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Abstract: A good placement of sensors is crucial to get good performance in detecting and
isolating faults. Here, the sensor placement problem is cast as a minimal cost optimization
problem. Previous works have considered this problem with qualitative detectability and
isolability specifications. A key contribution here is that quantified detectability and isolability
performance is considered in the optimization formulation. The search space for the posed
optimization problem is exponential in size, and to handle complexity a greedy optimization
algorithm that compute optimal sensor positions is proposed. Two examples illustrate how the
optimal solution depends on the required quantified diagnosability performance and the results
are compared to the solutions using a deterministic method.
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1. INTRODUCTION

In model-based diagnosis, diagnosis is performed by com-
paring on-line system information and a system model.
The on-line information is mostly obtained by installed
sensors and therefore the placement of the sensors is im-
portant for the diagnosability performance.

Sensor placement for fault diagnosis has been treated in
several papers. Example of previous works are Yassine
et al. (2008), Commault and Dion (2007), Krysander and
Frisk (2008), Raghuraj et al. (1999), and Trave-Massuyes
et al. (2006) which all use structural descriptions of the
model to find a set of sensors which achieves a required
deterministic isolability performance. Deterministic isola-
bility states whether a fault is isolable or not, given the
selected set of sensors. In Rosich et al. (2010) and Debouk
et al. (2002) the optimal minimum cost sensor set is sought
given a required deterministic isolability performance. In
Frisk et al. (2009) an analytical approach is used to find
all sets of sensors fulfilling the required deterministic isola-
bility performance.

A limitation of deterministic isolability analyses is that
they only provide a yes or no answer to questions like: is a
fault detectable? Sensor placement based on deterministic
isolability can provide sensor sets that in practice are not
good for diagnosis due to noise and model uncertainties.

A method for analyzing quantified diagnosability perfor-
mance, distinguishability, was introduced in Eriksson et al.
(2011b) for linear static models, and extended to time-
discrete dynamic linear descriptor models in Eriksson et al.
(2011a). Distinguishability is used in this paper to opti-
mize sensor placement for fault diagnosis to find a cheapest
sensor set which achieves a required quantified diagnos-
ability performance. The proposed method is applied to
two example models where the solutions are analyzed and
compared to the results using a deterministic method.

2. INTRODUCTORY EXAMPLE

Before presenting the problem formulation in this paper,
the result of using a deterministic algorithm on a linear
model for finding optimal sensor sets will be discussed.

Then a discussion will follow on how the performance of
a diagnosis algorithm, based the computed set of sensors,
is affected by model uncertainties and why this should be
considered when finding optimal sensor sets.

A discretized version of a small continuous linear dynamic
example model, discussed in Krysander and Frisk (2008),

x1[t+ 1] = x2[t] + x5[t]
x2[t+ 1] = −x2[t] + x3[t] + x4[t]
x3[t+ 1] = −2x3[t] + x5[t] + f1[t] + f2[t]
x4[t+ 1] = −3x4[t] + x5[t] + f3[t]
x5[t+ 1] = −4x5[t] + f4[t]

(1)

is considered where xi are state variables and fi are
modeled faults.

A deterministic method finds sets of sensors that achieves
maximum deterministic fault isolability, i.e., a set of sen-
sors which makes it possible to isolate all faults that are
isolable from each other. A set of sensors which fulfills
maximum deterministic fault isolability, where no subset
of sensors fulfills it, is called a minimal sensor set, see
Krysander and Frisk (2008).

2.1 Sensor placement using deterministic method

If xi in (1) are possible sensor locations and model uncer-
tainties and measurement noise are ignored, a determinis-
tic analysis of maximum fault isolation can be performed,
e.g., using the method in Frisk et al. (2009). Maximum
deterministic fault isolability can be computed by includ-
ing all possible sensors, and the result is summarized in
Table 1. An X in position i, j represents that fault mode fi
is isolable from fj and a 0 if not. The NF column represents
if the fault is detectable, i.e., if fi is isolable from the no
fault case then it is detectable. The analysis shows that all
faults are detectable, f1 and f2 are isolable from the faults
f3 and f4 but not from each other, and that f3 and f4 are
fully isolable from the other faults.

It is not necessary to measure all states xi in (1) to achieve
the isolability in Table 1. Applying the deterministic sensor
placement method in Krysander and Frisk (2008), gives all
minimal sensor sets,

{x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, and {x3, x4}, (2)



that achieve the deterministic fault isolability in Table 1.
Each set in (2), and all supersets, represents all sensor sets
that achieves maximum deterministic fault isolability.

The minimal sensor sets in (2) are found without taking
model uncertainties and measurement noise into consider-
ation. If model uncertainties and measurement noise are
considered, the choice of minimal sensor set will affect the
achieved diagnosability performance. The deterministic
analysis does not state which sensor set in (2) that will
give the best performance of a diagnosis system. It neither
gives any information if the number of sensors is enough
to get sufficient diagnosability performance.

2.2 Analysis of minimal sensor sets using distinguishability

In Eriksson et al. (2011b) and Eriksson et al. (2011a) a
measure, distinguishability, for quantifying diagnosability
performance of time-discrete linear dynamic systems was
introduced. Distinguishability gives the upper limit for the
fault to noise ratio, FNR, of an residual by considering
model uncertainties and fault time profiles. A fault time
profile is a vector θi = (θ[t − n + 1], . . . , θ[t])T describing
how the fault, fi = θi, varies during a time period of length
n. A higher distinguishability value corresponds to a higher
diagnosability performance.

Before computing distinguishability for the different min-
imal sensor sets, (2), some assumptions are made. First,
all possible sensors in this example are assumed to have
additive measurement noise which is i.i.d. Gaussian with
variance one, i.e., yi = xi + ei where ei ∼ N (0, 1). For
simplicity, it is assumed that the added sensors can not
become faulty, i.e., no new faults are introduced in the
model. It is also assumed that the system is observed for
a time window length of five samples, and that the faults
to be isolated are constant faults with amplitude one, i.e.
θi = 1̄ = (1, 1, . . . , 1)T for each fault mode fi.

Consider first the minimal sensor set {x2, x3} in (2). The
computed distinguishability is presented in Table 2. A non-
zero value in position i, j corresponds to a constant fault fi
is isolable from the fault mode fj . A higher distinguishabil-
ity value means that the fault is easier to detect or isolate.
The same information about deterministic isolability per-
formance as in Table 1 can be stated in Table 2 since all
non-isolable fault pairs have distinguishability value zero.
Table 2 also shows that, for example, it is easier to detect
f1 than f3, since 0.308 is greater than 0.033, and it is easier
to isolate f1 from f3 than vice versa since 0.230 is greater
than 0.020.

If instead the minimal sensor set {x2, x4} in (2) is used,
the computed distinguishability is presented in Table 3. A
comparison of Table 2 and Table 3 gives that the sensor

Table 1. Achievable maximum fault isolability
of the example model (1).

NF f1 f2 f3 f4
f1 X 0 0 X X
f2 X 0 0 X X
f3 X X X 0 X
f4 X X X X 0

Table 2. Distinguishability for each fault pair
{fi, fj}, if fi = 1̄, given the sensor set {x2, x3}.
{x2, x3} NF f1 f2 f3 f4
f1 0.308 0 0 0.230 0.017
f2 0.308 0 0 0.230 0.017
f3 0.033 0.020 0.020 0 0.017
f4 0.018 0.001 0.001 0.010 0

set {x2, x4} makes it easier to detect and isolate f3 from
f1 than the sensor set {x2, x3}, since 0.123 is greater than
0.020, but more difficult to detect and isolate f1 and f3,
since 0.037 is less than 0.230.

Table 3. Distinguishability for each fault pair
{fi, fj}, if fi = 1̄, given the sensor set {x2, x4}.
{x2, x4} NF f1 f2 f3 f4
f1 0.062 0 0 0.037 0.023
f2 0.062 0 0 0.037 0.023
f3 0.171 0.123 0.123 0 0.023
f4 0.014 0.005 0.005 0.002 0

The analysis shows that no minimal sensor set in (2) gives
the best diagnosability performance for all pairs of fault
modes. It could also be that none of the minimal sensor
sets are sufficient to get satisfactory diagnosability perfor-
mance in practice. If model uncertainties are considered,
when finding an optimal sensor set, then the solution could
be different from the solution of the deterministic analysis.

The example shows that if model uncertainties and mea-
surement noise are not considered, when selecting a mini-
mal sensor set, then sufficient diagnosability performance
might not be achievable if the faults are too small. If
process noise and measurement noise were considered then
an optimal sensor set could be found which gives a required
performance, for example FNR, of the diagnosis system.

3. PROBLEM FORMULATION

The objective here is to utilize distinguishability for quan-
tified diagnosability performance to optimize sensor place-
ment for fault diagnosis purposes. The type of models
that will be considered are time-discrete linear dynamic
descriptor models written as

Ex[t+ 1] = Ax[t] +Buu[t] +Bff [t] +Bvv[t]

y[t] = Cx[t] +Duu[t] +Dff [t] +Dεε[t]
(3)

where x ∈ Rlx are state variables, y ∈ Rly are measured
signals, u ∈ Rlu are input signals, f ∈ Rlf are modeled
faults, v ∼ N (0,Λv) and ε ∼ N (0,Λε) are i.i.d. Gaussian
vectors with zero mean and symmetric positive definite
covariance matrices Λv ∈ Rlv×lv and Λε ∈ Rlε×lε . The
model matrices are of appropriate dimensions. Note that
the matrix E can be singular.

Assume that a model (3), denoted with M, and a set
of possible sensors O are given. Each sensor s ∈ O
has a sensor position and a known noise variance. Let
DSi,j(θi;n) define distinguishability for a fault fi with a
given fault time profile θi and a window length n from a
fault mode fj for a given sensor set S. A formal definition
of distinguishability will be presented in Section 4. The
objective is to find a minimum cost sensor set which fulfills
a minimum required distinguishability, Dreq

i,j (θi;n), for each

fault pair {fi, fj}.
The sensor placement problem is now formulated as an
optimization problem,

min
S⊆O

h (S)

s.t. DSi,j(θi;n) ≥ Dreq
i,j (θi;n), ∀i, j,

(4)

where S ⊆ O is a set of selected sensors, h(S) is a cost
function, and DSi,j(θi;n) is the achieved distinguishability
for each fault pair {fi, fj} given the sensors S. The cost
function h(s) could, for example, be the total sensor cost

h(s) =
∑
sl∈S

cost(sl)



or the total number of sensors if cost(sl) = 1 for all sl ∈ O.

The objective in this paper is, given a modelM in the form
(3) and an available set of sensors O, to find a solution
to (4). That is, finding a minimum cost sensor set which
fulfills the required diagnosability performance defined by
Dreq
i,j (θi;n).

4. BACKGROUND THEORY

The theory presented here is needed to define distin-
guishability. A more thorough description can be found
in Eriksson et al. (2011b) and Eriksson et al. (2011a).

4.1 Model

Before analyzing the time-discrete descriptor model (3)
it is written as a sliding window model, i.e., a sliding
window of length n is applied to (3), see, e.g., Eriksson
et al. (2011a). Define the vectors

z = (y[t− n+ 1]T , . . . , y[t]T , u[t− n+ 1]T , . . . , u[t]T )T

x = (x[t− n+ 1]T , . . . , x[t+ 1]T )T ,

f = (f [t− n+ 1]T , . . . , f [t]T )T

e = (v[t− n+ 1]T , . . . , v[t]T , ε[t− n+ 1]T , . . . , ε[t]T )T ,

where z ∈ Rn(ly+lu), x ∈ R(n+1)lx , f ∈ Rnlf and e ∈
N (0,Λe) is an i.i.d. Gaussian vector with zero mean and
Λe ∈ Rn(le+lv)×n(le+lv) is a positive definite symmetric
covariance matrix. Then a sliding window model of length
n can be written as

Lz = Hx+ Ff +Ne (5)

where

L =


0 0 . . . 0 −Bu 0 . . . 0
I 0 0 −Du 0 0
0 0 0 0 −Bu 0
0 I 0 0 −Du 0

.
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0 0 0 0 0 −Bu
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 ,

H =


A −E 0 . . . 0 0
C 0 0 0 0
0 A −E 0 0
0 C 0 0 0

.

.

.
.
. .

.
. .

.

.

.
0 0 0 A −E
0 0 . . . 0 C 0

 , Fn =


Bf 0 . . . 0
Df 0 0
0 Bf 0
0 Df 0

.

.

.
. .
.

.

.

.
0 0 Bf
0 0 Df

 ,

N =


Bv 0 . . . 0 0 0 . . . 0
0 0 0 Dε 0 0
0 Bv 0 0 0 0
0 0 0 0 Dε 0

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
0 0 Bv 0 0 0
0 0 . . . 0 0 0 . . . Dε

 .

The sliding window model (5) is a static representation
of the dynamic behavior on the window given the time
indexes (k − n+ 1, ..., k).

To guarantee, given the sliding window model (5), that no
noise-free residuals can be created, it is assumed that

(H N) has full row-rank. (6)

Assumption (6) is fulfilled, e.g., if all sensors have measure-
ment noise. To simplify the computations, it is assumed
that the covariance matrix Σ̄ of variable NHLe is equal to
the identity matrix, that is

Σ̄ = NHNΛNTNT
H = I (7)

where the rows of NH forms an orthonormal basis for the
left null-space of matrix H. Note that any model satisfying
(6) can be transformed into fulfilling Σ̄ = I. The choice of

an invertible transformation matrix T is non-unique and
one possibility is

T =

(
Γ−1NH
T2

)
(8)

where Γ is non-singular and satisfying

NHNΛNTNT
H = ΓΓT (9)

and T2 is any matrix ensuring invertibility of T .

It is convenient to eliminate the unknown variables x in
(5) by multiplying with NH from the left such that

NHLz = NHFf +NHNe. (10)

The model (10) is in an input-output form. For any
solution z0, f0, e0 to (10) there exists an x0 such that it
also is a solution to (5), and also if there exists a solution
z0, f0, e0, x0 to (5) then z0, f0, e0 is a solution to (10). Thus
no information about the model behavior is lost when
rewriting (5) as (10).

To quantify diagnosability performance, define the vector
r = NHLz. The vector r ∈ Rn(ly−lx) depends on the fault
vector f and the noise vector e and represents the behavior
of the model (5).

4.2 Quantified diagnosability performance

Let piθi be the probability density function, pdf, describing
the vector r when there is a fault fi present in the system
represented by the fault time profile θi.

The set of pdf’s of r representing the fault mode fi,
corresponding to all possible fault time profiles θi is defined
as

Zfi =
{
piθi |piθi consistent with fault mode fi

}
. (11)

Each fault mode fi is thus described by a set Zfi of
all pdf’s consistent with the fault mode. Consider two
different sets, Zfi and Zfj , for two fault modes fi and fj
in Fig. 1. Assume that there is a measure to quantify the
distance from a specific pdf piθi ∈ Zfi given a fault time

profile θi to any pjθj ∈ Zfj . Then, the shortest distance

from piθi to any pdf in Zfj is a quantified isolability
performance of a fault fi = θi from the fault mode fj .

Zfi

Zfj

piθi

pj
θj

Fig. 1. A graphical visualization where the smallest dif-
ference between piθi ∈ Zfi and a pdf pj ∈ Zfj is the
quantified diagnosability measure.

To quantify the difference between the pdf’s, piθi and pjθj ,

of r for two faults fi = θi and fj = θj the Kullback-Leibler
divergence

K(piθi‖p
j
θj

)=

∫ ∞
−∞
piθi(v) log

piθi(v)

pjθj (v)
dv = Epi

θi

[
log

piθi
pjθj

]
(12)

is used, see Kullback and Leibler (1951).

Then, to quantify isolability of a fault mode fi with fault
time profile θi from a fault mode fj with an unknown



fault time profile, a measure for isolability performance is
defined as follows.
Definition 1. (Distinguishability). Given a sliding window
model (5) of length n, under assumption (6), distinguisha-
bility Di,j(θi;n) of a fault fi with a given fault time profile
θi from a fault mode fj is defined as

Di,j(θi;n) = min
pj∈Zfj

K
(
piθi‖pj

)
. (13)

Distinguishability can be used to analyze either isolability
or detectability performance depending on whether Zfj
describes a fault mode or the fault free case. Note that dis-
tinguishability is asymmetric in general, i.e., Di,j(θi;n) 6=
Dj,i(θi;n), which is a natural property.

By using Theorem 2 and Theorem 3 in Eriksson et al.
(2011a), distinguishability gives the maximum achievable
FNR for any residual given the window model (5) of length
n.
Theorem 2. For a window model (5) of length n under
assumption (7), a tight upper bound for the fault to noise
ratio of any residual based on (5) is given by

Di,j(θi;n) ≥ 1

2

(
λ

σ

)2

where λ(θi)/σ is the fault to noise ratio for a residual with
respect to fault fi and a fault time profile θi.

For a sliding window model (5) an explicit computation of
(13) is stated in the following theorem.
Theorem 3. Distinguishability for a sliding window model
(5) under assumption (6) is given by

Di,j(θi;n) =
1

2
‖NH̄Fiθi‖2 (14)

where H̄ = (H Fj) and the rows of NH̄ is an orthonormal
basis for the left null space of H̄.

Proofs of Theorem 2 and Theorem 3 can be found in
Eriksson et al. (2011b).

A detectability and isolability analysis of the descriptor
model (3) can be made using distinguishability if the
model is written as a sliding window model (5). The
distinguishability measure depends on the window length
n and the fault time profile θi.

5. THE SMALL EXAMPLE REVISITED

Consider again the example model (1). This time a min-
imal sensor set is sought which is a solution to the opti-
mization problem (4). It is assumed that the faults to be
detected are constants over time with amplitude one and
a window model of length n = 5 is used when computing
distinguishability.

Selecting the appropriate constraints, Dreq
i,j (1̄; 5) for each

fault pair, {fi, fj}, can be difficult if Dreq
i,j (1̄; 5) contains

many elements. A more convenient approach is to select
Dreq
i,j (1̄; 5) as a fraction p of maximum achievable distin-

guishability, Dmax
i,j (1̄; 5) for each fault pair {fi, fj}, where

p ∈ [0, 1] is a scalar. In this way only one parameter is
required for all elements. Note that there is still complete
freedom in selecting Dreq

i,j (1̄; 5) for each fault pair individ-
ually. As when maximum fault isolability in Section 2.1
was determined, the maximum achievable distinguishabil-
ity can be computed by including all sensors in O. The
computed Dmax

i,j (1̄; 5) is shown in Table 4. If Dreq
i,j (1̄; 5) is
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Fig. 2. The least number of sensors required to exceed
a certain percentage of maximum distinguishability
given the example model (1). Note that the number
of sensors when required performance goes to zero is
equal to the cardinality of the minimal sensor sets (2)
from the structural analysis.

selected higher than Dmax
i,j (1̄; 5) for any fault pair, then

the optimization problem can not be solved. By comparing
Table 2 and Table 3 to Table 4 show that none of the two
minimum sensors sets reaches Dmax

i,j (1̄; 5).

Table 4. Maximum achievable distinguishabil-
ity for each fault pair, if the maximum number

of sensors is used.

Dmax
i,j (1̄; 5) NF f1 f2 f3 f4
f1 0.385 0 0 0.341 0.275
f2 0.385 0 0 0.341 0.275
f3 0.213 0.187 0.187 0 0.161
f4 0.251 0.177 0.177 0.187 0

Assume that a minimal sensor set is to be found which
achieves at least 50% of Dmax

i,j (1̄; 5) for each fault pair.
That is, the sensor placement problem can be written as

min
S⊆O
|S|

s.t. DSi,j ≥ 0.5×Dmax
i,j (1̄; 5), i, j = 1, 2, 3, 4

(15)

where |S| is the cardinality of S, and Dmax
i,j (1̄; 5) can be

found in Table 4. A global search gives that a solution to
(15) is the unique optimal sensor set, of cardinality four,
which measures the states: x1, x3, x4, and x5.

The analysis is expanded to see how the cardinality of
the minimal sensor set, required to achieve a fraction p
of Dmax

i,j (1̄; 5), depends on p. The result is presented in
Fig. 2. Note that the minimum number of required sensors
coincides with the cardinality of the minimal sensor sets
(2) given by the deterministic analysis when p→ 0+.

Since there is only one minimal sensor set with four sensors
achieving at least 50% of maximum distinguishability,
the analysis in Fig. 2 gives that the minimal sensor set
measuring the states: x1, x3, x4, and x5, achieves almost
80% of Dmax

i,j (1̄; 5). The number of sensors in the minimal
sensor sets given by the structural analysis is two, which
is not able to achieve more than 3% of Dmax

i,j (1̄; 5).

The result of the analysis in this section shows that the
minimum cost sensor sets (2) given by the deterministic
analysis results in a solution where the achieved diag-
nosability performance is relatively low given Dmax

i,j (1̄; 5)

(< 3% of Dmax
i,j (1̄; 5)). By using minimum required distin-

guishability as the constraints of the optimization prob-
lem, a solution is found which better fits the requirements
when designing a diagnosis system.

For the small system (1), a global search could be per-
formed to find the solution. For larger systems, this is
not realistic because of high computational complexity.



The number of sensor combinations, 2k where k is the
number of possible sensors, grows exponentially with the
total number of sensors. A more efficient algorithm to
reduce complexity is needed to find the optimal solution.
An algorithm which iteratively adds new sensors to the
solution, would be more appealing since it reduces the
complexity. A heuristic is needed to implement such an
iterative approach.

6. A GREEDY SEARCH APPROACH

A heuristic greedy search algorithm starts with an empty
set and iteratively adds the sensor with the largest utility
to the solution. The iteration continues until the solution
fulfills the constraints. Thus, a utility function must be
defined to use the greedy search heuristic.

In the iterative search, the heuristic adds the sensor s
which best improves the previously selected set of sensors
S to fulfill the constraints, i.e., the algorithm adds the
sensor s ∈ O \ S that maximizes the utility function µ(s).
The utility function is here the sum, over all fault pairs, of
the distinguishability improvements when adding a sensor
s. There is no utility in improving distinguishability more
than what is required by Dreq

i,j . Thus, the utility function
can be written as

µ(s) =
∑
i,j

max

(
min

(
Dreq
i,j ,D

S
⋃
{s}

i,j

)
−DSi,j , 0

)
.

The algorithm SelMinSensSetGreedy for greedy selec-
tion of minimal sensor set is given below. The inputs to
the algorithm are the model M in the form (3), a set of
sensors O where each sensor measures one model variable
and has a known noise variance, and a minimum required
distinguishability Dreq

i,j . The output from the algorithm
is a set of sensors S. If the achieved distinguishability,
DSi,j , given the set of sensors S fulfills the constraints Dreq

i,j

then the solution S is returned. If Dreq
i,j is lower than the

maximum achievable distinguishability, given M and O
then SelMinSensSetGreedy will always return a set of
sensors S fulfilling the constraints in (4).
1: function SelMinSensSetGreedy(M,O,Dreq

i,j (θi;n))

2: S := ∅
3: while O 6= ∅ do
4: s∗ := arg maxs∈O µ(s)

5: S := S
⋃
{s∗}

6: O := O \ s∗
7: if DSi,j(θi;n) ≥ Dreq

i,j (θi;n), ∀i, j then

8: return S
9: end if

10: end while
11: return S
12: end function

The complexity of the algorithm SelMinSensSetGreedy
is linear in the number of sensors in O. This approach is
faster than a global search, however, the approach can of
course not guarantee that the found solution is optimal.

7. SENSOR PLACEMENT USING GREEDY SEARCH

In this section, the greedy algorithm presented in Section 6
is applied to a slightly larger example, but still small
enough to compare the solution to the global optimal
solution.

Consider the sensor placement problem given a time-
discrete linear model where one sensor can be selected to
measure each unknown variable xi. A minimum cost sensor
set is to be found which achieves a minimum required
distinguishability for each fault pair.

f1
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u

x1

x2

x3

x4
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x5
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x14
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Fig. 3. A schematic overview of a model describing a static
flow through a number of nodes. The input u is known
and the flows through the branches xi, i = 1, 2, . . . , 15,
are unknown, and f1, f2, f3 are three additive faults.

7.1 Model

The example is a static linear model describing a flow
through a set of 15 branches visualized in Fig. 3. The
input flow u is known and xi represents the flow through
each branch. For each node the sum of all branches is
zero, e.g. x8 = x5 + x6. The equations describing the
flow through each node, has a model uncertainty which
is assumed additive i.i.d. Gaussian N (0, 0.1), defines the
model M. The set of available sensors O, one for each
flow xi, has measurement noise N (0, 1). There are three
possible leaks added to the model, fi, i = 1, 2, 3, and they
are assumed to be additive in the equation describing the
flow through the specific node, e.g., x3 + x4 = x1 + f1.
To compute distinguishability, a window model of length
one is assumed since the model is static and all fault time
profiles are assumed amplitude one.

Note that, in the model described above, there are no
equations in the model describing how the flow splits
when the flow branches. This underdetermined model is
analyzed first, and then in a second step the model is
extended with equations describing how flow splits in the
branches. This exactly determined model is analyzed to
illustrate how diagnosability performance changes with
modelling effort.

7.2 Analysis of the underdetermined model

Using the global search algorithm, the minimum number
of sensors will depend on the minimum required distin-
guishability Dreq

i,j (1; 1). A higher Dreq
i,j (1; 1) requires more

sensors added to the system to be fulfilled. The global
search is used to analyze how the cardinality of S depends
on Dreq

i,j (1; 1) = pDmax
i,j (1; 1). The maximum achievable

distinguishability for each fault pair is shown in Table 5.
The solid line in Fig. 4 shows that the minimal number of
sensors which achieves full deterministic isolability perfor-
mance, i.e., four sensors, only is able to achieve approxi-
mately 30% of maximum distinguishability, for each fault
pair. To achieve 70% of Dmax

i,j (1; 1) for each fault pair a
solution requires at least that 10 of 15 unknown variables,
xi, are measured by a sensor.

Table 5. Maximum achievable distinguishabil-
ity for the underdetermined model in Fig. 3.

Dmax
i,j (1; 1) NF f1 f2 f3
f1 1.228 0 0.693 0.875
f2 0.831 0.470 0 0.621
f3 1.086 0.774 0.812 0

Assume that a minimal sensor set is to be found using the
greedy algorithm which fulfills 50% of maximum distin-
guishability for each fault pair. The solution requires six
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Fig. 4. The least number of sensors required to exceed
a certain percentage of maximum distinguishability
given the underdetermined model described in Fig-
ure 3, for the underdetermined case and the exactly
determined case, given a global search.

sensors, selected by the greedy algorithm in the following
order: x15, x14, x8, x7, x13, and x2. In this case the solution
of the greedy algorithm is optimal since it has the same
cardinality as the optimal solution given by the global
search in Fig. 4.

The greedy algorithm always tries to find the sensor
which best improves the distinguishability to fulfill the
constraints and therefore some solutions could be missed.
Consider, for example, in Fig. 3 that a set of sensors
are to be found to isolate f1 from f2 and f3. Assume
that the optimal solution would be to measure x1, x3
and x4, and that the algorithm has already selected x1.
Since neither only measuring x3 or x4 is enough to isolate
f1, a sensor measuring, for example, x8 is selected. This
sensor selection will improve the solution of the greedy
search locally but will miss the global optimal solution.
A solution to this could be to use the solution of a
deterministic analysis and then improving the result by
adding more sensors. Alternatively, more advanced search
methods could be used, see e.g. Russell and Norvig (2003).

7.3 Analysis of the exactly determined model

Assume now that the flows in Fig. 3 where a branch is split
are approximately equal, i.e., x3 ≈ x4. This information
is included in the underdetermined model, for example,
by adding the equations x1 = x2 + v1, x3 = x4 + v2,
and x9 = x10 + v3, where vi ∼ N (0, 1), which makes
the model exactly determined. The solution of the greedy
algorithm, given the exactly determined model, which
fulfills 50% of the maximum achievable distinguishability
of the underdetermined model, in Table 5, is: x13, x14,
x8, and x15. Note that the exactly determined model has
a higher maximum achievable distinguishability than the
underdetermined model, see Table 6. This is expected as
additional process knowledge is incorporated in the model.

Table 6. Maximum achievable distinguishabil-
ity for the exactly determined model in Fig. 3.

Dmax
i,j (1; 1) NF f1 f2 f3
f1 1.399 0 0.786 1.162
f2 0.849 0.477 0 0.680
f3 1.192 0.990 0.954 0

An extended analysis of the exactly determined case can
be seen as a dashed line in Fig. 4. The number of sensors
required to achieve a certain percentage of maximum dis-
tinguishability is lower compared to the underdetermined
case. For the exactly determined case, only ten sensors
are needed to achieve Dmax

i,j (1; 1) of the underdetermined

model, in Table 5, where 15 sensors are required for the un-
derdetermined case. Comparing the results analyzing the
underdetermined and the exactly determined model shows
that better diagnosability performance can be achieved
using fewer sensors at the price of more modeling work.

8. CONCLUSION

A key contribution in this paper, is the use of quantitative
diagnosability analysis, distinguishability, to find optimal
sensor sets for diagnosis. The sensor placement problem is
formulated as a minimum cost optimization problem and
a main observation is that the optimal solutions here differ
significantly from solutions given by previously published
deterministic methods.

The search space for the optimization problem is expo-
nential in size and a heuristic greedy search algorithm
is proposed as a solution to this for large problems. The
algorithm iteratively adds the sensor which best improves
diagnosability to fulfill the requirements.

Two examples are analysed to illustrate properties of
the optimal solutions when using quantified diagnosability
performance in the sensor placement optimization, e.g.,
how the number of sensors in the solution depends on
the required diagnosability performance, and that better
diagnosability performance can be achieved using fewer
sensors by improving the model.
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