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Abstract: Because of environmentally based legislative regulations, diagnosis of auto-
motive engines has become increasingly important. In the design of diagnosis systems,
it is important to strive for optimum performance and at the same time, minimize the
amount of engineering work required. Therefore, it is desirable to have a highly auto-
mated design procedure, in which diagnosis performance is optimized. It is discussed
how a diagnosis system for the air-intake system of an SI-engine, can be constructed
with the help of automated tools. In particular the problem of residual and thresh-
old selection is addressed. For this a fully automatic algorithm is proposed and it
is experimentally shown that the algorithm successfully manage to generate a well
functioning diagnosis system.
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1. INTRODUCTION

In the field of automotive engines, environmentally
based legislative regulations such as OBDII (On
Board Diagnostics II) and EOBD (European On
Board Diagnostics) specifies hard requirements on
the performance of the FDI (Fault Detection and
Isolation) system. This makes the area a challeng-
ing application for model based FDI. In (Nyberg and
Nielsen, 1997b), a model based FDI system is con-
structed for the air intake system of a spark-ignition
(SI) engine. In the present work it is discussed how
a similar FDI system can be designed automatically.

Model based FDI has received much attention dur-
ing the last decade, see for example the survey (Pat-
ton, 1994). Because of several reasons discussed in
(Nyberg and Nielsen, 1997b), it is appealing to ap-
proach the diagnosis of the SI-engine air-intake sys-
tem with model based techniques. Model based FDI
for automotive engine diagnosis in general, has been
studied in several works, see the survey in (Nyberg
and Nielsen, 1997b).

When constructing a model based FDI system for
automotive engines, it is desirable to strive for an
optimum performance and at the same time mini-
mize the amount of engineering work required. Au-
tomotive engines are rarely designed from scratch
but often subject to small changes, e.g. for every
new model year. Then usually also the diagnosis
system needs to be changed. Since this may hap-

pen quite often and a car manufacturer typically
has many different engine models in production, it
is important for the car manufacturers that FDI sys-
tems can be reconstructed with minimal amount of
work involved.

For manufacturers of independent FDI systems, to
be used in independent repair-shops, the situation
is even more critical. They need to design FDI sys-
tems for a large amount of different car brands and
models. This makes it necessary to find procedures
such that FDI systems can be constructed with very
limited amount of work.

Identification

Residual Construction

Residual and Threshold
Selection

Measurements

Model

Model Structure Measurements

 Diagnosis System

Fig. 1. The process of constructing a FDI system.

Thus the problem of designing FDI systems system-
atically with minimal amount of work involved, is
the motivation for this paper, in which we demon-
strate the use of an automated procedure to con-
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struct an FDI system for the air-intake system of
the SI-engine. In Figure 1, the flow-chart for the
process of constructing a model based FDI system
is shown. The first part is to construct the model, in
which at least parameter identification is possible to
automatize. The model construction is described in
Section 3. Then from the model, residual generators
need to be constructed, which is discussed in Sec-
tion 4. The last step is to select residual generators
to be included and also to select thresholds. This
can be treated by a residual and threshold selection
(RTS) algorithm that was proposed in (Nyberg and
Nielsen, 1997a). In Section 6 an extended version
of this algorithm is described and in Section 7, it is
applied to the construction of the FDI system for
the air-intake system. The resulting FDI system is
experimentally evaluated in Section 8.

2. EXPERIMENTAL SETUP

The engine is a 2.3 liter 4 cylinder SAAB produc-
tion engine mounted in a test bench together with
a Schenk “DYNAS NT 85” AC dynamometer. The
measured variables are the same as the ones used
for engine control. A schematic picture of the whole
engine is shown in Figure 2.
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throttle control signal
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spark timing

λ (air-fuel ratio)
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λ

throttle servo

engine speed
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Fig. 2. The basic SI-engine.

The part of the SI-engine, that is considered to be
the air-intake system, is everything to the left of
the dashed line in Figure 2. When studying the air
intake system, also the engine speed must be taken
into account because it affects the amount of air that
is drawn into the engine.

3. MODEL CONSTRUCTION

The SI-engine is a non-linear plant and it has been
indicated in several works by different authors (see
survey in (Nyberg and Nielsen, 1997b)), that FDI
based on a linear model is not sufficient for the en-
gine application. This motivates the choice of a non-
linear model in this work.

For the purpose of FDI, a simple and accurate model
is desirable. In the air-intake system application
there is no need for extremely fast fault detection,
therefore a so called mean value model is chosen.
This means that no within cycle variations are cov-
ered by the model.

The model of the air-intake system is continuous,
and has one state which is the manifold pressure.
The air dynamics is derived from the ideal gas law.

The process inputs are the throttle control signal u,
and the engine speed n. The outputs are throttle
angle sensor αs, air-mass flow sensor ṁs, and man-
ifold pressure sensor ps. The faults are modeled as
additive faults. The equations describing the fault-
free model can be written as

ṗ =
RTman

Vman
(ṁth − ṁac) (1)

ṁth = f(p, α) (2)
ṁac = g(p, n) (3)

where p is the manifold pressure, R the gas constant,
Tman the manifold air temperature, Vman the mani-
fold volume, ṁth the air-mass flow past the throttle,
ṁac the air-mass flow out from the manifold into
the cylinders, α the throttle angle, and n the engine
speed.

The model consists of a physical part, (1), and a
black box part, the functions (2) and (3). Even if
variations in ambient pressure and temperature do
affect the system, they are here assumed to be con-
stant. The identification of the static functions f
and g, and the constant Vman, is described in (Ny-
berg and Nielsen, 1997b). Except for selection of
model structure, the model construction can be con-
sidered to be automatic since the identification is
usually performed by computerized automatic tools.

4. RESIDUAL GENERATION

The inputs to the FDI system, and therefore also
the residual generators, are ṁs, αs, ps, and n. The
components that are to be diagnosed are the throt-
tle angle sensor, the air-mass flow meter, and the
manifold pressure sensor. It is assumed that only
one fault can occur at the same time.

How residual generation should be done in general is
still an active research area but for classes of systems
there exists systematic methods. For instance resid-
ual generators for linear system can be constructed
with the method described in (Nyberg and Nielsen,
1997c). By using systematic methods a number of
residual generators can be designed. In addition,
many residual generators can be designed with an
ad-hoc approach. Ad-hoc design is often necessary
for non-linear systems because of the scarcity of de-
sign methods. Thus it is usually not difficult to de-
sign a large number of residual generators, but the
lack of systematic methods for non-linear systems,
makes it difficult to find general automatic design
procedures.

It is not sure that all constructed residual generators
perform satisfactory or it can be the case that sev-
eral residuals perform very similarly or identically.
Also the number of residual generators that can be
designed is generally larger than what is needed to
be able to detect and isolate the faults. All this
results in a possibly large set of residuals that are
candidates to be included in the final FDI system.
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These residuals are denoted base residuals and the
set of all base residuals is denoted Rbase.

4.1. Residual Generation for the Air-Intake System

The model of the air-intake system is non-linear. To
not introduce unnecessary constraints, the design of
residuals is not restricted to one method. Instead
a combination of static relationships, non-linear di-
agnostic observers, and parity equations have been
used to construct 12 base residuals of the type where
an output is compared to an estimate of the output,
or two estimates of the same output are compared.
The computational form of these 12 base residuals
are

r1 = ms − ˆ̇m1(as, ps)

r2 = ms − ˆ̇m2(n, ps)
r3 = ps − p̂1(as, n, ps)

r4 = ms − ˆ̇m3(as, n, ṁs)
r5 = ps − p̂2(as, ṁs, n)
r6 = as − â1(u, as, ṁs, ps)

r7 = ms − ˆ̇m4(as, n, ps)

r8 = r2 − r1 = ˆ̇m1(as, ps)− ˆ̇m2(n, ps)

r9 = r4 − r2 = ˆ̇m2(n, ps)− ˆ̇m3(as, n, ṁs)

r10 = r4 − r1 = ˆ̇m1(as, ps)− ˆ̇m3(as, n, ṁs)
r11 = r3 − r5 = p̂2(as, ṁs, n)− p̂1(as, n, ps)
r12 = as − â2(ṁs, ps)

where ˆ̇mi, âi, and p̂i are different estimates of the
output signals.

The 12 base residuals form a set of structured resid-
uals. Different residuals are sensitive to different
faults. This can be seen by studying the equations of
the residuals and is summarized in Figure 3, which
contains the residual structure.

αs ṁs ps

r1 1 1 1
r2 0 1 1
r3 1 0 1
r4 1 1 0
r5 1 1 1
r6 1 1 1
r7 1 1 1
r8 0 1 1
r9 1 1 1
r10 1 1 1
r11 1 1 1
r12 1 1 1

Fig. 3. The residual structure of the base residuals.

5. DON’T CARE IN THE RESIDUAL
STRUCTURE

The algorithm described in the next section uses the
concept of don’t care (Nyberg and Nielsen, 1997b,
Nyberg and Nielsen, 1997a). This section gives an
introduction to this concept.

Don’t care, X, is an alternative to ones and zeros
in the residual structure. The meaning of an X, in
the position for the i:th residual and the j:th fault,
is that the fault decision should not take any notice

about the value of residual i when deciding if fault j
has occured. In most situations a residual is affected
differently by different faults. This is the underlying
reason why there is a need for don’t care, or X, in the
residual structure. Explicit examples of such cases
are model uncertainty and non-linear physics.

For the FDI of the air-intake system, both model un-
certainties and non-linear physics are present. An
example of a non-linearity which enforces an X,
is the fact that the air flow past the throttle is
largely dependent on the manifold pressure for low
air speeds but not dependent on the manifold pres-
sure for supersonic air speed (Heywood, 1992). Su-
personic air speed occurs for manifold pressures be-
low 50 kPa.

For anything but small residual structures, it is dif-
ficult to see if a residual structure containing X’s
is strongly, weakly or not isolating. In (Nyberg,
1997), there are two theorems that can be used to
determine if a residual structure containing X’s is
strongly or weakly isolating.

Introduction of X’s will increase residual robustness
and also the robustness of the complete system if
done properly. When and how these X’s should
be introduced, can generally not be concluded by
studying the equations describing how the residuals
are computed. Instead measurements on the real
process must be used. This is what is done in the
RTS-algorithm described next.

6. THE RESIDUAL AND THRESHOLD
SELECTION ALGORITHM

Following is a description of an extended version
of an algorithm that was proposed in (Nyberg and
Nielsen, 1997a) and (Nyberg, 1997). Given the set
Rbase of base residuals and a set M of arbitrary
measurement series, the goal is to find a residual
structure and fix thresholds such that optimal per-
formance is obtained with respect to each of the
measurements series. Depending on what fault situ-
ation that is present in the measurement series, the
term optimal has different meanings. Therefore the
set M is divided into three disjunct subsets corre-
sponding to different fault sizes. Mff is the set of
fault-free measurements, Msmall are the measure-
ments with a small fault present, and Mreal are the
measurements with a real fault present.

For the fault-free measurements Mff , the goal is
to minimize the probability of false alarm. For the
measurements in Mreal, with a real fault present,
the goal is to minimize the probability of missed
detection and also the probability of mis-isolation.
For the measurements in Msmall, with a small fault
present, we decide that it is acceptable to both de-
tect and not detect these faults, so the goal becomes
to minimize the probability of mis-isolation. It is as-
sumed that detection (and isolation) of faults is per-
formed by matching residual behavior with columns
in the residual structure.

Compared to the original algorithm, there is no limit
of how many measurement series that can be used as
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an input to the algorithm. This implies that it is not
necessary to fix any specific fault size, i.e. arbitrary
many different fault sizes can be used in the mea-
surement data. In addition, the original algorithm
constrained the residual structures obtained to be
strongly isolating. In the extended version, this con-
straint is relaxed and to still guarantee good iso-
lation performance, the optimization is performed
with respect to also isolation requirements.

The RTS algorithm is fully automatic and it has
been implemented in Matlab. Following is a de-
scription of the algorithm, which is here separated
into four steps. First residual candidates are gener-
ated, then thresholds are selected and finally, resid-
ual structures, consisting of subsets of residual can-
didates, are selected. More detailed information,
e.g. regarding optimality, can be found in (Nyberg,
1997).

INPUT: The input to the algorithm is
< Rbase, M >.

STEP 1: Generate Residual Candidates
To lower the computational load in the search
among residual structures, in step 3 and 4, it is
desirable to have few residual candidates. There-
fore, the correlation coefficients between the differ-
ent base residuals are computed and for each pair of
highly correlated base residuals, only the best one is
allowed to generate residual candidates.

Then from each of the remaining base residuals
rk ∈ Rbase, nk residual candidates are generated
by introducing don’t care in different combinations.
When introducing X’s, different strategies are possi-
ble. One that makes sense, and therefore used here,
is to only allow ones to be replaced by X’s.

For a each base residual, the goal is to generate
residual candidates such that the probabilities of
false alarm and missed detection are minimized.
These probabilities are dependent on the current
state (condition) of the system and in particular the
fault situation. For the system condition present
during the measurement ml ∈ M, let λil be the
event that base residual i fires. Then for a fault free
measurement ml ∈Mff , λil denotes the event false
alarm. Now define λ0

il = λC
il , λ1

il = λil, and sij to be
the entry in the residual structure corresponding to
the i:the residual and j:th fault. Then it follows that
for a real-fault measurement ml ∈ Mreal, in which
fault j is present, λ

sij

il

C is the event that residual i
do not fire in accordance with the residual structure.
In other words, λ

sij

il

C is the event missed detection
if residual i is designed to respond to fault j, and
the event false alarm if residual i is designed to not
respond to fault j.

From the measurement series provided as inputs to
the RTS algorithm, the residual density functions
can be estimated. Then from these, estimates of the
probabilities of false alarm and missed detection, as
a function of the threshold, can easily be obtained.
Fault-free measurements ml ∈ Mff are used to es-
timate probabilities P (λil) and real-fault measure-
ments ml ∈ Mreal are used to estimate probabilities

P (λsij

il

C). Small-fault measurements are not used at
this stage since we are allowed to both detect and
miss these faults.

It was mentioned above that introducing don’t care
will increase the robustness of the diagnosis sys-
tem. This can readily be seen in how introduction
of X’s makes it possible to find a threshold such
that the probabilities P (λil) and P (λsij

il

C) get low-
ered. So by successively replacing ones in the resid-
ual structure with zeros, we generate residual can-
didates with probabilities of false alarm and missed
detection that is lower than for the corresponding
base residual. In general a base residual rk that
is sensitive to pk faults can in this way generate
nk = pk − 1 residual candidates. A more detailed
discussion about how this is done can be found in
(Nyberg and Nielsen, 1997a).

In spite of that X’s have been introduced, the proba-
bility that the residual respond the way it shouldn’t,
can still be high for all threshold levels. In that
case, the corresponding residual candidate is omit-
ted. This means that in reality nk ≤ pk − 1.

Define Rcand to be the set of all residual candi-
date. Then the total number of residual candidates
is |Rcand| =

∑|Rbase|
k=1 nk. In correspondence with

the definition of λ
sij

il , we define Λsij

il to be the event
that residual candidate i responds in accordance
with the residual structure. For compatibility with
the X’s, now present in the residual structure, we
define ΛX

il = Ω, which means that sij = X implies
P (Λsij

il ) = 1.

STEP 2: Find Thresholds
By using the probability estimates P̂ (Λil), ml ∈
Mff , and P̂ (λsij

il

C), ml ∈ Mreal, optimal thresh-
olds are chosen for all residual candidates individu-
ally. Let f0 be defined to be the fault-free case and
thus si0 = 0. Then the optimal threshold for the
i:th residual candidate can be expressed as

Ji = arg min
J

max
ml∈Mff∪Mreal

P̂
(
Λsi,fault(l)

il

C)

where fault(l) is a function returning the fault
present in measurement l. If more than one thresh-
old minimizes the maximum probability estimate,
the threshold Ji can be chosen as the mean value of
all minimizing thresholds.

STEP 3: “Almost” Minimize Probability
Bounds
In step 3 and step 4 of the RTS-algorithm, the goal is
to minimize the probabilities of false alarm, missed
detection, and mis-isolation for the complete FDI
system. Here this means that all residual structures
obtained from the RTS-algorithm must fulfill two re-
quirements. The first is that bounds of these prob-
abilities must be “almost” minimized. This is taken
care of in step 3. The second requirement, which
is treated by step 4, is that the residual structures
obtained must be the “best ones”.

Let S denote the set of all residual structures that
are possible to form with the residual candidates
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in Rcand. Then the number of elements in S,
i.e. the number of possible residual candidates, is
|S| = 2|Rcand| − 1. Because it is required that the
faults are possible to isolate, it is only interesting to
investigate the set of isolating structures, which is
denoted Sisol ⊆ S.

As for the residual related probabilities, the prob-
abilities of false alarm, missed detection, and mis-
isolation are dependent on the current state (condi-
tion) of the system and in particular the fault situa-
tion. For the system condition present during the
fault-free measurement ml ∈ Mff , let P (B̄l

j(s))
denote the probability of false alarm of fault j
for a residual structure s ∈ Sisol. Similarly, for
ml ∈ Mreal let P (Āl

j(s)) denote the probability of
missed detection of fault j and for ml ∈Msmall let
P (C̄l

jk(s)) denote the probability of detecting fault
k when fault j is present, i.e. mis-isolation.

Recall the definition of Λsij

il (s), now as a function of
the residual structure s with the index i referring to
the i:th residual candidate in the residual structure
s. This implies

P (B̄l
j(s)) = P

( ⋂
i Λsij

il (s)
)

ml ∈Mff

P (Āl
j(s)) = P

( [⋂
i Λsij

il (s)
]C )

ml ∈Mreal

fault(l) = j
P (C̄l

jk(s)) = P
( ⋂

i Λsik

il (s)
)

ml ∈Msmall

fault(l) = j 6= k

To calculate the true values of these probabilities,
the joint multi-dimensional density function would
be needed. Unfortunately this density function is
generally difficult to derive from the measurements
M, because a very large amount of data would be
needed. However, it is possible to derive an upper
bound of P (B̄l

j(s)) and P (C̄l
jk(s)), and both lower

and upper bounds of P (Āl
j(s)). The bounds are

derived in (Nyberg and Nielsen, 1997a) and are

P (B̄l
j(s)) ≤ mini P (Λsij

il (s))
maxi P (Λsij

il

C(s)) ≤ P (Āl
j(s)) ≤ 1−∏

i P (Λsij

il (s))
P (C̄l

jk(s)) ≤ mini P (Λsik

il (s))

Note that in the definition of P (C̄l
jk(s)) we did not

consider the case ml ∈ Mreal, even if it would be
possible to do so. The reason is that the lower bound
of P (Āl

j(s)) for ml ∈ Mreal is always less than the
upper bound of P (C̄l

jk(s)) for ml ∈ Mreal. Thus
the lower bound of P (Āl

j(s)), which is minimized,
serves also as an upper bound of P (C̄l

jk(s)).

The idea is to minimize these bounds, but with es-
timated probabilities instead of true probabilities.
Minimizing the bounds actually gives the same re-
sult as minimizing the true probabilities in some spe-
cial cases. Let N be the number of faults. Then
the number of bounds to P (B̄l

j(s)) is N |Mff |, the
number of bounds to P (Āl

j(s)) is 2|Mreal|, and the
number of bounds to P (C̄l

jk(s)) is (N − 1)|Msmall|.
Let B denote the set of all bounds. The bounds b(s)
in B are then functions of s only. The total number
of bounds is

|B| = N |Mff |+ 2|Mreal|+ (N − 1)|Msmall| (4)

The optimization goal is to find the residual struc-
ture for which the bounds are minimized. All
bounds are generally not minimized by the same
residual structure. This problem could be solved by
minimizing some weighted sum of all bounds. How-
ever this would lead to that some bounds might get
quite large. Instead, the strategy adopted here is
to replace the minimization with a constraint that
for a residual structure, all bounds must be “almost
minimized”. Generally this does not give one resid-
ual structure but a set of residual structures. Thus
let Smin(ε) ⊆ Sisol be the set of residual structures
for which all the bounds B are “almost minimized”.
Formally Smin(ε) is defined as

Smin(ε) = {s | max
b(s)∈B

(
b(s)−min

σ
b(σ)

) ≤ ε}

The number of residual structures obtained in
Smin(ε) is dependant on the value of ε. A value
ε = 0, can result in that no residual structures are
obtained. Therefore we find the minimal value of ε
for which Smin(ε) 6= ∅, i.e.

εmin = min
Smin(ε) 6=∅

ε

Then Sε is defined as Sε = Smin(εmin).

STEP 4: Find Optimal Set of Residual Struc-
tures
Because εmin is minimal, we know that in the set
Sε, there is no residual structure for which the val-
ues of all bounds B are strictly less than for any
other residual structure in Sε. There may however
be many pairs of residual structures s1 and s2 such
that ∀b ∈ B b(s1) ≤ b(s2). By omitting the worst
residual structure of all such pairs, we are left with
a set Sopt that can be expressed as

Sopt = {σ | ∀s ∈ Sε([∀b ∈ B b(s) ≤ b(σ)] ⇒ s ≡ σ)}
OUTPUT: The output from the RTS-algorithm
is the residual candidates Rcand with corresponding
thresholds and the residual structures Sopt. Thus for
each element in Sopt we have a complete FDI system
with residuals, thresholds and a residual structure
including X’s.

7. THE APPLICATION OF THE RTS
ALGORITHM TO THE AIR-INTAKE FDI

In this section, the RTS-algorithm is applied to the
12 base residuals constructed in Section 4.

INPUT: Measurement data were collected during
a one minute fault-free test cycle, see (Nyberg and
Nielsen, 1997b). All faults were added to fault-free
measurements and constant bias faults were chosen.
The fault sizes were ±2%, ±4%, and ±6% for the
α-fault, ±2.5%, ±5%, and ±7.5% for the ṁ-fault,
and ±2%, ±4%, and ±6% for the p-fault. For each
sensor, the two smallest fault sizes are considered
to be small faults and rest of the four fault sizes
are considered to be real faults. In addition there
were one fault-free measurement. Thus the input
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< Rbase, M > consists of 12 base residuals, and a
total number of 19 one minute measurements.

STEP 1 and STEP 2: From studying the corre-
lation coefficients, it is concluded that base residu-
als 1 and 7 are highly correlated, C(r1, r7) = 0.99,
and also base residuals 5 and 11, C(r5, r11) = 0.99.
Therefore base residuals 7 and 11 are omitted.

X’s are introduced and residuals candidates for
which the lowest probability that they will signal
false alarm or miss a fault, is higher than 0.2, are
omitted. After this, there are 14 residual candidates
left, i.e. |Rcand| = 14.

STEP 3 and STEP 4: It follows that |S| = 214 =
16384, and from a search in S that |Sisol| = 12032.
From (4) we know that |B| = 39. Then from a search
in Sisol it follows that |Sε| = 256 and |Sopt| = 18. Of
these 18 residual structures, there are 4 structures
having 5 residuals, 8 having 6 residuals, 5 having 7
residuals, and 1 having 8 residuals. Three of these
residual structures can be seen in Figure 4.

f1 f2 f3

r1 1 X X
r2 0 1 1
r3 1 0 1
r4 1 1 0
r8 1 0 X

f1 f2 f3

r1 1 X X
r2 0 1 1
r3 1 0 1
r3 1 0 X
r4 1 1 0

fα fṁ fp

r1 1 1 X
r1 1 X X
r2 0 1 1
r3 1 0 1
r8 1 0 X

Fig. 4. Three examples of residual structures.
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Fig. 5. Confirmation of the FDI design for the cases
no fault, α-, ṁ-, and p-fault respectively.

8. CONFIRMATION OF THE DESIGN

For the final selection in a real application, a residual
structure with 5 residuals should be the best choice.
This is to minimize the FDI system complexity and
computational load.

To confirm the design, the leftmost residual struc-
ture in Figure 4 is chosen. In Figure 5, each col-

umn contains plots of the fault decision for the three
faults respectively. Each row of plots corresponds to
a measurement with a specific fault situation (indi-
cated to the left in the plot).

It is clear that the RTS algorithm successfully man-
age to generate a FDI system for the air-intake sys-
tem of the engine. However in the first row, it can
be seen that there are some false alarms. Rows 2,
5, and 8, corresponds to measurements with small
faults present and we see some mis-isolations. Rows
3, 4, 6, 7, 9, and 10 corresponds to measurements
with real faults present and we see some miss detec-
tions and mis-isolations. Thus the performance is
not perfect but we should remember that the fault
sizes used in Mreal are comparably small for this
application. If better performance, in terms of less
false alarms etc., is required, then the smallest faults
in Mreal must be moved to Msmall.

9. CONCLUSIONS

The problem of automatic FDI design, with ap-
plication to automotive engines, has been investi-
gated. An FDI system for the air-intake system of
an SI-engine is constructed. The complete design
chain has been covered, including model construc-
tion, residual generator design, selection of thresh-
olds, and design of residual structure.

The last two design stages were performed by the
fully automatic residual and threshold selection
(RTS) algorithm. The RTS algorithm uses arbitrary
measurement series and minimizes probabilities of
false alarm, missed detection, and mis-isolation.

The resulting diagnosis system is experimentally
validated and it is shown that good performance is
obtained.
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