

0 ≤TICE≤ TICE,max(ωICE) (4c)

0 ≤TISG ≤ TISG,max(ωISG) (4d)

Pbatt,min(SOC) ≤Pbatt ≤ Pbatt,max(SOC) (4e)

4.1 Offline Optimization

Instead of solving the computationally demanding three
degree of freedom problem in (3)-(4) for all possible con-
trols in real-time, the optimization is performed offline and
the result is tabulated. In the real-time implementation the
control system interpolates in the stored data to find the
optimal torque distribution.

In the offline calculations the three parameters that the
ECMS algorithm takes as input, i.e. vehicle speed, required
torque, and equivalence factor, are discretized and the
optimal torque distribution on the three energy converters,
as well as the optimal gear, are calculated as a function
of (V ,Treq,λ) for each point. Since, for each gear, it is a
two degree of freedom problem, see (4a), it requires two
tables for each gear, one for the ISG and one for the ICE.
From these two tables the torque required from the EM
can be calculated using (4a). With six gears, not including
reverse, a total of 13 tables are calculated: six ICE, six
ISG and one for the gear selection. So the system not
only optimizes the torque distribution for the current gear,
it also assists the driver by recommending the gear that
would give the lowest fuel consumption.
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Fig. 4. The mean torque in each table changes as a function
of λ.

4.2 Table Discretization

The real-time algorithm uses linear interpolation in the
stored data and the assumption is thus that the solution is
linear between two optima. As seen in Fig. 3 the solution is
only piecewise linear between two λ so the discretization
has to be chosen with care. Fig. 4 shows how the mean
torque in each table changes as a function of λ. Since it is
desirable to reduce the memory requirements the idea is
to make the λ discretization sparser in the segments that
could be considered linear and denser where it is clearly
non-linear. From Fig. 4 it is clear that the ISG and ICE
tables should have separate λ discretizations since the ISG
tables remain constant up until λ ≈ 3 while the ICE tables
only remain constant until λ ≈ 2. To test how the loss of
accuracy, introduced by reducing the size of the tables,
affects the consumption, simulations are carried out on
two sets of tables: one large set, TL, and one small set,
TS . The TL has the same V- and Treq-discretization as
the offline optimization itself, but the λ-discretization is
made sparser according to the strategy mentioned above.
The TS-discretization is made sparser than TL in all three
directions. The memory requirement of TS is roughly one
eighth of that of TL.

5. REAL-TIME IMPLEMENTATION DETAILS

In the implementation the ECMS is only used in traction.
During braking the main parameter that affects the ability
to recuperate energy is the gear. However the time spent
in braking is deemed too short to motivate a gear shift.
Instead a heuristic brake control is used. Provided that the
SOC is within limits the EM supplies the requested brake
torque and if the EM is insufficient, the ISG, providing
that a gear is engaged, also provides a regenerative torque
and the rest is handled by the friction brakes.

Table 1. The decrease in fuel consumption with
DDP compared to ECMSopt.

DDP: Free Gear DDP: Fixed Gear

NEDC 4.0% 0.2%

FTP-75 10.1% 2.3%

Since the test vehicle has a manual gearbox the gear
selector recommends gears to the driver. In simulation the
system follows the gear selector and shifts instantaneously
without the use of a clutch. To avoid too frequent gear
shifts (recommendation changes) a hysteresis is applied to
the interpolated optimal gear.

6. EQUIVALENCE FACTOR CONSIDERATIONS

An equivalence factor λ is considered optimal if the re-
sulting ∆SOC = SOC(tend) − SOC(tstart) = 0 within a
specified tolerance. Since the speed in the driving cycles is
discretized, the situation can arise where there exists no λ
that results in ∆SOC = 0. In those situations the method
suggested in Chasse et al. (2009) is used, where the control
switches between two λ, λ1 leading to ∆SOC > 0 and λ2
leading to ∆SOC < 0, at time t to achieve ∆SOC = 0.

To evaluate the offline optimization a set of tables,
ECMSopt, consisting of λopt for the NEDC and FTP-75
cycles is created. That is, no interpolation between two
optima in the λ-direction is necessary. In Fig. 5 the SOC
trajectories of ECMSopt as well as DDP on the FTP-75
cycle is shown. Since the gear shifting of the DDP solution
is highly unrealistic, a DDP Fixed Gear solution using the
gear trajectory of ECMSopt is also shown. The ECMSopt

SOC trajectory still differs from the two DDP solutions.
This is due to the offline optimization using only stationary
operating points and average battery parameters. How-
ever, introducing SOC-dependency in the offline optimiza-
tion would mean adding an extra dimension in each table
and the decrease in consumption using DDP compared
to ECMSopt is small, especially if a more realistic gear
shifting strategy is used, as shown in Table 1.

Results from simulations on the NEDC and FTP-75 driv-
ing cycles are shown in Table 2. The increase in consump-
tion for TS and TL compared to ECMSopt, as well as the
difference in λopt values, confirm that the solution is not a
linear function of λ. However, the increase in consumption
is small, only 0.1% from making the λ-dimension sparser
and 0.2 − 0.4% when the tables are made sparser in all
three dimensions.

Even if the simulations show that the implemented ECMS
produce a good result on a given driving cycle, close to
that of DDP, it is also seen that the optimal values of λ are
specific and the system seems to be quite sensitive. A λopt
from one driving cycle is not necessarily charge sustaining
on another, see Fig. 6. The controller has to adapt to the
driving scenario.

6.1 Static Prediction Based on SOC

In Ambühl et al. (2009) it is suggested that λopt is
approximated by an affine function in SOC. Since the
eTVD mainly is an AWD concept, the charge sustenance
of the controller is crucial. Therefore another adaptation
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Table 2. λopt and associated consumption
of the different tables. Consumptions are in
L/100km and Reduction is compared to AWD.

Cycle Performance EMCSopt TL TS

NEDC
λopt 2.8384 2.8238 2.8426

Consumption 5.728 5.733 5.738
Reduction 17.23 % 17.15 % 17.08 %

FTP-75
λopt 2.6353 2.6615 2.7146

Consumption 5.505 5.512 5.534
Reduction 24.33 % 24.23 % 23.93 %
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of Static Prediction based on SOC. The system is
sensitive to the equivalence factors. The λopt for one
driving cycle leads to poor performance on another,
but with the adaptive control the system is charge
sustaining.

function is suggested. Under the assumption that there
exists one λ that approximates a given driving cycle,
the controller should ideally find that λ for the future
driving mission and use that value for the entire mission.
To allow the system to use as much of the battery
capacity as possible the idea is to create a function
that is relatively flat around the center of the desired
SOC window. However, when the SOC approaches the
limits of the SOC window it needs to adapt to ensure
charge sustenance. The chosen function that fulfills these
requirements is a tangens function, see Fig. 7-left. The
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Fig. 7. Left: The shape of the function used for adaptive
control. Right: SOC trajectories for different slopes
on the NEDC cycle with λc,opt as well as with λc = 4.
The plot indicates that a steeper slope is more able
to keep the SOC within the limits but it also shows
that a steep slope alone does not guarantee that the
SOC stays within the desired SOC window. A steep
slope also increases the consumption.

Table 3. λc,opt and associated consumptions.
Consumptions are in L/100km and reduction

is compared to AWD.

Cycle Performance TL TS

NEDC
λc,opt 2.73 2.7374

Consumption 5.735 5.739
Reduction 17.12 % 17.07 %

FTP-75
λc,opt 2.6365 2.6823

Consumption 5.515 5.533
Reduction 24.19 % 23.95 %

adaptation of λ is of the form:

λ = fSP (λc, kc, SOC) (5)

where fSP has the shape of a tangens function centered
at λc, with the slope kc. As seen in Fig. 7-right the
fuel consumption increases with the slope but it is also
apparent that the ability of the system to keep the SOC
within the desired SOC window, increases with the slope,
since a change in SOC results in a larger change in λ.
However, since there is no way of knowing the optimal
λ for the current driving mission there is no slope that
guarantees charge sustenance. The choice is a trade-off
between charge sustenance and fuel consumption. Here
kc = −1.9 is chosen. In Fig. 6 the same test as in Section 6
is shown, now with the use of the Static Prediction based
on SOC (SP) in (5). With the use of the new adaptation
the system is not as sensitive to the initial λ. The system is
now charge sustaining with λc = λopt,FTP−75. However the
fuel consumption increases slightly, see Table 3 compared
to Table 2. Also interesting to note is that λc,opt, the λc
that gives ∆SOC = 0, is not the same as the λopt that
approximates the driving cycle.

6.2 Adaptive Prediction Based on SOC

The proposed strategy has introduced some adaptivity to
the system, but since there is no way of knowing the λc
that approximates the future driving mission, it is not
necessarily enough. The value of λc is still important. As
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seen in Fig. 8 the SOC does not stay within the SOC
window when the λc value differs too much from λc,opt.
The system instead varies around a SOC value that is not
necessarily within the SOC window. The corresponding
λ value seems to vary around a value close to the λc,opt
found in Section 6.1. The idea is thus to let the center of
the function proposed in Section 6.1 change according to
the trend of the λ values. To find the trend a low-pass filter
is used according to:

λp+1
c = (1− α)λpc + αλp (6)

λp+1 = fSP (λp+1
c , kc, SOC) (7)

The trade-off is between response time and fuel consump-
tion. If the time constant is small, the system will find
the optimal λ region fast, but a fast filter also means that
λc becomes sensitive to the current λ which increases the
fuel consumption. Here α is chosen so the time constant
of the filter is around 200s. To avoid build-up in the low-
pass filter, similar to integral wind-up, λc is only allowed to
move in what can be considered a feasible region, chosen to
be between 2 and 6. With the use of the Adaptive Predic-
tion based on SOC (AP) in (6)-(7) the control manages to
maintain the SOC within the desired SOC window despite
the use of a too high initial λc, as seen in Fig. 8.

7. TESTS

So far the systems have been designed and evaluated using
known driving cycles. To investigate how well the systems
perform in a more realistic situation the system is tested
both on unknown driving cycles as well as in a real vehicle.

7.1 Randomized Driving Cycle

To simulate real driving a driving cycle is constructed
out of a random set of driving cycles. The 30 selected
driving cycles represent roughly 8 hours of driving and
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Fig. 9. Performance test with (a) SP and (b) AP. Both
systems are charge sustaining over the randomized
driving mission and the TS result in a slightly higher
consumption than the TL.

a distance of 350km. On this driving mission the ECMS
with both adaptive and static prediction based on SOC
is tested with both TL and TS and the result is shown in
Fig. 9 and Table 4. Because of the length of the driving
mission the fuel equivalent of the deviation in end SOC
is deemed negligible. Both the functions proposed for
adaptive control are charge sustaining and imply a fuel
consumption reduction of 19-20% compared to AWD. AP
results in a slightly higher consumption than SP, as well
as TS results in a slightly higher consumption than TL.

7.2 Vehicle Tests

The system that is chosen to be implemented in the test
vehicle is the one with TS and adaptive prediction based
on SOC. The set TS is used because of the substantial
decrease in memory usage and only slight increase in fuel
consumption. Even though it is implied in Section 7.1
that static prediction is charge sustaining under normal
driving circumstances the extra robustness of the adaptive



Table 4. The consumptions for TL and TS with
the two different adaptive controllers during a
set of randomized driving cycles. Red. is the

reduction compared to AWD

Config. Tables Consumption Red.

AWD - 6.963 L/100km -

ECMS w. SP
TS 5.575 L/100km 19.19%
TL 5.557 L/100km 20.19%

ECMS w. AP
TS 5.586 L/100km 19.78%
TL 5.572 L/100km 19.98%
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Fig. 10. The SOC and control trajectories during the
vehicle test. The system is charge sustaining despite
a high λc but the gear recommendation is often too
high for comfort.

prediction is considered desirable. The test drive, see
Fig. 10, represents urban driving with many transients
and low speed, and is done to test the driveability and
the charge sustenance of the control system. The test
drive is done with an initial SOC at reference level but
a high λc. As seen in the figure the control is charge
sustaining despite the initially high λc. The AP adapts λ
and maintains the SOC within the desired SOC window.
It is also seen that the gear recommendation often is too
high for comfort. For more test data see Sivertsson (2010).

8. CONCLUSION

A map-based implementation of ECMS is developed and
the effects of the discretization are studied. Performing the
optimization offline with stationary operating points and
average battery parameters increases the consumption by
only a few percent compared to DDP if the same gear
trajectory is used. DDP implies a potential to decrease
the consumption further by a couple of percent if no
restrictions on gear selection is enforced, but the resulting
gear trajectory is highly unrealistic, making the solution
infeasible.

The effect on the consumption by reducing the size of
the tables is small. Making the discretization sparser in
the λ-dimension according to the strategy proposed in
Section 4.2 only increases the consumption by 0.1% and

making all three dimensions sparser only results in an
increase of less than 1%.

Both methods suggested for adaptive control are charge
sustaining and only result in a slight increase in consump-
tion compared to when λopt is used. The static prediction
based on SOC increases the consumption less than the
adaptive prediction based on SOC, but the latter is more
robust. The use of static prediction based on SOC reduces
the importance of knowing the optimal equivalence factor
for the future driving mission, as the control manages to
maintain the SOC within the desired window as long as
the used λc doesn’t differ too much from the λc,opt of
the driving mission. With the use of adaptive prediction
based on SOC the need for information about the future
mission is eliminated. Instead the control adapts so that λ
varies around λopt of the driving mission, ensuring charge
sustenance.
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