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Abstract
Cylinder pressure modeling and heat release analysis are today important and
standard tools for engineers and researchers, when developing and tuning new
engines. An accurate specific heat ratio model is important for an accurate heat
release analysis, since the specific heat ratio couples the systems energy to other
thermodynamic quantities.

The objective of the first part is therefore to investigate models of the specific
heat ratio for the single-zone heat release model, and find a model accurate
enough to introduce a cylinder pressure modeling error less than or in the order
of the cylinder pressure measurement noise, while keeping the computational
complexity at a minimum. As reference, a specific heat ratio is calculated for
burned and unburned gases, assuming that the unburned mixture is frozen and
that the burned is at chemical equilibrium. Use of the reference model in heat
release analysis is too time consuming and therefore a set of simpler models,
both existing and newly developed, are compared to the reference model.

A two-zone mean temperature model and the Vibe function are used to
parameterize the mass fraction burned. The mass fraction burned is used to
interpolate the specific heats for the unburned and burned mixture, and then
form the specific heat ratio, which renders a small enough modeling error in γ.
The impact that this modeling error has on the cylinder pressure is less than that
of the measurement noise, and fifteen times smaller than the model originally
suggested in Gatowski et al. [1984]. The computational time is increased with
40 % compared to the original setting, but reduced by a factor 70 compared to
precomputed tables from the full equilibrium program. The specific heats for
the unburned mixture are captured within 0.2 % by linear functions, and the
specific heats for the burned mixture are captured within 1 % by higher-order
polynomials for the major operating range of a spark ignited (SI) engine.

The second part is on compression ratio estimation based on measured cylin-
der pressure traces. Four methods for compression ratio estimation based on
both motored and fired cylinder pressure traces are described and evaluated for
simulated and experimental data. The first three methods rely upon a model
of polytropic compression for the cylinder pressure, and it is shown that they
give a good estimate of the compression ratio for simulated cycles at low com-
pression ratios, although the estimates are biased. The polytropic model lacks
information about heat transfer and therefore, for high compression ratios, this
model error causes the estimates to become more biased. The fourth method
includes heat transfer, crevice effects, and a commonly used heat release model
for firing cycles. This method is able to estimate the compression ratio more
accurately at both low and high compression ratios. An investigation of how the
methods perform when subjected to parameter deviations in crank angle phas-
ing, cylinder pressure bias and heat transfer shows that the third and fourth
method can deal with these parameter deviations.
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1

Introduction

Internal combustion engines have been the primary machine for generating work
in mobile applications for more than a century, they are also continuing to be of
high interest due to the high energy density of the fuels and their possibility to
give good total fuel consumption. Continuous improvements and refinements
are made to meet the increasing performance demands from customers and
legislators, where both emissions and total system economy are important.

Emission regulations from the legislators provide a hard limit on the design–
they must be met. Today the state-of-the-art technology for achieving low
emissions from combustion engines, is the gasoline engine equipped with a three-
way catalyst (TWC). Regulations for diesel engines are also continuously being
made stricter to reach those of the gasoline engine with a TWC.

Development and competition between manufacturers strives to meet the
needs of customers to get products with better performance both with respect
to power and fuel consumption. Emerging technologies like the gas turbine and
now the fuel cell pose possibilities and give a healthy competition, which also
drives the technology development of combustion engines forward.

Engineers have met the challenges posed by stricter emission regulations
through for example fundamental research on combustion, adding new compo-
nents to more complex systems, as well as optimization of total system perfor-
mance. Engine systems are becoming increasingly complex as new technologies
are developed, but systematic methods are also required to complete these tech-
nologies. Some examples of promising techniques for spark ignited (SI) engines
are variable valve actuation and variable compression ratio. Both of these ex-
emplify technologies that control the development of the in-cylinder process
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directly and where it is of importance to get accurate knowledge about the
combustion process. The combustion process and other in-cylinder processes
are directly reflected in the measured cylinder pressure, and used as a stan-
dard tool for tuning and optimizing engine performance. This is of course also
important for conventional engines.

In-cylinder pressure modeling

The in-cylinder pressure is important since it directly gives the work production
in the combustion chamber and thus gives important insight into the control
and tuning of the engine. To accurately model and extract information from the
cylinder pressure is important for the interpretation and validity of the result.
Researchers and engineers strive to extract as much information as possible
from the combustion chamber through the in-cylinder pressure and models of
different complexity exist for interpretation of the cylinder pressures. Here the
focus is on single-zone models that treats the in-cylinder contents as a single
zone and single fluid. These models can describe the cylinder pressure well and
has a low computational complexity, which is also an important parameter when
analyzing engine data.

Due to the short time scales of the process a sequence of measurements on
an engine gives huge amounts of data. These large sets of data have to be
analyzed efficiently, systematically, and with good accuracy. The focus here is
on efficiency and accuracy. For the purpose of in-cylinder pressure analysis,
efficient models is the same as single zone models, and the accuracy of these is
the topic of the thesis. The foundation for the analysis of the model is the first
law of thermodynamics where the relation between work, volume, pressure and
temperature is described through the ratio of specific heats. Analyses that have
been performed show that the specific heat ratio is of high importance for the
model and therefore this model component is studied in great detail. Therefore,
single-zone heat release models are the first topic of the thesis, where the specific
heat ratio model constitutes a key part.

Compression ratio estimation

The theme in the thesis is cylinder pressure and the second topic is on compres-
sion ratio estimation based on measured cylinder pressure traces. This partic-
ular problem is directly motivated by the variable compression engine, where
the compression ration can be changed continuously to eliminate an important
design trade-off made in conventional engines. High compression ratios give
good engine efficiency but at high loads a high compression ratio can result in
engine destruction through engine knock. In that engine the compression ratio
is changed continuously to get the best performance from the engine. When
the engine is driven at low loads a high compression ratio is selected for good
efficiency and at high loads a low compression ratio is used to reduce engine
knock. Compression ratio estimation is studied for several reasons where the
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most important is for diagnostic purposes. A too high compression ratio can
lead to engine destruction while a too low compression ratio gives a too high
fuel consumption.

Four different methods for compression ratio estimation are proposed and
evaluated. The research was motivated by the variable compression engine,
but the methods are generally applicable and can also be used on conventional
engines to get a better value of the compression ratio from experimental data.

1.1 Outline and reader’s guide
An outline of the thesis in terms of short summaries of each chapter is given and
indicates the scope. The notation used is summarized in appendix C, where the
parameters are given in appendix C.1 and the abbreviations are summarized
in C.2.

Chapter 2: Heat-release models

This chapter serves as an introduction to single-zone heat release modeling.
First the basis and assumptions made for single-zone heat release modeling are
given. Based on these, four well-known heat release models are presented. These
are compared with respect to their computed heat release trace given a cylinder
pressure trace.

Chapter 3: Heat-release model components

The model components used in the most descriptive single-zone heat release
model in chapter 2, the Gatowski et al. [1984] model, are described. The model
components of the other three heat release models form a subset of these. For
each model component, a method to initialize the model component parameters
is given. The sensitivity in cylinder pressure for each of these parameters is then
investigated. The chapter ends with a summary of the equations, parameters,
inputs and outputs of the Gatowski et al. model.

Chapter 4: A specific heat ratio model for single-zone heat release
models

The specific heat ratio (γ) model is an important component of a heat release
model. This since the specific heat ratio couples the systems energy with the
thermodynamic quantities. The objective of this chapter is therefore to find a γ-
model that introduces a cylinder pressure modeling error less than or in the order
of the cylinder pressure measurement noise, while keeping the computational
complexity at a minimum. This is done by finding γ-models for an unburned
air-fuel mixture and for a burned mixture. These models are then combined
in a number of ways, to form γ-models valid for a partially burned mixture.
These models are then compared to a reference model and to the model used
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in Gatowski et al. [1984]. The evaluation is performed in terms of modeling
error in γ and in cylinder pressure. The impact each γ-model has on the heat
release, in terms of estimated heat release parameters in the Vibe function is
illustrated. The influence of fuel composition, air-fuel ratio and residual gas
content is also investigated. Further details and argumentation are given in
appendix A.

Chapter 5: Compression ratio estimation

A newly developed engine that can alter the compression ratio continuously is
used. The purpose of this chapter is to estimate the compression ratio given
a cylinder pressure trace, in order to diagnose if the compression ratio gets
stuck at a too high or too low ratio. Four methods for compression ratio esti-
mation of an engine from both motored and fired cylinder pressure traces are
described. These methods are evaluated for both simulated and experimental
cylinder pressure data. An investigation of how the methods perform when
subjected to parameter deviations in crank angle phasing, cylinder pressure
bias and heat transfer is also made. Further details and argumentation for this
chapter are given in appendix B.

Reader’s guide

For those familiar with single-zone heat release modeling, chapter 2 and 3 can
be skipped. Refer instead to section 3.9 for a summary of the Gatowski et al.
[1984] model. In chapter 4 a specific heat ratio model is proposed, and the
main results on this model are given in section 4.6. Chapter 5 investigates four
methods for compression ratio estimation, where the main simulation results are
given in section 5.5 and the main experimental results are given in section 5.6.

1.2 Contributions
The main contributions of this thesis are:

• An investigation that shows the importance of the specific heat ratio model
in cylinder pressure modeling.

• A specific heat ratio model to be used primarily in single-zone heat release
models. This model can easily be incorporated with the widely used heat
release model described in Gatowski et al. [1984], and reduces the mod-
eling error to be of the same order as the cylinder pressure measurement
noise.

• Four methods for estimating the compression ratio index, given a cylinder
pressure trace. The methods are investigated and compared in terms of
accuracy, convergence speed and over-all convergence.
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2

Heat-release models

When analyzing the internal combustion engine, the in-cylinder pressure has
always been an important experimental diagnostic in automotive research and
development, due to its direct relation to the combustion and work produc-
ing processes [Chun and Heywood, 1987; Cheung and Heywood, 1993]. The
in-cylinder pressure reflects the combustion process, the piston work produced
on the gas (due to changes in cylinder volume), heat transfer to the chamber
walls, as well as mass flow in and out of crevice regions between the piston,
rings and cylinder liner.

Thus if an accurate knowledge of how the combustion process propagates
through the combustion chamber is desired, each of these processes must be re-
lated to the cylinder pressure, so the combustion process can be distinguished.
The reduction of the effects of volume changed, heat transfer, and mass loss on
the cylinder pressure is called heat-release analysis and is done within the frame-
work of the first law of thermodynamics, when the intake and exhaust valves
are closed, i.e. during the closed part of the engine cycle. The simplest approach
is to regard the cylinder contents as a single zone, whose thermodynamic state
and properties are modeled as being uniform throughout the cylinder and rep-
resented by average values. No spatial variations are considered, so the model
is said to be zero-dimensional. Models for heat transfer and crevice effects can
easily be included. A more accurate thermodynamic analysis would be to use
a multi-zone model, where the cylinder is divided into a number of zones, dif-
fering in composition and properties. Each zone being uniform in composition
and temperature, and the pressure is the same for all zones.

This chapter deals with the structure of different single-zone heat-release
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Figure 2.1: Cyclic dispersion of cylinder pressure for ten consecutive cycles.

model families and how they are derived. The subsequent chapter (chapter 3)
gives a more thorough description of the model components.

Single-zone models for analyzing the heat-release rate and simulating cylin-
der pressure are closely connected; they share the same basic balance equation
and can be interpreted as each others inverse. They both result in a first order
ordinary differential equation which has to be solved. For a given heat-release
model an equivalent pressure model can be derived by reordering the terms
in the ordinary differential equation. Since they are so closely connected it is
beneficial to discuss them together.

In spark-ignition engines the combustion process varies significantly from
one engine cycle to the next one. This cycle-to-cycle variation is an impor-
tant constraint on engine operation, since all cycles can not be at optimum.
The variation can be quite large, as seen in figure 2.1 where the in-cylinder
pressure for ten consecutive cycles is shown. Cyclic dispersion is due to vary-
ing turbulence within the cylinder from cycle to cycle, inhomogeneous air/fuel
mixture and the exhaust residual gas not being fully mixed with the unburned
mixture [Johansson, 1995]. If this cyclic dispersion could be eliminated, an in-
crease in fuel economy could be achieved, since all cycles could burn at optimum
rate [Stone, 1999, p.181].

Due to the cyclic dispersion there is also a need for calculating the burn
rate for every individual cycle, which can be done efficiently using a single-zone
heat-release model.

8



2.1 Model basis and assumptions

The basis for the majority of the heat-release models is the first law of ther-
modynamics; the energy conservation equation. For an open system, it can be
stated as

dU = đQ− đW +
∑

i

hi dmi (2.1)

where dU is the change in internal energy of the mass in the system, đQ is the
heat transported to the system, đW is the work produced by the system and∑

i hi dmi is the enthalpy flux across the system boundary. Possible mass flows
dmi are: 1) flows in and out of the valves; 2) direct injection of fuel into the
cylinder; 3) flows in and out of crevice regions; 4) piston ring blow-by;ä The
mass flow dmi is positive for a mass flow into the system and hi is the mass
specific enthalpy of flow i. Note that hi is evaluated at conditions given by the
zone the mass element leaves.

As mentioned earlier, single-zone models is our focus at the moment, so we
will now look into those in more detail. Some commonly made assumptions for
the single-zone models are

• the cylinder contents and the state is uniform throughout the entire cham-
ber

• the combustion is modeled as a release of heat

• the heat released from the combustion occurs uniformly in the chamber

• the gas mixture is an ideal gas

Consider the combustion chamber to be an open system (single zone), with the
cylinder head, cylinder wall and piston crown as boundary. Figure 2.2 shows
a schematic of the combustion chamber, where the sign conventions used in
pressure and heat-release models are defined. The change in heat đQ consists of
the released chemical energy from the fuel đQch, which is a heat adding process,
and the heat transfer to the chamber walls đQht, which is a heat removing
process. So, the heat transport is represented by Q = Qch −Qht. Note that the
heat transfer cools most of the time, but sometimes heats the air-fuel mixture.
The work done by the fluid on the piston Wp is positive, therefore đW = đWp.
The first law of thermodynamics (2.1) can then be rewritten as

đQch = dUs + đWp −
∑

i

hi dmi + đQht (2.2)

The piston work đWp can also be written as đWp = pdV . For an ideal gas, the
change in sensible energy dUs is a function of mean charge temperature T only,
thus:

Us = mcu(T ) (2.3)
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Figure 2.2: Schematic of the combustion process in the cylinder, that defines
the sign convention used in the pressure and heat-release models.

which in its differentiated form becomes:

dUs = mccv(T )dT + u(T )dmc (2.4)

where mc is the charge mass, and cv =
(

∂u
∂T

)
V

is the mass specific heat at
constant volume. The mean temperature is found from the ideal gas law as
T = pV

mcR , and its differentiated form is

dT =
1

mcR
(V dp+ pdV −RTdmc) (2.5)

assuming R to be constant. For reading convenience, the dependence of T for
cp, cv and γ is often left out in the following equations. Equation (2.2) can now
be rewritten as

đQch =
cv
R
V dp+

cv +R

R
pdV + (u− cv T )dmc −

∑
i

hi dmi + đQht (2.6)

using equations (2.4) and (2.5). The specific heat ratio is defined as γ = cp

cv

and assuming an ideal gas the mass specific gas constant R can be written as
R = cp − cv, yielding that the mass specific heat at constant volume is given by

cv =
R

γ − 1
(2.7)

The mass specific heat is the amount of energy that must be added or removed
from the mixture to change its temperature by 1 K at a given temperature

10



and pressure. It relates internal energy with the thermodynamic state vari-
ables p and T , and is therefore an important part of the heat release modeling.
Inserting (2.7) into (2.6) results in

đQch =
1

γ − 1
V dp+

γ

γ − 1
p dV + (u− RT

γ − 1
)dmc −

∑
i

hi dmi + đQht (2.8)

From this equation, four different single-zone models with various levels of
complexity will be derived. First, the polytropic model will be derived and
this model forms the basis for calculating the mass fraction burned with the
Rassweiler-Withrow method [Rassweiler and Withrow, 1938]. Secondly, a model
for computing the apparent heat release first proposed in Krieger and Borman
[1967] will be derived. Thirdly, the pressure ratio developed by Matekunas
[1983] is shortly summarized. Finally, a model including heat transfer and
crevice effects [Gatowski et al., 1984] will be given.

2.2 Rassweiler-Withrow model
The Rassweiler-Withrow method was originally presented in 1938 and many still
use the method for determining the mass fraction burned, due to its simplicity
and it being computationally efficient. The mass fraction burned xb(θ) = mb(θ)

mc

is the burned mass mb(θ) normalized by the total charge mass mc, and it can be
seen as a normalized version of the heat-release traceQch(θ) such that it assumes
values in the interval [0,1]. The relation between the mass fraction burned and
the amount of heat released can be justified by noting that the energy released
from a system is proportional to the mass of fuel that is burned. The input to
the method is a pressure trace p(θj) where the crank angle θ at each sample j
is known (or equivalently; the volume is known at each sample) and the output
is the mass fraction burned trace xb(θj).

A cornerstone for the method is the fact that pressure and volume data can
be represented by the polytropic relation

pV n = constant (2.9)

where the constant exponent n ∈ [1.25, 1.35] gives a good fit to experimental
data for both compression and expansion processes in an engine [Lancaster et al.,
1975]. The exponent is termed the polytropic index. It is comparable to the
average value of γu for the unburned mixture during the compression phase,
prior to combustion. But due to heat transfer to the cylinder walls, index n
is greater than γb for the burned mixture during expansion [Heywood, 1988,
p.385].

The polytropic relation in (2.9) can be found from the first law of thermo-
dynamics (2.8) by:

• neglecting crevice effects and leakages to the crankcase (often called blow-
by), i.e. dmc = dmi = 0
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• taking no explicit account for heat transfer đQht = 0, thus đQ = đQch −
đQht = đQch

• assuming that the specific heat ratio is captured by the (constant) poly-
tropic index γ(T ) = n

• using that there is no release of chemical energy during the compression
phase prior to the combustion or during the expansion phase after the
combustion, therefore đQ = 0

This yields:
dp = −n p

V
dV (2.10)

from which the polytropic relation is found by integration and noting that n is
considered to be constant. Note that some of the effects of heat transfer are
included implicitly in the polytropic index.

When considering combustion đQ = đQch 6= 0, equation (2.8) can be rewrit-
ten as

dp =
n− 1
V

đQ− n p

V
dV = dpc + dpv (2.11)

where dpc is the pressure change due to combustion, and dpv is the pressure
change due to volume change and equals dp in (2.10). In the Rassweiler-
Withrow method [Rassweiler and Withrow, 1938], the actual pressure change
∆p = pj+1 − pj during the interval ∆θ = θj+1 − θj , is assumed to be made up
of a pressure rise due to combustion ∆pc, and a pressure rise due to volume
change ∆pv,

∆p = ∆pc + ∆pv (2.12)

which is justified by (2.11). The pressure change due to volume change during
the interval ∆θ is given by the polytropic relation (2.9), which gives

∆pv(j) = pj+1,v − pj = pj

((
Vj

Vj+1

)n

− 1
)

(2.13)

Applying ∆θ = θj+1 − θj , (2.12) and (2.13) yields the pressure change due to
combustion as

∆pc(j) = pj+1 − pj

(
Vj

Vj+1

)n

(2.14)

By assuming that the pressure rise due to combustion in the interval ∆θ is
proportional to the mass of mixture that burns, the mass fraction burned at
the end of the j’th interval thus becomes

xb(j) =
mb(j)

mb(total)
=

∑j
k=0 ∆pc(k)∑M
k=0 ∆pc(k)

(2.15)

where M is the total number of crank angle intervals and ∆pc(k) is found
from (2.14). The result from a mass fraction burned analysis is shown in fig-
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Figure 2.3: Top: Measured pressure trace (solid) and motored pressure trace
(dash-dotted). Bottom: Calculated mass fraction burned profile using the
Rassweiler-Withrow method.

ure 2.3, where the mass fraction burned profile is plotted together with the cor-
responding pressure trace. In the upper plot two measured cylinder pressures,
one from a firing cycle (solid) and one from a motored cycle (dash-dotted) are
displayed. When the pressure rise from the combustion becomes visible, i.e.
it rises above the motored pressure, the mass fraction burned profile starts to
increase above zero. The mass fraction burned profile increases monotonously
as the combustion propagates throughout the combustion chamber.

If instead a heat-release trace is sought, the pressure change due to combus-
tion in (2.11), dpc = n−1

V đQ,can be rewritten and approximated by

∆Q(j) =
Vj+1/2

n− 1
∆pc(j) (2.16)

where the volume V during interval j is approximated with Vj+1/2 (the volume
at the center of the interval), and ∆pc(j) is found from (2.14). The apparent
heat-release trace is then found by summation. The calculated heat release is the
released chemical energy from the fuel minus energy-consuming processes such
as the heat transfer to the cylinder walls and crevice effects. If heat transfer and
crevice effects where non-existent, the apparent heat release would correspond
directly to the amount of work output from the engine, therefore the term
apparent. The heat-release trace for the same data as in figure 2.3 is displayed
in the upper plot of figure 2.4 as the dash-dotted line.

As mentioned earlier, there are several approximations made when using the
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Figure 2.4: Calculated heat-release trace (upper) and mass fraction burned
trace (lower), using the apparent heat release (solid) and Rassweiler-Withrow
(dash-dotted) methods.

Rassweiler-Withrow method. The polytropic index n is constant. However,
γ(T ) varies from compression to expansion and changes during the combustion
process. It also varies with engine operating conditions.

2.3 Apparent heat release model

The first work in this direction derived from the first law of thermodynamics
was proposed in Krieger and Borman [1967] and was called the computation of
apparent heat release. It is also called the computation of net heat release. The
method takes neither heat transfer nor crevice effects into account, thus đQht

is lumped into đQ = đQch − đQht and dmc = dmi = 0 in (2.8). Hence, the
apparent heat release đQ can be expressed as:

đQ =
1

γ(T ) − 1
V dp+

γ(T )
γ(T ) − 1

p dV (2.17)

which is the same expression as (2.11) from which the Rassweiler-Withrow
method is based upon, assuming that γ(T ) = n. The Rassweiler-Withrow
method in (2.15) is a difference equation, and this causes an quantization effect
compared to the ordinary differential equation given in (2.17). The net heat-
release trace and mass fraction burned profile from the Krieger and Borman
model are similar to those from the Rassweiler-Withrow method, the first being
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Method θ10 θ50 θ85 θb

Rassweiler-Withrow -4.5 9.8 25.2 29.8
Apparent heat release -6.4 11.0 26.9 33.3

Table 2.1: Crank angle positions for 10 %, 50 % and 85 % mfb as well as the
rapid burn angle θb = θ85−θ10, all given in degrees ATDC for the mass fraction
burned trace in figure 2.4.

physically the more accurate one. This is shown in figure 2.4, where the upper
plot shows the net heat-release traces and the lower plot shows the mass frac-
tion burned traces, from the cylinder pressure in figure 2.3. For this particular
case, the Rassweiler-Withrow method yields a higher burn rate compared to the
apparent heat release method for the same data. This is reflected in the crank
angle for 50 % mfb θ50, which is 11.0 [deg ATDC] for the apparent heat release
method and 9.8 [deg ATDC] for the Rassweiler-Withrow method. Table 2.1
summarizes the crank-angle positions for 10 %, 50 % and 85 % mfb as well
as the rapid burn angle duration θb, and shows that the Rassweiler-Withrow
method yields a shorter burn duration for this particular case. The rapid burn
angle duration is defined in section 3.5 as θb = θ85 − θ10.

This is also reflected in the heat release trace, and the difference is due to the
assumptions on n and Vj+1/2 in the Rassweiler-Withrow method. The mass
fraction burned profile is calculated assuming that the mass of burned mixture
is proportional to the amount of released chemical energy.

Pressure simulation

An ordinary differential equation for the pressure can be simulated by solving
(2.17) for the pressure differential dp:

dp =
(γ(T ) − 1)đQ− γ(T ) p dV

V
(2.18)

When performing a heat-release analysis the pressure is used as input and the
heat release is given as output, and when the pressure trace is being simulated
the heat-release trace is given. Therefore the cylinder pressure simulation, with
the equation above, can be seen as the inverse of the heat release analysis (2.17).
The only additional information that is needed for the computation is the initial
value of the pressure.

2.4 Matekunas pressure ratio
The pressure ratio management was developed by Matekunas [1983] and is a
computationally efficient method to determine an approximation of the mass
fraction burned trace xb(θ) at every crank angle θ. The pressure ratio is defined
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Figure 2.5: Top: Measured pressure trace (solid) and motored pressure trace
(dash-dotted), same as in the upper plot of figure 2.3. Middle: Matekunas
pressure ratio PR(θ) (2.19). Bottom: Computed mass fraction burned profile
using (2.20).

as the ratio of the cylinder pressure from a firing cycle p(θ) and the correspond-
ing motored cylinder pressure p0(θ):

PR(θ) =
p(θ)
p0(θ)

− 1 (2.19)

The pressure ratio (2.19) is then normalized by its maximum

PRN (θ) =
PR(θ)

maxPR(θ)
(2.20)

which produces traces that are similar to the mass fraction burned profiles.
The difference between them has been investigated in [Eriksson, 1999], and
for position PRN (θ) = 0.5 the difference was in the order of 1-2 degrees. This
suggests PRN (θ) can be used as the mass fraction burned trace xb. The cylinder
pressure in the upper plot of figure 2.5 yields the pressure ratio PR (2.19) given
in the middle plot, and an approximation of the mass fraction burned in the
lower plot.

2.5 Gatowski et al. model
A more complex model is to incorporate models of heat transfer, crevice effects
and thermodynamic properties of the cylinder charge into the energy conserva-
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tion equation (2.8). This was first done in [Gatowski et al., 1984], where the
heat-release model was developed and applied to three different engine types,
among those a spark-ignited engine.

Crevice effect model

Crevices are small, narrow volumes connected to the combustion chamber. Dur-
ing compression some of the charge flows into the crevices, and remain there
until the expansion phase, when most of the charge returns to the combustion
chamber and some charge stays in the crevices. However, a small part of the
charge in the crevices blows by the top ring and ends up in the crank-case, a
phenomena termed blow-by. Since the flame can not propagate into the crevices,
the charge residing in the crevices is not combusted. The temperature in the
crevices are assumed to be close to the cylinder wall temperature, due to that
the crevices are narrow [Heywood, 1988, p.387]. This has the result that during
the closed phase a substantial amount of charge could be trapped in the crevices.
According to Gatowski et al. [1984], the crevice volumes constitute as much as
1-2 per cent of the clearance volume in size. In section 3.4 it is shown that as
much as 10 (mass) per cent of the charge could then be trapped in crevices at
peak pressure.

The model in Gatowski et al. [1984] assumes all crevices can be modeled as a
single aggregate constant volume Vcr, and that the charge in the crevice assumes
the wall temperature Tw and is at the same pressure as in the combustion
chamber. The ideal gas law thus gives

pVcr = mcrRTw =⇒ dmcr =
Vcr

RTw
dp (2.21)

where it is assumed that Tw and R are constant.
Here, we will only consider spark-ignition engines with a premixed air-fuel

charge during the closed part of the engine cycle. Hence when neglecting blow-
by, the only mass flow occurring is the one in and out of the crevice region.
Mass balance thus yields

dmc = dmi = −dmcr (2.22)

Equation (2.8) can then be rewritten using (2.21) and (2.22) as:

đQch =
1

γ − 1
V dp+

γ

γ − 1
p dV + (

RT

γ − 1
− u+ h′)dmcr + đQht (2.23)

The enthalpy h′ is evaluated at cylinder conditions when the mass crevice flow
is out of the cylinder (dmcr > 0), and at crevice conditions otherwise.

Heat transfer model

The heat transfer correlation model relies upon Newton’s law of cooling

Q̇ht = hcA∆T = hcA (T − Tw) (2.24)
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and Woschni [1967] found a correlation between the convection heat transfer
coefficient hc and some geometric and thermodynamic properties1,

hc =
0.013B−0.2p0.8

(
C1up + C2(p−p0)TrVs

prVr

)0.8

T 0.55
(2.25)

Woschni’s heat transfer correlation model, among others, is more fully described
in section 3.7. Note that when simulating heat transfer in the crank angle
domain,

đQht

dθ
=

đQht

dt

dt

dθ
= Q̇ht

60
2πN

(2.26)

should be used, where N [rpm] is the engine speed.

Model of thermodynamic properties

The ratio of specific heats γ(T ) is modeled as a linear function of temperature.

γlin(T ) = γ300 + b (T − 300) (2.27)

In Gatowski et al. [1984] it is stated that this component is important, since it
captures how the internal energy varies with temperature. This is an approxima-
tion of the thermodynamic properties but it is further stated that this approx-
imation is consistent with the other approximations made in the model. The
thermodynamic properties of both unburned and burned air-fuel charges are fur-
ther investigated in section 4.2. Using γ(T ) = cp(T )

cv(T ) and R(T ) = cp(T )− cv(T ),
together with the linear model of γ(T ) in (2.27), ends up in an expression for
cv(T ):

cv(T ) =
R

γ(T ) − 1
=

R

γ300 + b(T − 300) − 1
(2.28)

The only thing remaining in (2.23) to obtain a full description of the model, is
an expression for cv T +h′−u. Remembering that h = RT +u and cv = ( ∂u

∂T )V ,

cv T + h′ − u = cv T +RT ′ + u′ − u

= cv T +RT ′ +
∫ T ′

T
cv dT

(2.29)

Integrating cv from the cylinder conditions to crevice conditions gives the amount
of energy left or added to the system when a mass enters the crevice volume.
The integration is performed below:

u′ − u =
∫ T ′

T
cv dT

= R
b {ln(γ300 + b (T ′ − 300) − 1) − ln(γ300 + b (T − 300) − 1)}

= R
b ln

(
γ′

lin−1
γlin−1

)
(2.30)

1The value of the first coefficient differs from the one in [Woschni, 1967], since it is recal-
culated to fit the SI-unit system
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When using a higher order polynomial γ(T ) = γ300 + b1(T −300)+ . . .+ bn(T −
300)n, the energy term in (2.30) must be rewritten as:

u′ − u =
∫ T ′

T
cv dT

= R
{

1
b(T ′) ln(γ(T ′) − 1) − 1

b(T ) ln(γ(T ) − 1)
} (2.31)

where b(T ) = b1 + . . .+nbn(T −300)n−1. Equation 2.31 is valid for n = 1, 2, . . ..

Gross heat-release simulation

Inserting equations (2.21) to (2.30) into (2.8), yields the following expression
for the released chemical energy:

đQch = 1
γ−1V dp+ γ

γ−1p dV + đQht + (cv T +RT ′ + R
b ln

(
γ′−1
γ−1

)
) Vcr

R Tw
dp

=
1

γ − 1
V dp+

γ

γ − 1
p dV︸ ︷︷ ︸

dQnet

+đQht + (
1

γ − 1
T + T ′ +

1
b

ln
(
γ′ − 1
γ − 1

)
)
Vcr

Tw
dp︸ ︷︷ ︸

dQcrevice

(2.32)
This ordinary differential equation can easily be solved numerically for the heat-
release trace, if a cylinder pressure trace is provided, together with an initial
value for the heat release. Given the cylinder pressure in figure 2.3, the heat-
release trace given in figure 2.6 is calculated. The solid line is the gross heat
released, i.e. the chemical energy released during the engine cycle. The dash-
dotted line shows heat released if not considering the crevice effect, and the
dashed line shows the net heat release, i.e. when not considering neither heat
transfer nor crevice effects. For this particular case, the heat transfer is about
70 J and the crevice effect is about 30 J, i.e. approximately 14 and 6 per cent
of the total released energy respectively.

Cylinder pressure simulation

Reordering (2.32), gives an expression for the pressure differential as

dp =
đQch − γ

γ−1 p dV − đQht

1
γ−1 V + Vcr

Tw

(
T

γ−1 − 1
b ln

(
γ−1
γ′−1

)
+ T ′

) (2.33)

This ordinary differential equation can easily be solved numerically for the cylin-
der pressure, if a heat-release trace đQch is provided, together with an initial
value for the cylinder pressure. For this purpose the well-known Vibe function
in its differentiated form is used, and it is introduced in section 3.5.
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Figure 2.6: Heat-release trace from the Gatowski model given the cylinder pres-
sure in figure 2.3.

2.6 Comparison of heat release traces

The single zone heat release models presented in the previous sections all yield
different heat release traces for a given cylinder pressure trace. This is shown in
figure 2.7, where the heat release traces for the Rassweiler-Withrow, apparent
heat release and Gatowski models are displayed in the upper plot. As expected,
the accumulated heat release is higher for the Gatowski model since it accounts
for heat transfer and crevice effects. The mass fraction burned traces do not
differ as much, as displayed in the lower plot of figure 2.7. For this operating
point, the Rassweiler-Withrow model produces a mass fraction burned trace
more like the one found by the Gatowski model, as shown by comparing the burn
angles given in table 2.2. Note that the heat release traces from the Rassweiler-
Withrow, apparent heat release and Matekunas models are set constant when
they have reached their maximum values. If not, their behavior would be similar
to the net heat release trace Qnet given in figure 2.6.
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Figure 2.7: Upper: Heat-release trace from the Gatowski (solid), apparent heat
release (dashed) and Rassweiler-Withrow (dash-dotted) models given the cylin-
der pressure in figure 2.3. Lower: Mass fraction burned traces corresponding
to the upper plot and from Matekunas pressure ratio (dotted).

Method θ10 θ50 θ85 θb

Rassweiler-Withrow -4.5 9.8 25.2 29.8
Apparent heat release -6.4 11.0 26.9 33.3
Matekunas -6.9 9.2 24.0 30.9
Gatowski et.al. -5.1 10.4 24.4 29.5

Table 2.2: Crank angle positions for 10 %, 50 % and 85 % mfb as well as the
rapid burn angle θb = θ85−θ10, all given in degrees ATDC for the mass fraction
burned traces in the lower plot of figure 2.7.
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2.7 Summary
A family of single-zone heat release models have been derived starting from
the first law of thermodynamics, the energy conservation equation. The three
models described are then compared and their specific model assumptions are
pointed out. The most elaborate one is the Gatowski et al. model, which in-
cludes heat transfer described by Woschni’s heat transfer correlation and crevice
effects. This model also assumes that the specific heat ratio for the cylin-
der charge can be described by a linear function in temperature. The other
three models, the Rassweiler-Withrow model, the Matekunas pressure ratio
and the apparent heat release model, are all more computationally efficient
than the Gatowski et al. model, merely since they lack the modeling of heat
transfer and crevice effect, as well as having a constant specific heat ratio. This
computational efficiency of course comes to a cost of less descriptive models.
Therefore, the Gatowski et al. model will be the model used for the parameter
estimations and the Rassweiler-Withrow model will only serve as an initializa-
tion. The model components in the Gatowski et al. model will now be more
thoroughly described in chapter 3.
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3

Heat-release model
components

No model is better than its components, therefore models for the various com-
ponents given in chapter 2 and especially in section 2.5 for the Gatowski et al.-
model, are treated more fully here in a separate chapter. Some of the model
components have already been introduced in section 2.5, but all components
will be more thoroughly explained and compared to other model components in
sections 3.1-3.7. In section 3.8 the cylinder pressure sensitivity to the parame-
ter initializations is briefly investigated. The equations that form the complete
Gatowski et al. single-zone heat release model are boxed, and the model is sum-
marized in section 3.9.

3.1 Pressure sensor model

The in-cylinder pressure is measured using a water-cooled quartz pressure trans-
ducer, a piezoelectric sensor that becomes electrically charged when there is a
change in the forces acting upon it. Piezoelectric transducers react to pressure
changes by producing a charge proportional to the pressure change. This charge
is then integrated by the charge amplifier, and results in a relative pressure given
in volts. The charge amplifier also drifts due to current leakage. It is however
assumed that this drift is slow, and then a static model of the pressure sensor
can be used:

pm = Kp p+ ∆p (3.1)

where pm is the measured cylinder pressure and p is the true cylinder pressure.
The gain Kp is considered as constant for the measurement setup, but the
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Figure 3.1: Ram effect in the intake runners clearly visible between -200 [deg
ATDC] and IVC.

offset ∆p changes during the cycle due to leakage in the charge amplifier and
thermal shock of the sensor. Due to the assumption of a slow drift in the charge
amplifier, the pressure offset ∆p is considered to be constant for one cycle.

Parameter initialization – pressure offset ∆p

The determination of the pressure offset is referred to as pegging the pressure
signal, or cylinder pressure referencing. The pressure offset can be estimated
with various methods [Randolph, 1990; Brunt and Pond, 1997]. It is generally
recommended that pegging is performed once for every pressure cycle. One
method is to find ∆p in a least squares sense using a polytropic model for the
cylinder pressure p.

Another method is to reference the measured cylinder pressure pm(θ) to
the intake manifold pressure pman before inlet valve closing (IVC), for several
samples of pman. This method is often referred to as intake manifold pressure
referencing (IMPR) [Brunt and Pond, 1997]. Due to standing waves (ram effect)
in the intake runners at certain operating points, see figure 3.1, the referencing
might prove to be insufficient. The referencing should be done at crank angles
where the change in cylinder pressure is approximately flat for all operating
points, i.e. where the intake manifold pressure pman and the measured cylin-
der pressure pm are the same or have a constant difference [Brunt and Pond,
1997]. Figure 3.2 shows the cylinder pressure change for θ ∈ [−200,−160]
[deg ATDC] for a number of operating points. Using the same approach as
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Figure 3.2: Pressure offset as function of CAD when referencing to intake mani-
fold pressure. The pressure change is approximately flat for all operating points
between -167 and -162 CAD.

in Brunt and Pond [1997], the referencing should be done between -167 to -162
CAD.

If IMPR proves to be insufficient, ∆p must be estimated from the measured
cylinder pressure data to achieve a correct referencing, but referencing to pman

serves well as an initialization.

Parameter initialization – pressure gain Kp

The gain Kp can be determined in at least three different ways, summarized
in Johansson [1995]: The first is to determine the gain for each component in
the measurement chain and multiply them to get Kp; The second is to calibrate
the total chain by applying a well defined pressure step and measure the result;
The third way being to determine the total gain in conjunction with a thermo-
dynamic model. Here the first method is used, and the gain Kp is determined
by using tabulated values from the manufacturer.

3.1.1 Crank angle phasing

The pressure trace is sampled at certain events, such as every crank angle de-
gree. Since the mounting can not be performed with infinite precision, an un-
certainty in the exact crank angle position for the sampling pulses is inherent.
So, when calculating the heat-release trace (2.32), the phasing of the pressure
trace relative to the volume trace will most definitively affect the outcome.
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According to Amann [1985]; Morishita and Kushiyama [1997]; Staś [2000], this
phasing need to be accurate within 0.1 CAD, in order to accurately calcu-
late the work (imep) from a specific cylinder. According to Brunt and Emtage
[1997] the phasing need to be within 0.2 CAD to find imep accurate within
1 %, since typically a 1 CAD phase shift induce a 4 % imep error with gaso-
line engines and the relationship between imep error and crank angle error is
linear [Brunt and Emtage, 1996].

In Schagerberg and McKelvey [2003], models for crank angle offset θ0 in a
multi-cylinder engine are developed. The crank angle offset depends on the
cylinder number and the phase of the cycle, i.e. θ0 differs during compression,
combustion and expansion. This is due to crank-shaft torsion and flexibility,
which can be as large as 1 CAD [Stone, 1999].

Here a rigid crank shaft is considered and therefore these effects are ne-
glected. Neglecting these effects, and assuming that the sampled value at crank
angle θi can be modeled as having a constant offset θ0 from the true crank angle
θi,true, ends up in

θi + θ0 = θi,true (3.2)

Parameter initialization – crank angle offset θ0

The determination of θ0 is often referred to as TDC determination. θ0 is one of
the parameters to be identified from the thermodynamic model of the cylinder
pressure, and an initial value of θ0 is provided from a motoring cycle.

Other methods of finding the crank angle offset θ0

The easiest way to find θ0 is of course to consider only motored cycles, i.e.
when there is no combustion. Then the cylinder pressure would have its max-
imum at TDC if it were not for heat transfer and crevice effects. Instead, the
peak for the compression pressure occurs before TDC. This difference is re-
ferred to as “thermodynamic loss angle” [Hohenberg, 1979]. Attempts to avoid
the problem connected with unknown heat transfer have been taken in Staś
[1996]; Morishita and Kushiyama [1997]; Nilsson and Eriksson [2004], by using
the polytropic relation to determine the position of TDC.

3.2 Cylinder volume model

The cylinder volume V (θ, xoff ) consists of a clearance volume Vc(xoff ) and an
instantaneous displacement volume Vid(θ, xoff ), as

V (θ, xoff ) = Vc(xoff ) + Vid(θ, xoff ) (3.3)
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The instantaneous displaced volume Vid depends on the crank angle θ, cylinder
bore B, crank radius a, connecting rod length l, pin-off xoff and is given by

Vid(θ, xoff ) =
πB2

4
(
√

(l + a)2 − x2
off − a cos θ −

√
l2 − (xoff + a sin θ)2)

(3.4)
for xoff ∈ [−(l − a), (l − a)]. The pin-off is defined as positive in the direction
of the crank angle revolution. Note that for an engine with pin-off, the crank
positions for BDC and TDC are affected. They are given by:

θTDC = − arcsin
xoff

l + a
(3.5a)

θBDC = − arcsin
( xoff

l − a

)
+ π (3.5b)

and are not symmetric, as would be the case without pin-off. The pin-off also
affects the piston stroke S, and therefore the displacement volume since Vd =
πB2

4 S. The piston stroke is given by

S =
√

(l + a)2 − x2
off −

√
(l − a)2 − x2

off ≥ 2a (3.6)

and this yields a greater displacement volume than in the case of no pin-off (S =
2a). The impact of pin-off on the cylinder volume is more closely investigated
in appendix B.5. It is found for the SVC engine that the relative error in
instantaneous cylinder volume can be as large as 1.6 %. By interpreting the
difference in crank angle position of TDC due to pin-off as a constant crank
angle offset θ0, as in (3.2), the relative error in V (θ, xoff ) is reduced to less
than 0.3 %. Not accounting for pin-off therefore contributes to the problem of
TDC determination. So, if the engine’s pin-off is unknown, the discrepancy in
computing the cylinder volume V (θ, 0) (3.3) can almost fully be captured by
the crank angle offset model (3.2). If the pin-off xoff is known, there is no
reason for not including it in V (θ, xoff ) (3.3), since it increases the accuracy of
V (θ, xoff ) at almost no additional computational cost.

The cylinder volume is further disrupted when the mono-head can be tilted,
as in the case of the SVC engine. This is further described in appendix B.6,
where the tilting is interpreted as an additional pin-off.

The compression ratio index rc of a cylinder is defined as the ratio between
the maximum and minimum cylinder volume:

rc =
Vd + Vc

Vc
= 1 +

Vd

Vc
(3.7)

Parameter initialization – clearance volume Vc

The clearance volume Vc strongly influences the maximum cycle temperature
and pressure through the compression ratio index, and for heat release and pres-
sure simulations it is therefore of great importance. Due to geometric uncer-
tainties in manufacturing, a spread of the actual clearance volume from engine
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to engine and cylinder to cylinder is inherent [Amann, 1985]. The compression
ratio index given from the manufacturer serves well as an initialization. It can
also be initialized by using a polytropic relation, an initialization that works
better the lower the real compression ratio index is [Klein et al., 2002]. This
since the polytropic relation does not take heat transfer and crevice effects into
account explicitly.

When simulating either the heat release (2.32) or the cylinder pressure (2.33),
knowing the differential volume dV (θ)

dθ is necessary and it is given by

dV (θ)
dθ

=
πB2a

4

(
sin θ +

(xoff + a sin θ) cos θ√
l2 − (xoff + a sin θ)2

)
(3.8)

When computing the heat transfer rate (3.24), the instantaneous combustion
chamber surface area A(θ) through which the heat transfer occurs is computed
as

A(θ) = Ach +Apc +Alat(θ) (3.9)

where Ach is the cylinder head surface area and Apc is the piston crown surface
area. For flat-topped pistons, Apc = πB2

4 . The lateral surface area Alat(θ) is
approximated by the lateral surface of a cylinder, and Ach is assumed to be
equal to Apc. The instantaneous combustion chamber surface area can then be
expressed as

A(θ) =
πB2

2
+ πB

(√
(l + a)2 − x2

off − a cos θ −
√
l2 − (xoff + a sin θ)2

)
(3.10)

3.3 Temperature models

Two models for the in-cylinder temperature will be described, the first is the
mean charge single-zone temperature model and is the one used in the Gatowski
et al.-model. The second is a two-zone mean temperature model, used to com-
pute the single-zone thermodynamic properties as mean values of the properties
in a two-zone model, an approach will be introduced in section 4.2.

3.3.1 Single-zone temperature model

The mean charge temperature T for the single-zone model is found from the
state equation pV = mcRT , assuming the total mass of charge mc and the
mass specific gas constant R to be constant. These assumptions are reasonable
since the molecular weights of the reactants and the products are essentially
the same [Gatowski et al., 1984]. If all thermodynamic states (pref ,Tref ,Vref )
are known/evaluated at a given reference condition r, such as IVC, the mean
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charge temperature T is computed as

T =
TIV C

pIV CVIV C
pV (3.11)

The cylinder volume at IVC is computed using the cylinder volume given in (3.4)
for θIV C and is therefore considered to be known. The two other states at IVC
(pIV C ,TIV C) are considered unknown and have to be estimated.

Parameter initialization – mean charge temperature at IVC TIV C

The mean charge temperature at IVC differs from the gas temperature in the
intake manifold Tman. The charge is heated due to both mixing with residual
gases which are approximately at 1400 K [Heywood, 1988, p.178], and to in-
cylinder heat transfer from piston, valves and cylinder walls. On the other hand,
fuel evaporation can cool the charge by as much as 25 K according to [Stone,
1999]. Altogether these effects make TIV C become larger than Tman.

An approximative model for finding the residual gas fraction xr = mr

mc
and

temperature Tr cited in Heywood [1988, p.178] is used to find TIV C . The
residual gas mass is given by mr and the total cylinder gas mass by mc. The
residual gas is left behind from the exhaust process and fills the clearance volume
Vc at pressure pexh and temperature T6, where pexh is the exhaust manifold
pressure and T6 is the mean charge temperature at θ = 360 CAD, i.e. at the
end of the exhaust stroke. The intake manifold contains a fresh air-fuel charge
at pressure pman and temperature Tman. As the intake valve opens, the residual
gases expand isentropically to volume Vr and temperature Tr according to

Vr = Vc
pexh

pman
(3.12a)

Tr = T6(
pman

pexh
)

γ
γ−1 (3.12b)

The rest of the cylinder volume Vaf is filled with fresh air-fuel charge, i.e.
Vaf = V − Vr. The ideal gas law is then used to compute the residual gas
fraction xr as:

xr =
mr

maf +mr
=

pmanVr

RTr

pmanVaf

RTman
+ pmanVr

RTr

= . . .

=

(
1 +

Tr

Tman

(
rc
pman

pexh
−

(
pman

pexh

)(γ−1)/γ
))−1

(3.13)

and the mean charge temperature at IVC is then computed as:

TIV C = Trrcxr

(
pman

pexh

)
(3.14)
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Figure 3.3: Experimental cylinder pressure.

where Tr = 1400 K and (γ − 1)/γ = 0.24 are appropriate average values to use
for initial estimates [Heywood, 1988, p.178]. This model does not take valve
overlap into account. For the cylinder pressure given in figure 3.3, the residual
gas mass fraction was found to be xr = 5.7% and the mean charge temperature
at IVC TIV C = 346 K.

Another approach of calculating the residual gas fraction was introduced
in Fox et al. [1993]. The approach relies upon intake and exhaust manifold
pressures only, and therefore the influence of combustion can not be accounted
for. In Mladek and Onder [2000] the use of the cylinder pressure is included,
and there the combustion event is also accounted for. None of these approaches
will however be used here.

Parameter initialization – cylinder pressure at IVC pIV C

The parameter pIV C is initialized by the measured cylinder pressure pm in
conjunction with the pressure sensor offset ∆p and gain Kp, and the crank
angle offset θ0 by using equations (3.1) and (3.2).

3.4 Crevice model

In an engine, gases flow in and out of the crevices connected to the combustion
chamber as the cylinder pressure raises and falls. Crevices include those between
piston, rings and liner, any head gasket gap, spark plug threads and space
around the the pressure transducer. During compression some of the charge
flows into the crevices, and remain there until the expansion phase, when most
of the charge returns to the combustion chamber. The part of the charge that
does not return to the cylinder, ends up in the crank-case and is termed blow-
by. The flame can not propagate into the crevices, and therefore some of the
charge is not combusted.

When modeling the crevice effect, the temperature in the crevices are as-
sumed to be close to the cylinder wall temperature, so during the closed phase
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a substantial amount of charge could be trapped in the crevices. According
to Gatowski et al. [1984], the crevice volumes can constitute as much as 1-2 per
cent of the clearance volume in size. Consider the ratio of charge mass to the
mass in the crevices:

mcr

mc
=
Vcr

V

T

Tcr
(3.15)

Due to the temperature difference in the cylinder and in the crevices which at
the end of combustion approaches a factor 4-5, as much as 10 (mass) per cent
of the charge could then be trapped in crevices at peak pressure.

The model developed and applied in Gatowski et al. [1984] assumes that all
crevices can be modeled as a single aggregate constant volume Vcr, and that
the charge in the crevice assumes the average wall temperature Tw and is at the
same pressure as in the combustion chamber. The ideal gas law thus gives

pVcr = mcrRTw =⇒ dmcr =
Vcr

RTw
dp (3.16)

where it is assumed that Tw and R are constant. Gatowski et al. [1984] points
out that this model is not meant to account for each crevice, but rather to
account for the overall crevice effect.

Parameter initialization – crevice volume Vcr

The single aggregate crevice volume Vcr is unknown and is therefore set to
1 per cent of the clearance volume Vc, which is a reasonable value according
to Gatowski et al. [1984]. For an engine with varying clearance volume, such as
the SVC engine, this would yield a crevice volume dependent of the compression
ratio index. To avoid this, Vcr is set to 1% Vc at rc = 11, i.e. the clearance
volume in the mid range of the compression ratio index is used.

Parameter initialization – cylinder mean wall temperature Tw

The cylinder wall temperature Tw is not only used in the crevice model, but
also in the heat transfer model described in section 3.7. It varies during the
engine cycle due to heat transfer in the cylinder block, but here a area-weighted
mean value of the temperatures of the exposed cylinder walls , the head and
the piston crown for the closed part of the engine cycle is used. Here Twall

is initialized to a constant value of 440 K [Eriksson, 1998; Brunt and Emtage,
1997], set only by it being a reasonable value. One method of finding the mean
wall temperature is developed in Arsie et al. [1999]. It uses that at the beginning
of the compression stroke the mean charge temperature is lower than the mean
cylinder wall temperature, i.e. the heat flux is from the chamber walls to the
charge. As the compression proceeds, the charge temperature will increase due
to the piston work, and the heat flux will eventually become inverted. This is
valid for all driving conditions except early stages of cold start, where instead
the heat flux is from charge to the cold cylinder walls during the whole cycle.
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The method finds the polytropic index n(θ) in (2.9) at every sample during
an adiabatic compression and it is compared to the specific heat ratio γ(θ).
When these coincide, i.e. n(θ′) = γ(θ′), there is no net heat flux between the
charge and the cylinder wall, and therefore the mean charge temperature T
equals the cylinder mean wall temperature Tw at θ′. The methods assumes
that Tivc, ∆p and θ0 are known, and works well in the abscence of noise, and is
therefore suitable to use for simulations.

3.5 Combustion model

The combustion of fuel and air is a very complex process, and would require
extensive modeling to be fully captured. Our approach here is to use a parame-
terization of the burn rate of the combusted charge. The prevailing combustion
model is the Vibe function [Vibe, 1970], which sometimes is spelled Wiebe func-
tion.

3.5.1 Vibe function

The Vibe function is often used as a parameterization of the mass fraction
burned xb, and it has the following form

xb(θ) = 1 − e
−a

“
θ−θig

∆θ

”m+1

(3.17)

and the burn rate is given by its differentiated form

dxb(θ)
dθ

=
a (m+ 1)

∆θ

(
θ − θig

∆θ

)m

e
−a

“
θ−θig

∆θ

”m+1

(3.18)

where θig is the start of the combustion, ∆θ is the total combustion dura-
tion, and a and m are adjustable parameters. The Vibe function is over-
parameterized in a, m, and ∆θ, since for example the sets [a = 1, ∆θ = 1,
m = 1] and [a = 4, ∆θ = 2, m = 1] give identical function values. To pa-
rameterize the mass fraction burned (mfb) trace with physical parameters, two
burn rate angles are often used, namely the flame-development angle θd which
corresponds to the crank angle from 0 % mfb (ignition) to 10 % mfb, and the
rapid burn angle θb (10-85 % mfb) [Heywood, 1988; Eriksson, 1999], illustrated
in figure 3.4. The burn angle parameters have a direct relation to the param-
eters in the Vibe function, but due to the over-parameterization in a and ∆θ,
one of them must be specified before-hand to get a unique solution. If ∆θ is
specified, the Vibe parameters become:

m =
ln(ln(1 − 0.1) − ln(1 − 0.85))

ln θd − ln(θd + θb)
− 1 (3.19a)
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Figure 3.4: Mass fraction burned profile with the flame development angle θd

and rapid burn angle θb marked.

a = −(
∆θ
θd

)m+1 ln(1 − 0.1) (3.19b)

The differentiated Vibe function (3.18) is used to produce a mass fraction burned
trace, i.e. a normalized heat-release trace. The absolute value of the heat-release
rate dQch

dθ is given by the fuel mass mf , the specific heating value of the fuel qHV ,
and combustion efficiency ηf as

dQch

dθ
= mfqHV ηf

dxb

dθ
= Qin

dxb

dθ
(3.20)

where Qin represents the total energy released from combustion.
Summing up, the combustion process is described by (3.20) and parameter-

ized by Qin, θig, θd, and θb.

Parameter initialization – total energy released Qin

The total energy released Qin is influenced by a lot of parameters, such as
residual gas fraction, combustion efficiency, mass of fuel, fuel heating value, but
also the mass fraction burned rate due to the dependence of thermodynamic
properties for the mixture of temperature and pressure. One approach to find
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a reasonable initial value of Qin is to rewrite mf in (3.20) as

mf =
maf

1 + λ(A
F )s

=
(1 − xr)mc

1 + λ(A
F )s

(3.21)

where the total charge mass mc is found using the ideal gas law at a refer-
ence point during the high-pressure phase, e.g. IVC, yielding mc = pIV C VIV C

R TIV C
.

The fuel is assumed to be iso-octane, that has R = 290 J
kgK (at 300 K), lower

heating value qHV = 44.0MJ
kg , and stoichiometric air-fuel equivalence ratio(

A
F

)
s

= 14.6 [Heywood, 1988, p.915]. The residual gas fraction was found
earlier in (3.13). So Qin is initialized as

Qin = mf ηf qHV =
(1 − xr)

1 + λ(A
F )s

pIV C VIV C

RTIV C
ηf qHV (3.22)

where the combustion efficiency ηf is assumed to be one.

Parameter initialization – angle-related parameters {θig, θd, θb}

The angle-related parameters {θig, θd, θb} are initialized by the mass fraction
burned trace found from the Rassweiler-Withrow method mentioned in sec-
tion 2.2. Nominal values are [Eriksson, 1999]:

θig ∈ θd ∈ θb ∈
[-30 , 0] [deg ATDC] [15, 40] [deg] [10, 50] [deg]

Other heat-release regressors
In van Nieuwstadt et al. [2000] a number of heat-release regressors are applied
to a gasoline direct injected (GDI) engine, which typically has four different
operating modes. One of these modes has homogenous stoichometric mixing,
and this mode is therefore comparable to the operating mode of the SI engine.
It is found that the classical Vibe function with its four free parameters provides
a good approximation of the heat-release trace, and that the proposed regressor
in [van Nieuwstadt et al., 2000] (called SEQ) with its six free parameters, does
not improve the accuracy immensely for one operating point. Therefore, the
Vibe function will used here. However, when dealing with a larger operating
range of the engine, the SEQ function proved to yield parameters that were
easier to regress with respect to engine operating conditions.

3.6 Thermodynamic properties
The accuracy with which the energy balance can be calculated for a combus-
tion chamber depends in part on how accurately changes in the internal en-
ergy of the cylinder charge are represented. The most important thermody-
namic property used in calculating the heat release rates for engines is the
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ratio of specific heats, γ = cp

cv
[Gatowski et al., 1984; Chun and Heywood, 1987;

Guezennec and Hamama, 1999].
In the Gatowski et al.-model, the specific heats ratio γ(T ) is modeled as a

linear function of temperature.

γlin(T ) = γ300 + b (T − 300) (3.23)

Gatowski et al. [1984] states that this component is important, since it captures
how the internal energy varies with temperature. This is an approximation of
the thermodynamic properties but it is further stated that this approximation
is consistent with the other approximations made in the model. It will be shown
in chapter 4 that the linear model of γ in temperature T introduces a modeling
error in cylinder pressure which is 15 times the cylinder pressure measurement
noise in mean. A model of γ that introduces an error in the same order as the
noise is also given.

3.7 Heat transfer
When transfer of energy is due only to a temperature difference, i.e. no work
is done on the substance, this is referred to as heat transfer. There are three
different types of heat transfer, namely heat transfer through conduction, con-
vection and radiation [Schmidt et al., 1993].
Conduction is the transfer of energy through a substance, a solid or a fluid due
to a temperature gradient in the substance.
Convection is the transfer of energy between a fluid and a solid surface.
Radiation is the transfer of energy by electro-magnetic waves.

3.7.1 Engine Heat Transfer
Typically 20-35 % of the fuel energy is passed on by heat transfer to the engine
coolant, the upper limit is reached for low load conditions [Stone, 1999, p.429].
Of the total heat transfer, about half comes from in-cylinder heat transfer and
the rest from heat transfer in the exhaust port. Exhaust ports are sometimes
isolated, which reduces the heat flow to the coolant, reassuring further oxidation
of the combustion products due to the higher exhaust gas temperature. This
extra energy can also be used by the turbine. Since we are only trying to model
the in-cylinder pressure, the heat transfer in the exhaust port is not accounted
for.

In-cylinder heat transfer

The in-cylinder heat transfer occurs by both convection and radiation, where
convection constitutes the major part. This applies for most forced convection
applications [Schmidt et al., 1993]. In SI engines, up to approximately 20 %, but
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usually much less of the in-cylinder heat transfer is due to radiation [Woschni,
1967] , but this is often included in the correlation for convective heat transfer.
For CI engines however, the heat transfer originating from radiation can consti-
tute a more significant part (up to 40 % [Heywood, 1988, p.696]) and has to be
accounted for explicitly [Annand, 1963]. Since we are dealing with SI engines,
only convective heat transfer is modeled, keeping in mind that the radiative
heat transfer is accounted for by the correlations.

Heat transfer by convection is the transfer of energy between a fluid and
a solid surface. The first phenomena is the diffusion or conduction of energy
through the fluid because of the presence of a temperature gradient within the
fluid. The diffusion and conduction is a molecular transport phenomena with a
rate controlled by the thermophysical properties of the substance as well as the
thermal environment. The second is the transfer of energy within the fluid due
to the movement of the fluid from one thermal environment, temperature field,
to another. This phenomenon is associated with the macroscopic characteristics,
the movement or flow of the fluid, as well as the thermophysical characteristics
of the fluid and the thermal characteristics of the solid [Schmidt et al., 1993].

The magnitude of the rate of energy transfer by convection Q̇ht, which occurs
in a direction perpendicular to the fluid surface interface, is obtained by use of
an expression referred to as Newton’s law of cooling

Q̇ht = hcA∆T = hcA (T − Tw) (3.24)

where A is the surface area of the body which is in contact with the fluid, ∆T is
the appropriate temperature difference, and hc is the convection heat transfer
coefficient. The coefficient hc varies both in time and space, and since it is a
composite of both microscopic and macroscopic phenomena, many factors must
be taken into consideration for a full understanding. This level of accuracy
is needed if for example thermal stress on the cylinder head is to be investi-
gated [Bergstedt, 2002]. On the other hand, a position-averaged heat transfer
coefficient will be sufficient for predicting the heat flow to the coolant, and this
will be the approach taken here. Note that Q̇ht = đQht

dt , thus when simulating
heat transfer in the crank angle domain

đQht

dθ
=

đQht

dt

dt

dθ
= Q̇ht

60
2πN

(3.25)

should be used, where N [rpm] is the engine speed.
For various geometries, such as a cylinder, and assuming that the heat trans-

fer is mainly caused by convection, the basic effects can be derived from the laws
of similarity for turbulent tube flow. The turbulent flow conditions are given
by the Reynolds number [Hohenberg, 1979]:

Re =
ρvL

µ
(3.26)
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This relates to the Nusselt number as:

Nu = a (Re)b (3.27)

and the Nusselt number can be expressed as:

Nu =
hc L

k
(3.28)

where
ρ gas density [kg/m3]
v characteristic velocity [m/s]
L characteristic length [m]
µ gas dynamic viscosity [kg/(ms)]
hc convection heat transfer coefficient [W/(m2K)]
k gas thermal conductivity [W/(mK]

From these equations an expression for the heat transfer coefficient hc can be
formed as

hc = a
k

L

( Lvp

RTµ

)b

(3.29)

where the ideal gas law has been used in the expression for the density ρ. To
get the heat transfer coefficient hc the critical choices to be made are: (1) the
characteristic length L and velocity v to be used in the Reynolds number; (2)
the gas temperature at which to evaluate the gas properties in the Reynold and
Nusselt numbers; and (3) the gas temperature to be used in the heat-transfer
equation (3.24).

There exists several correlations for calculating the instantaneous heat trans-
fer where most use the Nusselt-Reynolds number in (3.29), differing primarily
in the way the Reynolds and Nusselt numbers are defined. This is due to dif-
ferences in how to interpret the critical choices mentioned above. The lack of
any generally accepted engine heat transfer model attests to the uncertainty of
this aspect of heat release analysis.

Woschni’s heat-transfer correlation

The form proposed by Woschni [1967] is based on the correlation of the form
in (3.29). After assuming that the gas thermal conductivity k is proportional to
T 0.75, where T is the average gas temperature and the gas dynamic conductivity
µ being proportional to T 0.62, he arrived at an equation for the heat transfer
coefficient:

hc = C(pv)bLb−1T 0.75−1.62b (3.30)

where C is a constant. By setting the exponent b = 0.8, which applies for
turbulent flow in pipes, and choosing the cylinder bore diameter B as the char-
acteristic length L, Woschni could now rewrite (3.30) as:

hc = C(pv)0.8B−0.2T−0.55 (3.31)
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Woschni found that the exponent for T should be -0.53, but this is not consistent
with (3.30). Woschni then states that the characteristic speed v depends on two
terms. One is due to piston motion and is modeled as the mean piston speed
up [m/s]. The other term is due to swirl originating from the combustion event,
which is modeled as a function of the pressure rise due to combustion, i.e.
p− p0 where p0 is the motored pressure. Woschni used the measured motored
pressure, but later on Watson and Janota [1982] proposed to use a polytropic
process model instead:

p0 = pref

(Vref

V

)n

(3.32)

where n is the polytropic exponent, and (pref , Vref ) are evaluated at any refer-
ence condition. The characteristic speed v can then be expressed as:

v = C1 up + C2 (T − T0) = C1 up + C2
V Tr

pref Vref
(p− p0) (3.33)

where the first term originates from convection caused by piston motion and
the second term from the combustion itself, where T0 is the motored mean
gas temperature. This results in the following expression for the heat transfer
coefficient hc

1:

hc =
0.013B−0.2 p0.8

(
C1 up + C2 (p−p0) Tr Vi

pr Vr

)0.8

T 0.55
(3.34)

where

p cylinder pressure for firing cycle [Pa]
p0 cylinder pressure for motored cycle [Pa]
T mean gas temperature [K]
up mean piston speed [m/s]
V instantaneous cylinder volume [m3]
C1 constant [-]
C2 constant [m/(sK)]
(pref ,Vref ,Tref ) evaluated at any reference condition ref

Woschni found experimentally that during the gas exchange process, the
parameters C1 = 6.18 and C2 = 0 should be used, but during the closed part
of the engine cycle, i.e. during compression, combustion and expansion, the
parameters C1 = 2.28 and C2 = 3.24 · 10−3 where found to give a better fit.
Woschni also pointed out that the parameters (C1, C2) are engine dependent,
and are therefore likely to change for different engine geometries.

1The numerical value of the first coefficient differs from the one in [Woschni, 1967], since
it is calculated to fit the SI-unit system
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Hohenberg’s heat transfer correlation

Hohenberg [1979] proposed a new correlation for the heat transfer coefficient,
and in doing so he uses (3.29) and reviews Woschni’s correlation (3.31) with
some modifications; First Hohenberg argues that the piston land area must be
included in the convective surface area in (3.24). This area is proposed to be:

A = Achamber + 0.3 ·Apiston land (3.35)

where it is assumed that the heat transfer in the piston land is 30 % of that in
the combustion chamber, and with Apiston land = π B2 / 4. If the heat release
model used includes a model for the crevice effect, this extra term is probably
already accounted for.

Secondly, Hohenberg suggests that the characteristic length L in (3.29)
should be interpreted as the diameter D of a ball with the same volume as
the instantaneous cylinder volume V :

V =
D3π

6
→ D ∝ V 1/3 → D−0.2 ∝ V −0.066 (3.36)

Hohenberg then compensates for radiation by letting D−0.2 ∝ V −0.06, referring
to that increased diameter yields increased radiation.

Thirdly, the characteristic speed v is modeled as:

v0.8 = p0.2T 0.1(up + C2)0.8 (3.37)

A constant term C2 is included for the combustion, and therefore seems less flex-
ible to deal with different operating points compared to the Woschni correlation.
This also means that C2 should be set to 0 for motored cycles. Hohenberg com-
ments upon this that the extra computation for Woschni’s term is not worth
the effort. Last but not least, some exponents in (3.31) are altered to give a
better fit to experimental data.

The resulting expression for the convective heat transfer coefficient is there-
fore:

hc = C1 V
−0.06 p0.8 T−0.4 (up + C2)0.8 (3.38)

where
hc heat transfer coefficient [W/(m2K)]
V instantaneous cylinder volume [m3]
p instantaneous cylinder pressure [Pa]
T mean gas temperature [K]
up mean piston speed [m/s]
C1 Constant [-]
C2 Constant [m/s]

The mean values for the parameters (C1,C2) are found experimentally for diesel
engines to be: 2

C1 = 13 · 10−3 and C2 = 1.4
2The numerical value of C1 differs from the one in [Hohenberg, 1979], since it is calculated

to fit the SI-unit system

39



Just as Woschni, Hohenberg states that the parameters are likely to differ for
various engines.

Summarizing works on heat transfer

In the example model in section 2.5 from Gatowski et al. [1984], the heat trans-
fer was modeled using (3.34) from Woschni [1967]. The work by Shayler et al.
[1993] compared the correlations from Annand [1963] and Woschni [1967] among
others, and found that the heat transfer to the coolant best agreed with the
Woschni correlation. At the same time, Hayes et al. [1993] also examined the
accuracy of the Woschni correlation and reported good agreement with the
measurement results for a four-cylinder spark-ignited engine. The works by
Pivec et al. [1998] and Wimmer et al. [2000] investigates different heat transfer
correlations both during the closed part of the engine cycle and during the gas
exchange processes. They again found that Woschni’s correlation proved to be
the better one for the closed part.

However, the variation in heat transfer correlations does not have a signif-
icant influence on the engine performance prediction. Typically, a 10 per cent
error in the prediction of in-cylinder heat transfer leads to an error in the order
of 1 per cent for the engine performance [Stone, 1999, p.429]. This is also sup-
ported by the sensitivity analysis performed in section 3.8, where all parameters
are perturbed 10 % from their nominal values. There it was found that the two
Woschni parameters C1 and C2 does not affect the resulting cylinder pressure
significantly. Our choice will therefore be to use the Woschni heat transfer cor-
relation, since it is most widely used and since a heat transfer modeling error
does not affect the cylinder pressure immensely.

Parameter initialization – {C1, C2}

The parameters values found by Woschni and Hohenberg respectively, serves
well as initializations. For the Woschni heat transfer coefficient (3.34) the pa-
rameter values C1 = 2.28 and C2 = 3.24 · 10−3 are used, and for the Hohenberg
heat transfer coefficient (3.38) the parameter values C1 = 13 ·10−3 and C2 = 1.4
are used.

3.8 Sensitivity in pressure to parameter initial-
ization

The cylinder pressure is simulated for the nominal values in the table 3.1, and
yields the cylinder pressure given in figure 3.5. To get an idea of how sensitive
the cylinder pressure is to errors in the initialized parameters, a modest sensi-
tivity analysis is performed by perturbing the parameters one at a time with 10
per cent of their nominal value.
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Par. Nominal Value RMSE [kPa] Max Res [kPa]
γ300 1.3678 [-] 204.0 541.0
Vc 35.5 [cm3] 84.1 237.0
Kp 1 [-] 75.3 186.0
pivc 50 [kPa] 42.8 97.5
Tw 440 [K] 41.8 99.6
Qin 500 [J] 38.3 99.6
θig -15 [deg ATDC] 33.9 122.0
θd 20 [deg] 28.2 106.0
θb 30 [deg] 22.1 84.8
Tivc 340 [K] 16.7 45.4
b -8.13 ·10−5 [K−1] 7.0 21.1

∆p 30 [kPa] 3.0 3.0
Vcr 1 [% Vc] 1.7 5.3
C2 3.24 ·10−3 [m/(sK)] 1.4 3.0
C1 2.28 [-] 0.9 1.6
θ0 0.4 [deg] 0.8 2.2

Table 3.1: Nominal values, and their respective root mean square error (RMSE)
and maximal residual when perturbing the nominal values with 10 %.

The perturbed simulated cylinder pressure is then compared to the nominal
one, in the measured root mean square error (RMSE) and maximum absolute
residual value (Max Res). The results are summarized in table 3.1. When
comparing the RMSE for every parameter, the constant γ300 in the linear specific
heat ratio model, the clearance volume Vc and the pressure gain Kp show most
sensitivity in the mean and are therefore more in need of a proper initialization
than the others. On the other hand, disturbances in the values of the two
Woschni parameters C1 and C2 do not affect the resulting cylinder pressure
significantly. Note that the model of the cylinder pressure is nonlinear, so the
results found from this analysis is only valid locally, but it still gives an idea of
which parameters are the most sensitive ones.

3.9 Summary of single-zone heat-release models

The model component equations, which are boxed in chapter 2 and 3, for the
Gatowski et al.-model are given here as a summary, together with the inputs,
outputs and unknown parameters for the model.
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Figure 3.5: Simulated cylinder pressure using nominal values in table 3.1.

Model input and output

Input Description Unit
λ air-fuel ratio [-]
N engine speed [rpm]
pexh exhaust manifold pressure [Pa]
pman intake manifold pressure [Pa]
Tman intake manifold temperature [K]
θIV C crank angle degree for IVC [deg ATDC]
Output Description Unit
p cylinder pressure [Pa]
Qch chemical energy released as heat [J]

Model component equations

Cylinder pressure differential (2.33);

dp =
đQch − γ

γ−1 p dV − đQht

1
γ−1 V + Vcr

Tw

(
T

γ−1 − 1
b ln

(
γ−1
γ′−1

)
+ T ′

) (3.39)

Pressure sensor model (3.1);

pm = Kp p+ ∆p (3.40)
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Crank angle phasing (3.2);

θi + θ0 = θi,true (3.41)

Cylinder volume V (θ, xoff ) (3.3), (3.4) and (3.8);

V (θ, xoff ) = Vc(xoff ) + Vid(θ, xoff ) (3.42a)

Vid(θ, xoff ) =
πB2

4
(
√

(l + a)2 − x2
off − a cos θ −

√
l2 − (xoff + a sin θ)2)

(3.42b)

dV (θ)
dθ

=
πB2a

4

(
sin θ +

(xoff + a sin θ) cos θ√
l2 − (xoff + a sin θ)2

)
(3.42c)

Temperature model (3.11);

T =
TIV C

pIV CVIV C
pV (3.43)

Crevice model (3.16);

dmcr =
Vcr

RTw
dp (3.44)

Vibe combustion model (3.20), (3.18) and (3.19);

dQch

dθ
= mfqHV ηf

dxb

dθ
= Qin

dxb

dθ
(3.45a)

dxb(θ)
dθ

=
a (m+ 1)

∆θ

(
θ − θig

∆θ

)m

e
−a

“
θ−θig

∆θ

”m+1

(3.45b)

m =
ln(ln(1 − 0.1) − ln(1 − 0.85))

ln θd − ln(θd + θb)
− 1 (3.45c)

a = −(
∆θ
θd

)m+1 ln(1 − 0.1) (3.45d)

Specific heat ratio model (4.2);

γlin(T ) = γ300 + b (T − 300) (3.46)

Woschni’s heat transfer correlation (3.25), (3.24), (3.34) and (3.10);

đQht

dθ
=

đQht

dt

dt

dθ
= Q̇ht

60
2πN

(3.47a)

Q̇ht = hcA∆T = hcA (T − Tw) (3.47b)
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Par. Description Value Equation
γ300 constant specific heat ratio [-] 1.3678 (3.23)
b slope for specific heat ratio[K−1] −8.13 · 10−5 (4.2)
C1 heat-transfer parameter [-] 2.28 (3.34)
C2 heat-transfer parameter [-] 3.24 · 10−3 (3.34)
θ0 crank angle phasing [deg ATDC] 0.4 (3.2)
∆p bias in pressure measurements [kPa] 30 (3.1)
Kp pressure measurement gain[-] 1 (3.1)
pivc cylinder pressure at IVC [kPa] 100 (3.11)
Tivc mean charge temperature at IVC [K] 340 (3.11)
Tw mean wall temperature [K] 440 (3.16),(3.24)
Vc clearance volume [cm3] 35.5 (3.3)
Vcr single aggregate crevice volume [% Vc] 1 (3.16)
θig ignition angle [deg ATDC] -20 (3.18)
θd flame-development angle [deg ATDC] 15 (3.18)
θb rapid-burn angle [deg ATDC] 30 (3.18)
Qin released energy from combustion [J] 500 (3.20)

Table 3.2: Nominal values for the parameters in the Gatowski et al. single-zone
heat release model. For firing cycles, Tw = 440 K and Tivc = 340 K, and for
motored cycles, Tw = 400 K and Tivc = 300 K.

hc =
0.013B−0.2 p0.8

(
C1 up + C2 (p−p0) Tr Vi

pr Vr

)0.8

T 0.55
(3.47c)

A(θ) =
πB2

2
+ πB

(√
(l + a)2 − x2

off − a cos θ −
√
l2 − (xoff + a sin θ)2

)
(3.47d)

Unknown parameters

The parameters used in the single-zone model and their nominal values are
summarized in table 3.2.
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4

A specific heat ratio model for
single-zone heat release

models

An accurate specific heat ratio model is important for an accurate heat release
analysis, since the specific heat ratio couples the systems energy to other ther-
modynamic quantities. The objective is therefore to investigate models of the
specific heat ratio for the single-zone heat release model, and find a model ac-
curate enough to introduce a cylinder pressure modeling error less than or in
the order of the cylinder pressure measurement noise, while keeping the com-
putational complexity at a minimum. Based on assumptions of frozen mixture
for the unburned mixture and chemical equilibrium for the burned mixture,
the specific heat ratio is calculated using a full equilibrium program for an un-
burned and a burned air-fuel mixture, and compared to already existing and
newly proposed models of γ.

A two-zone mean temperature model and the Vibe function are used to
parameterize the mass fraction burned. The mass fraction burned is used to
interpolate the specific heats for the unburned and burned mixture, and then
form the specific heat ratio, which renders a small enough modeling error in γ.
The impact that this modeling error has on the cylinder pressure is less than
that of the measurement noise. The specific heats for the unburned mixture
are captured within 0.2 % by linear functions, and the specific heats for the
burned mixture are captured within 1 % by higher-order polynomials for the
major operating range of a spark ignited (SI) engine.

Large parts of the material in this chapter and in appendix A has previously
been published in Klein and Eriksson [2004]. Appendix A is an extension of
the appendices in Klein and Eriksson [2004], and contains further details and
argumentation that support the specific heat ratio models, as well as it gives a
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thorough explanation of some of the details in the models.

4.1 Introduction
The accuracy with which the energy balance can be calculated for a combustion
chamber depends in part on how accurately changes in the internal energy
of the cylinder charge are represented. The most important thermodynamic
property used when calculating the heat release rates in engines is the ratio of
specific heats, γ(T, p, λ) = cp

cv
[Gatowski et al., 1984; Chun and Heywood, 1987;

Guezennec and Hamama, 1999].
Based on the first law of thermodynamics, Gatowski et al. [1984] developed

a single-zone heat release model that has been widely used, where the specific
heat ratio is represented by a linear function in mean charge temperature T :

γlin(T ) = γ300 + b(T − 300) (4.1)

This allows a critical examination of the burning process by analysis of the heat
release. In order to compute the heat release correctly, the parameters in the
single-zone model need to be well tuned. These parameters, such as heat transfer
coefficients, γ300 and b in the linear γ-model (4.1) and so on, can be tuned using
well known methods. For instance, Eriksson [1998] uses standard prediction
error methods [Ljung, 1999] to tune the parameters. This is done by minimizing
the prediction error of the measured cylinder pressure, i.e. by minimizing the
difference between the modeled and measured cylinder pressure. Applying these
standard methods usually ends up in absurd and non-physical values of γ300, as
it becomes larger than 1.40, which is the value of γ300 for pure air. But more
importantly, the linear approximation of γ (4.1) itself introduces a model error
in the cylinder pressure which has a root mean square error of approximately
30 kPa, for low load engine operating points, and approximately 90 kPa in the
mean for operating points covering the entire operating range. These errors are
more than four and ten times the error introduced by the measurement noise,
and will affect the computed heat release. Therefore a better model of γ(T, p, λ)
is sought. A correct model of γ(T, p, λ) is also desirable in order to avoid badly
tuned (biased) parameters.

The objective is to investigate models of the specific heat ratio for the single-
zone heat release model, and find a model accurate enough to introduce a mod-
eling error less than or in the order of the cylinder pressure measurement noise,
while keeping the computational complexity at a minimum. Such a model would
help us to compute a more accurate heat release trace.

4.1.1 Outline
In the following section three existing γ-models are described. Then based on
chemical equilibrium, a reference model for the specific heat ratio is described.
Thereafter, the reference model is calculated for an unburned and a burned
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air-fuel mixture respectively, and compared to these existing models in the two
following sections. With the knowledge of how to describe γ for the unburned
and burned mixture respectively, the focus is turned to finding a γ-model during
the combustion process, i.e. for a partially burned mixture. This is done in sec-
tion 4.6, where a number of approximative models are proposed. These models
are evaluated in terms of the normalized root mean square error related to the
reference γ-model found from chemical equilibrium, as well as the influence the
models have on the cylinder pressure, and also in terms of computational time.

4.2 Existing models of γ

The computational time involved in repeated use of a full equilibrium program,
such as CHEPP [Eriksson, 2004] or the NASA program [Svehla and McBride,
1973], can be substantial, and therefore models of the thermodynamic properties
have been developed. Three such models will now be described.

4.2.1 Linear model in T

The specific heat ratio during the closed part of the cycle, i.e. when both intake
and exhaust valves are closed, is most frequently modeled as either a constant, or
as a linear function of temperature. The latter model is used in [Gatowski et al.,
1984], where it is stated that the model approximation is in parity with the
other approximations made for this family of single-zone heat-release models.
The linear function in T can be written as:

γlin(T ) = γ300 + b (T − 300) (4.2)

Depending on which temperature region and what air-fuel ratio λ the model
will be used for, the slope b and constant γ300 in (4.2) have to be adjusted.
Concerning the temperature region, this shortcoming can be avoided by increas-
ing the complexity of the model and use a second (or higher) order polynomial
for γlin(T ). This has been done in for example Brunt et al. [1998]. Such an
extension reduces the need for having different values of γ300 and b for different
temperature regions. Later on, γlin(T ) is calculated in a least squares sense for
both burned and unburned mixtures.

4.2.2 Segmented linear model in T

According to Chun and Heywood [1987], the commonly made assumption that
γ(T ) is constant or a linear function of mean temperature is not sufficiently
accurate. Instead, they propose a segmentation of the closed part of the en-
gine cycle into three segments; compression, combustion and post-combustion
(expansion). Both the compression and post-combustion are modeled by linear
functions of T , while the combustion event is modeled by a constant γ. They
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further state that with these assumptions, the one-zone analysis framework will
provide accurate enough predictions. The model of γ can be written as:

γseg(T, xb) =




γcomp
300 + bcomp (T − 300) xb < 0.01
γcomb
300 0.01 ≤ xb ≤ 0.99
γexp
300 + bexp (T − 300) xb > 0.99

(4.3)

where the mass fraction burned xb is used to classify the three phases. The γ-
model proposed by Chun and Heywood [1987] has discontinuities when switch-
ing between the phases compression, combustion and post-combustion. This
can pose a problem when estimating e.g. the mass fraction burned.

4.2.3 Polynomial model in p and T

The third model is a polynomial model of the internal energy u developed
in Krieger and Borman [1967] for combustion products of CnH2n, e.g. iso-
octane. For weak and stoichiometric mixtures (λ ≥ 1), a single set of equations
could be stated, whereas different sets where found for each λ < 1. The model
of u for λ ≥ 1 is given by:

u(T, p, λ) = A(T ) − B(T )
λ

+ ucorr(T, p, λ) (4.4)

given in [kJ/(kg of original air)], where

A(T ) = a1T + a2T
2 + . . .+ a5T

5 (4.5a)

B(T ) = b0 + b1T + . . .+ b4T
4 (4.5b)

The gas constant was found to be:

R(T, p, λ) = 0.287 +
0.020
λ

+Rcorr(T, p, λ) (4.6)

given in [kJ/(kg of original air) K]. Krieger and Borman suggested that the
correction terms ucorr and Rcorr should account for dissociation, that they are
non-zero for T > 1450 K and are given by:

ucorr(T, p, λ) = cu exp (D(λ) + E(T, λ) + F (T, p, λ)) (4.7a)

D(λ) = d0 + d1λ
−1 + d3λ

−3 (4.7b)

E(T, λ) =
e0 + e1λ

−1 + e3λ
−3

T
(4.7c)

F (T, p, λ) = (f0 + f1λ
−1 + f3λ

−3 +
f4 + f5λ

−1

T
) ln(f6p) (4.7d)
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a1 a2 a3 a4

0.692 39.17 · 10−6 52.9 · 10−9 −228.62 · 10−13

a5 b0 b1 b2
277.58 · 10−17 3049.33 −5.7 · 10−2 −9.5 · 10−5

b3 b4 cu cr
21.53 · 10−9 −200.26 · 10−14 2.32584 4.186 · 10−3

d0 d1 d3 e0
10.41066 7.85125 -3.71257 −15.001 · 103

e1 e3 f0 f1
−15.838 · 103 9.613 · 103 -0.10329 -0.38656

f3 f4 f5 f6
0.154226 -14.763 118.27 14.503

r0 r1 r2 r3
-0.2977 11.98 -25442 -0.4354

Table 4.1: Coefficient values for Krieger-Borman polynomial given in (4.5)-(4.8).

Rcorr(T, p, λ) = cr exp
(
r0 lnλ+

r1 + r2/T + r3 ln(f6p)
λ

)
(4.8)

where T is given in Kelvin (K) and p in bar. The values of the coefficients
are given in Table 4.1. For a fuel of composition CnH2n, the stoichiometric
fuel-air ratio is 0.0676. Therefore, equations (4.4)-(4.6) should be divided by
(1 + 0.0676λ−1), to get the internal energy per unit mass of products. In gen-
eral, the error in u was found to be less than 2.5 per cent in the pressure and
temperature range of interest, where the extreme end states were approximately
{2300 K, 0.07 MPa} and {3300 K, 35 MPa}, and less than 1 per cent over
most of the range. A model of γ is then found as

γKB =
cp
cv

= 1 +
R

cv
(4.9)

where R is given by (4.6) and cv = ∂u
∂T is found by differentiating (4.4) with

respect to T .

4.2.4 Summary of existing γ-models
Apparently there are ambiguities in which model structure to use for γ, therefore
γ(T, p, λ) is calculated for adequate temperature and pressure regions for both
unburned and burned mixture, assuming that the unburned cylinder charge
is frozen and the burned mixture is at equilibrium at every instant. This in
order to find out what model structure of γ that is accurate enough for our
purposes. One such purpose is to estimate parameters in the single-zone model
such as heat transfer coefficients, burn rate parameters and so on, using the
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measured cylinder pressure. This requires a model of the cylinder pressure in
which the γ-model has a key role, and therefore the impact each γ-model has on
the cylinder pressure is monitored. All thermodynamic properties depend on
the air-fuel ratio λ, but for notational convenience this dependence is hereafter
left out when there is no explicit dependence.

4.3 Chemical equilibrium

According to Heywood [1988, p.86], it is a good approximation for performance
estimates to consider the unburned gases as frozen and the burned gases as in
chemical equilibrium. However, the latter assumption is not valid late in the
expansion stroke. Assuming that the unburned air-fuel mixture is frozen and
that the burned mixture is at equilibrium at every instant, the specific heat
ratio and other thermodynamic properties of various species can be calculated
using the Matlab package CHEPP [Eriksson, 2004]. The fuel iso-octane, C8H18,
reacts with air according to:

1
λ (8 + 18/4)

C8H18 + (O2 + 3.773N2) −→
x1O + x2O2 + x3H + x4H2 + x5OH

+x6H2O + x7CO + x8CO2 + x9NO + x10N2 (4.10)

where the products given on the right hand side are chosen by the user and λ
is the air-fuel ratio (AFR). The coefficients xi are found by CHEPP and when
scaled properly with λ they reveal the mole fraction of specie i that the mixture
consists of at a given temperature, pressure and air-fuel ratio. The mixture is
assumed to obey the Gibbs-Dalton law, which states that under the ideal-gas
approximation, the properties of a gas in a mixture are not influenced by the
presence of other gases, and each gas component in the mixture behaves as if it
exists alone at the mixture temperature and mixture volume [Çengel and Boles,
2002, Ch 12]. Therefore, the properties can be added together as e.g. in:

u(T, p) =
∑

i

xi(T, p)ui(T ) (4.11)

where ui is the internal energy from specie xi and u is the total internal energy.

4.4 Unburned mixture

First of all, the specific heat ratio for an unburned frozen mixture of iso-octane
is computed using CHEPP in the temperature region T ∈ [300, 1000] K, which is
valid for the entire closed part of a motored cycle. The specific heat ratio for air-
fuel ratio λ = 1 is shown in figure 4.1 as a function of temperature, together with
its linear approximation (4.2) in a least squares sense. The linear approximation
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Figure 4.1: Specific heat ratio for unburned stoichiometric mixture using
CHEPP and the corresponding linear function of temperature.

Property Constant Slope NRMSE RMSE
γu

lin [-] 1.3488 −13.0 · 10−5 0.19 % 0.0024
clinp,u [J/(kg K)] 1051.9 0.387 0.15 % 1.78
clinv,u [J/(kg K)] 777.0 0.387 0.20 % 1.78

Table 4.2: Coefficients, normalized RMSE and RMSE in linear approximations
of γ, mass-specific cv and cp, for temperature region T ∈ [300, 1000] K and
λ = 1
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Figure 4.2: Specific heat ratio for unburned stoichiometric mixture using
CHEPP for various air fuel ratios λ as functions of temperature. λ = ∞ corre-
sponds to pure air.

γu
lin is fairly good for λ = 1. Actually, the specific heats cp and cv from which γ

is formed, are fairly well described by linear functions of temperature. Table 4.2
summarizes the root mean square error (RMSE), normalized RMSE (NRMSE)
and the coefficients of the respective linear function for γ, mass-specific heats
cv and cp for temperature region T ∈ [300, 1000] K and λ = 1. The RMSE of
γu

lin is defined as:

RMSE =

√√√√ 1
M

M∑
j=1

(γ(Tj) − γu
lin(Tj))2 (4.12)

where M are the number of samples. The NRMSE is then found by normalizing
RMSE with the mean value of γ(T ):

NRMSE =
RMSE

1
M

∑M
j=1 γ(Tj)

(4.13)

Besides temperature, the specific heat ratio also varies with AFR, as shown
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Figure 4.3: Upper: The constant value γ300 in (4.2) as a function of λ for
unburned mixture at equilibrium. Middle: The value of the slope coefficient
b in (4.2) as a function of AFR. Bottom: Normalized root mean square er-
ror (NRMSE) for γu

lin(T ).

in figure 4.2 where λ is varied between 0.8 (rich) and 1.2 (lean). For comparison,
γ(T ) is also shown for λ = ∞, i.e. pure air which corresponds to fuel cut-off.

The coefficients in γu
lin (4.2) vary with λ as shown in the two upper plots of

figure 4.3. Both the constant γ300 and the slope b become smaller as the air-
fuel ratio becomes richer. From the bottom plot of figure 4.3, which shows the
NRMSE for different AFR:s, it can be concluded that the linear approximation
γu

lin(T ) is better the leaner the mixture is, at least for λ ∈ [0.8, 1.2].

4.4.1 Modeling λ-dependence with fix slope, b

Since it is always desirable to have as simple models as possible, an important
question is: –Would it inflict a major discrepancy to fix the slope coefficient b
and let only γ300 vary with the air-fuel ratio? This is investigated by setting
the slope b to the value for λ = 1, and find the coefficient γ300 in a least squares
sense. The slope is fixed at λ = 1, since for spark ignited engines this is the
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Figure 4.4: Upper: The constant value γ300 in (4.2) as a function of λ for un-
burned mixture at equilibrium with fixed and free slope b respectively. Bottom:
NRMSE for γu

lin(T ) for fixed and free slope coefficient.
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region where the engine should be operating most of the time, if controlled
correctly. This approach leads to figure 4.4, where the coefficient γ300 becomes
approximately the same as when letting the slope vary. The relative difference
is less than 0.1 % for λ ∈ [0.8, 1.2]. For the NRMSE an increase for λ 6= 1 is
expected, but the the increase is not very significant at all, for λ ∈ [0.8, 1.12] the
relative difference in RMSE is less than 5 % and for λ ∈ [0.94, 1.06] it is less than
1 %. This suggests that at least for λ ∈ [0.94, 1.06], the linear approximation
with fixed slope set at λ = 1, can be used as a model of γ(T ) with good accuracy
for the unburned mixture. The parameter γ300 is therefore taking care of the
λ-dependence with good accuracy.

4.5 Burned mixture

The specific heat ratio γ for a burned mixture of iso-octane is computed
using CHEPP in temperature region T ∈ [500, 3500] K and pressure region
p ∈ [0.25, 100] bar, which covers most of the closed part of a firing cycle. The
mixture is assumed to be at equilibrium at every instant. The specific heat ratio
is strongly dependent on mixture temperature T , but γ also depends upon the
air-fuel ratio λ and pressure p as shown in figure 4.5 and figure 4.6 respectively.
For the same deviation from λ = 1, rich mixtures tend to deviate more from
the stoichiometric mixture, than lean mixtures do. The pressure dependence
of γ is only visible for T > 1500 K, and a higher pressure tends to retard the
dissociation and yields a higher γ.

To model the specific heat ratio with a linear function γb
lin(T ) of tempera-

ture, and thereby neglecting the dependence of pressure, will of course introduce
a modeling error. This modeling error depends on which temperature (and pres-
sure) region the linear function is estimated for, since different regions will yield
different coefficient values in (4.2). In figure 4.7 γ is computed at λ = 1 and
p = 7.5bar for T ∈ [500, 3500] K, and as well as the corresponding linear func-
tion γb

lin (4.2) and the polynomial γKB (4.9) developed by Krieger and Borman
[1967].

The linear approximation γb
lin(T ) does not capture the behavior of γ(T ) for

λ = 1 very well. The coefficients for the linear model γb
lin(T ) vary for the specific

temperature region. They are given for temperature regions A to E in Table 4.3.
A second order polynomial shows the same behavior as the linear case, but
when the order of the polynomial is increased to three, the model captures
the modes of γ(T ) quite well. By increasing the complexity of the model even
more, an even better fit is found. This has been done in the Krieger-Borman
polynomial, and for this example it captures the the behavior of γ(T ) well for
temperatures below 2800 K as seen in figure 4.7 and in the right-most (NRMSE)
column in table 4.4, where the NRMSE value is much higher for temperature
region A than for the other regions. In table 4.4, the NRMSE and maximum
relative error (MRE) for the linear approximation γb

lin and the Krieger-Borman
polynomial γKB at various temperature regions are given. As expected, the
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Figure 4.5: Specific heat ratio for burned mixture at various air-fuel ratios λ at
7.5 bar using CHEPP.

Region T ∈ γ300 b
A [500, 3500] 1.3695 −9.6 · 10−5

B [500, 3000] 1.3726 −9.9 · 10−5

C [500, 2700] 1.3678 −9.4 · 10−5

D [500, 2500] 1.3623 −8.8 · 10−5

E [1200, 3000] 1.4045 −11.4 · 10−5

Table 4.3: Coefficients in linear approximation γb
lin(T ) found in (4.2) for λ = 1

and p = 7.5 bar.
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Figure 4.6: Specific heat ratio for burned stoichiometric mixture using CHEPP
at various pressures.

Krieger-Borman polynomial is better than the linear approximation in every
chosen temperature region, since the NRMSE is smaller. Comparing just the
MRE:s could result in false conclusions. Take the temperature region A for
instance, where the respective MRE are approximately the same. One could
then conclude that the models describe γ equally well, but in figure 4.7 it was
clearly visible that γKB is the better one, which is also the conclusion when
comparing the respective NRMSE.

In table 4.5, the NRMSE and MRE for the Krieger-Borman polynomial
γKB(T, p, λ) for λ close to stoichiometric is displayed. For λ ≥ 1 (lean), γKB fits
the equilibrium γ better than for λ < 1, a tendency which is most evident when
comparing the NRMSE for temperature region B. For temperature region A
the difference for different λ is less striking, since the γKB does not fit γ as well
for T > 3000 K. Therefore the Krieger-Borman polynomial is preferably only
to be used on the lean side. On the rich side and close to stoichiometric (within
2.5 %), the Krieger-Borman polynomial does not introduce an error larger than
the linear approximation given in table 4.4, and γKB should therefore be used
in this operating range.
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Figure 4.7: Specific heat ratio for burned stoichiometric mixture using CHEPP,
the corresponding linear function γb

lin and Krieger-Bormans polynomial γKB .

Region T ∈ γb
lin γKB

MRE NRMSE MRE NRMSE
A [500, 3500] 2.0 % 0.97 % 2.0 % 0.56 %
B [500, 3000] 1.6 % 0.95 % 0.7 % 0.20 %
C [500, 2700] 1.9 % 0.90 % 0.3 % 0.17 %
D [500, 2500] 2.4 % 0.74 % 0.3 % 0.17 %
E [1200, 3000] 1.6 % 0.74 % 0.7 % 0.21 %

Table 4.4: Maximum relative error (MRE) and normalized root mean square
error (NRMSE) for different temperature regions at λ = 1 and p = 7.5 bar.
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Region γKB@λ = 0.975 γKB@λ = 1 γKB@λ = 1.025
MRE NRMSE MRE NRMSE MRE NRMSE

A 1.9 % 0.86 % 2.0 % 0.56 % 2.1 % 0.59 %
B 1.8 % 0.73 % 0.7 % 0.20 % 0.7 % 0.28 %

Table 4.5: Maximum relative error (MRE) and normalized root mean square
error (NRMSE) for different temperature regions for γKB(T, p, λ) at p = 7.5
bar and λ = {0.975, 1, 1.025}

If a linear model of γ is prefered for computational reasons, the performance
of the linear model could be enhanced by proper selection of temperature region.
However, the MRE does not decrease for every reduction in interval, as seen
when comparing MRE:s for regions D and B in table 4.4. Thus, the temperature
region should be chosen with care by using the NRMSE as measure:

• When using the single-zone temperature T to describe the specific heat
ratio of the burned mixture, temperature region B is preferable, since
during the closed part T ≤ 3000 K.

• When using the burned-zone temperature Tb in a two-zone model, tem-
perature region E is recommended, since for most cases Tb ∈ [1200, 3000].
The temperature limits are found by evaluating a number of experimen-
tal cylinder pressure traces using (A.1) and (A.7). By chosing region E
instead of region B, the NRMSE is reduced by 25%.

4.6 Partially burned mixture

The specific heat ratio γ as a function of mixture temperature T and air-fuel
ratio λ for unburned and burned mixture of air and iso-octane has been in-
vestigated in the two previous sections. During the closed part of a motored
engine cycle, the previous investigations would be enough since the models of
the unburned mixture will be valid for the entire region. When considering
firing cycles on the other hand, an assumption of either a purely unburned or a
purely burned mixture approach is not valid for the entire combustion chamber
during the closed part of the engine cycle.

To describe the specific heat ratio in the single-zone model for a partially
burned mixture, the mass fraction burned trace xb is used to interpolate the
(mass-)specific heats of the unburned and burned zones to find the single-zone
specific heats. The specific heat ratio is then found as the ratio between the
interpolated specific heats.
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4.6.1 Reference model

The single-zone specific heats are found from energy balance between the single-
zone and the two-zone model, from which the single-zone specific heat ratio γCE

can be stated:

cp(T, p, xb) = xb cp,b(Tb, p) + (1 − xb) cp,u(Tu) (4.14a)

cv(T, p, xb) = xb cv,b(Tb, p) + (1 − xb) cv,u(Tu) (4.14b)

γCE(T, p, xb) =
cp(T, p, xb)
cv(T, p, xb)

(4.14c)

where the mass fraction burned xb is used as an interpolation variable. The
single-zone (T ), burned zone (Tb) and unburned zone (Tu) temperatures are
given by the two temperatures models (A.1) and (A.7) described in appendix A.1.
The first is the ordinary single-zone temperature model and the second is a
two-zone mean temperature model developed by Andersson [2002]. The mass
specific heats in (4.14) are computed using CHEPP [Eriksson, 2004] and γCE

then forms the reference model.
To compute γCE is computationally heavy. Even when the specific heats

are computed before-hand at a number of operating points, the computational
burden is still heavy due to the numerous table look-ups and interpolations
required. Therefore, a computationally more efficient model which retains ac-
curacy is sought for. A number of γ-models will therefore be described in the
following subsection, where they are divided into three subgroups based upon
their modeling assumptions. These γ-models are then compared to the refer-
ence model γCE found from (4.14), in terms of four evaluation criteria, specified
in the subsection “Evaluation criteria”.

How to find xb?

To compute the specific heat ratio γCE (4.14), a mass fraction burned trace xb

is needed. For simulated pressure data, the mass fraction burned is considered
to be known, which is the case in this work. However, if one were to use
experimental data to e.g. do heat release analysis, xb can not be considered
to known. There are then two ways of determining the mass fraction burned;
The first is to use a simple and computationally efficient method to get xb

from a given cylinder pressure trace. Such methods were described in chapter 2
and include the pressure ratio management by Matekunas [1983] described in
section 2.4. If one does not settle for this, the second approach is to initialize
xb using a simple method from the first approach, and then iteratively refine
the mass fraction burned trace xb using the computed heat release.
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4.6.2 Grouping of γ-models

Twelve γ-models have been investigated and based upon their modeling assump-
tions, they are divided into three subgroups; The first group contains models
for burned mixture only. The second contains models based on interpolation of
the specific heat ratios directly, and the third group, to which (4.14) belongs,
contains the models based on interpolation of the specific heats, from which the
ratio is determined.

Group B: Burned mixture

The first subgroup represents the in-cylinder mixture as a single zone of burned
mixture with single-zone temperature T , computed by (A.1). The first model,
denoted B1, is the linear approximation in (4.2):

B1 : γB1(T ) = γb
lin(T ) = γ300 + b (T − 300) (4.15)

where the coefficients can be determined in at least two ways; One way is to use
the coefficients that are optimized for temperature region T ∈ [500, 3000] (region
B in Table 4.3) for a burned mixture. This approach is used in [Gatowski et al.,
1984], although the coefficients differ somewhat compared to the ones given
in Table 4.3. Another way is to optimize the coefficients from the reference
model (4.14). This approach will be the one used here, since it yields the
smallest modeling errors in both γ and cylinder pressure p. The approach has
optimal conditions for the simulations, and will therefore give the best results
possible for this model structure.

The second model, denoted B2, is the Krieger-Borman polynomial described
in (4.4)

B2 : u = A(T ) − B(T )
λ

−→ γB2(T ) = γKB(T ) (4.16)

without the correction term for dissociation. The Krieger-Borman polynomial
is used in model B3 as well,

B3 : u = A(T ) − B(T )
λ

+ ucorr(T, p, λ)

−→ γB3(T, p) = γKB(T, p) (4.17)

with the correction term ucorr(T, p, λ) for dissociation included. The fourth and
simplest model uses a constant γ:

B4 : γB4 = constant (4.18)

As for model B1, the coefficient in (4.18) is determined from the reference
model (4.14).
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Group C: Interpolation of specific heat ratios

The second subgroup uses a two-zone model, i.e. a burned and an unburned
zone, and calculates the specific heat ratio γb(Tb) and γu(Tu) for each zone re-
spectively, where the temperatures are given by the two-zone mean temperature
model (A.7). The mass fraction burned trace xb is then used to find the single-
zone γ by interpolating γb and γu. Note that the energy balance equation, used
in (4.14), is not fulfilled for subgroup C.

The first model, denoted C1, interpolates linear approximations of γ for the
unburned and burned mixture. The linear functions are optimized in tem-
perature region T ∈ [300, 1000] for the unburned mixture, and temperature
region T ∈ [1200, 3000] for the burned mixture. The resulting γC1 can therefore
be written as:

C1 : γC1(T, xb) = xb γ
b
lin(Tb) + (1 − xb) γu

lin(Tu) (4.19)

where the coefficients for the linear functions are given in Table 4.3 and Table 4.2
respectively.

The second model was proposed in [Stone, 1999, p.423], here denoted C2, and
is based on interpolation of the internal energy u computed from the Krieger-
Borman polynomial:

C2 : u = A(T ) − xb
B(T )
λ

−→ γC2(T, xb) (4.20)

This model includes neither dissociation nor the internal energy of the unburned
mixture.

An improvement of model C1 is expected when substituting the linear model
for the burned mixture with the Krieger-Borman polynomial. This new model
is denoted C3 and described by:

C3 : γC3(T, p, xb) = xb γKB(Tb, p) + (1 − xb) γu
lin(Tu) (4.21)

The fourth model interpolates γu(Tu) and γb(Tb, p) given by CHEPP:

C4 : γC4(T, p, xb) = xb γb(Tb, p) + (1 − xb) γu(Tu) (4.22)

and this model is denoted C4. This model will reflect the modeling error in-
troduced by interpolating the specific heat ratios directly instead of using the
definition through the specific heats (4.14).

The segmented linear model (4.3) developed by Chun and Heywood [1987]
is also investigated and here denoted by model C5:

C5 : γC5(T, xb) = γseg(T, xb) =




γcomp
300 + bcomp (T − 300) xb < 0.01
γcomb
300 0.01 ≤ xb ≤ 0.99
γexp
300 + bexp (T − 300) xb > 0.99

(4.23)
Model C5 uses the single-zone temperature for each phase, and classifies into
group C due to that the switching used for xb in (4.23) can be seen as a nearest
neighbor interpolation. As for model B1 and B4, the coefficients in (4.23) are
determined from the reference model (4.14).
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Group D: Interpolation of specific heats

The last subgroup uses a two-zone model, i.e. a burned and an unburned zone,
just as the second subgroup, and the specific heats are interpolated to get the
single-zone specific heats. The first model, denoted D1, uses the Krieger-Borman
polynomial for the burned zone to find cp,b(Tb, p) and cv,b(Tb, p), and the linear
approximations of cp,u(Tu) and cv,u(Tu) given in Table 4.2 for the unburned
zone:

D1 : γD1(T, p, xb) =
xb c

KB
p,b (Tb, p) + (1 − xb) clinp,u(Tu)

xb cKB
v,b (Tb, p) + (1 − xb) clinv,u(Tu)

(4.24)

An extension of model D1 is to use the unburned specific heats cp,u(Tu) and
cv,u(Tu) computed from CHEPP:

D2 : γD2(T, p, xb) =
xb c

KB
p,b (Tb, p) + (1 − xb) cp,u(Tu)

xb cKB
v,b (Tb, p) + (1 − xb) cv,u(Tu)

(4.25)

This model is denoted D2 and reflects the model error introduced by using the
linear approximation of the unburned mixture specific heats, when comparing
to D1.

Model D1 is also extended for the burned mixture, where the specific heats
for the burned mixture cp,b(Tb, p) and cv,b(Tb, p) are computed using CHEPP.
This model is denoted D3:

D3 : γD3(T, p, xb) =
xb cp,b(Tb, p) + (1 − xb) clinp,u(Tu)
xb cv,b(Tb, p) + (1 − xb) clinv,u(Tu)

(4.26)

and reflects the model error introduced by using the Krieger-Borman approxi-
mation of the specific heats, when comparing to D1.

The reference model γCE (4.14) belongs to this group and is denoted D4:

D4 : γD4(T, p, xb) = γCE(T, p, xb) (4.27)

4.6.3 Evaluation criteria
The different γ-models given by (4.15)-(4.26) are evaluated in terms of four
criteria. The criteria are:

1. Normalized root mean square error (NRMSE) in γ, which gives a measure
of the mean error in γ.

2. Maximum relative error (MRE) for γ, which yields a measure of the max-
imum error in γ.

3. Root mean square error (RMSE) for the corresponding cylinder pressures.
This measure will give a measure of the impact that a certain model error
has on the cylinder pressure and will help to find a γ-model accurate
enough for the single-zone model.

63



−100 −50 0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Crank angle [deg ATDC]

C
yl

in
de

r 
pr

es
su

re
 [M

P
a]

Simulated cylinder pressure@OP2

Figure 4.8: Simulated cylinder pressure using Gatowski et al.-model with nom-
inal values in table 3.2, and the linear γ-model B1 replaced by reference model
D4.

4. The computational efficiency is also evaluated by comparing the required
simulation time of the cylinder pressure given a burn rate trace and a
specific γ-model.

4.6.4 Evaluation covering one operating point

At first, only one operating point is considered. This operating point is given
by the parameter values in table 3.2, except for Qin which now is 760 J, and
corresponds to the cylinder pressure given in figure 4.8, i.e. at low engine load
conditions. The cylinder pressure given in figure 4.8 is used as an example that
illustrates the effect that each model has on specific heat ratio γ and cylinder
pressure. To investigate if the engine operating condition influences the choice
of model, nine operating points covering most parts of the operating range of an
engine are used to do the same evaluations. These operating points are given in
table A.7 and their corresponding cylinder pressures are displayed in figure A.6,
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Figure 4.9: Upper: Specific heat ratios for models B1, B3 and C5 as compared
to the reference model D4. Lower: Specific heat ratios for models C4 and D1 as
compared to the reference model D4.

where operating point 2 corresponds to the cylinder pressure in figure 4.8.

γ-domain

The γ-models in the three subgroups are compared to the reference model γCE

(4.14). A summary of the results are given here while a complete picture is given
in appendix A.7, see e.g. figures A.7 and A.8, where γ is plotted as a function
of crank angle. In those figures, the reference model γCE is the dashed line and
the solid line corresponds to each specific model. The specific heat ratio for each
model is also given in figure A.9 and figure A.10 as a function of single-zone
temperature T . Figure 4.9 compares the reference model D4 with the computed
values of γ for a few of these models, namely B1, B3, C5, C4 and D1.

Of these models, only model D1 (4.24) is able to capture the reference model
well. This is confirmed by the MRE(γ) and NRMSE(γ) columns in table 4.6,
where only model group D yields errors lower than 1% for both columns.
Model C4 deviates only during the combustion, which in this case occurs for
θ ∈ [−15, 40] deg ATDC. This deviation is enough to yield a NRMSE(γ) which
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Model MRE: RMSE: NRMSE: Time
γ [%] p [kPa] γ [%] [s]

B1 (4.15) 4.7 52.3 1.3 3.8
B2 (4.16) 5.9 85.8 2.7 4.1
B3 (4.17) 5.2 76.0 1.8 4.2
B4 (4.18) 7.7 62.8 4.5 3.8
C1 (4.19) 2.3 39.8 0.69 4.7
C2 (4.20) 7.3 140.7 4.1 4.9
C3 (4.21) 2.4 25.4 0.65 5.1
C4 (4.22) 2.3 22.8 0.58 211.1
C5 (4.23) 8.4 82.9 1.5 4.0
D1 (4.24) 0.27 2.8 0.10 5.2
D2 (4.25) 0.26 2.6 0.09 12.3
D3 (4.26) 0.04 0.3 0.01 381.9
D4 (4.14) 0.0 0.0 0.0 384.2

Table 4.6: Evaluation of γ-models, on the single cycle shown in figure 4.8.

is almost 0.6 %, approximately six times that found for D1.
Of the models previously proposed in literature, the linear model B1 (4.15)

has the best performance, although it does not capture the reference model
very well, as seen in the upper plot of figure 4.9. Model B3 (4.17) is only
able to capture the reference model after the combustion, since model B3 is
optimized for a burned mixture. Model C5 (4.23) has good behavior before and
after the combustion. But during the combustion, the constant γcomb

300 does not
capture γCE very well. Models B4 and C2 has even worse behavior, as shown
in figure A.7.

To conclude, model group D yields errors in γ which are less than 1% for this
operating point. Of these models, model D3 has the best performance compared
to the reference model D4.

Pressure domain

The impact that the γ-models have on the corresponding cylinder pressure is
shown in figure 4.10 for models B1, B3, C5, C4 and D1, and for all models in
figures A.11 and A.12. The plots show the difference between the simulated
cylinder pressure for reference model D4 and the γ-models, i.e. the cylinder
pressure error induced by the modeling error in γ. Note that the scaling in
the figures are different. The cylinder pressure model used for the simulations
is the model developed by Gatowski et al. [1984]. Section 2.5 gives the model
equations and appendix A.2 gives more details about the implementation used
here.

The RMSE of the measurement noise is approximately 6 kPa and it is only
model group D that introduces a modeling error in the same order as the noise
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Figure 4.10: Upper: Reference cylinder pressure, the same as given in figure 4.8.
Middle: Cylinder pressure error introduced by models B1, B3 and C5. For con-
venience, the sign for C5 is changed. Lower: Cylinder pressure error introduced
by models C4 and D1. Note that the scaling in the plots are different.
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in terms of RMSE. Thus, the other γ-models will introduce a modeling error
which is significantly larger than the measurement noise as seen in Table 4.6,
and thereby affect the accuracy of the parameter estimates. Within group D,
models D3 and D4 have the smallest RMSE(p), and therefore yield the highest
accuracy. Model D1 does not introduce a significantly larger RMSE(p) than D2,
and therefore the most time efficient one should be used of these two. Altogether
this suggests that any model in group D could be used.

The previously proposed γ-models B1, B2, B3, B4 and C5, described in sec-
tion 4.2, all introduce modeling errors which are at least seven times the mea-
surement noise for this operating point. Clearly, a large error, so none of these
models are recommended. Of these models, B1 induces the smallest RMSE(p)
and should, if any, be the one used of the previously proposed models.

A note on crevice volume modeling

Note that the usage of a γ-model different from the linear model used in Gatowski
et al. [1984], will also affect the amount of energy left or added to the sys-
tem when a mass element enters or leaves the crevice volume. This energy
u′ − u =

∫ T ′

T
cvdT is quantified by (2.30) for B1, and has been given in (2.31)

for a γ-model polynomial of order n. This energy term has to be restated
for every γ-model at hand except model B1, and this is done for model D1 in
appendix A.5.

Computational time

The right-most column of table 4.6 shows the computational time. The time
value given is the mean time for simulating the closed part of one engine cycle
using Matlab 6.1 on a SunBlade 100, which has a 64-bit 500 MHz processor. The
proposed model D1 is approximately 70 times faster than the reference model
D4, where the reference model uses look-up tables for precomputed values of the
specific heats cp and cv. Introducing the model improvement in model D1 of the
specific heat ratio to the Gatowski et al. single-zone heat release model is simple,
and it does not increase the computational burden immensely compared to the
original setting, i.e. B1. The increase in computational effort is less than 40 %
compared to the linear γ-model when simulating the Gatowski et al. single-zone
heat release model.

4.6.5 Evaluation covering all operating points

The same analysis as above has been made for the simulated cylinder pressure
from nine different operating points, where pIV C ∈ [0.25, 2] bar and TIV C ∈
[325, 372] K. The parameters for each cycle is given in table A.7 as well as the
corresponding cylinder pressures in figure A.6. The operating range in p and T
that these cycles cover is given in figure 4.11, where the upper plot shows the
range covered for the unburned mixture, and the lower shows the range covered
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Figure 4.11: Operating range in p and T . Upper: Unburned zone. Lower:
Single zone (solid) and burned zone (dashed).

for single-zone (solid) and burned (dashed) mixture. According to [Heywood,
1988, p.109], the temperature region of interest for an SI engine is 400 to 900 K
for the unburned mixture; for the burned mixture, the extreme end states are
approximately {1200 K, 0.2 MPa} and {2800 K, 3.5 MPa}. Of course, not
all points in the range are covered but the cycles at hand cover the extremes of
the range of interest.

The results are summarized in terms of NRMSE for γ (table A.8), RMSE
for p in table A.9 and MRE for γ in table A.10, where the mean values over the
operating points for each model and the values for each cycle are given. The
mean values for each model are also given here as a summary in table 4.7.

Ordering of models

When comparing the NRMSE for γ in table 4.7, the ordering of the γ-models,
where the best one comes first, is:

D4 ≺ D3 ≺ D2 ≺ D1 ≺ C4 ≺ C3 ≺ C1 ≺ B1 ≺ C5 ≺ B3 ≺ B2 ≺ C2 ≺ B4 (4.28)
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Model MRE: RMSE: NRMSE:
γ [%] p [kPa] γ [%]

B1 3.4 84.9 1.2
B2 5.2 153.6 2.4
B3 4.5 137.3 1.7
B4 7.1 110.0 4.2
C1 1.9 56.6 0.77
C2 6.6 269.2 3.9
C3 1.9 42.4 0.53
C4 1.8 36.7 0.46
C5 8.3 191.9 1.6
D1 0.26 5.8 0.097
D2 0.25 5.1 0.092
D3 0.044 0.7 0.016

Table 4.7: Evaluation of γ-models, in terms of the mean values for all operating
points in table A.7.

Here B2 ≺ C2 means that model B2 is better than C2. Comparing RMSE for
the cylinder pressure p, the ordering of the γ-models becomes:

D4 ≺ D3 ≺ D2 ≺ D1 ≺ C4 ≺ C3 ≺ C1 ≺ B1 ≺ B4 ≺ B3 ≺ B2 ≺ C5 ≺ C2 (4.29)

This ordering is not the same as in (4.28), but the only difference lies in models
C5 and B4. Model C5 has poor performance in terms of RMSE(p), compared to
NRMSE(γ). For model B4, it is the other way around.

Model group D
In terms of NRMSE(γ) (4.28) and RMSE(p) (4.29) model group D behaves as
expected, and obeys the rule: the higher the complexity is, the higher the ac-
curacy becomes. According to the RMSE(p) column in table 4.7, the models in
D all introduce an RMSE(p) which is less than that found for the measurement
noise. Comparing models D1 (4.24) and D2 (4.25), it is obvious that not much
is gained in accuracy by using the unburned specific heats from CHEPP instead
of the linear functions. The computational cost for D2 was more than two times
the one for D1, as shown in table 4.6. This suggests that the unburned spe-
cific heats are sufficiently well described by the linear approximation. Model
D3 (4.26) utilizes the burned specific heat from CHEPP, and this is an improve-
ment compared to model D1 which uses the Krieger-Borman polynomial for cp,b

and cv,b. This improvement reduces the RMSE(p) with a factor 7, but the cost
in computational time is high, approximately a factor 70 according to table 4.6.
This is considered to be a too high cost at the moment. The comparison also
shows that if we want to reduce the impact on the cylinder pressure, the effort
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should be to increase the accuracy of the Krieger-Borman polynomial for the
burned mixture. In figures A.4 and A.5, see appendix A.6, the specific heats
for CHEPP and the Krieger-Borman polynomial are given, and this verifies
that the polynomial has poorer performance for higher temperatures. A new
polynomial for the burned mixture, valid for a smaller but more relevant region
for SI engines could increase the accuracy. This is however left as future work
for the moment, and in the meanwhile model D1 is recommended as a good
compromise between computational accuracy and efficiency.

Model group C

In model group C, model C5 has good performance when considering the NRMSE
in γ (4.28), but not as good in RMSE(p) (4.29). This perhaps explains why
Chun and Heywood [1987] consider this to be a good and accurate enough model
for single-zone models. This illustrates the importance of evaluating the mod-
eling error in the γ-domain to the cylinder pressure domain, and it also reflects
that RMSE(p) is the more important model performance measure of the two.
Model C2 [Stone, 1999, p.423] has really bad performance and would be the last
choice here. The rest of the models in group C obeys the same rule as group D,
i.e. C4 ≺ C3 ≺ C1.

When the best model in group C, i.e. C4, is compared to all models in group
D, and especially the reference model D4, it is concluded that the specific heats
should be interpolated, and not the specific heat ratios. This conclusion can be
drawn since the only difference between C4 and D4 is how the interpolation is
performed. Model C4 interpolates the specific heat ratios found from CHEPP
directly, and model D4 interpolates the specific heats from CHEPP and then
form the specific heat ratio. Therefore, group D has better performance than
group C. Since D1 has higher accuracy and approximately the same computa-
tional time as all models in group C, there is no point in using any of the models
in group C.

Model group B

As expected, the models in group B has the worst performance of them all, if
excluding models C2 and C5. It is interesting to note that the linear model γb

lin

(B1) performs best in the group, although it introduces a modeling error in p
which is at least ten times the measurement noise in the mean. It has better
performance than γKB (B3) in the pressure domain, although this is not the
case in the γ-domain. This again points out the necessity of evaluating the
impact of the γ-model on to the cylinder pressure. Therefore, if the assumption
is that the cylinder contents should be treated as a burned mixture during the
entire closed part of the engine cycle, B1 is the model to use.
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Summary

To conclude, the models are ordered by their performance and with computa-
tional efficiency in ascending order:

D4 ≺ D1 ≺ B1 ≺ B4 (4.30)

Some of the models are excluded from this list, either due to their low accuracy,
high computational time, or because another model with approximately the
same computational time has higher accuracy. Of the models given in (4.30),
D1 is recommended as a compromise between computational time and accuracy.
Compared to the original setting in Gatowski et al. [1984], the computational
burden increases with 40 % and the modeling error is more than ten times
smaller in the mean. This also stresses that the γ-model is an important part of
the heat release model, since it has a large impact on the cylinder pressure. The
focus is now turned to how the γ-models will affect the heat release parameters.

4.6.6 Influence of γ-models on heat release parameters

The question is: What impact does each of the proposed γ-models have on the
heat release parameters? This is investigated by using the cylinder pressure
for operating point 2, given in figure 4.8, and estimate the three heat release
parameters θd, θb and Qin in the Vibe function, introduced in appendix A.3.
The cylinder pressure is simulated using reference model D2 in conjunction with
the Gatowski et al. cylinder pressure model, and this forms the cylinder pressure
measurement signal to which measurement noise is added.

The heat release trace is then estimated given the measurement from refer-
ence model D2. The heat release trace is parameterized by the Vibe function,
which has the heat release parameters θd, θb and Qin. The estimation is per-
formed by minimizing the prediction error, i.e. by minimizing the difference
between the measured cylinder pressure and the modeled cylinder pressure.
The Levenberg-Marquardt method described in appendix B.3 is used as opti-
mization algorithm. The heat release parameters are then estimated for each of
the γ-models using the Gatowski et al.-model, where the γ-model is replaced in
an obvious manner in the equations. In the estimations, only the three heat re-
lease parameters are estimated. The other parameters are set to their true values
given in table 3.2. The results are summarized in table 4.8, which displays the
relative estimation error (RE) and the relative 95 % confidence interval (RCI)
in θd, θb and Qin respectively for each γ-model. The computational time and
RMSE(p) are also given.

Discussion

The RMSE of the applied measurement noise is approximately 6.7 kPa, which
is also the RMSE found when using most γ-models. All methods are able to
estimate the rapid burn angle θb most accurately of the three, and almost all
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Model θd [%] θb [%] Qin [%] RMSE(p) Time
RE RCI RE RCI RE RCI [kPa] [min]

B1 5.1 1.7 0.29 3.1 -9.2 1.4 9.8 3.5
B2 3.1 1.7 0.63 2.9 -7.3 1.3 9.1 3.8
B3 3.4 1.7 -0.2 2.9 -7.2 1.3 9.1 3.9
B4 6.8 1.7 -0.11 3.2 -6.2 1.4 10.1 3.5
C1 0.074 1.4 1.1 2.4 -2.9 1.1 6.5 4.4
C2 9.6 2.1 -1 3.9 -14 1.7 16.0 4.6
C3 0.19 1.4 0.75 2.4 -2.5 1.2 6.5 4.8
C4 0.14 1.5 0.64 2.4 -2 1.2 6.7 200
C5 -8 1.5 -2.5 2.3 27 0.92 6.6 3.7
D1 0.21 1.5 -0.062 2.4 -0.67 1.3 6.7 4.9
D2 0.2 1.5 -0.08 2.4 -0.61 1.3 6.7 11
D3 0.22 1.5 -0.13 2.4 -0.48 1.3 6.7 360
D4 0.21 1.5 -0.13 2.4 -0.42 1.3 6.7 360

Table 4.8: Relative estimation error (RE) and relative 95 % confidence inter-
val (RCI) given in per cent, for heat release parameters using various γ-models
at operating point 2. The nominal values for the heat release parameters are:
θd = 15 deg, θb = 30 deg and Qin = 760 J. The computational time and cylinder
pressure RMSE are also given.

of them are accurate within 1%. On the other hand, only model group D is
accurate within 1 % for all three parameters, and this suggests that any of
the D-models can be used, preferably model D1 due to its lower computational
time. Note also that C5 gives the highest deviation in the estimates of them all.

4.6.7 Influence of air-fuel ratio λ

An investigation is performed here to see how the proposed model D1 behaves
for different air-fuel ratios λ. The NRMSE(γ;D1, λ) and RMSE(p;D1, λ) are
computed for model D1 (4.24) compared to reference model D4 for the air-fuel
ratio region λ ∈ [0.975, 1.025], at operating point 2. It is assumed that the
λ-controller of the SI engine has good performance, and therefore keeps the
variations in λ small. The results are displayed in figure 4.12, where the upper
plot shows the NRMSE(γ;D1, λ), and the lower plot shows the RMSE(p;D1, λ).
Lean and stoichiometric mixtures have the lowest errors in the γ domain, which
is expected since the Krieger-Borman polynomial for the burned mixture is es-
timated for lean mixtures. The error in pressure domain is approximately sym-
metric around λ = 0.995, and the magnitude is still less than the measurement
noise. This assures that for a few per cent deviation in λ from stoichiometric
conditions, the introduced error is still small and acceptable.
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Figure 4.12: Upper: NRMSE(γ;D1, λ) for λ ∈ [0.975, 1.025]. Lower:
RMSE(p;D1, λ) for λ ∈ [0.975, 1.025].

A note on fuel composition

A small, and by no means exhaustive sensitivity analysis is made for fuels such
as methane and two commercial fuels in appendix A.4. This in order to see if the
results are valid for other fuels than iso-octane. The carbonhydrogen ratio for
the fuel CaHb is given by y = b/a. It is found that the hydrocarbon ratio needs
to be close to 2.25, i.e. the one for iso-octane, although an exact limit can not
be given without further studies. For a commercial fuel with ratio y = 1.88, the
RMSE(p) introduced is increased with less than 75 % compared to iso-octane,
which is acceptable.

4.6.8 Influence of residual gas

The influence of the residual gas on the specific heat ratio has so far been
neglected. Introducing the residual gas mass fraction xr, the single-zone specific
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heat ratio γCE in (4.14) is reformulated as:

cp(T, p, xb, xr) = xb cp,b(Tb, p) + (1 − xb) ((1 − xr)cp,u(Tu) + xr cp,b(Tu, p))
(4.31a)

cv(T, p, xb, xr) = xb cv,b(Tb, p) + (1 − xb) ((1 − xr)cv,u(Tu) + xr cv,b(Tu, p))
(4.31b)

γCE(T, p, xb, xr) =
cp(T, p, xb, xr)
cv(T, p, xb, xr)

(4.31c)

where the model assumptions are:

• the residual gas is homogeneously distributed throughout the combustion
chamber

• the residual gas is described by a burned mixture at the appropriate tem-
perature and pressure

• a residual gas mass element in the unburned zone assumes the unburned
zone temperature Tu

• when a residual gas mass element crosses the flame front, it enters the
burned zone and assumes the burned zone temperature Tb. The pressure
is assumed to be homogeneous throughout all zones.

In figure 4.13, the specific heat ratio γCE is computed according to (4.31) for
residual gas fractions xr = [0, 0.05, 0.1, 0.15, 0.20] given the cylinder pressure
in figure 4.8. It shows that the larger the residual gas fraction, the larger the
γ.

The difference in γ for xr = [0.05, 0.1, 0.15, 0.20] compared to xr = 0 is
shown in figure 4.14. The difference is largest during compression and com-
bustion. After the combustion, the mass specific heats for the single zone will
coincide with the ones for the burned zone in accordance with the model as-
sumptions, and there is thus no difference in γ.

Modeling of xr-dependence

A simple model of the influence of xr on γ is to model the influence as a linear
function of xr during the closed part, i.e.

γ(T, p, xb, xr) = γCE(T, p, xb) + bxr
xr = γCE(T, p, xb) + γbias(xr) (4.32)

where γCE(T, p, xb) is given by (4.14). Since xr is constant during a cycle, the
term bxr

xr can be considered as a constant bias γbias(xr) that changes from
cycle to cycle. A better model is gained if the mass fraction burned xb is used,
as described in

γ(T, p, xb, xr) = γCE(T, p, xb)+(1−xb)bxr
xr = γCE(T, p, xb)+(1−xb)γbias(xr)

(4.33)
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Figure 4.13: Specific heat ratio γCE for residual gas fraction xr =
[0, 0.05, 0.1, 0.15, 0.20].

where it is used that γ(T, p, xb, xr) coincides for every xr when the mixture is
fully burned.

A more appealing and more physically correct model is to extend model D1

in (4.24) with the Krieger-Borman polynomial for the residual gas fraction, in
the same manner as in (4.31). Thus (4.24) is rewritten as

cp(T, p, xb, xr) = xb c
KB
p,b (Tb, p) + (1 − xb)

(
(1 − xr)clinp,u(Tu) + xr c

KB
p,b (Tu, p)

)
(4.34a)

cv(T, p, xb, xr) = xb c
KB
v,b (Tb, p) + (1 − xb)

(
(1 − xr)clinv,u(Tu) + xr c

KB
v,b (Tu, p)

)
(4.34b)

γD1xr
(T, p, xb, xr) =

cp(T, p, xb, xr)
cv(T, p, xb, xr)

(4.34c)

to form the specific heat ratio γD1xr
for a partially burned mixture with residual

gas mass fraction xr.

76



−100 −50 0 50 100
0

1

2

3

4

5

6
x 10

−3

Crank angle [deg ATDC]

D
iff

er
en

ce
 in

 s
pe

ci
fic

 h
ea

t r
at

io
 γ 

[−
]

Iso−octane; In−cylinder mixture for x
r
 ∈ [0, 0.20]

x
r
=0.05 

x
r
=0.10 

x
r
=0.15 

x
r
=0.20 

Figure 4.14: Difference in specific heat ratio γCE for residual gas fraction
xr = [0.05, 0.1, 0.15, 0.20] compared to xr = 0.

Evaluation

The specific heat ratio for the four models (4.32), (4.33), (4.34) and (4.14),
i.e. no xr modeling, are all compared to the reference model (4.31) for a given
xr. At the operating point in figure 4.14, the NRMSE in γ and the corre-
sponding value of γbias(xr) for models (4.32) and (4.33) are given for the xr:s
at hand in table 4.9. The NRMSE for models (4.34) and (4.14) are also in-
cluded. Model (4.33) has the best performance and decreases the NRMSE with
approximately a factor 2, compared to model (4.14). Note that the NRMSE
are relatively small compared e.g. the NRMSE given in table 4.6. The values
for γbias(xr) depend almost linearly upon xr, and it therefore seems promis-
ing to model γbias(xr) as a linear function of xr. However, the slope bxr

in
γbias(xr) = bxr

xr will change for other operating conditions than the one given
here. The model used therefore needs to be robust to changing operating con-
ditions, a feature the Krieger-Borman polynomial has. Therefore model (4.34)
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NRMSE(γ) [%]
Model xr = 0.05 xr = 0.10 xr = 0.15 xr = 0.20
No model 7.1 · 10−2 1.4 · 10−1 2.1 · 10−1 2.8 · 10−1

(4.32) 4.8 · 10−2 1.0 · 10−1 1.5 · 10−1 1.9 · 10−1

(4.33) 3.4 · 10−2 0.7 · 10−1 1.0 · 10−1 1.4 · 10−1

(4.34) 6.0 · 10−2 1.2 · 10−1 1.8 · 10−1 2.4 · 10−1

γbias

Model xr = 0.05 xr = 0.10 xr = 0.15 xr = 0.20
(4.32) 6.5 · 10−4 1.3 · 10−3 2.0 · 10−3 2.6 · 10−3

(4.33) 6.0 · 10−4 1.2 · 10−3 1.8 · 10−3 2.4 · 10−3

Table 4.9: Normalized root mean square error (NRMSE) and γbias for xr =
[0.05, 0.10, 0.15, 0.20] using models (4.32) and (4.33). Model (4.14) corresponds
to no xr modeling.

which uses the Krieger-Borman polynomial is recommended, although it did
not have the best performance of the xr-models at this operating point.

4.6.9 Summary for partially burned mixture
The results can be summarized as:

• The modeling error must be compared both in terms of how they describe
γ and the cylinder pressure.

• Comparing models C4 and D4, it is obvious that interpolating the specific
heat ratios directly instead of the specific heats causes a large pressure
error. Interpolation of specific heat ratios does not fulfill the energy equa-
tion.

• The γ-models B1, B2, B3, B4, C2 and C5 proposed in earlier works, intro-
duce a pressure modeling error which is at least four times the measure-
ment noise, and at least ten times the measurement noise in the mean. If
any of them should be used, model B1 should be considered.

• If only single-zone temperatures are allowed, model B1 is the better one.

• The computation times are of the same order for all models except D3,
D4 and C4.

• The models in group D are required to get a cylinder pressure RMSE that
is of the same order as the measurement noise.

• As a compromise between accuracy and computational time, model D1 is
recommended. Compared to the original setting in Gatowski et al. [1984],
the computational burden increases with 40 % and the cylinder pressure
modeling error is 15 times smaller in mean.
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• For a residual gas mass fraction xr up to 20 %, model D1 can be extended
with specific heats for the residual gas (4.34). These specific heats are
modeled by the Krieger-Borman polynomial. This model extension adds
a NRMSE(γ) which is less than 0.3 % to the previous modeling error for
xr = 0.

• The results are valid for the air-fuel ratio region λ ∈ [0.975, 1.025] with
retained accuracy. For other fuels than iso-octane, the hydrogencarbon
ratio y needs to be close to 2.25, i.e. the one for iso-octane. The closer,
the better the accuracy is. For a commercial fuel with ratio y = 1.88, the
RMSE(p) is increased with 70 % compared to iso-octane for model D1,
which is acceptable.

• Only model group D produces prediction error estimates of the heat re-
lease parameters, that are accurate within 1 % for all three parameters,
and this suggests that any of the D-models can be used, preferably model
D1 due to its lower computational time.

4.7 Conclusions

Based on assumptions of frozen mixture for the unburned mixture and chemical
equilibrium for the burned mixture [Krieger and Borman, 1967], the specific
heat ratio is calculated, using a full equilibrium program [Eriksson, 2004], for
an unburned and a burned air-fuel mixture, and compared to several previously
proposed models of γ. It is shown that the specific heat ratio and the specific
heats for the unburned mixture is captured within 0.25 % by a linear function
in mean charge temperature T for λ ∈ [0.8, 1.2], and the burned mixture is
captured within 1 % by a higher-order polynomial in cylinder pressure p and
T developed in Krieger and Borman [1967] for the major operating range of
a spark ignited (SI) engine. If a linear model is prefered for computational
reasons for the burned mixture, the temperature region should be chosen with
care which can reduce the modeling error in γ by 25 %.

With the knowledge of how to describe γ for the unburned and burned mix-
ture respectively, the focus is turned to finding a γ-model during the combustion
process, i.e. for a partially burned mixture. This is done by interpolating the
specific heats for the unburned and burned mixture using the mass fraction
burned xb. The objective of the work was to find a model of γ, which results
in a cylinder pressure error less than or in the order of the measurement noise.
It is found that interpolating the linear specific heats for the unburned mixture
and the higher-order polynomial specific heats for the burned mixture, and then
forming the specific heat ratio

γ(T, p, xb) =
cp(T, p, xb)
cv(T, p, xb)

=
xb c

KB
p,b + (1 − xb) clinp,u

xb cKB
v,b + (1 − xb) clinv,u

(4.35)
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results in a small enough modeling error in γ. This modeling error results in a
cylinder pressure error less than 6 kPa in mean, which is in the same order as
the cylinder pressure measurement noise.

It was also shown that it is important to evaluate the model error in γ to
see what impact it has on the cylinder pressure, since a small error in γ can
yield a large cylinder pressure error. This also stresses that the γ-model is an
important part of the heat release model.

Applying the proposed model improvement D1 (4.35) of the specific heat ra-
tio to the Gatowski et al. [1984] single-zone heat release model is simple, and it
does not increase the computational burden immensely. Compared to the orig-
inal setting , the computational burden increases with 40 % and the modeling
error introduced in the cylinder pressure is reduced by a factor 15 in mean.
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5

Compression ratio estimation

Four methods for compression ratio estimation of an engine from cylinder pres-
sure traces are described and evaluated for both motored and fired cycles. The
first three methods rely upon a model of polytropic compression for the cylinder
pressure, and it is shown that they give a good estimate of the compression ra-
tio for simulated cycles at low compression ratios. For high compression ratios,
this simple model lack the information about heat transfer and the model error
causes the estimates to become biased. Therefore a fourth method is introduced
where heat transfer and crevice effects are modeled, together with a commonly
used heat release model for firing cycles. This method is able to estimate the
compression ratio more accurately at low as well as high compression ratios.

In appendix B further details and argumentation on compression ratio esti-
mation are given, and serves as a complement to this chapter. Parts of the mate-
rial in this chapter and appendix B has previously been published [Klein et al.,
2002; Klein and Eriksson, 2002; Klein et al., 2004].

5.1 Introduction
A newly developed engine, which can continuously change the compression ra-
tio between 8 and 14 by tilting the mono-head, has been developed at SAAB
Automobile AB. This ability to change the compression ratio opens up new
opportunities to increase the efficiency of spark ignitied (SI) engines by down
sizing and super charging. But if the compression ratio gets stuck at too high
ratios, the risk of engine destruction by heavy knock increases rapidly. If the
compression ratio gets stuck at too low ratios, we get an unnecessary low effi-
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ciency, and therefore an unnecessary high fuel consumption. It is therefore vital
to monitor and diagnose the continuously changing compression ratio. Due to
geometrical uncertainties, a spread of the compression ratio among the differ-
ent cylinders is inherent [Amann, 1985], and since it is hard to measure the
compression ratio directly, estimation is required. The questions asked here are
related to: 1) accuracy, 2) convergence speed and 3) over all convergence. The
approach investigated is to use cylinder pressure to estimate the compression
ratio. A desirable property of the estimator is that it must be able to cope with
the unknown offset introduced by the charge amplifier, changing thermody-
namic conditions, and possibly also the unknown phasing of the pressure trace
in relation to the crank angle revolution.

Two models for the cylinder pressure with different complexity levels, a poly-
tropic model and a single-zone zero-dimensional heat release model [Gatowski
et al.,1984] are used. To estimate the parameters in the cylinder pressure mod-
els, three different optimization algorithms minimizing the prediction error are
utilized, namely:

1. A linear subproblem approach, where groups of the parameters are esti-
mated one at a time and the predictor function is rewritten to be linear
for the group of estimated parameters. Thus linear regression can be used
at every substep for estimating the particular group of parameters.

2. A variable projection method [Björck, 1996], where one iteration consists of
two substeps: The first substep estimates the parameters that are linear
in the predictor function, holding the nonlinear constant. The second
substep is to perform a line search in the direction of the negative gradient
at the parameters found from substep one. This method classifies as a
separable least squares method.

3. Levenberg-Marquardt method, i.e. a Gauss-Newton method with regular-
ization, where numerical approximations of the gradient and the Hessian
are used here.

Based on these models and optimization algorithms, four different methods are
developed and used for compression ratio estimation for both motored and fired
cycles.

5.2 The SVC engine

The principle of the SVC (Saab Variable Compression) engine is shown in fig-
ure 5.1. By tilting the mono-head the compression ratio can be continuously
varied between 8 and 14. The geometric data for the SVC engine are given in
appendix B.4.
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Figure 5.1: Schematic of engine with variable compression. c© SAAB Automo-
bile AB

5.2.1 SVC volume function

The cylinder volume sweep for the SVC is different in appearance compared to
the standard volume function, Vd(θ) = πB2a

4 ( l
a + 1 − cos θ −

√
( l

a )2 − sin2 θ) ,
since the geometry of the crank in relation to the cylinder changes when the
cylinder head is tilted. This motivates the study done in appendix B.6.

5.3 Cylinder pressure modeling

Two models are used for describing the cylinder pressure trace and they are
refered to as the polytropic model and the standard model. These models
were described in sections 2.2 and 2.5 respectively, and this section serves as a
summary of the models, repeated here for convenience.

5.3.1 Polytropic model

A simple but efficient model is the polytropic compression model:

p(θ)V (θ)n = C (5.1)

where p is the cylinder pressure, V (θ) is the volume function, n is the poly-
tropic exponent and C is a cycle-to-cycle dependent constant. The model is
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valid for adiabatic conditions, and works well during the compression and ex-
pansion phase of the engine cycle, but not during combustion [Heywood, 1988].
Therefore, for a firing cycle only data between inlet valve closing (IVC) and
start of combustion (SOC) will be used, but for motored cycles all data during
the closed part of the cycle, i.e. between IVC and exhaust valve opening (EVO),
is utilized.

5.3.2 Standard model

Gatowski et al. [1984] develops, tests and applies the heat release analysis pro-
cedure used here. It maintains simplicity while still including the effects of heat
transfer and crevice flows. The model has been widely used and the phenomena
that it takes into account are well known [Heywood, 1988].

The pressure differential dp can be written as:

dp =
đQch − γ

γ−1 p dV − đQht

1
γ−1 V + Vcr

Tw

(
T

γ−1 − 1
b ln

(
γ−1
γ′−1

)
+ T ′

) (5.2)

This is an ordinary differential equation that easily can be solved numerically if
a heat-release trace đQch is provided. The heat release is modeled by the Vibe
function xb (5.3a) [Vibe, 1970] in its differentiated form (5.3b):

xb(θ) = 1 − e−a( θ−θ0
∆θ )m+1

(5.3a)

d

dθ
xb(θ) =

a (m+ 1)
∆θ

(
θ − θ0
∆θ

)m

e−a( θ−θ0
∆θ )m+1

(5.3b)

Where xb is the mass fraction burned, θ0 is the start of the combustion, ∆θ is the
total combustion duration, and a and m are adjustable parameters. From (5.3b)
the heat release trace is computed as:

dQch

dθ
= Qin

dxb

dθ
(5.4)

where Qin represents the total energy released from combustion. The standard
model is valid between IVC and EVO.

5.4 Estimation methods

First a well-known method of cylinder pressure referencing is presented. Then
four methods of how to estimate the compression ratio rc are described, followed
by summary in which the relation between the four methods are pointed out.

84



5.4.1 Cylinder pressure referencing

Piezoelectric pressure transducers are used for measuring the in-cylinder pres-
sure, which will cause a drift in the pressure trace. This drift is assumed to
be constant during one engine cycle, and can be estimated with various meth-
ods [Randolph, 1990]. Here the measured pressure trace pm(θ) will be referenced
by comparing it to the intake manifold pressure pman just before inlet valve clos-
ing (IVC), for several samples of pman. Due to standing waves in the intake
runners at certain operating points, the referencing might prove to be insuffi-
cient. This is investigated by including a parameter for cylinder pressure bias
for methods 3 and 4, and is interpreted as a second pressure referencing.

5.4.2 Method 1 – Sublinear approach

The first method estimates the polytropic exponent n, the compression ratio rc
and the constant C in the polytropic model. It iteratively solves two problems,
one to determine the polytropic exponent n, and the other to determine the
compression ratio rc. By using the polytropic model (5.1)

p(θ)(Vc(rc) + Vd(θ))n = C (5.5)

the compression ratio rc can be estimated by iteratively estimating the clear-
ance volume Vc (i.e. rc) and the polytropic exponent n. This is done in three
substeps.
Substep 1: The polytropic exponent n is assumed to be known and the clear-
ance volume is estimated by rewriting (5.5). This yields a least squares problem
which is linear in the parameters C1 and Vc according to

Vd(θ) = C1p(θ)−1/n − Vc(rc) (5.6)

where C1 = C1/n and Vc are the parameters to be estimated.
Substep 2: The polytropic exponent n is then estimated using the estimate of
Vc from substep 1. Applying logarithms on (5.5) yields

ln p(θ) = C2 − n ln(Vd(θ) + Vc(rc)) (5.7)

which is linear in the parameters n and C2 = lnC. The linear parameters are
estimated and we continue to substep 3.
Substep 3: Convergence test. If the estimate has not converged, return to
substep 1.
Using this approach directly will cause diverging estimates [Klein and Eriksson,
2002]. If the stopping criteria is based upon the convergence of the estimated
parameter values, the situation from figure 5.2 can occur, where the estimated
parameters move away from the true parameter values. On the other hand, if
the stopping criteria is based upon the value of the loss function, defined as the
sum of squared residuals, the algorithm will stop in time, but the estimate will
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Figure 5.2: Diverging estimates for method 1 when applying (5.6) and (5.7)
directly. The upper and lower plot have different initial values for the estimates.

depend upon the intial value. Using the loss function as the stopping criteria,
the method stops in one iteration, i.e. two substeps.

The divergence is due to that the predictor function is rewritten from (5.6)
to (5.7) or vice versa in every substep. If the problem would be bilinear in the
parameters, the same predictor function could be used at every substep and the
estimate would then converge linearly [Björck, 1996].

Rewriting the estimation problem:

In the case above the residuals resulting from the predictor functions (5.6) and
(5.7) are unequal in size. A Taylor expansion shows that the residuals become
equal in size if (5.7) is multiplied by (Vc(rc) + Vd(θ)) according to

(Vc + Vd(θ)) ln p(θ) = (Vc + Vd(θ))(C2 − n ln(Vd(θ) + Vc)) (5.8)

and (5.6) is multiplied by n according to

nVd(θ) = n(C1p(θ)−1/n − Vc(rc)) (5.9)
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see appendix B.1 for details. Since n is constant, it does not have to be included
in (5.9).
Stopping criteria: These modifications (5.8) and (5.9) stabilize the method
in the sense that the parameter estimates after a few iterations jumps back and
forth between two parameter sets. The jumping is due to that the norm of the
two predictor functions are not exactly the same given the same parameters.
However, at this stage the components of the two sets differ less than 0.1 % and
can therefore be considered to be the same. By setting the stopping criteria
to a parameter change less than 0.1 %, the method stops within ten iterations.
This limit is not universally valid, and must be adapted for a specific engine
and measurement setup. Also note that if this stopping criteria is not set,
convergence can not be guaranteed for this method.

Since it can not be guaranteed that the loss function will monotonically de-
crease for method 1, a norm test of the loss function is added to the convergence
test in substep 3. The method returns to substep 1 if the loss function has de-
creased with more than 1 · 10−6 since the previous test. Otherwise it stops and
returns the estimates. This will unfortunately slow down the method.

Pressure bias estimation

If the clearance volume Vc can be considered to be known, the same method can
be used to estimate an additive pressure bias instead by reforming the weighting
function in a straight-forward manner. This is also shown in appendix B.1.

5.4.3 Method 2 – Variable projection

The second method also uses the polytropic compression model (5.1), together
with a variable projection algorithm. A nonlinear least squares problem
min

x
||r(x)||2 is separable if the parameter vector x can be partitioned such that

x = (y z)T :
min

y
||r(y, z)||2 (5.10)

is easy to solve. If r(y, z) is linear in y, r(y, z) can be rewritten as:

r(y, z) = F (z)y − g(z) (5.11)

For a given z, this is minimized by:

y(z) = [FT (z)F (z)]−1F (z)T g(z) = F †(z)g(z) (5.12)

i.e by using linear regression where F †(z) is the pseudo-inverse of F (z). The
original problem min

x
||r(x)||2 can then be rewritten as:

min
z

||r(y, z)||2 = min
z

||g(z) − F (z)y(z)||2 (5.13)
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and

r(y, z) = g(z) − F (z)y(z) = g(z) − F (z)F †(z)g(z)
= (I − PF (z))g(z) (5.14)

where PF (z) is the orthogonal projection onto the range of F (z), thus the name
variable projection method.

The polytropic model in (5.5) is rewritten as:

ln p(θ) = C2 − n ln(Vd(θ′) + Vc) (5.15)

which is the same equation as (5.7). This equation is linear in the parameters
C2 = lnC and n and nonlinear in Vc and applies to the form given in (5.11). A
computationally efficient algorithm [Björck, 1996, p.352] is summarized for our
application in appendix B.2.
Stopping criteria: As for method 1, the convergence criteria for the loss func-
tion is set to 1 · 10−6. For this application the method converges within four
iterations.

Pressure bias estimation

If the clearance volume Vc can be considered to be known, the same method
can be used to instead estimate an additive pressure bias. Details of this are
shown in appendix B.1.

5.4.4 Method 3 – Levenberg-Marquardt
The third method uses the polytropic compression equation (5.1) as methods 1
and 2 did, but a pressure sensor model is added according to

p(θ) = pm(θ) + ∆p (5.16)

in order to make the pressure referencing better. The crank angle phasing ∆θ of
the volume and pressure traces is also included in the polytropic model, which
then can be written as

p(θ) = pm(θ′ + ∆θ) + ∆p = C · (Vd(θ′ + ∆θ) + Vc)−n (5.17)

Based on (5.17) the following nonlinear least squares problem is formulated

min
x

N∑
i=1

(pm(θi) + ∆p− C · (Vd(θi + ∆θ) + Vc)−n)2 (5.18)

A Levenberg–Marquardt method [Gill et al., 1981] is used to solve this non-
linear least squares problem. The Levenberg–Marquardt method is more fully
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described in appendix B.3.
Stopping criteria: As for methods 1 and 2, the convergence criteria for the
loss function is set to 1 · 10−6. The problem has good numerical properties, the
Levenberg–Marquardt method has second order local convergence and for this
application the method converges within ten iterations.

5.4.5 Method 4 – Levenberg-Marquardt and standard model

The fourth method uses the single zone model (5.2) from Gatowski et al. [1984]
which includes heat transfer and crevice effects, and serves as the reference
method. It is therefore expected that it will improve the estimation accuracy.
The free parameters are summarized in table 3.2. Due to the complexity of
this model, the sublinear approach and variable projection approach are not
applicable, and therefore only the Levenberg–Marquardt method is used. The
Levenberg–Marquardt method is more fully described in appendix B.3. The
increased complexity of the model also causes identifiability problems for some
of the parameters, since there are many dependencies among the parameters.
A systematic approach [Eriksson, 1998] of setting the most spurious parameter
constant, and re-estimate with one parameter less is used. This should be done
until a sufficient number of parameters are used. The most spurious param-
eter is found as the parameter that yields the highest variance, and is found
by computing the eigenvector of the Hessian HN (B.25) using singular value
decomposition (SVD). At the moment, this method requires decision making
from the user of how many parameters that should be set constant, i.e. how
many spurious parameters there are. The remaining parameters are considered
to be efficient and are free in the parameter estimation. This approach has
earlier been successfully applied in Eriksson [1998] for motoring cycles, but here
a heat-release model (5.3b) is included to cope with firing cycles.
Stopping criteria: As for methods 1, 2 and 3, the convergence criteria for the
loss function is set to 1 ·10−6. For this application the method converges within
thirty iterations.

5.4.6 Summary of methods

The following table shows the relation between the different methods.

Polytropic Model Standard Model
Sublinear approach Method 1
Variable projection Method 2
Levenberg-Marquardt Method 3 Method 4

For firing cycles, methods 1, 2 and 3 use cylinder pressure data between IVC
and SOC only, in contrast to method 4 which uses data from the entire closed
part of the engine cycle. For motoring cycles, all data during the closed part of
the cycle is utilized by all methods.
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5.5 Simulation results

Since the true values of the compression ratios of the engine are unknown, sim-
ulations of the cylinder pressure trace are necessary to perform and use for
evaluating the four proposed methods. Only then can it be determined whether
the estimates are accurate (unbiased) or not.

5.5.1 Engine data

Cylinder pressure simulations were made using the standard model (5.2) with
representative single-zone parameters [Klein and Eriksson, 2002], for integer
compression ratios between 8 and 13. The single-zone parameters are given
in table 3.2. Sixty realizations of Gaussian noise with zero mean and standard
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Figure 5.3: Mean and 95% confidence interval of the estimated compression ratio
for motored cycles using the four methods, compared to the true compression
ratio. The estimate should be as close to the horizontal line as possible.
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deviation 2 kPa were added to the simulated cylinder pressures.
Figures 5.3 and 5.4 show a summary of all estimates for motored and fired

cycles respectively. In the two figures the true compression ratios are the integer
values 8 to 13 and for convenience, method 1 is moved to the left, method 2 is
moved a little to the left (and to the right of method 1), method 3 is moved
a little to the right and method 4 is to the right of method 3. The estimates
should be as close to the dotted horizontal lines as possible. For convenience,
magnifications of figure 5.3 for the two extremes rc = 8 and rc = 13 are given
in figures B.7 and B.8 respectively, and magnifications of figure 5.4 for rc = 8
and rc = 13 are given in figures B.9 and B.10 respectively.

The following sections show the typical behavior of the estimation meth-
ods for a representative cycle at a high compression ratio rc = 13 displayed
in figure 5.5, where the effects of heat transfer are more likely to influence
the measurements due to the higher pressure and temperature in the cylinder.
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Figure 5.4: Mean and 95% confidence interval of the estimated compression
ratio for fired cycles using the four methods, compared to the true compression
ratio.
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Figure 5.5: Simulated cylinder pressure for a motored cycle at rc = 13.

Residuals for all methods are found in figures 5.6 to 5.9. In the summary sec-
tion 5.5.5, statistics of the performance for the four methods are summarized
for both firing and motoring cycles.

5.5.2 Method 1

Using the simulated cylinder pressure an estimation of the parameters is made,
and from these a residual from the simulated and estimated cylinder pressure
can be formed. In figure 5.6, the residual corresponding to the cylinder pressure
in figure 5.5 for method 1 is shown. At the beginning of the compression phase
and at the end of the expansion, the model and estimation method works satis-
factory, but not in between where most of the heat transfer occurs. This model
inaccuracy is partly covered by allowing the polytropic exponent to be small.
The compression ratio estimate becomes biased and method 1 underestimates
rc for all compression ratios, as displayed in figures 5.3 and 5.4. The effect
is larger the higher the compression ratio is. Method 1 converges within ten
iterations for almost all simulated cylinder pressures, both firing and motored
cycles.

5.5.3 Methods 2 and 3

Methods 2 and 3 show the same lack of model accuracy as method 1, although
the residuals for rc = 13 (figure 5.6) do not look exactly the same and again the
estimated rc is biased. Method 3 yields a smaller residual than methods 1 and
2, due to the higher flexibility of using five parameters instead of three. But
when lowering the compression ratio the model becomes more accurate, and
the residual in figure 5.7 does not show the same systematic deviation as the
corresponding residual in figure 5.6 did. This is due to that the heat transfer and
crevice effects are smaller, due to the lower pressure and temperature rendering
from the lower compression ratio. The systematic deviation for the residuals are
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Figure 5.6: Difference between estimated and simulated cylinder pressure for
all methods, given the motored cycle in figure 5.5.
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Figure 5.7: Difference between estimated and simulated cylinder pressure using
method 3, for a motored cycle at rc = 8.
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Figure 5.8: Dependence of estimation bias in clearance volume Vc and crevice
volume Vcr.

expected since the crevice flow and heat transfer are not considered explicitly in
the polytropic model (5.1) and it stresses that these phenomena must be taken
into account when a better estimate is desired for higher compression ratios.
Therefore method 4 uses the standard model (5.2).

5.5.4 Method 4

As mentioned in section 5.4, there exists correlations and dependencies among
the estimated parameters, which makes the estimates biased. This is displayed
in figure 5.8, where the dependence of estimation bias in clearance volume Vc

and the estimation bias in crevice volume Vcr is given. Thus if a too small
crevice volume is estimated, this will result in a too large clearance volume and
thus a too small compression ratio. Therefore for simulated data, the crevice
volume is set to its true value.

The residual for method 4 in figure 5.6 is white noise, suggesting that the
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Figure 5.9: Difference between estimated and simulated cylinder pressure using
method 4, for a fired cycle at rc = 13.

estimation method can explain the data fully. This is also the case for firing
cycles, see figure 5.9 where the simulated and estimated cylinder pressure for a
single cycle at rc = 13 is shown together with the residual. Therefore, the more
complex method 4 shows the best ability to adjust to the simulated cylinder
pressure and explain the physical phenomena taking place in the cylinder.

5.5.5 Summary of parameter estimations

Comparing the residuals from all methods, it is obvious that method 4 can
explain the data most accurately. This suggests that the estimation of the com-
pression ratio becomes best for method 4, which is also shown in figure 5.3
for motored cycles, where the mean and 95% confidence interval of the esti-
mated compression ratio is shown for all four methods. The 95% confidence
interval (B.35) is computed by assuming that the model is correct and that the
estimation error asymptotically converges to a Gaussian distribution.

Methods 1, 2 and 3 underestimate the compression ratio, and this effect
increases with the compression ratio. The methods give approximately the
same estimates and 95 % confidence intervals, except for method 1 at rc = 13,
suggesting that the more time efficient one should be used. Table 5.8 shows e.g.
the mean computational time for each method, from which it can be concluded
that method 2 is the quickest alternative. Method 4 is able to estimate the
compression ratio correctly, due to the higher flexibility of the model, and that
it has the correct model structure. This suggests that method 2 or 4 should be
used. Method 4 if accuracy is critical and method 2 if computational time is
more important.

For firing cycles the same effect as for the motoring cycles appears and is
even more pronounced as shown in figure 5.4. Method 1 shows poorer behavior
than methods 2 and 3 concerning accuracy of the compression ratio estimate
since it underestimates rc even more, although it has a lower confidence interval.
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Method Type CI RCI std REmax REmean

[-] [%] [-] [%] [%]
1 Fired 0.06 0.5 0.15 14.0 9.4

Motored 0.23 2.0 0.041 3.9 3.1
2 Fired 0.33 3.1 0.12 4.0 6.2

Motored 0.15 1.5 0.024 2.0 2.9
3 Fired 0.29 2.8 0.13 2.5 5.6

Motored 0.10 1.0 0.011 1.4 2.2
4 Fired 0.10 1.0 0.032 0.5 0.2

Motored 0.06 0.6 0.016 0.3 0.1

Table 5.1: Table showing the mean 95 % confidence interval (CI), mean relative
confidence interval (RCI), standard deviation, maximum and mean relative error
of the estimated compression ratio rc.

Again, this suggests that method 2 or 4 should be used.
Table 5.1 summarizes the mean confidence intervals, standard deviation and

the maximum relative error of the estimated compression ratio for 60 cycles
respectively. The mean and maximum error is smallest for method 4 both for
firing and motoring cycles.

The standard deviation is small for all methods, and the relative 95 % con-
fidence interval are approximately less than 3 per cent for all methods. In
table 5.2, the cylinder pressure RMSE is given for each method at compression
ratios 8 til 13, as a mean of the ten simulated cycles at every operating con-
dition. As expected, the RMSE is smaller for firing cycles than for motored,
due to that the methods use fewer data for firing cycles. This makes it easier
to find a good fit when the used model is not the true one, as for methods 1,

Method Type RMSE [kPa]: @rc
8 9 10 11 12 13

1 M 17 20 24 27 31 35
F 6.4 6.6 6.8 7 7.2 7.5

2 M 13 15 18 20 23 25
F 9.2 10 11 11 11 12

3 M 11 13 15 17 19 21
F 6.6 6.9 7.1 7.3 7.2 7.3

4 M 1.4 1.5 1.5 1.5 1.6 1.6
F 1.4 1.5 1.4 1.4 1.4 1.5

Table 5.2: Cylinder pressure RMSE for both firing (F) and motored (M) cycles
for rc = 8, . . . , 13 given in kPa. The RMSE for the simulated measurement
noise is 2.0 kPa.
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Figure 5.10: Simulated cylinder pressure for firing cycles for three operating
points at rc = 8 and rc = 13 respectively.

2 and 3. The lower RMSE of firing cycles for method 4 comes from the model
flexibility of the many parameters used. Method 1 has the worst RMSE, when
considering motored cycles. For firing cycles, the RMSE is in the same order as
method 3. In general, method 4 has the lowest RMSE, and method 3 is more
flexible than method 2, thereby the lower RMSE for method 3.

5.5.6 A study of varying operating conditions

To investigate how the proposed methods behave for various operating condi-
tions, a study is performed using the firing cycles in figure 5.10 and the motored
cycles in figure 5.11. The cylinder pressures are simulated using the standard
model (5.2) and the parameter values given in table 3.2, where the parameters;
cylinder pressure at inlet valve closing pIV C and ignition timing θig, are altered
to form different operating conditions according to Table 5.3. Note that for
motored cycles OP1 and OP2 coincide, since they have the same pIV C .
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Figure 5.11: Simulated cylinder pressure for motored cycles for three operating
points at rc = 8 and rc = 13 respectively.

Oper point pIV C [kPa] θig [deg ATDC] Engine load case
OP1 100 -15 Low load
OP2 100 -25 Medium load
OP3 180 -25 High load

Table 5.3: The parameters that are altered compared to the parameter values
given in table 3.2, for the different operating points. The engine load cases are
given for firing cycles.
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Oper M1 M2 M3 M4
point @8 @13 @8 @13 @8 @13 @8 @13
OP1 6.2 10.1 5.2 7.2 5.3 6.2 0.2 0.5
OP2 6.4 11.2 9.1 12.4 9.3 10.6 0.2 0.4
OP3 6.2 10.4 8.1 11.3 8.3 9.6 0.3 0.7

Table 5.4: Relative mean estimation error [%] in rc using methods 1, 2, 3 and
4 for firing cycles.

Table 5.4 summarizes the results for firing cycles in terms of relative mean
estimation error, which is given by

RMEE =
r∗c − 1

M

∑M
j=1 r

j
c

r∗c
(5.19)

where rj
c , j = 1, . . . ,M is the j:th estimate of rc and r∗c is the true compres-

sion ratio rc. Methods 1, 2 and 3 has poorer performance, since the estimation
error becomes larger for higher engine load operating conditions. This, as men-
tioned before, renders from the higher heat transfer due to the pressure and
temperature in the cylinder. For method 3, the estimate is within 10% for a
high engine load level (OP3). Method 4 has the best performance, and yields
basically unbiased estimates, which are within 0.7 % for all operating points.

The relative mean estimation error (5.19) for the motored cycles are given
in Table 5.5. Comparing estimation errors for motored and firing cycles, all
methods are better for motored cycles. This is expected, since methods 1, 2
and 3 use a larger number of samples for the motored cycles. Comparing the
methods themselves, method 4 is again the primary choice, producing a much
smaller estimation error than methods 1, 2 and 3. Typically, the estimation
errors become larger the higher the compression ratio or the engine load case
are, a trend valid for all methods. Therefore, in this study the estimation error
is largest for OP3 and rc = 13.

Although this set of operating conditions is not extensive in any way by
engine calibration standards, they still serve as a demonstration of the charac-
teristics and properties of the proposed methods. It is also important to verify

Oper M1 M2 M3 M4
point @8 @13 @8 @13 @8 @13 @8 @13
OP1 3.0 3.1 2.4 3.4 1.7 2.7 0.2 0.2
OP3 3.3 4.2 3.5 5.0 2.0 3.4 0.1 0.4

Table 5.5: Relative mean estimation error [%] in rc using methods 1, 2, 3 and
4 for motored cycles.
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Para- Devi- M1 M2 M3
meter ation @8 @13 @8 @13 @8 @13

± 0 % 0 0 0 0 0 0
C1 +50% 0.2 2.3 1.5 1.8 0.7 0.2
θ0 ±0.4o 0.2 1.1 1.6 1.4 0.07 0.1
∆p ±20 kPa 9.5 30.2 28.4 37.3 3.3 4.1

Table 5.6: Relative mean estimation error for rc compared to the case for no
parameter deviation given in per cent, using methods 1, 2 and 3 for firing cycles.

the heat release and heat transfer models used in the standard model with ex-
perimental data. In the next section, a parameter sensitivity study is made to
illustrate the problem of uncertainties in the models.

5.5.7 Parameter sensitivity analysis

How well do the proposed methods behave when subject to either a higher
heat transfer, an inaccurate TDC determination or a badly referenced cylinder
pressure? Using the standard model (5.2) and the parameter values given in
table 3.2 which gave rise to the cylinder pressure in figure 5.5, the Woschni
heat transfer coefficient C1, a crank angle phasing θ0 and a pressure bias ∆p
are altered one at a time, according to Table 5.6. Method 4 is not included
in the table, since the relative change in the estimate is less than 0.02 % for
all parameter deviations. Methods 1 and 2 are not as robust to parameter
deviations as method 3. This is exemplified by a badly referenced pressure,
i.e. ∆p 6= 0, which introduces large estimation errors from methods 1 and 2.
Method 3 is therefore recommended if the referencing is uncertain. Methods 1
and 2 are not able to give correct rc-estimates for rc = 13 when subject to the
deviations in Table 5.6. However, they perform better for lower rc:s.

Table 5.7 displays the relative mean estimation error for rc using motored
cycles. Compared to the firing cycles given in Table 5.6, the errors are typically
smaller. However, when the methods are subject to a pressure bias, they yield
estimation errors in the same order for firing and motoring cycles. Methods 3
and 4 are able to cope with the pressure bias, since a parameter is included for
both methods to estimate the pressure bias.

5.5.8 Conclusions from simulations

The first three methods rely upon the assumption of a polytropic compression
and expansion, and it is shown that this is sufficient to get a rough estimate
of the compression ratio, especially for low compression ratios and by letting
the polytropic exponent to become small. This result is valid for a number of
operating conditions, as shown in section 5.5.6. Methods 1, 2 and 3 perform
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Para- Devi- M1 M2 M3
meter ation @8 @13 @8 @13 @8 @13

± 0 % 0 0 0 0 0 0
C1 +50% 0.3 1.2 0.1 0.2 0.03 0.1
θ0 ±0.40 0.3 0.8 0.1 0.2 0.01 0.02
∆p ±20 kPa 14.8 28.4 17.0 17.6 0.1 0.4

Table 5.7: Relative mean estimation error for rc compared to the case for no
parameter deviation given in per cent, using methods 1, 2 and 3 for motored
cycles.

equally well, when not considering model uncertainties such as cylinder pres-
sure referencing. If this referencing is done unsatisfactorily, the estimate from
methods 1 and 2 becomes poorer than the one from the more robust method 3.
For higher rc:s it is important to take the heat transfer into account, especially
for high engine loads, and then only methods 4 is accurate enough. Method 4
is also more robust to varying operating conditions and parameter deviations,
than the other methods. It is interesting to note that for diagnostic purposes,
all four methods will be able to detect when the compression ratio gets stuck
at a too high or too low level.

Method Time # Iter # Parameters
1 103 ms 8 3
2 23 ms 3 3
3 145 ms 5 5
4 2 ∗ 106 ms 9 10

Table 5.8: Table showing the mean time and mean number of iterations in
completing one cycle, together with the number of parameters for all methods.

The computational time for the four methods is quite diverse, and is sum-
marized in table 5.8. The flexible method 4 takes 208 s, method 3 takes 0.145 s,
method 2 is active for 23 ms and method 1 needs 103 ms in the mean to finish
one cycle. Method 2 is the fastest choice. The estimations were made using
Matlab 6.1 on a SunBlade 100, which has a 64-bit 500 Mhz processor.

Two methods are therefore recommended; If computational time is the most
important feature, method 2 is recommended. If estimation accuracy has the
highest priority, method 4 should be used.
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5.6 Experimental results
The four proposed methods described in section 5.4 will be now used to estimate
the compression ratio from experimental engine data. First the data collection
is described, and the operating points are defined. In the following subsections,
the engine cylinder pressure data is referenced both concerning pressure bias
and crank angle offset. Thereafter, the performance of each of the methods is
described and the section ends up in a summary part and a conclusion part for
the experimental results.

5.6.1 Engine data
Data is collected on the SVC engine during stationary operation at engine speed
{1500, 3000} rpm, intake manifold pressure {0.6, 0.9} bar and for a scan in
compression ratio for integer values 8 to 13. For each compression ratio value,
there are four operating points defined by table 5.9. Both firing and motored
cylinder pressure data is acquired for one cylinder, where ten firing cycles are
measured first and directly after these measurement the fuel is cut off and
ten motored cycles are measured. The measurements are crank-angle resolved
with a resolution of 1 CAD. Altogether there are data from 240 firing and 240
motored cycles to be analyzed. A representative motored cycle at compression
ratio rc = 13 for OP2 is given in figure 5.12. In the following, only results for
OP2 will be shown. This operating point is chosen since the effects of heat
transfer are larger due to the higher pressure and temperature in the cylinder.

Variable OP1 OP2 OP3 OP4
pman [bar] 0.6 0.9 0.6 0.9
N [rpm] 1500 1500 3000 3000
rc [-] 8:13 8:13 8:13 8:13

Table 5.9: The operating points for the collected experimental SVC engine data.

5.6.2 TDC-referencing
As pointed out in subsection 3.1.1, the cylinder pressure trace needs to be
referenced to the crank angle revolution, i.e. the cylinder volume function. An
additive constant crank angle offset θ0 is assumed and is modeled by (3.2). The
easiest way to find θ0 is to consider motored cycles only. The approach here
will be to simulate the motored cylinder pressure for the operating points in
table 5.9, and find the peak pressure position, θsim

ppp (OP ). The simulations are
performed using the Gatowski et al.-model with single-zone parameters given
by table 3.2 with one exception; The parameters γ300 and b in the linear γu

lin

model (4.2) are set to the values found in table 4.2, which are valid for an
unburned frozen mixture of air and iso-octane. The peak pressure position for
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Figure 5.12: Measured cylinder pressure for a motored cycle at rc = 13.

the experimental cycles are then computed and averaged for every operating
point and compression ratio, to form θexp

ppp(OP ). The crank angle offset θ0 is
then found as:

θ0 = θi,true − θi = mean(θsim
ppp (OP ) − θexp

ppp(OP )) (5.20)

where θi,true is assumed to be given by the simulated values and θi is given by
the experimental cycles. The mean is taken over all operating points for all
compression ratios.

The peak pressure position for simulated and experimental cycles, corrected
with θ0 found from (5.20), are given in figure 5.13 for operating points 1 and 2.
The simulated pressure maximum position, θsim

ppp , bends of for higher compres-
sion ratios. This is due to a higher heat transfer, and thereby the thermody-
namic loss angle [Hohenberg, 1979] becomes larger, resulting in an earlier peak
pressure position in the crank angle domain. Figure 5.14 displays the deviation
in θppp for simulated and corrected experimental cycles, for operating points
1-4 given by table 5.9. The deviation is within 0.2 degrees, and not within the
0.1 degrees that Morishita and Kushiyama [1997]; Staś [2000] state is needed
to get accurate enough results. The underlying number of cycles from which
θ0 is determined is however very small, and it would require more data and a
higher crank angle resolution to get more accurate results. This will not be
pursued here, instead it is assumed that θ0 is correct, but bear in mind that the
TDC-determination could be a source of error.

5.6.3 Cylinder pressure referencing
The measured cylinder pressure is relative and needs to be referenced, in order
to find the absolute pressure. This has previously been described in section 3.1
and subsection 5.4.1. The pressure gain Kp in (3.1) is calibrated beforehand,
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Figure 5.15: Difference between estimated and measured cylinder pressure for
all methods, given the motored cycle in figure 5.12.

and the cycle-to-cycle pressure bias ∆p is assumed constant and computed by
referencing the cylinder pressure to the intake manifold pressure in the interval
θ ∈ [−167,−162] [deg ATDC], as shown in figure 3.2.

5.6.4 Methods 1, 2 and 3

Figure 5.15 displays the residuals for all four methods, given the cylinder pres-
sure in figure 5.12. For methods 1, 2 and 3, the polytropic model does not
capture the experimental pressure fully. This is the case especially during the
late compression and early expansion phase, where most of the heat transfer
occurs.

The compression ratio estimate becomes biased and methods 1, 2 and 3 all
underestimate rc for all compression ratios, as displayed in figures 5.16 and 5.17.
The effect is larger the higher the compression ratio is.
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Figure 5.16: Mean and 95% confidence interval of the estimated compression
ratio for motored cycles using the four methods, compared to the actuated
compression ratio. The estimate should be as close to the horizontal line as
possible.

5.6.5 Method 4

The simulations for method 4 showed that there was a coupling between the
clearance volume Vc and the crevice volume Vcr, which was displayed in fig-
ure 5.8. For experimental data the crevice volume will however be unknown,
and setting it to a fix value will introduce a bias in the compression ratio es-
timate. One way of partly avoiding this problem, is to estimate the crevice
volume with a fix clearance volume at a given mid-range compression ratio,
here chosen as rc = 11. This will form the reference or nominal value of the
crevice volume. This nominal value found from the estimations of the crevice
volume will then be fixed, and used for estimating the clearance volume for
all the other operating points. For motored cycles the crevice volume is set
to 9.4 · 10−7 m3, which is 2.9 % of the clearance volume at rc = 11. A value
larger than the 1-2 % Heywood [1988] suggests, but not unrealistic since the
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Figure 5.17: Mean and 95% confidence interval of the estimated compression
ratio for fired cycles using the four methods, compared to the actuated com-
pression ratio.

SVC engine is a prototype engine and therefore perhaps not optimized in every
sense. For firing cycles, the crevice volume is set to 1.2 · 10−6 m3.

The systematic approach in Eriksson [1998] is used to decide upon which and
how many parameters that are to be considered as free (efficient), and which
are to be considered as constant (spurious). For motored cycles, it is found
that five parameters should be considered as efficient. These are: pressure bias
∆p, crank angle phasing θ0, cylinder mean wall temperature Tw, the constant
γ300 in the linear model for the specific heat ratio and the clearance volume
Vc. For firing cycles, eight parameters are considered to be efficient. The five
used for motored cycles, except Tw exchanged for the mean charge temperature
at IVC TIV C , and the three heat release parameters θd, θb and Qin. The other
parameters are considered to be spurious and are set by their respective initial
value by the models developed in chapter 3.
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Method Type 8 9 10 11 12 13
1 M 23 21 38 35 30 37

F 20 18 29 26 23 31
2 M 4.8 5.9 7.4 9.2 11 13

F 2.9 2.2 2.8 3.3 3.6 4.8
3 M 4.6 5.7 7.3 8.6 9.7 12

F 2.7 1.9 2.7 2.3 2.4 2.8
4 M 2.7 3.7 4.7 4.6 5.3 6

F 15 16 19 24 21 22

Table 5.10: Experimental cylinder pressure RMSE for both firing (F) and mo-
tored (M) cycles for rc = 8, . . . , 13 given in kPa. The operating point is OP2.

5.6.6 Summary of parameter estimations

Comparing the residuals from all methods, it is obvious that method 4 can
explain the data most accurately. This is confirmed by table 5.10, which shows
the cylinder pressure RMSE for all methods at every integer compression ratio.

This suggests that the estimation of the compression ratio becomes best
for method 4, which is also shown in figure 5.16 for motored cycles, where the
mean and 95% confidence interval of the estimated compression ratio is shown
for all four methods for motored cycles. The 95% confidence interval (B.35) is
computed by assuming that the model is correct and that the estimation error
asymptotically converges to a Gaussian distribution. In figure 5.16 the actuated
compression ratios are the integer values 8 to 13 and for convenience, method 1
is moved to the left, method 2 is moved a little to the left (and to the right of
method 1), method 3 is moved a little to the right and method 4 is to the right
of method 3. The estimates should be as close to the dotted horizontal lines as
possible. Magnifications of figure 5.16 for the two extremes rc = 8 and rc = 13
are given in figures B.11 and B.12 respectively, see appendix B.8.

For firing cycles the same effect as for the motoring cycles appears and is
even more pronounced as shown in figure 5.17. Magnifications of figure 5.17 for
rc = 8 and rc = 13 are given in figures B.13 and B.14 respectively.

Table 5.11 summarizes the mean 95 % confidence intervals, standard de-
viation and the mean relative error of the estimated compression ratio for 60
cycles respectively. The mean and maximum error is smallest for method 4
both for firing and motoring cycles. Of the methods that use the polytropic
cylinder pressure model, method 2 yields the smallest mean estimation error
and a relatively small 95 % confidence interval for motored cycles. For firing
cycles, both method 1 and 2 suffer from poorer estimates. Method 3 on the
other hand produce relatively accurate estimates, compared to methods 1 and
2, although the confidence interval is relatively large. In section 5.5.7, the influ-
ence of a poorly phased crank angle θ and a poorly referenced pressure bias ∆p
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Method Type CI RCI std REmax REmean

[-] [%] [-] [%] [%]
1 M 0.09 1.0 0.1 12 11

F 0.14 1.5 0.39 20 14
2 M 0.04 0.4 0.055 10 9.1

F 0.35 3.8 0.4 19 13
3 M 0.02 0.3 0.033 12 11

F 0.37 3.9 0.41 15 9.2
4 M 0.01 0.1 0.044 2.9 2.1

F 0.06 0.5 0.0072 1.8 1.7

Table 5.11: Table showing the mean 95 % confidence interval (CI), mean rela-
tive confidence interval (RCI), standard deviation, maximum and mean relative
error (RE) of the estimated compression ratio rc. The operating point is OP2.

Method Time # Iter # Parameters
1 142 ms 12 3
2 30 ms 5 3
3 167 ms 6 5
4 2 ∗ 106 ms 9 10

Table 5.12: Table showing the mean time and mean number of iterations in
completing one cycle, together with the number of parameters for all methods.

were investigated, and it was shown that the estimates from methods 1 and 2
suffered from this. This might be the cause for the poor estimates for methods
1 and 2.

The mean computational time for all four methods is given in table 5.12.
They are similar to the ones found from the simulations in table 5.8, although
a bit higher. The relative ordering of the methods concerning computational
time is however the same.

5.6.7 Conclusions from experiments

To conclude, method 4 has the best performance for both motored and firing
cycles. If computational time is a critical issue, method 3 should be used. How-
ever, if the crank angle phasing and cylinder pressure referencing are accurate,
method 2 could be used instead of method 3.
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5.7 Conclusions
The four estimation methods all give good estimates for low compression ratios
on simulated data. But for high compression ratios, the heat transfer has to be
accounted for and therefore the more complex method 4 gives better estimates
than the simpler and computationally faster methods 1, 2 and 3. Of these three,
method 2 has the fastest convergence. For experimental data, method 4 again
has the best performance. Of the computationally more efficient methods 1, 2
and 3, method 3 is recommended due to its robustness to crank angle phasing
and pressure bias. With a better crank angle phasing and cylinder pressure
referencing, method 2 could be used instead of method 3.

Two methods are therefore recommended. If computational time is the most
important feature, method 3 is recommended. If estimation accuracy has the
highest priority, method 4 should be used.

For diagnostic purposes, all methods are able to detect if the compression
ratio is stuck at a too high or at a too low level during driving, since the
estimation is performed on a cycle-to-cycle basis. This is sufficient both for
safety reasons, where the compression ratio can be too high which could lead to
engine knock, and for fuel economic reasons, where a too low compression ratio
will lead to higher fuel consumption.
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6

Conclusions

A specific heat ratio model for single-zone heat release models

Based on assumptions of frozen mixture for the unburned mixture and chemical
equilibrium for the burned mixture [Krieger and Borman, 1967], the specific
heat ratio is calculated, using a full equilibrium program [Eriksson, 2004], for
an unburned and a burned air-fuel mixture. The results are then compared to
several previously proposed models of γ. It is shown that the specific heat ratio
and the specific heats for the unburned mixture is captured within 0.25 % by a
linear function in mean charge temperature T for λ ∈ [0.8, 1.2], and the burned
mixture is captured within 1 % by a higher-order polynomial in cylinder pressure
p and T developed in Krieger and Borman [1967] for the major operating range
of a spark ignited (SI) engine. If a linear model for computational reasons would
be prefered for the burned mixture, the temperature region should be chosen
with care which can reduce the modeling error in γ by 25 %.

With the knowledge of how to describe γ for the unburned and burned mix-
ture respectively, the focus is turned to finding a γ-model during the combustion
process, i.e. for a partially burned mixture. This is done by interpolating the
specific heats for the unburned and burned mixture using the mass fraction
burned xb. The objective of the work was to find a model of γ, which results
in a cylinder pressure error less than or in the order of the measurement noise.
It is found that interpolating the linear specific heats for the unburned mixture
and the higher-order polynomial specific heats for the burned mixture, and then
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forming the specific heat ratio

γ(T, p, xb) =
cp(T, p, xb)
cv(T, p, xb)

=
xb c

KB
p,b + (1 − xb) clinp,u

xb cKB
v,b + (1 − xb) clinv,u

(6.1)

results in a small enough modeling error in γ. This modeling error results in a
cylinder pressure error less than 6 kPa in mean, which is in the same order as
the cylinder pressure measurement noise.

It was also shown that it is important to evaluate the model error in γ to
see what impact it has on the cylinder pressure, since a small error in γ can
yield a large cylinder pressure error. This also stresses that the γ-model is an
important part of the heat release model.

Applying the proposed model improvement, model D1 (6.1), of the specific
heat ratio to the Gatowski et al. [1984] single-zone heat release model is simple,
and only increases the computational burden slightly. Compared to the original
model, the computational burden increases with 40 % and the modeling error
introduced in the cylinder pressure is reduced by a factor 15 in mean.

Compression ratio estimation

The four estimation methods all give good estimates for low compression ratios
on simulated data. But for high compression ratios, the heat transfer has to be
accounted for and therefore the more complex method 4 gives better estimates
than the simpler and computationally faster methods 1, 2 and 3. Of these three,
method 2 has the fastest convergence. For experimental data, method 4 again
has the best performance. Of the computationally more efficient methods 1, 2
and 3, method 3 is recommended due to its robustness to crank angle phasing
and pressure bias. If the crank angle phasing and cylinder pressure referencing
are accurate, method 2 could be used instead of method 3.

Two methods are therefore recommended. If computational time is the most
important feature, method 3 is recommended. If estimation accuracy has the
highest priority, method 4 should be used.

For diagnostic purposes, all methods are able to detect if the compression
ratio is stuck at a too high or at a too low level during driving, since the
estimation is performed on a cycle-to-cycle basis. This is sufficient both for
safety reasons, where the compression ratio can be too high which could lead to
engine knock, and for fuel economic reasons, where a too low compression ratio
will lead to higher fuel consumption.
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A

A specific heat ratio model –
further details

Further additional details and argumentation for the results found in chapter 4
are given in this chapter. Each section is referenced from various sections in
chapter 4, and this chapter should therefore be seen as a complement.

A.1 Temperature models

Two models for the in-cylinder temperature will be described, the first is the
mean charge single-zone temperature model. The second is a two-zone mean
temperature model, used to compute the single-zone thermodynamic properties
as mean values of the properties in a two-zone model.

A.1.1 Single-zone temperature model

The mean charge temperature T for the single-zone model is found from the
state equation pV = mcRT , assuming the total mass of charge mc and the
mass specific gas constant R to be constant. These assumptions are reasonable
since the molecular weights of the reactants and the products are essentially
the same [Gatowski et al., 1984]. If all thermodynamic states (pref ,Tref ,Vref )
are known/evaluated at a given reference condition ref , such as IVC, the mean
charge temperature T is computed as

T =
TIV C

pIV CVIV C
pV (A.1)
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A.1.2 Two-zone mean temperature model
A two-zone model is divided into two zones; one containing the unburned gases
and the other containing the burned gases, separated by a infinitesimal thin di-
vider representing the flame front. Each zone is homogeneous considering tem-
perature and thermodynamic properties, and the pressure is the same through-
out all zones [Nilsson and Eriksson, 2001]. Here a simple two-zone model will be
used to find the burned zone temperature Tb and the unburned zone temperature
Tu, in order to find a more accurate value of γ(T ) as an interpolation of γu(Tu)
and γb(Tb). The model is called temperature mean value approach [Andersson,
2002], and is based on a single-zone combustion model and adiabatic compres-
sion of the unburned charge. The single-zone temperature can be seen as a
mass-weighted mean value of the two zone temperatures.

Prior to start of combustion (SOC), the unburned zone temperature Tu

equals the single-zone temperature T :

Tu,SOC = TSOC (A.2)

The unburned zone temperature Tu after SOC is then computed assuming adi-
abatic compression of the unburned charge according to:

Tu = Tu,SOC

(
p

pSOC

)1−1/γ

= TSOC

(
p

pSOC

)1−1/γ

(A.3)

The unburned zone temperature Tu is therefore given by:

Tu(θ) =

{
T (θ) θ ≤ θig

T (θig)
(

p
p(θig)

)1−1/γ

θ > θig

(A.4)

Energy balance between the single-zone and the two-zone models yields:

(mb +mu)cvT = mbcv,bTb +mucv,uTu (A.5)

Assuming cv = cv,b = cv,u, i.e. a calorically perfect gas, ends up in

T =
mbTb +muTu

mb +mu
= xbTb + (1 − xb)Tu (A.6)

where the single-zone temperature can be seen as the mass-weighted mean tem-
perature of the two zones. Including a model for cv would increase the impor-
tance of Tb in (A.6), resulting in a lower value for Tb. From (A.6), Tb is found
as

Tb =
T − (1 − xb)Tu

xb
(A.7)

The procedure is summarized as:

1. Compute the single-zone temperature T in (A.1)
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Figure A.1: Upper: Single-zone temperature T1z, unburned Tu and burned
Tb zone temperatures for the cylinder pressure given in figure 4.8. Bottom:
Corresponding mass fraction burned trace calculated using Matekunas pressure
ratio.

2. Compute the mass fraction burned xb by using e.g. Matekunas pressure
ratio management (A.10) and use the Vibe function in (A.12) to param-
eterize the solution

3. Compute the unburned zone temperature Tu using (A.4)

4. Compute the burned zone temperature Tb from (A.7)

The various zone temperatures for the cylinder pressure trace displayed in fig-
ure 4.8 are shown in figure A.1. The burned zone temperature is sensitive to
low values of the mass fraction burned, xb. Therefore, Tb is set to the adiabatic
flame temperature for xb < 0.01. The adiabatic flame temperature Tad for a
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constant pressure process is found from:

hu(Tu) = hb(Tad, p) (A.8)

where hu and hb are the enthalpy for the unburned and burned mixture respec-
tively.

A.2 Cylinder pressure model
The article [Gatowski et al., 1984] develops, tests and applies the cylinder pres-
sure model used here. It maintains simplicity while still including the effects
of heat transfer and crevice flows. The model has been widely used and the
phenomena that it takes into account are well known [Heywood, 1988].
The pressure differential dp can be written as

dp =
đQch − γ

γ−1 p dV − đQht

1
γ−1 V + Vcr

Tw

(
T

γ−1 − 1
b ln

(
γ−1
γ′−1

)
+ T ′

) (A.9)

This is an ordinary differential equation that easily can be solved numerically if
a heat-release trace đQch is provided. The heat release is modeled by the Vibe
function described in section A.3.

A.3 Combustion model
The combustion of fuel and air is a very complex process, and would require
extensive modeling to fully capture. Our approach here is to use the pressure
ratio management [Matekunas, 1983] to produce a mass fraction burned trace
and then use the Vibe function to parameterize the burn rate of the combusted
charge. If the mass fraction burned trace is known, as for simulations, the
pressure ratio management is not used.

A.3.1 Matekunas pressure ratio
The pressure ratio management was developed by Matekunas [1983] and was
described earlier in section 2.4. It is defined as the ratio of the cylinder pressure
from a firing cycle p(θ) and the corresponding motored cylinder pressure pm(θ):

PR(θ) =
p(θ)
pm(θ)

− 1 (A.10)

The mass fraction burned trace xb is then approximated by the normalized
pressure ratio PRN (θ)

xb(θ) ≈ PRN (θ) =
PR(θ)

maxPR(θ)
(A.11)

an approximation valid within 1-2 degrees [Eriksson, 1999].
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A.3.2 Vibe function

The Vibe function [Vibe, 1970] is often used as a parameterization of the mass
fraction burned xb, and it has the following form

xb(θ) = 1 − e
−a

“
θ−θig

∆θ

”m+1

(A.12)

The burn rate is given by its differentiated form

dxb(θ)
dθ

=
a (m+ 1)

∆θ

(
θ − θig

∆θ

)m

e
−a

“
θ−θig

∆θ

”m+1

(A.13)

where θig is the start of the combustion, ∆θ is the total combustion duration,
and a andm are adjustable parameters. The Vibe function was described earlier
in section 3.5, and there it is given how to relate the parameters a and m to the
physical burn angle parameters θd and θb using (3.19).

The differentiated Vibe function (A.13) is used to produce a mass fraction
burned trace, i.e. a normalized heat-release trace. The absolute value of the
heat-release rate dQch

dθ is given by the fuel mass mf , the specific heating value
of the fuel qHV , and combustion efficiency ηf as

dQch

dθ
= mfqHV ηf

dxb

dθ
= Qin

dxb

dθ
(A.14)

where Qin represents the total energy released from combustion.
Summing up, the combustion process is described by (A.14), parameterized

by Qin, θig, θd, and θb.

A.4 Fuel composition sensitivity of γ

So far, the focus has only been on iso-octane C8H18 as the fuel used. Since the
actual fuel composition can differ quite extensively over both region and time
of year, it is interesting to see what happens with the specific heat ratios when
the fuel composition is changed. Consider the general fuel CaHbOc, which is
combusted according to

1
λ(a+ b/4 − c/2)

CaHbOc +O2 + 3.773N2 −→ x1O + x2O2 + x3H + . . .

x4H2 + x5OH + x6H2O + x7CO + x8CO2 + x9NO + x10N2(A.15)

where a, b and c are positive integers.
First our attention is turned to the properties of hydrocarbons and then to a

few alcohols, when considering burned mixtures. Then a similar investigation is
made for unburned mixtures. Finally the properties of partially burned mixtures
and their influence on the cylinder pressure are examined.
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Fuel CaHb y NRMSE @ p1 NRMSE @ p2

A B A B
Methane CH4 4 0.19 % 0.17 % 0.16 % 0.15 %
Iso-octane C8H18 2.25 0 0 0 0
Gasoline1 C8.26H15.5 1.88 0.06 % 0.05 % 0.05 % 0.04 %
Gasoline2 C7.76H13.1 1.69 0.09 % 0.07 % 0.07 % 0.07 %

Table A.1: Burned mixtures: Different fuels and their chemical composition.
The NRMSE is formed as the difference compared to iso-octane, and evaluated
at λ = 1 and temperature regions A and B, for p1 = 7.5 and p2 = 35 bar
respectively.

A.4.1 Hydrocarbons

Considering hydrocarbons CaHb only (c = 0), the hydrocarbon ratio y = b/a
will determine the properties of the air-fuel mixture, since the a and b are only
relative proportions on a molar basis [Heywood, 1988][p.69]. The specific heat
ratio is computed using CHEPP for the fuels given in table A.1. Gasoline 1
and 2 are commercial fuels listed in Heywood [1988][p.133]. The fuels methane
and gasoline2 will be extreme points in our study, considering the hydrocarbon
ratio y, in a region which covers most hydrocarbon fuels. In the upper plot
of figure A.2 the specific heat ratio for the fuels are displayed. The difference
between the fuels is hardly visible. Therefore, the fuels are compared to iso-
octane, and the difference in γ is plotted in the lower part of figure A.2.

The difference is small, and smallest for the commercial gasoline as expected,
since the hydrocarbon ratio y does not differ as much. The NRMSE are found
in table A.1, for p1 = 7.5 and p2 = 35 bar respectively. Compared to table 4.5,
the fuel composition introduces a smaller error in γ than the Krieger-Borman
polynomial. It is therefore possible that the iso-octane γ can be used as a good
approximation for the other hydrocarbon fuels, described by CaHb.

A.4.2 Alcohols

Considering more general fuels such as alcohols, the specific heat ratio of methanol
CH3OH is computed and compared to the ones found for iso-octane and methane
respectively. The comparison with methane shows what influence the extra
oxygen atom brings about, and the comparison with iso-octane yields the dif-
ference to the fuel used here as a reference fuel. The results are displayed in
figure A.3, the upper plot shows γ for the three fuels listed in table A.2. The
lower plot shows the difference in γ for methanol when compared to iso-octane
and methane respectively. Surprisingly, the difference is smaller for iso-octane,
which is also concluded by comparing the NRMSE:s from table A.2. These
NRMSE:s are in fact quite large, which is found by comparing to the ones
found in table 4.5. This suggests that the fault introduced by using the iso-
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Figure A.2: Upper: Specific heat ratio for various fuels. Lower: Difference in γ
for methane CH4 and gasoline2 C7.76H13.1, compared to iso-octane C8H18.

Fuel CaHbOc NRMSE @ p1 NRMSE @ p2

A B A B
Methanol CH4O 0 0 0 0
Methane CH4 0.80 % 0.75 % 0.81 % 0.72 %
Iso-octane C8H18 0.73 % 0.60 % 0.70 % 0.60 %

Table A.2: Burned mixtures: Different fuels and their chemical composition.
The NRMSE is formed as the difference for methanol compared to methane
and iso-octane respectively, and evaluated at λ = 1 and temperature regions A
and B, for p1 = 7.5 and p2 = 35 bar respectively.
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Figure A.3: Upper: Specific heat ratio for various fuels. Lower: Difference in γ
for methanol CH3OH compared to iso-octane C8H18 and methane CH4.

octane γ to describe the methanol γ is too large. This means that the results
are not valid for alcohols. Instead, new coefficient values in the polynomials
have to be estimated.

A.4.3 Unburned mixtures

The specific heat ratios for both unburned hydrocarbons and alcohols are an-
alyzed in a similar manner as for the burned mixtures presented earlier. The
results are summarized in table A.3. All fuels but methane are captured fairly
well by the reference fuel iso-octane. Comparing with the linear model of the
unburned mixture given in table 4.2, gasoline1 introduces a NRMSE which is in
the same order. A trend in the results shows that for hydrocarbons, the specific
heat ratio is more accurately determined for burned mixtures than unburned.
This conclusion can be drawn by comparing tables A.1 and A.3. For the alcohol
methanol it is the other way around, compare tables A.2 and A.3.
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Fuel CaHbOc y = b/a NRMSE
Methane CH4 4 2.57 %
Iso-octane C8H18 2.25 0
Gasoline1 C8.26H15.5 1.88 0.18 %
Gasoline2 C7.76H13.1 1.69 0.39 %
Methanol CH3OH 4 0.50 %

Table A.3: Unburned mixtures: Different fuels and their chemical composition.
The NRMSE is formed as the difference compared to iso-octane, and evaluated
at λ = 1.

Fuel NRMSE: RMSE: MRE:
γ [%] p [kPa] γ [%]

Methane 2.0 36.6 2.8
Iso-octane 0.0 0.0 0.0
Gasoline1 0.12 2.2 0.20
Gasoline2 0.29 5.3 0.40
Methanol 0.63 5.1 0.85

Table A.4: Evaluation of the impact on cylinder pressure and specific heat ratio
for various fuels using iso-octane as reference fuel, for the simulated cylinder
pressure in figure 4.8.

A.4.4 Partially burned mixture – influence on cylinder
pressure

The cylinder pressure given in figure 4.8 is used to exemplify the impact a certain
fuel has on the cylinder pressure, given that all the other operating conditions
are the same. The reference model (4.14) is used to model γ. The impact is
displayed as the RMSE for the pressure in table A.4, as well as the NRMSE and
MRE for γ. Iso-octane is used as the reference fuel. Compared to table 4.6, the
cylinder pressure impact (RMSE(p)) of the fuels listed in table A.4 are larger
than the impact of D1, see the RMSE(p) column in table 4.6, for all fuels except
gasoline1. The RMSE(p) introduced is increased with less than 75 % compared
to iso-octane, which is acceptable. This suggests that the iso-octane γ can not
be used as a good approximation for all the other hydrocarbon fuels, but fairly
well for gasoline1.However, the closer the hydrocarbon ratio y is to the one for
iso-octane, the better the approximation will be. Note that if only the accuracy
of the γ-models were to be compared, both gasoline1 and 2 would be more
accurate than D1. Then a false conclusion would be drawn, since gasoline2
impose a larger fault in cylinder pressure than D1 does.
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A.5 Altered crevice term

The energy term describing the energy lost when a mass element enters the
crevice volume depends on which γ-model is used and therefore has to be re-
stated for every γ-model except B1, which was done in (2.30) for the original
setting in the Gatowsk et.al. model. For model D1, the energy term u′ − u
in (2.30) is therefore rewritten as:

u′ − u =
∫ T ′

T
cv dT

= xb

∫ T ′

T
cKB
v,b dT + (1 − xb)

∫ T ′

T
clinv,u dT

= xb(uKB(T ′) − uKB(T )) + (1 − xb) R
bu ln

(
γu

lin(T ′)−1
γu

lin(T )−1

) (A.16)

where we have used that cv = xbc
KB
v,b + (1 − xb)clinv,u in the second equality, and

in the third equality that cv = ( ∂u
∂T )V for the burned mixture and (2.28) for

the linear unburned mixture. The first term in (A.16) is given directly by the
Krieger-Borman polynomial in it is original form. The second term is easily
computed when knowing the coefficient values for the linear unburned mixture
model, i.e.

γu
lin = γu

300 + bu(T − 300) (A.17)

Note that (A.16) is zero whenever T ′ = T , i.e. when the mass flow is out of the
modeled crevice volume.

A.6 Thermodynamic properties for burned mix-
ture

This section entails further details on thermodynamic properties for the burned
mixture. The focus is on approximative models for the specific heats. As
mentioned in section 4.6, there is a potential of improving the Krieger-Borman
polynomial. Here it will be shown why. Figure A.4 displays the reference specific
heat cv,b as well as the two approximations, i.e. the linear and the Krieger-
Borman model respectively. The linear approximation has bad performance
over the entire temperature region, and does not capture non-linear behavior of
the reference model very well. The Krieger-Borman polynomial fits the reference
model quite well for T < 2800 K, but for higher temperatures the fit is a lot
worse. This is reflected in table A.5, which displays the maximum relative
error (MRE) and normalized root mean square error (NRMSE) for a number
of temperature regions.

For temperature regions B-E, the NRMSE for cKB
v,b is immensely lower than

for region A, which verifies that the Krieger-Borman polynomial works well
for temperatures below 3000 K. Actually the Krieger-Borman polynomial has
poorer performance than the linear model for high temperatures, as seen by
comparing the NRMSE:s for temperature region A. This shows that there is
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Figure A.4: Specific heat cv,b for burned stoichiometric mixture using CHEPP,
the corresponding linear function clinv,b and cKB

v,b found using the Krieger-Borman
polynomial.

Region T ∈ clinv,b cKB
v,b

MRE NRMSE MRE NRMSE
A [500, 3500] 0.68 % 0.20 % 0.42 % 0.21 %
B [500, 3000] 0.68 % 0.23 % 0.09 % 0.03 %
C [500, 2700] 0.68 % 0.27 % 0.04 % 0.02 %
D [500, 2500] 0.68 % 0.30 % 0.04 % 0.02 %
E [1200, 3000] 0.38 % 0.20 % 0.09 % 0.04 %

Table A.5: Maximum relative error (MRE) and normalized root mean square
error (NRMSE) of specific heat cv,b for different temperature regions at λ = 1
and p = 7.5 bar.
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Figure A.5: Specific heat cp,b for burned stoichiometric mixture using CHEPP,
the corresponding linear function clinp,b and cKB

p,b found using the Krieger-Borman
polynomial.

a potential of enhancing the Krieger-Borman polynomial, at least for tempera-
tures above 3000 K.

The corresponding results for specific heat cp,b are shown in figure A.5 and
table A.6.

Region T ∈ clinv,b cKB
v,b

MRE NRMSE MRE NRMSE
A [500, 3500] 0.51 % 0.17 % 0.39 % 0.19 %
B [500, 3000] 0.51 % 0.19 % 0.08 % 0.03 %
C [500, 2700] 0.51 % 0.23 % 0.03 % 0.02 %
D [500, 2500] 0.51 % 0.25 % 0.03 % 0.02 %
E [1200, 3000] 0.31 % 0.17 % 0.08 % 0.03 %

Table A.6: Maximum relative error (MRE) and normalized root mean square
error (NRMSE) of specific heat cp,b for different temperature regions at λ = 1
and p = 7.5 bar.

130



OP pIV C [kPa] TIV C [K] Qin [J]
1 25 372 330
2 50 341 760
3 100 327 1620
4 150 326 2440
5 200 325 3260
1 25 372 330
6 50 372 700
7 100 372 1420
8 150 372 2140
9 200 372 2850

Table A.7: Operating points (OP) for the simulated cylinder pressure.

A.7 Thermodynamic properties for partially burned
mixture

In this section the operating points (OP) for the simulated cylinder pressure
traces used to evaluate the proposed γ-models are given in table A.7. In oper-
ating points 1-9 the mean charge temperature at IVC, TIV C , is computed as a
function of exhaust pressure pexh (3.14). The released energy Qin is computed
as in (3.22), where the residual gas ratio xr is found from (3.13). The cylinder
pressure at IVC, pIV C , here ranges from 25 kPa up to 200 kPa, i.e. from low
intake pressure to a highly supercharged pressure. The values of the parameters
in the single-zone heat release model are given in table 3.2. The corresponding
cylinder pressures during the closed part of the cycle are shown in figure A.6,
where the upper figure shows the cylinder pressure for operating points 1-5, and
the lower plot displays operating point 1 and 6-9.

The results from applying operating points 1-9 to the approximative γ-
models are summarized in the following tables and figures; Tables A.8 and
A.10 summarizes the normalized root mean square error and maximum rela-
tive error in specific heat ratio γ, table A.9 summarizes the root mean square
error for the cylinder pressure p. Figures A.7 to A.10 displays the approxima-
tive γ-models and the reference γ-model as function of crank angle degree and
single zone temperature respectively, for the cylinder pressure trace given in fig-
ure 4.8. Figures A.11 and A.12 illustrates the corresponding cylinder pressure
errors introduced by the model error each γ-model brings along.
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Figure A.6: Upper: Simulated cylinder pressure for operating points 1-5. Lower:
Simulated cylinder pressure for operating points 1 and 6-9.

OP B1 B2 B3 B4 C1 C2 C3 C4 C5 D1 D2 D3

1 1.4 2.6 1.8 4.2 0.62 4.1 0.59 0.52 1.5 0.11 0.1 0.016
2 1.3 2.7 1.8 4.5 0.69 4.1 0.65 0.58 1.5 0.098 0.094 0.014
3 1.2 2.6 1.7 4.6 0.82 4 0.62 0.55 1.6 0.095 0.091 0.014
4 1.2 2.4 1.6 4.5 0.93 3.9 0.58 0.5 1.7 0.096 0.091 0.014
5 1.1 2.4 1.6 4.4 1 3.8 0.56 0.47 1.7 0.097 0.092 0.014
1 1.4 2.6 1.8 4.2 0.62 4.1 0.59 0.52 1.5 0.11 0.1 0.016
6 1.2 2.4 1.7 4.1 0.57 4 0.51 0.44 1.6 0.098 0.092 0.017
7 1.1 2.3 1.6 4 0.69 3.8 0.44 0.38 1.6 0.094 0.088 0.017
8 1.1 2.2 1.5 3.9 0.81 3.8 0.4 0.34 1.7 0.092 0.086 0.017
9 1 2.1 1.5 3.9 0.91 3.7 0.38 0.32 1.8 0.092 0.086 0.017

Mean 1.2 2.4 1.7 4.2 0.77 3.9 0.53 0.46 1.6 0.097 0.092 0.016

Table A.8: Normalized root mean square error (NRMSE) [%] for γ-models.
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OP B1 B2 B3 B4 C1 C2 C3 C4 C5 D1 D2 D3

1 26.1 37.3 33.3 29.5 17.2 61.6 9.7 8.6 34.2 1.3 1.2 0.1
2 52.3 85.8 76.0 62.8 39.8 140.7 25.4 22.8 82.9 2.8 2.6 0.3
3 98.4 172.5 152.9 125.7 74.1 289.4 53.3 47.3 192.3 5.9 5.3 0.7
4 135.1 248.8 221.0 180.3 98.4 427.0 76.7 67.3 305.4 9.2 8.2 1.0
5 168.1 321.7 286.3 232.3 118.9 561.7 99.0 86.0 422.8 12.5 11.2 1.4
1 28.7 37.3 33.3 29.5 17.2 61.6 9.7 8.6 34.2 1.3 1.2 0.1
6 42.0 70.0 62.7 49.6 28.5 120.0 17.5 15.2 75.2 2.5 2.2 0.3
7 73.1 130.9 117.7 91.5 45.3 233.2 31.4 26.9 163.5 4.9 4.3 0.7
8 100.3 188.4 169.8 130.7 58.0 343.9 44.3 37.5 256.4 7.4 6.4 1.1
9 125.1 243.7 220.2 168.4 68.2 453.0 56.6 47.4 352.2 9.9 8.5 1.5

Mean 84.9 153.6 137.3 110.0 56.6 269.2 42.4 36.7 191.9 5.8 5.1 0.7

Table A.9: Root mean square error (RMSE) [kPa] for cylinder pressure.

OP B1 B2 B3 B4 C1 C2 C3 C4 C5 D1 D2 D3

1 4.1 5.9 5.2 7.7 2.3 7.3 2.2 2.1 8.1 0.29 0.28 0.049
2 4.1 5.9 5.2 7.8 2.3 7.3 2.4 2.3 8.4 0.27 0.26 0.039
3 3.6 5.5 4.7 7.4 1.9 6.9 2.3 2.1 8.6 0.26 0.25 0.036
4 3.3 5.1 4.4 7.2 1.8 6.5 2.1 1.9 8.6 0.26 0.25 0.036
5 3.1 4.9 4.1 7 2.1 6.3 2 1.8 8.7 0.26 0.25 0.036
1 4.1 5.9 5.2 7.7 2.3 7.3 2.2 2.1 8.1 0.29 0.28 0.049
6 3.5 5.3 4.6 7.2 1.7 6.7 1.8 1.7 8.1 0.26 0.25 0.049
7 3 4.8 4.1 6.7 1.4 6.2 1.5 1.5 8.1 0.24 0.24 0.05
8 2.7 4.5 3.8 6.4 1.7 5.9 1.4 1.3 8.1 0.24 0.23 0.05
9 2.5 4.2 3.6 6.2 2 5.7 1.3 1.2 8.1 0.23 0.22 0.05

Mean 3.4 5.2 4.5 7.1 1.9 6.6 1.9 1.8 8.3 0.26 0.25 0.044

Table A.10: Maximum relative error (MRE) [%] for γ.
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Figure A.7: Specific heat ratio γ for models B1 to C2(solid line) at operat-
ing point 2 given in table A.7. The dashed line corresponds to the reference
model D4 found by CHEPP.
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Figure A.8: Specific heat ratio γ for models C3 to D3(solid line) at operat-
ing point 2 given in table A.7. The dashed line corresponds to the reference
model D4 found by CHEPP.
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Figure A.9: Specific heat ratio γ for models B1 to C2 (solid line) at operat-
ing point 2 given in table A.7. The dashed line corresponds to the reference
model D4 found by CHEPP.
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Figure A.10: Specific heat ratio γ for models C3 to D3 (solid line) at operat-
ing point 2 given in table A.7. The dashed line corresponds to the reference
model D4 found by CHEPP.
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Figure A.11: Cylinder pressure error for models B1 to C2 (solid line) at operating
point 2 given in table A.7, as compared to the reference model. The reference
cylinder pressure is given in figure 4.8.
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Figure A.12: Cylinder pressure error for models C3 to D3 (solid line) at operating
point 2 given in table A.7, as compared to the reference model. For convenience,
the sign of the pressure error for model C5 is changed.
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B

Compression ratio estimation –
further details

Further additional details and argumentation for the results found in chapter 5
are given in this chapter. Each section is referenced from various sections in
chapter 5, and this chapter should therefore be seen as a complement.

B.1 Taylor expansions for sublinear approach

As mentioned in section 5.4, the predictor functions used in each of the two sub-
steps of method 1 are unequal in size. This is the section where this statement
will be justified and clarified. In substep 1 (5.6), Vd(θ, x) is a model and p(θ)
is the signal or regressor, where x are the parameters and θ is the crank angle.
On the other hand, in substep 2 (5.7) p(θ, x)is now the model and Vd(θ) is
the signal. Note that for notational convenience, the model for Vd(θ) is named
V̂d(θ, x), and is thereby distinguished from the signal Vd,s(θ), and the model
p̂(θ, x) is separated from ps(θ) in a likewise manner. The predictor functions for
each substep will now be investigated, where the compression ratio estimation
and pressure bias estimation are treated as two different cases.

B.1.1 Compression ratio estimation

The predictor functions used for compression estimation using the sublinear
approach, also called method 1, are given by (5.6) and (5.7) respectively, and
these are rewritten as

V̂d(θ, x) = C1/nps(θ)−1/n − Vc(rc) (B.1)
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and
ln p̂(θ, x) = lnC − n ln(Vd,s(θ) + Vc(rc)) (B.2)

to clarify what is a signal, e.g. ps, and what is a model, e.g. p̂. The residuals
for each substep will now be formed, and these are compared in size. The fact
that they are equal in size is a necessity for the method to be successful.
In substep 1, the residual ε1(θ, x) is formed as

ε1(θ, x) = V̂d(θ, x) − Vd,s(θ) = C1/nps(θ)−1/n − Vc(rc) − Vd,s(θ) (B.3)

using (B.1). The residual for substep 2 is

ε2(θ, x) = ln p̂(θ, x) − ln ps(θ) (B.4)

which is reformulated using (B.2) as

ε2(θ, x) = lnC − n ln(Vd,s(θ) + Vc(rc)) − ln ps(θ)

= n ln
C1/nps(θ)−1/n

Vd,s(θ) + Vc(rc)

= n ln
C1/nps(θ)−1/n − Vd,s(θ) − Vc(rc) + Vd,s(θ) + Vc(rc)

Vd,s(θ) + Vc(rc)

= n ln(1 +
ε1(θ, x)

Vd,s(θ) + Vc(rc)
) (B.5)

where the last equality is formed using (B.3). Now assuming that ε1 ¿ Vc ≤
Vd,s(θ) + Vc is a valid approximation, a Taylor expansion of (B.5) yields the
following approximation of ε2(θ, x):

ε2(θ, x) ≈ n
ε1(θ, x)

Vd,s(θ) + Vc(rc)
(B.6)

which relate the two residuals in size. Therefore, if the predictor function for
substep 1 is multiplied by n and the predictor function for substep 2 is multiplied
by Vd,s(θ) + Vc(rc), the resulting residuals become equal in size. Note that this
works well since n is constant in substep 1 and Vc(rc) is constant during substep
2.

B.1.2 Pressure bias estimation

The predictor functions used for estimation of an additive pressure sensor bias
are given by

p̂(θ, x) = C(Vd,s(θ) + Vc(rc))−n − ∆p (B.7)

and
ln(p̂(θ, x) + ∆p) = lnC − n ln(Vd,s(θ) + Vc(rc)) (B.8)
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The residuals for each substep will now be formed, and these are compared in
size. In substep 1, the residual ε1(θ, x) is formed as

ε1(θ, x) = p̂(θ, x) − ps(θ) (B.9)

The residual for substep 2 is

ε2(θ, x) = ln(p̂(θ, x) + ∆p) − ln(ps(θ) + ∆p)

= ln
p̂(θ, x) + ∆p
ps(θ) + ∆p

= ln(1 +
p̂(θ, x) − ps(θ)
ps(θ) + ∆p

)

= ln(1 +
ε1(θ, x)

ps(θ) + ∆p
) (B.10)

where the last equality is formed using (B.9). Now assuming that ε1 ¿ ps(θ) +
∆p is a valid approximation, a Taylor expansion of (B.10) yields the following
approximation of ε2(θ, x):

ε2(θ, x) ≈ ε1(θ, x)
ps(θ) + ∆p

(B.11)

which relate the two residuals in size. Then, if the predictor function for substep
2 is multiplied by ps(θ)+∆p, the resulting residuals become equal in size. Note
that this works well since ∆p is constant during substep 2.

B.2 Variable Projection Algorithm
A computationally efficient algorithm is described in Björck [1996] and is sum-
marized here. Partition the parameter vector x such that x = (y z)T , where
r(y, z) is linear in y. Rewrite r(y, z) as

r(y, z) = F (z)y − g(z) (B.12)

Let xk = (yk, zk) be the current approximation.

1. Solve the linear subproblem

min
δyk

||F (zk)δyk − (g(zk) − F (zk)yk)||2 (B.13)

and set xk+1/2 = (yk + δyk, zk).

2. Compute the Gauss-Newton direction pk at xk+1/2, i.e. solve

min
pk

||C(xk+1/2pk + r(yk+1/2, zk)||2 (B.14)

where C(xk+1/2 = (F (zk), rz(yk+1/2, zk)) is the Jacobian matrix.

3. Set xk+1 = xk+1/2 + αkpk, do a convergence test and return to step 1 if
the estimate has not converged. Otherwise return xk+1.
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B.2.1 Compression ratio estimation
The polytropic model in (5.5) is rewritten as

ln p(θ) = C2 − n ln(Vd(θ′) + Vc) (B.15)

This equation is linear in the parameters C2 = lnC and n and nonlinear in Vc

and applies to the form given in (B.12). With the notation from the algorithm
above, the parameters are x = (C2 n Vc)T , where y = (C2 n)T and z = Vc.
The measurement vector is formed as g = − ln p and the regression vector as
F = [−I ln(Vc +Vd(θ′))]. The polytropic model in (5.5) could also be rewritten
as

Vd(θ) = C1p(θ)−1/n − Vc(rc) (B.16)

This approach is however not as appropriate as the one in (B.15), due to that
the parameters C1 = C1/n and n are coupled.

B.2.2 Pressure bias estimation
The polytropic model in (5.5) is reformulated as

p(θ) = C(Vd(θ) + Vc)n − ∆p (B.17)

This equation is linear in the parameters C and ∆p and nonlinear in n and
applies to the form given in (B.12). The clearance volume Vc is considered to
be known. With the notation from the algorithm above, the parameters are
x = (C ∆p n)T , where y = (C ∆p)T and z = n. The measurement vector is
formed as g = −p and the regression vector as F = [(Vd(θ) + Vc) − I].

B.3 Levenberg-Marquardt method
The unknown parameters, here on denoted by x ∈ Rd×1,in the models described
in chapters 2 and 3, summarized in section 3.9, have to be determined in some
way.

The parameters x are estimated by minimizing the difference between the
measured cylinder pressure and the modeled cylinder pressure, i.e. by mini-
mizing the prediction error. A Gauss-Newton method called the Levenberg-
Marquardt procedure is used to find the parameter estimatex̂N in methods 3
and 4 for any given number of parameters.

A thorough presentation of the world of system identification is given in Ljung
[1999], from which most of the material presented in the subsequent subsec-
tions are from. The first subsection states the equations used when minimizing
the prediction error when the parameters appear in a nonlinear fashion. The
Levenberg-Marquardt procedure is then presented as a special case. The next
subsection concerns issues such as stopping criteria, local minimas, scaling of
the parameters and asymptotic variance of the estimate.

144



B.3.1 Minimizing prediction errors using a local optimizer
When the parameters appear in a nonlinear fashion, typically the minimum of
the loss function can not be computed analytically as in the linear case. Instead,
numerical search routines must be used [Björck, 1996]. Given an observed data
set ZN = [y(1), u(1), y(2), u(2), . . . , y(N), u(N)] of inputs u(t) and outputs y(t),
a good model M(x) describing the data set ZN is found by minimizing the
prediction error

ε(t, x) = y(t) − ŷ(t|x), t = 1, 2, . . . , N (B.18)

where y(t) is the output of the system and ŷ(t|x) is the predicted output of the
model M(x). The prediction error can also be termed residual. The prediction
error is minimized by using a norm on ε(t, x) and minimize the size of it. A
quadratic norm is our choice here and it can be written as

VN (x,ZN ) =
1
N

N∑
t=1

1
2
ε2(t, x) (B.19)

The term VN is a measure of the validity of M(x) and is often called loss function
or criterion function. A problem on this form is known as “the nonlinear least-
squares problem” in numerical analysis [Ljung, 1999, pp.327] and can be solved
by an iterative search for minimum, a number of methods are described in
e.g. [Björck, 1996]. The estimate x̂N is defined as the minimizing argument
of (B.19):

x̂N (ZN ) = arg min
x
VN (x,ZN ) (B.20)

The gradient of (B.19) is

V ′
N (x,ZN ) =

1
N

N∑
t=1

ψ(t, x)ε(t, x) (B.21)

where ψ(t, x) is the Jacobian vector given by

ψ(t, x) =
d

dx
ε(t, x) = − d

dx
ŷ(t|x) =

[
−∂ŷ(t|x)

∂x1
. . . − ∂ŷ(t|x)

∂xd

]T

(B.22)

where d are the number of parameters. For our problem, the Jacobian ψ(t, x)
is computed numerically with a forward difference approximation, as

∂ε(t, x)
∂xj

=
ε(t, x+ ∆xj) − ε(t, x)

∆xj
(B.23)

Computing the central difference approximation instead of the forward one,
would cause double the amount of computations. Differentiating the gradient
with respect to the parameters yields the Hessian of (B.19) as

V ′′
N (x,ZN ) =

1
N

N∑
t=1

ψ(t, x)ψT (t, x) +
1
N

N∑
t=1

ψ′(t, x)εT (t, x) (B.24)
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where ψ′(t, x) = − d2

dx2 ŷ(t|x). It is however quite a computational burden to
compute all d2 terms in ψ′(t, x). An approximation is therefore desirable and
it is made reasonable by the following assumption. Assume that at the global
minimum x∗, the prediction errors are independent. Thus close to x∗ the second
sum in (B.24) will be close to zero, thus the following approximation can be
made close to optimum [Ljung, 1999, p.328]:

V ′′
N (x,ZN ) ≈ 1

N

N∑
t=1

ψ(t, x)ψT (t, x) = HN (x,ZN ) (B.25)

By omitting the second sum in (B.24), the estimate HN (x,ZN ) is assured to
be positive semidefinite, which guarantees convergence to a stationary point. If
this stationary point does not give independent prediction errors ε(t, x), it can
not be ascertained that the second term in (B.24) is negligible and therefore
(B.25) might be a bad approximation of the Hessian. This can be tested by a
whiteness test [Ljung, 1999, p.512] of the prediction errors.

The estimate x̂N can be found numerically by updating the estimate of the
minimizing point x̂i

N iteratively as

x̂i+1
N (ZN ) = x̂i

N (ZN ) − µi
N [Ri

N (x̂i
N , Z

N )]−1V ′
N (x̂i

N , Z
N )

= x̂i
N (ZN ) + di(x̂i

N , Z
N ) (B.26)

where i is the ith iterate, di is the search direction and Ri
N is the approximate

Hessian HN in (B.25). Finding the estimate x̂N in this manner is known as a
Gauss-Newton method.

Regularization – Levenberg-Marquardt procedure

If the model M(x) is over-parameterized or the data ZN not informative enough,
this causes an ill-conditioned Jacobian which results in that the approximative
Hessian HN (x,ZN ) may be singular or close to singular. This causes numerical
problems when computing the iterative estimates in (B.26), when inverting HN .
One way to avoid this is the Levenberg-Marquardt procedure, which uses

Ri
N (x̂i

N , Z
N , ν) = Hi

N (x̂i
N , Z

N ) + νI (B.27)

to regularize the approximation of the Hessian. The iterative parameter esti-
mate x̂i

N then becomes

x̂i+1
N (ZN , ν) = x̂i

N (ZN ) − µi
N [Ri

N (x̂i
N , Z

N , ν)]−1V ′
N (x̂i

N , Z
N )

= x̂i
N (ZN ) + di(x̂i

N , Z
N , ν) (B.28)

For ν > 0, the Hessian approximation Ri
N (x̂i

N , Z
N , ν) is guaranteed to be pos-

itive definite. With ν = 0 this is the Gauss-Newton method and by increasing
ν the step size is reduced and the search direction di is turned towards the
gradient, resulting in the steepest descent direction as ν → ∞.
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Generally it can not be guaranteed that di(x̂i
N , Z

N , ν) in (B.28) is a descent
direction. This can happen if the problem is very non-linear or if the prediction
errors are large [Eriksson, 1998]. Our approach here is to start up with a ν > 0,
and if VN (x̂i+1

N , ZN ) > VN (x̂i
N , Z

N ) occurs, ν is increased and new values of
di+1 and x̂i+1

N are computed until di+1 is a descent direction.

Stopping criteria

A stopping criteria must be stated in order for the optimization procedure to
terminate. In theory this should be done when the gradient V ′

N is zero, so
an obvious practical test is to terminate once ‖V ′

N‖ is small enough. Another
useful test is to compute the relative difference in loss function VN between two
iterations, and terminate if this difference is less than a given tolerance level.
The same approach can be used for the individual parameters. However, it is
not so good since parameters can drift with no reduction in loss function. For a
problem with two dependent parameters, the minimization can follow a valley
in which the loss function stays the same, but the two parameters change. The
loss function approach would terminate when the valley is just entered, while
the parameter approach will not terminate until the parameters have converged.
The algorithm can also terminate after a given maximum number of iterations.
Note that all safeguarded algorithms should return estimates that are at least
as good as the initial values.

Local minima and initial parameter values

Generally, the optimization procedures converges to a local minima of VN (x,ZN ),
not a global one which of course would be mostly desirable. To find the global
minimum, there is usually no other way than to start the iterative optimization
routine at different feasible initial values xinit and compare the results [Ljung,
1999, p.338]. Therefore, the initial values should be chosen with care. For a
physically parameterized model, as the ones in chapter 3, physical insight and
some preliminary estimations are required. Good initial values usually lead to
fewer iterations and a faster convergence of the optimization procedure, since
for instance the Newton-type methods have good local convergence rates, but
not necessarily far from optimum. Note that, although the stated optimization
problem only has one local minima, i.e. the global one, the function VN (x,ZN )
can have several local minima due to the noise in the data ZN .

Scaling of parameters

The optimization method works most properly when the size of the unknown
parameters are all in the same order [Gill et al., 1981, p.346]. From table 3.2,
where the unknown parameters are summarized, it can be concluded that the
expected parameter values range over 10 decades. Therefore a scaling in terms
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of a linear transformation of the parameters is introduced,

xs = Dx (B.29)

where D is a diagonal matrix with Di,i = 1/xi, xi 6= 0. The gradient of
VN (xs, ZN ) in the scaled parameters is given by

V ′
N (xs, ZN ) = D−Tψ(x)εT (x) = D−TV ′

N (x,ZN ) (B.30)

since ψ(t, xs) = D−Tψ(t, x). The linear transformation matrix D is diagonal
and invertible, and therefore D−T = D−1. The Hessian of VN (xs, ZN ) is given
by

V ′′
N (xs, ZN ) = D−TV ′′

N (x,ZN )D−1 (B.31)

since ψ′(t, xs) = D−TxD−1. If the scaling (B.29) is done just at the initial-
ization for xinit, this will produce a poor scaling if the Hessian at optimum x∗

differs significantly from that at xinit [Gill et al., 1981, p.347]. Thus the scaling
is done at every iteration to assure that all scaled parameters xs are equal to
one at the beginning of each iteration.

Asymptotic variance and parameter confidence interval

Consider the case when our model M(x) has the correct model structure and
is provided with data ZN , such that the measured output can be predicted
correctly by the model. This would mean that there is no bias in the parameter
estimate x̂N , and thus x̂N → x̂∗ asymptotically as the number of data N goes
to infinity. It can then be shown [Ljung, 1999, pp.282] that the probability
distribution of the random variable

√
N(x̂N − x̂∗) converges asymptotically to

a Gaussian distribution with zero mean and covariance matrix P . This can be
rewritten as

(x̂N − x̂∗) ∈ AsN(0,
P

N
) (B.32)

For a quadratic prediction-error criterion the covariance matrix P is estimated
by

P̂N = λ̂N

(
1
N

N∑
t=1

ψ(t, x̂N )ψT (t, x̂N )

)−1

= λ̂N

(
HN (x̂N , Z

N )
)−1

(B.33a)

λ̂N =
1
N

N∑
t=1

ε2(t, x̂N ) (B.33b)

for the parameter estimate x̂N and N data points, where λ̂N is the estimated
noise variance and HN (x̂N , Z

N ) is the approximated Hessian in (B.25). When
using scaled parameters according to (B.29), one has to re-scale the Hessian
using (B.31) in a straight forward manner.
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The result in (B.33) has a natural interpretation. The more data or the less
noisier measured output, the more accurate the estimate. Also, since ψ is the
gradient of ŷ, the asymptotic accuracy of a certain parameter is related to how
sensitive the prediction is with respect to this parameter. Therefore, the more
or less a parameter affects the prediction, the easier or harder respectively it
will be to determine its value [Ljung, 1999, p.284].

The asymptotic covariance in (B.33) can be used to compute confidence
intervals for the parameter estimates x̂N , and thereby give a reliability measure
of a particular parameter x̂k

N . When (B.32) is valid, the (1 − α)-confidence
interval for the true parameter x̂∗k is formed as [Ljung, 1999, p.302]

P (|x̂k
N − x̂∗k| > α) ≈

√
N√

2πP̂ kk
N

∫
|y|>α

exp(−y2N/2P̂ kk
N )dy (B.34)

where P̂ kk
N is the k-th diagonal element of P̂N . From this, it can be stated that

the true parameter value x̂∗k lies in the interval around the parameter estimate
x̂k

N with a certain significance 1 − α. The size of the interval is of course
determined by α, and for a 95 % confidence interval the limits for parameter
x̂k

N are

x̂k
N ± 1.96

√
P̂ kk

N

N
(B.35)

available from standard statistical tables.

B.4 SVC – Geometric data

Geometric data for the crank and piston movement are given in the following
table.
Property Abbrev. Value Unit
Bore B 68 [mm]
Stroke S 88 [mm]
Crank radius a = S

2 44 [mm]
Connecting rod l 158 [mm]
No. of cylinders 5 [-]
Displacement volume Vd 1598 [cm3]

B.5 Standard volume function: Effect of pin-off

The pin-off for an engine has an effect on the appearance off the displaced
cylinder volume (3.4), the position of TDC and BDC (3.5) , and the piston
stroke (3.6) as shown in section 3.2. The intention is to investigate what effect
the pin-off has for a specific engine, namely the SVC engine where the pin-off
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Figure B.1: Cylinder volume with (B.36) and without (B.37) pin-off.

is 2.2 mm. The geometrical data for the SVC engine is given in section B.4.
The instantaneous displacement volume function (3.4) is restated here:

Vid(θ, xoff ) =
πB2

4
(
√

(l + a)2 − x2
off − a cos θ −

√
l2 − (xoff + a sin θ)2)

(B.36)
Without the pin-off, equation (B.36) can be rewritten as

V std
id (θ) =

πB2a

4


 l

a
+ 1 − cos θ −

√(
l

a

)2

− sin2 θ


 (B.37)

refered to as the standard instantaneous displacement volume function. In
figure B.1 the cylinder volumes with and without pin-off are plotted. There
is no spotable difference between the two volume traces, but according to the
lower plot in figure B.2, the relative error can be as large as 1.6 %, which is not
negligible. The upper plot shows the absolute error.
The relative error for the piston stroke is approximately 0.01 %, so therefore

the pin-off has a small and negligible effect on the total displaced volume for the
SVC engine. For the SVC engine, the crank positions for TDC and BDC are -
0.62 and 181.11 CAD respectively when considering the pin-off. Not considering
the pin-off will therefore result in a false positioning of TDC, i.e. the difference
in crank angle position of TDC due to pin-off could be interpreted as a constant
crank angle offset θ0, as in (3.2). Doing so, the relative difference for the volume
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Figure B.2: Upper: Absolute error for cylinder volume with and without pin-off
corresponding to figure B.1. Lower: Corresponding relative error.

functions becomes less than 0.3 %, according to figure B.3, i.e. a factor five in
enhancement. Not accounting for pin-off therefore contributes to the problem
of TDC determination.

B.6 Cylinder volume for SVC
The principle of the SVC (Saab Variable Compression) engine is shown in fig-
ure 5.1. By tilting the mono-head at an angle v ∈ [0, 4o], the compression ratio
can be continuously varied between 14 and 8. The geometric data for the SVC
engine are given in appendix B.4. The cylinder volume sweep for the SVC is
different in appearance compared to the instantaneous standard volume func-
tion (B.37), since the geometry of the crank in relation to the cylinder changes
when the cylinder head is tilted. If the cylinder is tilted at an angle v relative
to an ex-center (the center of the tilting), this results in a tilting of v2 for the
piston trace relative to the upright piston trace corresponding to v = 0. The
relation between v2 and v are given by

v2 = arctan
(
b(1 − cos v) + d sin v
d cos v + b sin v + c

)
(B.38)

for v2 ∈] − π/2, π/2[. A schematic of the geometry is given in figure B.4. The
effective height in the y-direction (d) is given by d =

√
(l + a)2 − x2

off +yoff −c.
A new coordinate system (x́, ý) is defined at an angle v2 to the fix coordinate
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Figure B.3: Relative error for cylinder volume with and without pin-off, when
correcting for crank angle offset due to pin-off. This figure should be com-
pared to the lower plot of figure B.2, where the crank angle offset has not been
accounted for.

system (x, y). Consequently the pin-off is transformed into the new coordinate
system and the crank angle is redefined as

θ́ = θ + v2 (B.39)

The new pin-off is x́off = xoff cos v2 + yoff sin v2. These relations are put
into (B.36), and results in a different volume sweep than with the standard
volume function. According to figure B.5 the difference in volume traces is
hardly spotable even for v = 4o, but according to the lower plot in figure B.6,
the relative error can be as large as 6.9 %, which is not negligible.

B.7 Complementary figures for simulation results
For convenience, magnifications of the results for simulated motored cycles given
in figure 5.3, for the two extremes rc = 8 and rc = 13 are given in figures B.7
and B.8 respectively. For the simulated firing cycles, the corresponding plots
are given in figures B.9 and B.10 respectively.

B.8 Complementary figures for experimental re-
sults

For convenience, magnifications of of the results for experimental motored cycles
given in figure 5.16 for the two extremes rc = 8 and rc = 13 are given in
figures B.11 and B.12 respectively. For firing cycles, the corresponding plots
are given in figures B.13 and B.14 respectively.
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Figure B.4: Schematic of SVC engine geometry. The position of the piston at
tilt angle v and crank angle θ is given by P(θ,v), and the piston follows the
dotted line. Note that the schematic is not made to scale.
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Figure B.5: Cylinder volume for SVC engine and standard volume when the
cylinder is tilted v = 4o.

−300 −200 −100 0 100 200 300
−1

−0.5

0

0.5

1
x 10

−5

Crank angle [deg ATDC]

V
ol

um
e 

di
ffe

re
nc

e 
[m

−
3 ]

−300 −200 −100 0 100 200 300
−0.1

−0.05

0

0.05

0.1

Crank angle [deg ATDC]

R
el

at
iv

e 
vo

lu
m

e 
di

ffe
re

nc
e 

[1
]

Figure B.6: Upper: Absolute error for SVC and standard cylinder volume cor-
responding to figure B.5. Lower: Corresponding relative error.
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Figure B.7: Mean estimate and 95 % confidence interval for methods 1 to 4 for
simulated motored cycles at rc = 8. Shown is also the ±5 % relative error.
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Figure B.8: Mean estimate and 95 % confidence interval for methods 1 to 4 for
simulated motored cycles at rc = 13. Shown is also the ±5 % relative error.
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Figure B.9: Mean estimate and 95 % confidence interval for methods 1 to 4 for
simulated firing cycles at rc = 8. Shown is also the ±5 % relative error.
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Figure B.10: Mean estimate and 95 % confidence interval for methods 1 to 4
for simulated firing cycles at rc = 13. Shown is also the ±5 % relative error.
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Figure B.11: Mean estimate and 95 % confidence interval for methods 1 to 4 for
experimental motored cycles at rc = 8. Shown is also the ±5 % relative error.

M1 M2 M3 M4
10.5

11

11.5

12

12.5

13

13.5

14

Method

E
st

im
at

ed
 c

om
pr

es
si

on
 r

at
io

+5 % 

0 % 

−5 % 

Figure B.12: Mean estimate and 95 % confidence interval for methods 1 to 4
for experimental motored cycles at rc = 13. Shown is also the ±5 % relative
error.
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Figure B.13: Mean estimate and 95 % confidence interval for methods 1 to 4
for experimental firing cycles at rc = 8. Shown is also the ±5 % relative error.
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Figure B.14: Mean estimate and 95 % confidence interval for methods 1 to 4
for experimental firing cycles at rc = 13. Shown is also the ±5 % relative error.
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C

Notation

C.1 Nomenclature

C.1.1 Heat transfer

ρ gas density [kg/m3]
v characteristic velocity [m / s]
L characteristic length [m]
µ gas dynamic viscosity [kg / ( m s)]
hc convection heat transfer coefficient [W / (m2 K)]
k gas thermal conductivity [W/(mK]
p cylinder pressure for firing cycle [Pa]
p0 cylinder pressure for motored cycle [Pa]
T mean gas temperature [K]
T0 mean gas temperature for motored cycle [K]
Tw wall temperature [K]
up mean piston speed [m/s]
Vs swept/displaced volume [m3]
C1 constant [-]
C2 constant [m/(sK)]
(pref , Vref , Tref ) evaluated at any reference condition ref
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C.1.2 Engine geometry

V instantaneous cylinder volume [m3]
Vc clearance volume [m3]
Vd displacement volume [m3]
Vid instantaneous displacement volume [m3]
rc compression ratio index [-]
Vcr aggregate crevice volume [m3]
A instantaneous surface area [m2]
Ach cylinder head surface area [m2]
Apc piston crown surface area [m2]
Alat instantaneous lateral surface area [m2]
θ crank angle [rad]
B cylinder bore [m]
a crank radius [m]
l connecting rod length [m]
S piston stroke [m]
xoff pin-off [m]

C.1.3 Engine cycle

p cylinder pressure [Pa]
pm measured cylinder pressure [Pa]
∆p pressure bias [Pa]
Kp pressure measurement gain [-]
pman intake manifold pressure [Pa]
Tman intake manifold temperature [K]
pexh exhaust manifold pressure [Pa]
N engine speed [rpm]
θ crank angle [rad]
θig ignition angle [rad]
θppp peak pressure position [rad]
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C.1.4 Thermodynamics and combustion

λ (gravimetric) air-fuel ratio [-]
A
F s

stoichiometric air-fuel ratio [-]
φ = λ−1 (gravimetric) fuel-air ratio [-]
xb mass fraction burned [-]
∆θ total combustion duration [rad]
a Vibe parameter [-]
m Vibe parameter [-]
θd flame development angle [rad]
θb rapid burn angle [rad]
Qin released energy from combustion [J]
mf fuel mass [kg]
maf air-fuel mass [kg]
mc total mass of charge [kg]
mb burned charge mass [kg]
mr residual gas mass [kg]
xr residual gas fraction xr = mr/mc [-]
Vr residual gas volume [m3]
Tr residual gas temperature [K]
qHV specific heating value of fuel [ J

kg ]
R specific gas constant [ J

kgK ]
cv mass specific heat at constant volume [ J

kgK ]
cp mass specific heat at constant pressure [ J

kgK ]
γ specific heat ratio [-]
γu γ for unburned mixture [-]
γb γ for burned mixture [-]
γ300 Constant value in linear model of γ (2.27) [-]
b Slope in linear model of γ (2.27) [1/K]
n polytropic exponent [-]
Tu temperature in unburned zone [K]
Tb temperature in burned zone [K]
U internal energy [J]
Q transported heat [J]
Qch chemical energy released as heat [J]
Qht heat transfer to the cylinder walls [J]
W mechanical work [J=Nm]
dmi mass flow into zone i [kg

s ]
dmcr mass flow into crevice region [kg

s ]
hi mass specific enthalpy [ J

kg ]
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C.1.5 Parameter estimation

x vector used to parameterize model
xk parameter k
x̂N parameter estimate
x̂k

N estimate of parameter k
x̂∗ parameter estimate at optimum
xinit initial values of parameters
xs scaled parameters xs = Dx
x# nominal value of parameters
x#,s scaled nominal value of parameters
P covariance matrix
P̂N estimate of covariance at x̂N

λ0 noise variance
λ̂N estimated noise variance
HN approximative Hessian in (B.25)
ZN data set [y(1), u(1), y(2), u(2), . . . , y(N), u(N)]
M(x) model for x
y(t) measured output
ŷ(t|x) predicted model output
ε prediction error y(t) − ŷ(t|x)
VN loss (criterion) function
ψ Jacobian vector, defined in (B.22)
DM(x) parameter domain for M(x)
∂DM(x) boundary of DM(x)

dk descent direction for iteration k
µ step size for optimization algorithm
ν Regularization parameter for Levenberg-Marquardt procedure

C.1.6 Statistics

α confidence level
σ standard deviation
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C.2 Abbreviations
AFR Air-Fuel Ratio
ATDC After TDC
CAD Crank Angle Degree
CHEPP CHemical Equilibrium Program Package [Eriksson, 2004]
CI Compression Ignited
EVO Exhaust Valve Opening
FAR Fuel-Air Ratio
FPE Final Prediction Error
GDI Gasoline Direct Injected
IVC Inlet Valve Closing
MRE Maximum Relative Error
NRMSE Normalized Root Mean Square Error
RCI Relative (95 %) Confidence Interval
RE Relative estimation Error
RMEE Relative Mean Estimation Error
RMSE Root Mean Square Error
SI Spark Ignited
SOC Start Of Combustion
SVC Saab Variable Compression
SVD Singular Value Decomposition
TDC Top Dead Center, engine crank position at 0 CAD
TWC Three-Way Catalyst
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