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Abstract: Present paper proposes an FDI-system for the wind turbine benchmark designed
by application of a generic automated design method, in which the number of required human
decisions and assumptions are minimized. No specific adaptation of the method for the wind
turbine benchmark is needed, and the number of parameter choices is small. The method
contains in essence three steps: generation of potential residual generators; residual generator
selection; and diagnostic test construction. The second and third step are based on novel ideas
developed in this paper; a greedy selection algorithm for the second step, and a methodology
based on the Kullback-Leibler divergence for the third step. The proposed FDI-system performs
well in spite of no specific adaptation or tuning to the benchmark. All faults in the pre-defined
test sequence can be detected and all faults, except a double fault, can also be isolated shortly
thereafter. In addition, there are no false or missed detections.
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1. INTRODUCTION

Wind turbines stand for a growing part of power pro-
duction. The demands for reliability are high, since wind
turbines are expensive and their off-time should be mini-
mized. One potential way to meet the reliability demands
is to adopt fault tolerant control (FTC), i.e., prevent
faults from developing into failures by taking appropriate
actions. A typical action is reconfiguration of the control
system. An essential part of an FTC-system is fault de-
tection and isolation (FDI). To obtain good detection and
isolation of faults, model-based diagnosis is often neces-
sary.

Design of a complete model-based FDI-system is a com-
plex task and involves by necessity several decisions and
assumptions. For example the choice of design method,
tuning of parameters, and assumptions regarding, e.g.,
noise distributions and the nature of the faults to be
diagnosed. All these activities are time-consuming and in
general, an optimal solution requires detailed knowledge
of the behavior of the considered system, something that
is rarely available for real applications.

Consequently, inspired by work with real industrial ap-
plications, we have made a strong effort to develop an
automated design process that minimizes the number of
required human decisions and assumptions. The paper
investigates the potential of designing an FDI-system for
the wind turbine benchmark, see Fogh Odgaard et al.
[2009], using this philosophy. The methodology used in the
design is general, and no specific adaptation to the wind
turbine benchmark is necessary.

The design method is composed of three main steps, of
which the second and third are based on novel ideas

developed in this paper. In the first step, a large set of
potential residual generators are generated. In the second
step, the residual generators most suitable to be included
in the final FDI-system are selected and then constructed
by use of the algorithms presented in Svärd and Nyberg
[2010]. The selection is done by means of a greedy selection
algorithm. In the third and final step, diagnostic tests for
the selected set of residual generators are designed. The
diagnostic tests are based on a comparison between the
estimated probability distributions of residuals, evaluated
with current and no-fault data.

As it turns out, the proposed FDI-system performs
well when evaluated on the test sequence described
in Fogh Odgaard et al. [2009]. All faults in the test se-
quence can be detected within feasible time, and there are
no false or missed detections. Further, all faults, except
a double fault, can also be isolated. A tailor-made FDI-
system perfectly tuned for the wind turbine benchmark
would probably perform better than the one we propose.
However, in relation to the required effort for application
of the automated design method, and in spite of no ex-
tra tuning or specific adaptation to the benchmark, the
performance of the FDI-system is good.

The wind turbine benchmark model and the strategy
used for modeling of faults, are described in Section 2.
Section 3 presents an overview of the proposed solution
and subsequent sections describes in detail the different
steps of the applied design method: the residual genera-
tion in Section 4, and the residual generator selection in
Section 5. The method for design of diagnostic tests, and
the fault isolation scheme is considered in Section 6. The
performance of the designed FDI-system is evaluated and
discussed in Section 7, and Section 8 concludes the paper.



2. THE WIND TURBINE BENCHMARK MODEL

The wind turbine system is described and modeled
in Fogh Odgaard et al. [2009]. The system contains six
sub-systems: blade system, pitch system, drive train, gen-
erator, converter, and controller, see Figure 1.

Blade & Pitch
 System Drive Train Generator &

Converter

Controller

rτ

rβ

mg ,τ

rω gω

mr,ω mg,ω

rg ,τ
gP

rP

wv

mβ

gτ

mwv ,

Fig. 1. Overview of the wind turbine System.

2.1 State-Space Realization of Transfer Functions

The pitch system and converter are modeled as frequency
domain transfer functions. The residual generation algo-
rithm we intend to apply, assume a model of differential
and algebraic equations. To obtain a model in this form,
the transfer functions are realized as time-domain state-
space systems.

The relation between pitch angle reference βi,r and pitch
angel output βi can be realized in state-space form, in fact
observable canonical form see e.g. Rugh [1996], as follows

ẋβi1
(t) = −2ζωnxβi1

(t) + xβi2
(t) (1)

ẋβi2(t) = −ω2
nxβi1(t) + ω2

nβi,r(t) (2)
βi(t) = xβi1

(t), (3)
for i = 1, 2, 3. Using the same approach, the relation
between converter reference τg,r and output τg can be
written as

ẋτg (t) = −αgcxτg (t) + αgcτg,r(t) (4)
τg(t) = xτg (t). (5)

2.2 Fault Modeling

The set of faults to consider for the wind turbine is
specified in Fogh Odgaard et al. [2009] and given by
F = {∆β1,∆β2,∆β3,∆τg ,∆ωr,∆ωg ,∆β1,m1,∆β1,m2,∆β2,m1,

∆β2,m2,∆β3,m1,∆β3,m2,∆ωr,m1,∆ωr,m2,∆ωg,m1,∆ωg,m2} ,

where ∆β1, ∆β2, ∆β3, and ∆τg are actuator faults, ∆ωr
and ∆ωg system faults, and ∆β1,m1, ∆β1,m2, ∆β2,m1,
∆β2,m2, ∆β3,m1, ∆β3,m2, ∆ωr,m1, ∆ωr,m2, ∆ωg,m1, and
∆ωg,m2, sensor faults.

To incorporate fault information in the nominal model,
we have chosen to model all faults as additive signals
in corresponding equations. Thus, we are not taking into
account all information regarding the nature of faults given
in Fogh Odgaard et al. [2009]. Consider for example fault
∆β1 which represents an actuator fault in pitch system
1, see (1)-(3), resulting in changed dynamics of β1 due
to dropped main line pressure or high air content in the
oil. One possible way to model this fault would be as a
deviation in parameters ωn and ζ in (1) and (2). With

the chosen approach, the fault is instead modeled as an
additive signal in (3) for i = 1, i.e., β1 = xβ11

+ ∆β1.

Note that the adopted fault modeling approach is general
and no assumptions are made regarding for example the
time-behavior of faults. Thus, the approach is able to han-
dle for example multiplicative faults even though the fault
signal is assumed to be additive. Consider for example a
multiplicative fault in β1 given by β1 = δ · xβ11

, δ 6= 1,
which can be equivalently described by ∆β1 = xβ11

(δ−1).

The main argument for using this, more general, approach
is that we consider it hard, or even impossible, to know
exactly how a faulty component behaves in reality. Fur-
thermore, data from all fault-cases for evaluation and
validation of a more detailed model are seldom available.
Modeling faults in this way also results in a minimum
of fault modes. This is beneficial since it gives a smaller
model which simplifies several steps in model-based diag-
nosis, e.g. residual generation and isolation. In addition,
regarding how diagnosis information is utilized, e.g., for
Fault Tolerant Control, it is unnecessary to distinguish
between different fault modes if they are associated with
the same action or consequence. Indeed, this applies to all
sensor faults in the wind turbine, since the system should
be reconfigured regardless of the type of sensor fault, i.e.
fixed value or gain factor, see Table 2 in Fogh Odgaard
et al. [2009]. Last, but not least, an additional important
motivator is simplicity, since extending the nominal model
with additive fault signals in this way is straightforward
and easy.

2.3 Model Extensions

According to Fogh Odgaard et al. [2009], the same pitch
angle reference signal βr is fed to all three pitch sys-
tems (1)-(3), i.e., βi,r = βr for i = 1, 2, 3. However, ac-
cording to the provided Simulink c© model, the individual
reference signals are instead calculated in a control loop
outside the pitch system as

βi,r = βr + βi −
(
βi,m1 + βi,m2

2

)
, i = 1, 2, 3 (6)

where βi is given by (1)-(3), and βi,m1 and βi,m2 are
sensor measurements. To incorporate this information in
the design of the FDI system, the original wind turbine
model is extended with the relations between βi,r and βr
given by (6).

2.4 The Model with Faults

The complete model of the wind turbine model, with fault
signals denoted by ∆, used in this work for design of an
FDI-system is given below.

e1 : τr =

3∑
i=1

ρπR3Cq (λ, βi) v
2
w

6

e2 : λ =
ωrR

vw
e3, e5, e7 : ẋβi1 = −2ζωnxβi1 + xβi2 , i = 1, 2, 3

e4, e6, e8 : ẋβi2 = −ω2
nxβi1 + ω2

nβi,r, i = 1, 2, 3

e9, e10, e11 : βi = xβi1 + ∆βi, i = 1, 2, 3

e12 : ω̇g =

(
ηdtBdt

NgJg

)
ωr +

(
− ηdtBdt

N2
g
−Bg

Jg

)
ωg+



(
ηdtKdt

NgJg

)
θ∆ −

(
1

Jg

)
τg + ∆ωg

e13 : ω̇r = −
(
Bdt −Br

Jr

)
ωr +

(
Bdt

NgJr

)
ωg−(

Kdt

Jr

)
θ∆ +

(
1

Jr

)
τr + ∆ωr

e14 : θ̇∆ = ωr −
(

1

Ng

)
ωg

e15 : ẋτg = −αgcxτg + αgcτg,r

e16 : τg = xτg + ∆τg

e17 : Pg = ηgcωgτg

e18, e20, e22 : βi,m1 = βi + ∆βi,m1, i = 1, 2, 3

e19, e21, e23 : βi,m2 = βi + ∆βi,m2, i = 1, 2, 3

e24, e25 : ωr,mj = ωr + ∆ωr,mj , j = 1, 2

e26, e27 : ωg,mj = ωg + ∆ωg,mj , j = 1, 2

e28 : vw,m = vw

e29 : τg,m = τg

e30 : Pg,m = Pg

e31, e32, e33 : βi,r = βr + βi −
(
βi,m1 + βi,m2

2

)
, i = 1, 2, 3

3. OVERVIEW OF PROPOSED SOLUTION

The proposed FDI-system for the wind turbine is com-
prised of three sub-systems: residual generation, fault de-
tection and fault isolation, see Figure 2.

Measurements, i.e., sensor readings, from the wind turbine
are fed to a bank of residual generators whose output is a
set of residuals. The residuals are used as input to the fault
detection block. This block contains diagnostic tests based
on the residuals, and its output indicates if any test has
alarmed, that is, if a fault has been detected in the part of
the system monitored by the corresponding residual. The
result from the fault detection is fed to the fault isolation
block in which the detected fault(s) are isolated.

In the subsequent sections, we describe in detail the
different steps of the design method used to create the
proposed FDI-system.

Residual
Generation

Fault
IsolationFault Detection

Measurements Residuals Detection Results Isolation Results

Fig. 2. Schematic Overview of the FDI-System.

4. RESIDUAL GENERATION

The set of residual generators used in the FDI-system are
based upon the ideas originally described in Staroswiecki
and Declerck [1989], where unknown variables in a model
are computed by solving equation sets one at a time
in a sequence and a residual is obtained by evaluating
a redundant equation. Similar approaches are described
and exploited in for example Cassar and Staroswiecki
[1997], Staroswiecki [2002], Pulido and Alonso-González
[2004], Ploix et al. [2005], Travé-Massuyès et al. [2006],
Blanke et al. [2006], Svärd and Nyberg [2010]. This class

of residual generation methods, referred to as sequential
residual generation, has shown to be successful for real
applications and also has the potential to be automated
to a high extent.

4.1 Sequential Residual Generation

We will now very briefly recapitulate some concepts and
results of sequential residual generation given in Svärd and
Nyberg [2010], to which we also refer for technical details.

We consider a model (E,X,D,Z) to be a set of differential
and algebraic equations E = {e1, . . . , em} containing
unknown variables X = {x1, . . . , xn}, differential variables
D = {ẋ1, . . . , ẋn}, and known variables Y = {y1, . . . , yr}.
The equations in E are, without loss of generality, assumed
to be on the form

ei : fi (ẋ,x,y) = 0, i = 1, . . . ,m, (7)
where ẋ, x and y are vectors of the variables in D, X, and
Y respectively. Note that the model of the wind turbine
presented in Section 2.4 can trivially be cast into this form.

Computation Sequence The order and from which equa-
tions variables are computed is described by a computation
sequence, defined as an ordered set of variable and equation
pairs

C = ((V1, E1) , (V2, E2) , . . . , (Vk, Ek)) , (8)
where Vi ⊆ X∪D and Ei ⊆ E. The computation sequence
C implies that we first compute the variables in V1 from
equations E1, then the variables in V2 from equations E2

and so forth. Whether or not it is possible to compute
the specified variables from the corresponding equations,
depends naturally on the analytical properties of the
equations. Equally important are however the causality
assumption, i.e., if integral and/or derivative causality
should be used to handle differential equations, and the
properties of the computational tools that are available
for use. Computational tools, as for example analytical
or numerical equation solvers, are essential for handling so
called algebraic loops. For a detailed discussion regard-
ing algebraic loops, computational tools, and causality
see Svärd and Nyberg [2010].

Sequential Residual Generator Having computed the
unknown variables in V1 ∪ V2 ∪ . . . ∪ Vk according to the
computation sequence C in (8), a residual can be obtained
by evaluating a redundant equation e, i.e. e ∈ E \ E1 ∪
E2 . . .∪Ek with varX(e) ⊆ varX(E1 ∪E2 . . .∪Ek), where
the operator varX(·) tells which unknown variables are
contained in an equation set. A residual generator based
on a computation sequence C and redundant equation e is
referred to as a sequential residual generator.

Finding Sequential Residual Generators Regarding im-
plementation aspects, e.g. complexity and numerical is-
sues, it is unnecessary to compute variables that are not
contained in the residual equation, or not used to compute
any of the variables contained in the residual equation.
Furthermore, it is also desirable that computation of vari-
ables in each step is performed from as small equation sets
as possible. It can be shown, see Svärd and Nyberg [2010],
that the equations in a computation sequence fulfilling
the above properties, together with a redundant residual
equation, in fact correspond to an Minimal Structurally



Overdetermined (MSO) set, see Krysander et al. [2008]. In
other words, a necessary condition for the existence of a
sequential residual generator for a model is that the model,
or sub-model, is an MSO set.

4.2 Structural Analysis of Wind Turbine Model

Consider now the model of the wind turbine described in
Section 2.4, with equations E = {e1, e2, . . . , e33}, unknown
variables
X = {τr, β1, λ, vw, β2, β3, ωr, xβ11 , xβ12 , β1,r, xβ21 , xβ22 ,

β2,r, xβ31 , xβ32 , β3,r, ωg, θ∆, τg, xτg , Pg
}
,

and known, i.e., measured, variables
Z = {βr, τg,r, β1,m1, β1,m2, β2,m1, β2,m2, β3,m1,

β3,m2, ωr,m1, ωr,m2, ωg,m1, ωg,m2, vw,m, τg,m, Pg,m} .
In summary, the model contains 33 equations, 21 unknown
variables, and 15 known variables.

As indicated in Section 4, a first step when searching
for a sequential residual generator for a model may be
to find an MSO set in the model. There are efficient
algorithms for finding all MSO sets in large equation sets,
see e.g. Krysander et al. [2008]. By using a Matlab c© im-
plementation of the algorithm presented in Krysander
et al. [2008], 1058 MSO sets was found in total. Given an
MSO set we may construct a sequential residual generator
by removing one equation from the set and then find a
computation sequence in the remaining, just-determined,
set of equations, see e.g. Svärd and Nyberg [2010]. Hence,
the number of potential sequential residual generators that
can be constructed from an MSO set equals the number
of equations in the set, and the total number of potential
sequential residual generators in a model is the total sum
of the equations in each of all MSO sets for the model. For
the wind turbine model, there are in total 15248 potential
sequential residual generators.

5. SELECTION OF RESIDUAL GENERATORS

It is not feasible to implement and use all 15248 potential
residual generators in the final FDI-system. A more attrac-
tive approach is instead to pick, from the set of all potential
residual generators, a smaller set of residual generators
with desired properties.

5.1 Requirements on Residual Generators

The desired properties of the sought set of residual genera-
tors are: (i) the set of residual generators should enable us
to isolate all single faults from each other; (ii) a residual
generator set of smaller cardinality is preferred before a
larger one, given that the two sets have equal isolability
properties; (iii) a residual generator based on an MSO
set of smaller cardinality is preferred before a residual
generator based on an MSO set of larger cardinality, given
that the two sets have equal detectability and isolability
properties. Properties (ii) and (iii) are mainly motivated
by implementation aspects such as complexity and numer-
ical issues.

We will base the selection of residual generators on quan-
titative, structural, properties of the MSO sets instead

of more qualitative or analytical properties on the actual
residual generators. The latter is intractable since it re-
quire that residual generators are implemented, executed
and evaluated, and also access to representative measure-
ment data for all fault cases.

5.2 Formulation of the Selection Problem

We will now formulate the selection problem in terms of
properties on a set of MSO sets. To do this, the notions
of detectability and isolability are needed. Assuming that
each fault occurs in only one equation, let efi denote the
equation in an equation set E containing fault fi, for
example e∆β1,m1

= e18, see Section 2. Note that if a fault
fj occurs in more than one equation, the fault fj can be
replaced with a new variable xfj in these equations, and
the equation xfj = fj added to the equation set. This
added equation will then be the only equation where fj
occurs. To proceed, let (·)+ denote an operator extracting
the overdetermined part of a set of equations. According
to Krysander and Frisk [2008], a fault fi is structurally
detectable in the equation set E if efi ∈ (E)

+ and
structurally isolable from fault fj in the equation set E
if efi ∈

(
E \ efj

)+.
By utilizing the structure, i.e. which unknown variables
are contained in which equation, see e.g. Blanke et al.
[2006], of the wind turbine model, the structural isolability
properties of the model was calculated. All considered
faults, see Section 2.2, can be (structurally) isolated from
each other in the wind turbine model.

To this end, let M denote the set of all MSO sets in the
model, and F the set of considered faults. Let fi, fj ∈ F
and define the isolation class for (fi, fj) as

Ifi,fj =
{
m ∈M : efi ∈ (m)

+ ∧ efj 6∈ (m)
+
}
, (9)

that is, the subset of M in which fault fi is structurally
detectable and fault fj is not. Further, let

I =
{
Ifi,fj : ∀ (fi, fj) ∈ F × F, fi 6= fj

}
(10)

denote the set of all isolation classes for full isolation of all
faults in F .

To be able to satisfy the isolability property (i) stated
above, we want to find a set M ⊆ M with a non-empty
intersection with all isolation classes, that isM ∩Ifi,fj 6= ∅
for all Ifi,fj ∈ I. To also satisfy the property (ii) we
want to find an M so that |M | is minimized, where the
operator |·| returns the cardinality of a set. There are
several possibilities for a metric that helps us find an M
that satisfies property (iii). We opt for simplicity and have
therefore chosen to minimize

∑
m∈M |m|. As an additional

requirement, on top of (i), (ii), and (iii) above, we require
that at least one residual generator can be constructed
from every m ∈M .

5.3 Solving the Selection Problem

In fact, the requested property on M implies that we
should find a hitting set for I. To also satisfy the require-
ment concerning the cardinality of M , a minimal hitting
set (MHS) would be preferred. The MHS problem is known
to be NP-hard, see e.g. Garey and Johnson [1979], but



there are several algorithms that gives an approximative
solution, see for example Abreu and van Gemund [2009]
and references therein.

We have chosen to compute an approximate solution to the
problem with a greedy selection approach, see e.g. Black
[2005]. To accomplish this, we need to specify a utility
function, i.e., a function that evaluates the usefulness of a
given MSO set, and also state the properties of a complete
solution to the selection problem. Following the greedy
selection approach, we add to the solution the MSO set
with the largest utility until the solution is complete.
Furthermore, we only add MSO sets from which at least
one residual generator can be constructed.

Characterization of a Solution We will now characterize
a complete solution to the selection problem for use in
the selection algorithm. First, we define the isolation class
coverage of a set of MSO sets M ⊆M as

ΣM =
{
Ifi,fj ∈ I : ∃m ∈M,m ∈ Ifi,fj

}
, (11)

which states which of the isolation classes in I that are
covered by the MSO sets in M . The property (i) stated
above, i.e., the isolation or hitting set property, can with
the isolation class coverage notion be formulated as ΣM =
I. This characterizes a complete solution of the selection
problem.

Utility Function To evaluate a specific MSO set, we want
to take into account the properties (ii) and (iii) above. We
will use the utility function

η (m, I) =

∣∣Σ{m}∣∣
|I| , (12)

reflecting how many of the isolation classes in I that are
covered by the MSO set m. Since we aim at covering all
isolation classes with a minimum of MSO sets, property
(ii), we want to pick an MSO set that maximizes this term.
If there are several MSO sets with equal utility, the MSO
set among these with smallest cardinality will be picked.
In this way, property (iii) is taken into account.

5.4 The Selection Algorithm

The algorithm selectResidualGenerators used for
selecting residual generators by means of greedy selection
is given below. Input to the algorithm is a set of MSO
sets M, and a set of isolation classes I. The output is a
set of MSO sets M ⊆ M and set of residual generators
R. The function findComputationSequence, described
in Svärd and Nyberg [2010], is used to find a computation
sequence given a just-determined set of equations.

function selectResidualGenerators(M, I)
M := ∅
R := ∅
while I 6= ∅ do

H = {m̂ ∈M : m̂ = arg maxm∈M η (m,M)}
m∗ := arg minm∈H |m|
x := varX(m∗)
r := ∅
for all e ∈ m∗ do

m′ := m∗ \ {e}
C := findComputationSequence(m′, x)
if C 6= ∅ then

r := r ∪ {(T (C) , e)}
end if

end for

if r 6= ∅ then
M := M ∪ {m∗}
R := R ∪ {r}

end if
M :=M\ {m∗}
I := I \ Σ{m∗}

end while
end function

5.5 Resulting Set of Residual Generators

Both functions selectResidualGenerators and find-
ComputationSequence were implemented in Mat-
lab c©. As computational tool, see Svärd and Nyberg
[2010], the algebraic equation solver Maple c© was utilized,
which allows symbolic solving of algebraic loops. To avoid
implementation issues related to numerical differentiation
and thereby make the final deployment of the FDI-system
simpler, findComputationSequence was configured to
return only computation sequences using integral causal-
ity. Moreover, also due to implementation issues, find-
ComputationSequence was configured to prefer alge-
braic equations as residuals before differential equations,
if possible.

The algorithm selected 16 MSO sets, i.e. |M | = 16,
and

∑
m∈M |m| = 61. Of the 16 selected MSO sets, 6

contain algebraic equations only. The other 10 MSO sets
contain both algebraic and differential equations. The total
number of found residual generators is 34, that is, |R| = 34.
Of these 34 residual generators, 18 are static and the
remaining 16 are dynamic and consequently, due to the
configuration of the algorithm, uses integral causality.

5.6 Fault Signature Matrix

Given an MSO set m its fault signature Fm , with respect
to the faults in F , is defined as

Fm = {fi ∈ F : efi ∈ m} .
For instance, the fault signature of the MSO set m1 =
{e26, e27} ⊆ M is Fm1

= {∆ωg,m1,∆ωg,m2}. A convenient
representation of the fault signature of a set of MSO sets
M = {m1,m2, . . . ,mk} with respect to F is the fault
signature matrix (FSM) S with elements defined by

Sij =

{
x, if fj ∈ Fmi

,mi ∈M
0, else.

The FSM for the 16 MSO sets on which the selected
residual generators are based, is given in Table 1.

6. FAULT DETECTION AND ISOLATION

For fault detection and isolation, we construct diagnostic
tests based on each of the 16 residuals. Since no as-
sumptions are made regarding the nature of the faults
that should be detected, nothing is known about faults
temporal properties, size, rate of occurrence, etc. Hence,
we may not be able to fully exploit the potential of some
general method for change detection as for example the
CUSUM-test, see e.g. Gustafsson [2000]. However, for most
systems there are no-fault data available, either as real or
simulated measurements. To take advantage of this fact,
we base our diagnostic tests on a comparison between the
estimated probability distributions of residuals evaluated
with current and no-fault data.



Table 1. Fault Signature Matrix
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r1 (m1) x x
r2 (m2) x x
r3 (m3) x x
r4 (m4) x x
r5 (m5) x x
r6 (m8) x
r7 (m11) x x x
r8 (m27) x x
r9 (m29) x x
r10 (m31) x x
r11 (m7) x
r12 (m6) x
r13 (m14) x x x
r14 (m28) x x
r15 (m30) x x
r16 (m32) x x

6.1 Diagnostic Test Design

Let PNF be an estimate of the distribution of a residual
from no-fault data, and P an estimate of the distribution
of the same residual from current data, both discretized in
n bins. Then the Kullback-Leibler (K-L) divergence, Kull-
back and Leibler [1951], between P and PNF is given by

D
(
P‖PNF

)
=

n∑
j=1

P (j) log
P (j)

PNF (j)
. (13)

To apply the K-L divergence for construction of a diag-
nostic test, we proceed as follows. Given a representative
batch of no-fault data ZNF , i.e. in our case measurements
of the known variables in Z, we run the set of residual
generators and obtain a set of residuals. For each resid-
ual ri, we then estimate its probability distribution and
obtain PNFi , i.e. actually PNFi ≈ P

(
Ri|ZNF

)
where Ri

is a stochastic variable, discretized in n bins, representing
residual ri. This procedure can be done off-line.

On-line, we continuously estimate the distribution of ri
using a sliding window containing N samples of ri. If we
by P ti denote the estimated distribution of ri calculated at
time t, i.e. P ti ≈ P (Ri|Zt) where Zt denotes the batch of
data in the sliding window at time t, the diagnostic test is
designed as

Ti(t) =

{
1, if D

(
P ti ‖PNFi

)
≥ Ji,

0, else,
(14)

where Ji is the threshold for alarm. The K-L divergence
D
(
P ti ‖PNFi

)
is referred to as the test quantity of the

diagnostic test Ti.

To estimate a probability distribution, we create a normal-
ized histogram with n bins for the data set from which the
distribution should be estimated.

6.2 Fault Isolation Strategy

To obtain the total diagnosis statement from a set of
alarming diagnostic tests, we simply match their fault
signatures with the FSM given in Table 1. For example, if
only T10 alarms, we look at the row corresponding to r10

and conclude that either fault ∆β1 or ∆β1,m2 are present.

If then also T16 alarms, we combine the row corresponding
to r16 with the row corresponding to r10 and conclude that
fault ∆β1 must be present.

To handle also multiple faults, we use the fault signatures
in the original FSM in Table 1 to create an extended FSM
with fault signatures also for multiple faults. This is done
by column-wise OR-operations in the original FSM. For
instance, the column in the FSM for the double fault
∆ωg,m1 ∧ ∆ωg,m2 will get “x” in rows corresponding to
r1, r7, r11, r12, and r13 and zeros elsewhere. In the fault
isolation scheme, we first attempt to isolate all single faults
using the original FSM in Table 1. If this does not succeed,
we try to isolate double faults, and so forth.

Due to uncertainties as for example modeling errors and
measurement noise, the power of diagnostic tests are not
ideal for all faults. That is, the probability of detection
given a certain fault is not always 1. To take this into
account, the isolation scheme interprets an “x” in a certain
row in Table 1 as if the test may respond if the corre-
sponding fault occurs and consequently no conclusions are
drawn if a test does not respond.

6.3 Implementation Details

The final FDI-system was implemented in Simulink c©

according to the structure in Figure 2.

The 16 residual generators were implemented as Embed-
ded Matlab Functions (EMF) in which the code was au-
tomatically generated from the structures obtained from
the algorithms findComputationSequence and find-
ResidualGenerators. The initial conditions for the
states in the dynamic residual generators were derived
from the corresponding sensor measurements, if available,
otherwise set to zero. For instance, θ∆(t0) = 0, xβi1(t0) =
βi,m1(t0)+βi,m2(t0)

2 , and ωg(t0) =
ωg,m1(t0)+ωg,m2(t0)

2 . This
may cause transients in the residuals, but this is not
considered a problem. The output from the residual gen-
eration block is a vector r containing the 16 residuals.

The diagnostic tests were implemented as EMF’s in the
fault detection block in Figure 2. The output from this
block consist of the two signals detectionResults and
detectionDone. The signal detectionResults is a binary
vector where elements correspond to the result of the diag-
nostic tests Ti, i = 1, 2, . . . , 16. The signal detectionDone
is simply set to one if any test has alarmed, and zero else.

The fault isolation scheme and the logic for perform-
ing first single fault isolation, then double fault isola-
tion and so on, was also implemented as an EMF. The
output from the fault isolation block consist of the sig-
nals isolationDone and isolationResult. The signal
isolationResult contains the diagnosis statement and
consists of a binary vector where elements correspond to
the considered faults. The signal isolationDone is a bi-
nary signal set to one if fault isolation could be performed,
and zero else. The signal isolationDone is only set to one
if the diagnosis statement has been equal for tvalI samples
in a row.



6.4 Parameters

The number of bins n in the histograms used as distribu-
tion estimates, is a trade-off between detection time, noise
sensitivity, and complexity, in terms of computational
power and memory. A large n results in fast detection, but
on the other hand also in increased sensitivity for noise.
Also, a large n requires more memory and involves more
computations, in comparison with a smaller n.

The size N of the sliding window used to batch data for
creation of the histograms is a trade-off between detection
performance, noise sensitivity, and complexity. A large N
will give the K-L test quantity low-pass characteristics,
resulting in a smoothed K-L test quantity. This makes it
possible to detect small changes in the estimated distribu-
tions. On the other hand, a large N requires more memory.
The choice of N is also related to the number of bins n
in the histograms and vice versa, since a small N together
with a large n, will result in a sparse histogram. Hence,
the choices of N and n must match.

Preliminary investigations indicate however that the method
is quite insensitive to the values of n and N if 15 ≤ n ≤ 50
and 2000 ≤ N ≤ 6000. A decent trade-off, taking this into
account, but also the complexity issues discussed above, is
n = 20 and N = 3000, which are the values used in the
final FDI-system.

The choice of alarm thresholds Ji, i = 1, 2, . . . , 16, is
a trade-off between detection time and the number of
false detections. The higher the thresholds, the longer the
detection time and the lower the rate of false alarms. The
choice of alarm thresholds is related to the choices of n and
N since both affect how sensitive a K-L test quantity is to
noise, which in turn affects the rate of false detections. We
aim at choosing the alarm thresholds so that the number
of false detections is minimized, implying that the choice
of Ji must match the choices of n and N .

The only parameter involved in the fault isolation is the
isolation validation time tvalI . It can be used to compensate
for the fact that different diagnostic tests have different
detection times. By choosing a large tvalI , we decrease
the probability of false isolation, but on the other hand
increase the isolation time.

7. EVALUATION AND RESULTS

To evaluate the performance of the proposed FDI-system,
we use the test definition described in Fogh Odgaard et al.
[2009]. The test definition is based on measured wind
data and a sequence of injected faults. The set of injected
faults, their time of occurrence and description, is specified
in Table 2. The sequence contains 5 sensor faults and 3
actuator faults. Note that the fault injected at 1000-1100
s is the double fault ∆ωr,m2 ∧∆ωg,m2.

The no-fault distributions used in the evaluation were esti-
mated from residual data stemming from 100 Monte Carlo
simulations with no-fault data, i.e. inputs corresponding
to the measured variables in Z. Each set of no-fault data
was generated with the provided wind turbine model with
different noise realizations. The alarm thresholds Ji, i =
1, 2, . . . , 16, were chosen in order to minimize the number
of false detections. They were therefore computed as a

Table 2. Fault Sequence

Fault Time (s) Description
∆ωr,m2 1000 - 1100 ωr,m2 = 1.1ωr,m2

∆ωg,m2 1000 - 1100 ωg,m2 = 0.9ωg,m2

∆ωr,m1 1500 - 1600 ωr,m1 = 1.4 rad/s
∆β1,m1 2000 - 2100 β1,m1 = 5◦

∆β2,m2 2300 - 2400 β2,m2 = 1.2β2,m2

∆β3,m1 2600 - 2700 β3,m1 = 10◦

∆β2 2900 - 3000 ωn = ωn2, ζ = ζ2
∆β3 3400 - 3500 ωn = ωn3, ζ = ζ3
∆τg 3800 - 3900 τg = τg + 2000 Nm

Table 3. FDI Results. Time values in seconds.
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Req. 0.1 0.1 0.1 0.1 0.1 0.08 6 0.05
TD 0.040 0.16 0.058 4.30 0.069 51.57 18.1 7.94
TmaxD 0.04 0.27 0.07 6.10 0.07 51.88 19.05 7.98
TminD 0.03 0.06 0.05 0.40 0.06 50.57 16.37 7.90
T I - 2.53 0.12 88.85 0.13 56.95 31.84 7.99
TmaxI - 3.13 0.12 114.26 0.13 120.73 111.96 8.03
TminI - 1.89 0.11 13.17 0.12 51.62 17.91 7.95
MD 0 0 0 0 0 0 0 0
FD 0 0 0 0 0 0 0 0

safety factor α = 1.1 times the maximum value of the
corresponding K-L test quantities from 100 simulations
with no-fault data. The isolation validation time tvalI was
set to 4 samples.

7.1 Results and Analysis

By means of Monte Carlo simulations, the FDI-system was
simulated 100 times with data from the provided wind
turbine model set up according to the above described test
sequence.

Based on the results from the 100 runs, the mean time
of detection TD, maximum time of detection TmaxD , min-
imum time of detection TminD , mean time of isolation
T I , minimum time of isolation TminI , the total number
of missed detections MD, and the total number of false
detections FD, for each of the faults in the test sequence,
were computed. The results along with the requirements
as specified in Fogh Odgaard et al. [2009] are shown in
Table 3, where all time values are given in seconds.

According to the row corresponding to TD in Table 3, all
faults in the test sequence could be detected. For faults
∆ωg,m2∧∆ωr,m2, ∆β1,m1, ∆β3,m1 detection requirements
are met, by means of both TD and TmaxD .

All faults, except the double fault ∆ωg,m2 ∧∆ωr,m2 could
also be isolated. However, the mean time of isolation,
T I , for some faults, e.g. ∆β2,m2, is substantially longer
than the corresponding mean time of detection. The main
reason for this is that some tests respond slower to faults
than other. As said, fault ∆ωg,m2 ∧ ∆ωr,m2 could not be
isolated. In fact, this fault is not uniquely isolable with
the isolation strategy described in Section 6.2 since the
test response of fault ∆ωg,m2 ∧∆ωr,m2 is a subset of the
test response of fault ∆ωg,m2 ∧∆ωr,m1, see Table 1. Both
faults ∆ωg,m2 and ∆ωr,m2 are however contained in the
diagnosis statement computed after the faults have been
detected.



It seems like sensor faults, e.g., ∆β3,m1 tend to be easier to
detect and isolate than actuator faults as for example ∆τg
and ∆β2. One possible explanation may be that actuator
faults in general cause changes in dynamics, whose effects
are attenuated by modeling errors, noise, etc.

As can be seen in the last two rows of Table 3, there are no
missed or false detections in neither of the 100 test runs.

7.2 Case Study of Fault ∆ωr,m1

To study in more detail how the FDI-system handles
faults, we consider the sensor fault ∆ωr,m1. The fault
corresponds to a fixed value of 1.4 rad/s being measured
by sensor ωr,m1 and occurs at time t = 1500 s. According
to the FSM in Table 1, the residuals sensitive to fault
∆ωr,m1 are r2 and r13. These residuals along with the
corresponding K-L test quantities are shown in Figure 3.
As can be seen, both the residuals and the test quantities
respond distinctively to the fault.

To also illustrate the isolation procedure, we show in
Figure 4 the entries in detectionResult correspond-
ing to the diagnostic tests T2 and T13 (top), the en-
tries in signal isolationResult corresponding to faults
∆ωr,m1 (middle) and ∆ωr,m2 (bottom), and also the signal
isolationDone (middle). As can be seen in Figure 4, the
first test that reacts to the fault is T2. This occurs at
t = 1500.23 s. Since T2 is sensitive to both fault ∆ωr,m1

and ∆ωr,m2 and no other test has alarmed, the diagnosis
statement is that either ∆ωr,m1 or ∆ωr,m2 may be present,
and no fault can be isolated. At t = 1502.55 s, test
T13 alarms. Test T13 is sensitive to faults ∆ωg, ∆ωr,m1,
and ∆ωr,m2, and the updated total diagnosis statement
based on that both T2 and T13 have alarmed thus becomes
∆ωr,m1, see Table 1. This occurs at time t = 1502.59 s.
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Fig. 3. Affected residuals r2 (top-left) and r13 (top-
right), and the corresponding K-L test quanti-
ties D

(
P t2‖PNF2

)
(bottom-left) and D

(
P t13‖PNF13

)
(bottom-right) at the time of occurrence of fault
∆ωr,m1.
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Fig. 4. Isolation procedure for fault ∆ωr,m1. Top figure
shows diagnostic tests T2 and T13. Middle and bottom
figures show entries in isolationResult correspond-
ing to faults ∆ωr,m1 and ∆ωr,m2, respectively.

8. CONCLUSIONS

We have proposed an FDI-system for the wind turbine
benchmark designed by application of a generic automated
design method, in which the number of required human de-
cisions and assumptions are minimized. No specific adap-
tation of the method for the wind turbine benchmark was
needed. The method contains in essence three steps: gen-
eration of potential residual generators; residual generator
selection; and diagnostic test construction. The second and
third step are based on novel ideas developed in this paper:
a greedy selection algorithm for the second step, and a
method based on the K-L divergence for the third step.

The performance of the proposed FDI-system has been
evaluated using the pre-defined test sequence for the wind
turbine benchmark. The FDI-system performs well; all
faults in the test sequence were detected within feasible
time and all faults, except a double fault, could be isolated
shortly thereafter. In addition, there are no false or missed
detections. A tailor-made, finely tuned, FDI-system for the
benchmark would probably perform better. However, in
relation to the required design effort, and that no specific
adaptation or tuning of the method to the benchmark was
done, the performance is good.
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