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Abstract—Time and fuel optimal control for a diesel-electric
powertrain in transient operation is studied using a four state,
three controls non-linear mean value engine model. In the
studied transients the engine starts at idle and stops when the
generated energy fulfills the driving mission requirement. During
the driving mission both the engine speed and output power are
allowed to vary, but with a constraint on power. Two strategies
are then developed and evaluated. One where the driving mission
is optimized with the generator power considered a free variable,
and a second strategy where the accelerating phase of the
transient is first optimized and then the optimal controls for
a fixed generator power are used. The time optimal control is
shown to be almost as fuel efficient as the fuel optimal control
even though the gain in time is large. The time optimal control
also has the advantage of using constant power output, making it
simple and easily implementable, whilst the fuel optimal control
is more complex and changes with the length of the driving
mission.

I. INTRODUCTION

A diesel-electric powertrain, such as the BAE Systems
TorqE TM, see Fig. 1, has no mechanical link between the
diesel engine (DE) and the wheels. This gives freedom to
choose engine speed and offers a potential increase in per-
formance as well as a potential decrease in consumption.
The performance increase is due to the ability of the electric
motor (EM) to provide maximum torque from standstill and
the potential fuel decrease comes from that the operating point
of the DE can be chosen for maximum efficiency. However

Fig. 1. BAE Systems TorqETM powertrain.

the lack of secondary energy storage, i.e. that it is not a
hybrid, provides the controller with an extra challenge since
all produced energy needs to be consumed to avoid damage
to the components. This paper develops and analyzes the fuel
and time optimal control of a diesel electric powertrain during

transients. Previous studies of optimal transient DE control
have investigated the minimization of emissions during load
transients for known engine speeds, see [1], [2], or studied the
optimal engine operating point trajectory for a known engine
power output trajectory, [3], [4]. There the DE is modeled
as an inertia with a Willans-line efficiency model and the
optimal solution is found using dynamic programming and
Pontryagins maximum principle. Here a more detailed and
complex non-linear model is used and such methods aren’t
feasible. Instead the problem is solved using the ACADO
Toolkit, a sequential quadratic programming algorithm using
multiple shooting, see [5].

This paper builds on the results in [6] and [7] where the time
and fuel optimal control from idle to a target power is studied.
The contribution of this paper is the study of the optimal
control from idle to a target energy for two different criteria
with the engine output power and engine speed considered free
variables during the transient. Two different control strategies
are evaluated for both criteria, one where the generater power
is fixed, and one where it is considered a free variable. A
nonlinear, four state, three input mean value engine model
(MVEM) is used in the study. This MVEM incorporates the
important turbocharger dynamics as well as the nonlinear
multiple input-multiple output nature of the diesel engine. The
model is also continuous and differentiable in the studied in-
terval to enable efficient numerical solution, with the nonlinear
program solver of the ACADO Toolkit.

II. MODEL

In order to study the optimal control of the DE the generator
is assumed ideal, i.e. the generator efficiency is constant and
the maximum power of the generator is constant over the entire
speed range. The generator time constant is also assumed to
be much faster than the time constant of the engine. The
modeled engine is a 6-cylinder 12.7-liter SCANIA with a
fixed-geometry turbine and no exhaust gas recirculation. The
model used is a simplified implementation of the well vali-
dated model found in [8]. The states of the MVEM are engine
speed, ωice, intake manifold pressure, pim, exhaust manifold
pressure, pem, turbocharger speed, ωtc, and generated energy,
Egen and the controls are fuel flow, uf , wastegate position,
uwg , and generator power, Pgen. The MVEM consists of two
control volumes, intake and exhaust manifold, and four restric-
tions, compressor, engine, turbine, and wastegate. The control



Fig. 2. Structure of the MVEM. The modeled components as well as the
connection between them.

volumes are modeled with the standard isothermal model,
using the ideal gas law and mass conservation. The engine
and turbocharger speeds are modeled using Newton’s second
law. The governing differential equations of the MVEM are:

dωice
dt

=
1

Jgenset
(Tice −

Pgen
ωice

) (1)

dpim
dt

=
RaTim
Vis

(ṁc − ṁac) (2)

dpem
dt

=
ReTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (3)

dωtc
dt

=
Pt − Pc
ωtcJtc

− wfricω2
tc (4)

For more details on the submodels used as well as the param-
eters and constants, see [6]. For more in-depth information on
diesel engine modeling see [8], [9].

III. PROBLEM FORMULATION

Two non-linear optimal control problems, minimum time
and minimum energy are studied. They are formulated as
follows:

min

∫ T

0

ṁf dt or min T

s.t. ẋ = f(x, u),

(5)

where x is the state vector of the MVEM and ẋ is defined by
(1)-(4). In the basic transient considered in this paper the en-
gine starts at idle when the operator requests Preq = 170 kW.
This then has to be met by the powertrain subject to constraints
imposed by the components, such as maximum torque and
minimum speed, as well as environmental constraints, i.e. a
limit on the relationship between air and fuel flow, φλ, set by
the smoke-limiter. The constraints are:

x(0) = idle, ẋ(T ) = 0

Tice ≤ Tice,max(ωice), Pgen(T ) = Preq

ωice ≥ ωice,min, φλ ≥ 0

(6)

In a vehicle equipped with a diesel-electric powertrain the
demand from the operator can be interpreted as a electric
power request, the interpretation of (5)-(6) is thus how to meet
this power request either as fast or as fuel efficient as possible.

IV. OPTIMAL POWER TRANSIENTS

The optimal torque and speed trajectories to problem (5)-
(6) are shown in Fig. 3. It can be seen that the time and
fuel optimal power transients are quite similar in structure,
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Fig. 3. Time and fuel optimal solutions to different load transients. The time
and fuel optimal transients have similar structures, dictated by the smoke-
limiter and maximum torque limit, but differ in how they meet the end
constraints.

but the end-points differ. This structure is mainly to input
as much energy into the system as possible, i.e. follow the
maximum torque line and the λmin set by the torque limiter.
The difference between the two criteria is which end-point
is approached and how it is approached. The fuel optimal
transients approach a stationary point with higher turbocharger
speed than the time optimal transients. For a more extensive
discussion on power transients see, [6] and [7].

A. Transients between two output powers

The transients shown in Fig. 3 are all from idle to target
power. The initial point however does not change the char-
acteristics of the solution, as seen in Fig. 4. Since there is a
difference in initial conditions the solution approaches slightly
different end operating points, the manner in which they do it
is however the same.

B. Transients to the fuel optimal operating point

As seen in Fig. 3 none of the fuel optimal transients end in
the fuel optimal operating point for that power. To reach the
more efficient region of the engine map, more kinetic energy
has to be stored in the turbocharger without increasing the
kinetic energy in the engine. To accomplish this the engine
needs to be braked by generator, that is, energy has to be
removed from the system. This is clearly not optimal if the
aim is just to go from idle to a target power. However it does
raise the question of how to, in a fuel optimal way, go to the
fuel optimal operating point, and also how much it costs. In
Fig. 5 fuel optimal transients are compared to fuel optimal
transients to the fuel optimal operating point. These transient
take roughly twice as long as the fuel optimal transients,
and consume roughly three times the fuel. This comparison
is however not entirely valid since the generated energy is
also roughly 200 times larger. Whether this is optimal or not
depends on what happens after the transient.
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Fig. 4. Transients from idle to 200kW as well as transients from 125kW to
200kW

V. EXTENDING THE OPTIMAL POWER TRANSIENTS TO
DRIVING MISSIONS

In Section IV the optimal trajectories for steps in requested
power is presented. A driving mission normally doesn’t end
when the requested power has been met, output power is usu-
ally requested for a period of time. Instead a driving mission
for off-highway vehicles is often to move something between
two locations. The driving mission can thus be defined as that a
certain amount of energy has to be produced. This is achieved
by extending the problem defined in (5)-(6) with (7).∫ T

0

Pgen dt = Ereq (7)

A tempting way to approach this problem is to separate it into
two problems. First use the results from Section IV to go in an
optimal manner to the requested power. Then solve a second
optimization problem starting in that point, with Pgen = Preq
until (7) is fulfilled. This strategy is denoted S − PE and is
defined as:

S − PEmf/T : Egen(T ) = 0, Pgen(T ) = Preq

Egen(T ) = Ereq, Pgen = Preq

The idea of S − PE is mainly valid when the criterion
is to minimize the fuel consumpion since in the second
optimization problem Pgen and Egen, and thus T , are fixed.
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Fig. 5. Comparison between fuel optimal transients and transients to the fuel
optimal operating point. ∗ denotes the fuel optimal operating point.

In the time optimal case the solution is to hold the end
controls from the first optmization problem for the duration
T . The resulting control and state trajectories for S−PE for
Ereq = [170 680] kJ are shown in Fig. 6. The characteristics
of the solution is the same for both 1s and 4s. For S−PEmf

the solution is to stop the fuel injection for the last parts of the
first phase as well as actuate the wastegate to get stationarity,
as shown in [6]. The second phase then starts with fuel cut-off
and the kinetic energy of the engine being used to generate
power, see Fig. 6, t ∈ [0.33, 0.44]. After that the solution is to
approach the point of maximum efficiency for the requested
power. The control then ends in an operating point that is
not the optimal operating point, due to that the decrease in
fuel consumption of going there is larger than the increase in
fuel consumption of being there in the last time step. So the
only difference that appears when the length of the mission
changes is how far towards the peak efficiency for that power
the solution has time to wander. For S −PET the solution is
just to maintain the end controls of phase 1 for the duration
of the mission.

A problem with the S−PE strategies is that they don’t fully
utilize the kinetic energy of the engine to generate power. In
min T the engine speed is at a stationary high value and in
minmf the engine speed is decreased at the end of phase 1
without using that energy to generate power. But since the
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Fig. 6. State and control trajectories for S − PEmf and S − PET with
Preq = 170kW for T equal to 1 and 4s. That is Ereq = [170 680] kJ.

output power is constant the control strategy becomes rather
straight forward both for time and fuel optimal transients. Use
the optimal control to target power, and then either wander
towards maximum efficiency, for fuel optimal control, or just
use constant control, for time optimal control.

VI. OPTIMAL ENERGY TRANSIENTS

In order to gain understanding of the optimal control during
a driving mission and also to evaluate how far from optimal
the S − PE is, a different optimization problem is solved. In
this optimization problem the output power is not a constraint,
instead the control is required to fulfill the driving mission,
which is defined as that it has to provide a certain amount
of energy. The duration and the rate at which the energy is
provided is allowed to vary freely as long as it does not exceed
the request of the operator. This strategy, denoted S −E, can
be formulated as a set of constraints according to:

S−Emf/T : Egen(T ) = Ereq, Pgen ≤ Preq, Pgen(T ) = Preq

This can be interpreted as how large portions of the transients
are to be optimized before the control has to fulfill the drivers
request to produce a certain power.

A. Time Optimal Energy Transients

The time optimal control and state trajectories for Preq =
170 kW and Ereq = [170 340 510 680] kJ are shown in
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Fig. 7. State and control trajectories for S − ET for Ereq =
[170 340 510 680] kJ

Fig. 7. Regardless of the amount of required energy the
characteristics of the solution doesn’t change. The optimal
solution is to first accelerate the engine with maximum torque
to ωice ≈ 120rad/s and then start to produce power while
at the same time converting the kinetic energy. The solution
is rather stationary after roughly 1s. This in combination with
the amount of requested energy and the constraint that the
requested power can not be exceeded results in all solutions
being similar regardless of Ereq .

B. Fuel Optimal Energy Transients

The fuel optimal control and state trajectories for Preq =
170 kW and Ereq = [170 340 510 680] kJ are shown in
Fig. 8. The characteristics of the solution changes as Ereq
changes. For Ereq = [170 340] kJ the optimal control follow
the same characteristic. The first phase of the control is to start
generating power early and then follow the maximum torque
line. Then in order to fulfill the end power requirement the
engine departs from the maximum torque line as it accelerates
and approaches the stationary value from a higher engine
speed following the same line as S − PEmf and S − ET ,
see Fig. 9.

For Ereq = [510 680] kJ the engine is accelerated before
energy is produced as can be seen in Fig. 9 the controls
follows the same trajectory, dictated by the smoke-limiter



and maximum torque line, as S − PET/mf
, that is, as the

power transients presented in Section IV. How far along
this trajectory they wander differs between the two. For
Ereq = 510 kJ the over-shoot in engine speed is very small
before it starts to approach the maximum torque line which it
then follows to the end point. For Ereq = 680 kJ the engine
is accelerated to a higher engine speed, almost in the manner
of S −ET , before the generator starts to produce power. The
controls also approach something that can be considered a
stationary point before the end point is approached. The end
point for Ereq = [510 680] kJ is also approached following the
maximum torque line. For low requested energies the control
is to follow the maximum torque line and then accelerate the
engine, for higher requested energies this is done in the reverse
order, first accelerate the engine and then follow the maximum
torque line.

Interesting to note is that none of the S − Emf
approach

the operating point with maximum efficiency. For Ereq =
[170 340 510] kJ the driving missions are so short that they
do not approach any stationary point, the whole mission is
a transient in order to fulfill the end constraints. However
Ereq = 680 kJ approaches a stationary point, but not the
point of peak efficiency, but instead the maximum efficiency
for Pgen = Preq . The explanation for this is believed to be that
the driving mission is still too short. If it would approach the
point of peak efficiency the mission would end with another
transient in order to fulfill the end constraints and since the
driving mission is short the benefits of being at the point of
maximum efficiency would be lost in the second transient.

VII. RESULTS AND DISCUSSION

To be able to compare the different strategies and requested
energies all controls are augmented so that they all produce
680kJ, i.e. all shorter driving missions are extended, by main-
taining the end point until the target energy is reached. Note
that S − PET are all the same after augmentation since the
second phase just holds the final controls of the first phase. The
results are shown in Fig. 9 and Table I, where the augmented
S − Emf

, S − ET , S − PEmf
are all compared relative

S−PET . Since the trajectories of S−ET and S−PEmf
do

not change with Ereq only Ereq = 680 kJ is shown. In Table I
it can be seen that the difference between different requested
energies is small, in the fourth and fifth digit. These small
variations are influenced by the tolerances and discretizations
set for the solver, conclusions can therefore not be drawn
from the small variations that are found within a problem
formulation. The focus in the comparison is on the difference
between the time and fuel optimal formulations, where clear
conclusions can be drawn. Different initial guesses have been
used to try and ensure that the attained solutions are not local
minima. The problems solved here are on the limit, regarding
size and complexity, of what currently can be solved with the
software.

For S−PEmf
the increase in time compared to S−PET

is around 1% but the decrease in fuel consumption is roughly
11%. Since the time is only optimized in the first phase,
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Fig. 8. State and control trajectories for S − Emf for Ereq =
[170 340 510 680] kJ

all solutions have the same length after augmentation. That
increasing Ereq has a small effect on the fuel consumption is
probably due to that the solution of the second optimization
problem departs from the optimal operating point at the end
of the transient since the decrease of shifting operating point
is larger than the increase of being away from the optimal
operating point in the last sample. Therefore the control
augmented the least has the lowest consumption, the difference
is however negligible. Despite the simplicity of this strategy
it performs relatively well compared to the other strategies.

Interesting to note is that the trajectories of S−ET are quite
similar to S − PEmf

, even though the criterion is different.
The S−ET is however both faster and consumes less fuel. As
previously discussed the S−PEmf

doesn’t make use of all the
stored kinetic energy and this is probably the main reason for
this difference. The decrease in time and fuel consumption
is 2% and 12 % respectively. The slight increase in time
consumption with Ereq is probably due to different control
interval to time ratios used.

As seen in Fig. 8 and Fig. 9 the control for S−Emf
changes

with Ereq . For all Ereq the fuel consumption reduction is
around 12 %, the time consumption however increases with
1-19%. Interesting to not is that the fuel consumption increase
from minimizing time is small, only up to 0.4%, but not only
is the time consumption lower, the control is more straight



forward. In S − Emf
the produced power varies, something

that might not be desirable, which is avoided with S − ET .

VIII. CONCLUSIONS

Optimal control of a diesel-electric powertrain during tran-
sients is studied. First the minimum fuel and minimum time
control to steps in requested powers is discussed. The power
transients are then extended to shorter driving missions. The
driving missions are defined as that the powertrain has to
produce a certain amount of energy. This can be interpreted
as how much freedom the optimization has when the operator
applies a step in requested power before this power has to be
produced.

Two different control strategies for these driving missions
as well as how they change with the amount of requested
energy are studied, both for minimum time and minimum
fuel. The first strategy, denoted S − PE, solves two optimal
control problems. First the optimal control for a step in power
request is applied, then the control with constant output power
is optimized. The second strategy, denoted S − E, solves
one optimal control problem where the generator power is
considered a free variable.

For S − PET , S − PEmf
and S − ET the characteristics

of the solution does not change with requested energy. The
optimal solution is to accelerate the engine, following the
smoke-limiter, and then use the excess kinetic energy to
produce power and approach the maximum efficiency point
for the requested power(S − PEmf

and S − ET ), or to just
stay in the end point achieved when just the power transient
is optimized(S−PET ). The S−Emf

changes with Ereq. For
lower requested energy the solution is to follow the maximum
torque line, then accelerate the engine whilst producing power,
and then finally approach the end operating point from a higher
engine speed. For higher requested energies the engine is
accelerated before power is produced, the end point is then
approached following the maximum torque line.

The strategies are evaluated relative S − ET − 680 kJ. In
order for this to be possible the controls for lower requested
energies are augmented by holding on to the final operating
point until the requested energy is produced. The result shows
that compared to the S − PET large gains in fuel economy
can be made. However, all evaluated controls offer roughly a
12% reduction in consumption, but the time required differs.
Interesting to note is that S−ET has lower fuel consumption
than S − PEmf

and almost as low as S −Emf
even though

it is time that is minimized. This strategy thus offers almost
the optimum fuel economy but is 2-20% faster, depending on
amount of requested energy. None of the controls approach
the peak efficiency point. This is believed to be due to the
short nature of the driving missions in combination with the
end constraints.
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Fig. 9. Torque vs engine speed for S−ET/mf
and S−PEmf compared

to S − PET for different Ereq .

TABLE I
THE CHANGE IN FUEL CONSUMPTION AND DURATION OF THE DIFFERENT

STRATEGIES COMPARED TO S − PET − 680 KJ.

Ereq(T ) min S − PEmf S − Emf S − ET

170kJ ∆T [%] 1.07 2.92 -2.08
∆mf [%] -11.44 -11.95 -11.85

340kJ ∆T [%] 1.07 18.56 -2.01
∆mf [%] -11.45 -12.14 -11.84

510kJ ∆T [%] 1.07 16.26 -1.99
∆mf [%] -11.45 -12.25 -11.83

680kJ ∆T [%] 1.07 0.66 -1.96
∆mf [%] -11.46 -11.95 -11.81
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