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Abstract

The power to mass ratio of a heavy truck causes even moderate slopes to have
a significant influence on the motion. The velocity will inevitable vary within
an interval that is primarily determined by the ratio and the road topography.
If further variations are actuated by a controller, there is a potential to lower
the fuel consumption by taking the upcoming topography into account. This
possibility is explored through theoretical and simulation studies as well as
experiments in this work.

Look-ahead control is a predictive strategy that repeatedly solves an opti-
mization problem online by means of a tailored dynamic programming algo-
rithm. The scenario in this work is a drive mission for a heavy diesel truck
where the route is known. It is assumed that there is road data on-board and
that the current heading is known. A look-ahead controller is then developed
to minimize fuel consumption and trip time.

The look-ahead control is realized and evaluated in a demonstrator vehicle
and further studied in simulations. In the prototype demonstration, information
about the road slope ahead is extracted from an on-board database in combina-
tion with a GPS unit. The algorithm calculates the optimal velocity trajectory
online and feeds the conventional cruise controller with new set points. The
results from the experiments and simulations confirm that look-ahead control
reduces the fuel consumption without increasing the travel time. Also, the num-
ber of gear shifts is reduced. Drivers and passengers that have participated in
tests and demonstrations have perceived the vehicle behavior as comfortable
and natural.
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1

Introduction

About 30% of the life cycle cost of a heavy diesel truck comes from fuel expenses.
This cost is, besides salaries, the largest individual share of the total cost for
a truck owner. Further, the average mileage for a European heavy truck is
150,000 km per year and the average fuel consumption is 32.5 L/100km (Schit-
tler, 2003). One percent of the consumed fuel volume per year is, with these
average numbers, almost 500 liters. Lowering the consumption with a couple
of percent will thus translate into significant cost reductions with the current,
and predicted future, prices of fuel. These reasons make it appealing to owners
and manufacturers of heavy trucks to aim at reduced fuel consumption.

The term heavy truck is here used to denote a class 8 truck, that is a truck
with a gross vehicle weight above 16 tonnes. The focus is on heavy trucks used
for long-haulage. The power to mass ratio of these vehicles is often such that
even moderate slopes have significant influence on the motion. The truck will
then accelerate in downhills without engine propulsion and decelerate in uphills
despite maximum engine power. The velocity will thus vary within an interval
determined by the available power and the present road topography. These
variations are inevitable. If additional variations are allowed to be actuated
by a controller there is a potential to select control actions with respect to
the upcoming topography with the aim to reduce the fuel consumption. This
possibility will be explored through both theoretical and simulation studies as
well as experiments in this work.

Look-ahead control is a predictive control strategy where information about
some of the future disturbances to the controlled system is assumed to be avail-
able. In this work the additional knowledge includes the road topography ahead

1



2 Chapter 1. Introduction

of the vehicle and the aim is to utilize this information for reducing the fuel
consumption. Figure 1.1 depicts a visionary scenario of look-ahead control. A
control unit consisting of several modules represents a complex decision system.
The unit receives information about the current position with aid of a satellite
navigation system and it is also able to receive various information by telemetry
and there is a ranging sensor that measures distance to other vehicles. On-board
databases with altitude and curvature information are also present. The task of
the decision system is to take advantage of the available information to achieve
set objectives.

Database

Global position

Road environment

Telemetry

Control unit

Range sensor

Figure 1.1: Visionary scenario of look-ahead control.

1.1 Outline and Contributions

The chain of steps in the thesis and the corresponding chapters are shown
in Figure 1.2. The scenario that is considered in the thesis is first defined
in Chapter 2 and related work is surveyed. The look-ahead control strategy
is described. On the basis of the formulated scenario, a longitudinal vehicle
model is developed in Chapter 3 that captures the important features. Criteria
are devised that reflects the objective of minimizing the fuel consumption for a
given drive mission.

The look-ahead control strategy entails a dynamic programing algorithm
that is presented in Chapter 5. The theory and computational aspects of dy-
namic programming are therefore treated ahead in Chapter 4.

The setup for simulations and experiments are explained in Chapter 6. Then,
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Figure 1.2: The outline excluding introductory and concluding chapters.

the prediction model is validated and a number of parameter studies are under-
taken in Chapter 7. The control algorithm is finally evaluated in experiments
reported in Chapter 8. The work finishes with conclusions in Chapter 9.

The thesis builds upon both published and previously unpublished work.
The basic development of the control algorithm is reported in

Hellström, E., Fröberg, A., and Nielsen, L. (2006). A real-time fuel-
optimal cruise controller for heavy trucks using road topography
information. Number 2006-01-0008 in SAE World Congress, Detroit,
MI, USA.

An improved approach with evaluation in real trial runs are reported in

Hellström, E., Ivarsson, M., Åslund, J., and Nielsen, L. (2007).
Look-ahead control for heavy trucks to minimize trip time and fuel
consumption. 5th IFAC Symposium on Advances in Automotive
Control, Monterey, CA, USA.
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2

Look-ahead Control

The scenario studied in the thesis is defined first in this chapter. Distinguishing
aspects of the problem are identified and related work is surveyed. A study of
a simplified problem is undertaken to gain basic insights into the nature of the
present challenge. Finally, the look-ahead control strategy is formulated.

2.1 Scenario

The considered situation is a drive mission for a heavy truck where the route
is known. It is not assumed that the vehicle constantly operates on the same
route. Instead, it is envisioned that there is road data on-board and that the
current heading is known. This look-ahead information includes a database
with altitude information that is used in combination with a global positioning
system. The road information may be stored on-board, recorded on-line or even
transmitted from other trucks in a fleet. The current heading may be supplied
by the driver or be predicted by assigning probabilities to possible future route
choices presuming an on-board map.

It is assumed that a model exists to enable prediction of vehicle motion and
energy consumption as a function of control signals and known disturbances.
The control signals that are supposed to be available are fueling level, brake
level and gear ratio selection. The road slope can be obtained from the altitude
information and is thus a known disturbance.

5



6 Chapter 2. Look-ahead Control

2.1.1 Objectives

A drive mission is given by a route, an allowed velocity range and a desired
maximum trip time. The route is defined by its latitudinal and longitudinal
coordinates. The allowed velocities will be constrained to a set that is deter-
mined by e.g. the acceptable trip time in combination with legal and safety
considerations.

The objective is to minimize the fuel energy required for a given mission.
The purpose of the control is to take advantage of the look-ahead information
in order to actuate fuel-optimal velocity trajectories and gear shifting schemes.

2.1.2 Key Features

A model of vehicle motion normally has a continuous character. However, the
inclusion of gear selection in the set of control signals is distinguishing since
it introduces a discrete nature in the model. A dynamic model including the
transmission is thus of hybrid nature, that is a model containing both continuous
and discrete components.

The aim is ultimately an optimizing controller that works on-board in a real
environment. This has several implications. It limits the available computa-
tional power. Further, the technique must be robust against present distur-
bances and cooperate well with the driver and on-board controllers.

2.2 Related Work

This section will survey related work from different categories but starts with
the work closest to the current application.

Predictive control algorithms and computer simulation results for vehicles
where an on-board map of the road geometry is utilized are reported in a num-
ber of conference papers stemming from DaimlerChrysler (Back et al., 2002;
Kirschbaum et al., 2002; Back et al., 2004; Finkeldei and Back, 2004; Terwen
et al., 2004; Jonsson and Jansson, 2004; Lattemann et al., 2004) and the thesis
Back (2006). These works deal with automobiles, trucks as well as hybrid elec-
tric vehicles. The results are mostly limited to computer simulations. The thesis
Back (2006) and the paper Finkeldei and Back (2004), which are focused on hy-
brid electric vehicles, contain experimental results as well as simulation results.
A related patent application is Neiss et al. (2004). Dynamic programming is
used in the automobile and hybrid vehicle applications whereas a combination of
combinatorial search and a shooting algorithm is used in the truck applications.

In Bemporad and Morari (1999) a modeling framework is proposed for sys-
tems described by linear dynamic equations and linear inequalities containing
real and integer variables. For quadratic criteria, a predictive control scheme
is presented that uses mixed integer quadratic programming for optimization.
Applications in the automotive field that stem from this framework are reported
in e.g. Borrelli et al. (2006); Giorgetti et al. (2006a,b).
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Control strategies for hybrid electrical vehicles bear similarities to the sce-
nario in the present work. Optimization of such systems and references to earlier
work are given in Guzzella and Sciarretta (2005).

In Hellström et al. (2006) a predictive cruise controller is developed for
a heavy truck where dynamic programming is used to numerically solve the
optimal control problem. Hellström et al. (2007) is a continuation where an
improved approach is realized and evaluated in real trial runs and not only in
a simulation environment.

2.2.1 Optimal Control

One early work (Schwarzkopf and Leipnik, 1977) formulates an optimal con-
trol problem for a nonlinear vehicle model with the aim to minimize fuel con-
sumption. The model entailed quadratic polynomials for the power output and
energy consumption of the vehicle. A varying road slope together with the con-
trols, engine power and gear ratio, make up the inputs. Explicit solutions were
obtained for constant road slopes. Hooker et al. (1983); Hooker (1988) are con-
tinuations where the polynomial models are replaced with piecewise quadratic
surfaces that are fitted to measurement data. A forward dynamic programming
technique gives numerical solutions to different problem scenarios. The controls
were acceleration and gear ratio and the model states were traveled distance,
velocity and current gear. A dynamic programming approach is also taken in
Monastyrsky and Golownykh (1993) but the problem is formulated as depen-
dent on distance rather than time. The travel time is included in the objective
function combined with the fuel consumption. Through this only velocity and
current gear need to be considered as states which gave a decreased computa-
tion time required for a solution. Inspired of some of the results indicated in
these and other works it was shown in Chang and Morlok (2005); Fröberg et al.
(2006) with varying vehicle model complexity, that constant speed is optimal
within certain bounds on the road slope. The result relies on the assumption
that the fuel consumption is an affine function of the produced work. The road
slope should be such that the constant speed level can be maintained in uphills
and such that braking is not needed in downhills.

A study of the situation when the relation between power output and en-
ergy consumption is nonlinear is made in Fröberg and Nielsen (2007). Using
piecewise affine models the analysis of optimal control for fuel minimization is
kept in an analytical framework.

2.2.2 Train Applications

The problem of optimal control for energy minimization of rail vehicles poses
similar challenges as the study of road vehicles. In these train problems the
motion resistance is highly dependent on the road slope and hence it is not
reasonably to neglect variations of the slope along the route of travel. One
interesting work along with references to earlier work in the same field are
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given in Liu and Golovitcher (2003). In the model used there is one continuous
control variable and it determines the traction force. The main results are the
identification of the set of optimal controls and the conditions that determines
the optimal sequence of these. If a constant transmission ratio is assumed, the
model that is used correspond to a simple longitudinal vehicle model and the
results are directly applicable. In other train applications the available controls
are a set of constant fuel supply rates. The results in Howlett (1996) state that
certain key equations gives necessary conditions for optimal strategies. The
result relies on a linear relationship between fuel rate and power output.

2.2.3 Auxiliary Units and Neutral Gear

The contribution to the energy consumption in a heavy truck due to auxiliary
units, such as a water pump or a cooling fan, has been investigated, see Pet-
tersson and Johansson (2004) and references therein. Assuming that a unit is
electrically driven, optimal control theory is applied to derive strategies for con-
trolling some auxiliary devices. Computer simulations show that it is possible
to reduce the energy consumption significantly.

Engaging neutral gear on the basis of road slope information is one approach
to lower the fuel consumption. Neutral gear decouples the engine and the inertia
and load of the rest of the powertrain are thereby lessened, since running the
engine with zero fueling gives a drag torque. With the engine decoupled, idle
speed must however generally be maintained which requires a non-zero fueling
level. The trade off is clear; the motion resistance is lessened with neutral gear
at the cost of idling and the required shifts. Computer simulation results have
been reported that indicates that there is a possible potential (Fröberg et al.,
2005; Hellström et al., 2006). The truck manufacturer volvo has also launched
a transmission that utilizes neutral gear with the aim to improve fuel economy
(Volvo press release, 2006).

2.3 A Basic Analysis

Consider the motion of a vehicle in one dimension, see Figure 2.1. The body is
considered as a point mass and is acted upon by two forces, a driving force and
a resisting force. The driving force is given by the function g(u) where u is a
scalar control variable. The resisting force is dependent on the position x and
the velocity v and is denoted by the function f(x, v). It is assumed that this
function is monotonically increasing for v > 0, that is

∂f

∂v
≥ 0, v > 0 (2.1)

which should hold for any physically plausible resistance function. The problem
of finding the velocity trajectory that minimizes the work required to move the
vehicle from one point x = 0 to another point x = s is now studied. A constraint
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x̂

mf(x, v) g(u)

Figure 2.1: A vehicle moving in one dimension.

is set on the desired time for the trip and it is assumed that the velocity is
positive at all times.

Newton second law of motion gives

m
dv

dt
= g(u) − f(x, v) (2.2)

which governs the motion. Rewrite according to

dv

dt
=

dv

dx

dx

dt
= v

dv

dx
(2.3)

in order to receive the model

mv
dv

dx
= g(u) − f(x, v). (2.4)

The propulsive work equals

W =

∫ s

0

g(u)dx =

∫ s

0

(mv
dv

dx
+ f(x, v)) dx

=
m

2

(

v(s)2 − v(0)2
)

+

∫ s

0

f(x, v) dx (2.5)

that is, the sum of the difference in kinetic energy and the work due to the
resisting force along the path.

The problem objective is now stated as

min
v(x)

∫ s

0

(mv(x)
dv(x)

dx
+ f(x, v(x))) dx (2.6)

with the time constraint expressed as
∫ s

0

dx

v(x)
≤ T (2.7)

where T denotes the desired maximum time.
If the inequality in (2.7) is replaced by an equality, the resulting problem

is an isoperimetric problem. The core in the calculus of variations is the Euler
equation, which for a functional

∫

F (x, y, y′) dx is

∂F

∂y
− d

dx

∂F

∂y′
= 0. (2.8)
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If the functional has an extremum for a function y(x) but this function does not
yield the desired value of another functional

∫

G(x, y, y′) dx, there exist a con-
stant λ such that the Euler equation is satisfied for the functional

∫

F + λG dx.
(Gelfand and Fomin, 1963)

Only smooth solutions will be considered, so it is assumed that the studied
functional has continuous first and second order derivatives in the considered
interval for arbitrary v and v′.

In the present problem, the functional
∫ s

0

(mv
dv

dx
+ f(x, v) +

λ

v
) dx (2.9)

is formed, where λ is a constant. Then, according to the Euler equation

m
dv

dx
+

∂f

∂v
− d

dx
(mv) + λ

(

− 1

v2

)

= 0 (2.10)

should be satisfied which yields that

v2 ∂

∂v
f(x, v) = λ (2.11)

is a necessary condition for the objective to have an extremum for a function
v(x). Due to the assumption (2.1), the multiplier λ will be positive. Relaxing
the equality constraint to the inequality (2.7) does not alter the solution. Every
v(x) that becomes admissible when the equality constraint is replaced with an
inequality will have a higher value of the objective (2.6) due to (2.1).

In order to proceed, assume that the resistance function is a sum of two
functions with explicit dependency on x and v respectively, that is

f(x, v) = f1(x) + f2(v). (2.12)

The condition (2.11) then becomes

v2 ∂

∂v
f2(v) = λ. (2.13)

For a given λ, the solution to (2.13) is constant velocity. To minimize the work
for moving the body from one point to another point, the extremum is thus a
constant speed level adjusted to match the desired trip time.

Common resisting force models fulfill (2.12). By using such explicit models
results corresponding to (2.13) is obtained in different ways in Fröberg et al.
(2006); Chang and Morlok (2005) where the fuel consumption is minimized. The
consumption is however assumed to be a linear function of the produced work
which makes the minimization equal to the objective used here. An analytical
approach to a fuel minimization problem with a nonlinear mapping between
work and fuel consumption is taken in e.g. Schwarzkopf and Leipnik (1977);
Fröberg and Nielsen (2007).
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2.3.1 Comparison with the Present Problem

For the illustrative problem depicted in Figure 2.1, constant speed is shown to
be the solution to the problem of minimizing the needed work to move from
one point to another with a trip time constraint. The assumptions are that the
velocity and acceleration are smooth and that (2.1), (2.2) and (2.12) holds. If
the fuel consumption is an affine function of the produced work, the solution
is still constant velocity. However, it is not reasonable to expect that a heavy
truck can keep a desired cruising speed on all road profiles. The ratio of available
engine power to the vehicle mass makes a constant speed level inadmissible since
it can not be realized. If the speed can not be kept constant it is not plausible
that is it possible to always have the same gear engaged either. Including gear
selection into the problem description renders an optimal control problem for
a hybrid system which presently is a challenging task. With a large mass,
the delay when shifting gears becomes significant. Taking this into account
gives additional model complexity. If the assumption that there is an affine
relationship between produced work and fuel consumption does not hold, the
optimal velocity trajectory will in general be even more difficult to obtain.

2.4 Strategy

Model predictive control relies on a model and an objective function including
predicted future performance of the controlled system (Levine, 1996; Camacho
and Bordons, 2004). The control signals that optimize the objective are repeat-
edly calculated. The horizon over which the predictions are made is constantly
moved forward allowing for new controls to be calculated.

Look-ahead control is a predictive control scheme with additional knowledge,
look-ahead information, about some of the future disturbances to the controlled
system. In the current application, this additional knowledge includes the road
topography ahead of the vehicle. The information is included in a criterion
that involves predicted future behavior of the system, and is then optimized
by finding the proper control signals. The optimization will in this work be
accomplished through discrete deterministic dynamic programming (DP). The
theory and computational aspects of DP will therefore be treated in Chapter 4.

Let the discrete process model be described by

xk+1 = fk(xk, uk)

where xk, uk denotes the state and control vectors. Divide the distance of the
entire drive mission into M steps. The performance criterion over this horizon
is then formulated as

ζM (xM ) +
M−1
∑

i=0

ζi(xi, ui)

where ζi and ζM defines the running and the terminal cost respectively.
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To obtain the discrete process model, the original problem is discretized.
A look-ahead horizon is obtained by truncating the entire drive mission hori-
zon of M steps to N < M steps. This shorter horizon is used in the online
optimization. Therefore, the criterion is rewritten as

N−1
∑

i=0

ζi(xi, ui) + ζM (xM ) +

M−1
∑

i=N

ζi(xi, ui)

and the last two terms are approximated by ζ̃N (xN ). The approximation pro-
cedure is an important issue that can be dealt with in different ways, see e.g.
Bertsekas (2005). The problem is now only defined over the look-ahead horizon
and

min
u0,···,uN−1

ζ̃N (xN ) +
N−1
∑

i=0

ζi(xi, ui)

is to be solved in each iteration. This method appears in dynamic programming
literature under the name limited look-ahead policy. The control u0 is applied
to the system and the procedure restarts with new initial values and a horizon
that has moved forward in order to calculate the next control.

An illustration is given in Figure 2.2. At point A, the optimal solution
is sought for the problem that is defined over the look-ahead horizon. This
horizon is obtained by truncating the entire drive mission horizon. Only the
first optimal control is applied to the system and the procedure is repeated at
point B.

A B

Entire horizon

Look−ahead horizon

Figure 2.2: Illustration of the look-ahead control strategy.



3

Model and Criterion

Formulation

In this chapter the models used will be described. They are built upon com-
monly used relationships based on the physical principles for the different com-
ponents. Then, control criteria are devised on the basis of the models and the
problem formulation.

3.1 Powertrain Modeling

The continuous and discrete components of the powertrain are described follow-
ing standard modeling as in Kiencke and Nielsen (2005). The modeling has two
purposes. First, a model is used to predict vehicle motion and energy consump-
tion as a function of the road, state and control signals. Second, evaluation of
algorithms by simulations requires a model for comparison. The main differ-
ence between the prediction and evaluation model is the modeling of the engine
torque generation.

In the following the physical principles, on which the models of the respective
component build upon, are described. A powertrain with some of its compo-
nents labeled are depicted in Figure 3.1.

3.1.1 Engine

In a combustion engine, chemical processes take place that produces power and
emissions from fuel and air. To model the power output, the produced torque
from the reaction and the resulting engine revolution speed must be known. The
formation of emissions is dependent on a number of complex reactions during

13
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Clutch Transmission

Wheel hub
Propeller shaft

Drive shafts

Final drive

Engine

Figure 3.1: A powertrain.

the combustion. Modeling of the formation of emissions will not be dealt with
since none of the objectives in the present work relate to emissions.

The useful torque Te generated by the engine is related to the indicated
gross energy produced in the combustion process and losses in the combustion
chamber, such as friction and pumping work. The approach followed here is to
model engine torque by assuming that it is merely dependent on the amount of
fueling uf and engine speed ωe (Sandberg, 2001a),

Te = fe(ωe, uf ). (3.1)

The engine revolution speed, ωe, is determined by the torque output from
the engine Te and the load Tc from the driveline through the clutch. Given
the inertia of the rotating parts Je, Newton’s second law of motion gives the
governing dynamics for the engine speed,

Jeω̇e = Te − Tc. (3.2)

3.1.2 Transmission and Final Drive

It is assumed that the transmission is of the automated manual type. The
transmission is commonly manual for heavy trucks due to cost, durability and
efficiency in comparison with an automatic transmission (Pettersson, 1997).

The clutch transmits the engine torque to the transmission. In case of a
powertrain with manual transmission, a friction clutch is used to decouple the
engine during manual gear shifts. However, it is here assumed that gear shifts
are accomplished through engine control without using the clutch. The clutch is
thus assumed to be engaged at all times when the vehicle is not in a standstill.

The final drive transmits the torque from the propeller shaft to the drive
shafts. If the drive shafts and the wheels are lumped into single components,
the final drive is viewed as a transmission with a fixed ratio. It can then be
modeled analogously to the transmission.

When a gear is engaged, a scaling of the input and output rotational speeds
is achieved. If the ratio is denoted i and the input speed ωi and the output
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speed ωo, the relation
ωi = iωo (3.3)

holds. Denote the input torque Ti and the output torque To. The dynamics for
a transmission is then given by

Jtωo = iTi − To − Tf (3.4)

where Jt is the transmission inertia and Tf is friction losses.
Friction losses are modeled as a torque Tf . A static efficiency η is a simple

way to model this,
Tf = (1 − η)iTi. (3.5)

3.1.3 Flexibilities and Backlash

There are backlash and oscillations in a vehicular driveline. Transmission com-
ponents are the predominant source of backlash (Lagerberg and Egardt, 2007).
The drive shafts are the components that generally have the largest flexibility
and are the main cause of oscillations (Kiencke and Nielsen, 2005). These phe-
nomena mainly impact driveability and not fuel consumption (Sandberg, 2001a)
and will therefore be disregarded with the current purpose of the modeling.

3.1.4 Driveline Equations

The driveline is assumed stiff since flexibility and backlash are neglected. Fric-
tion losses in the transmission and the final drive are modeled with a lumped
efficiency η. This allows for the driveline to be viewed as one lumped rotating
inertia Jl. When a gear is engaged this gives using (3.3), (3.4) and (3.5),

ωe = iωw

Tw = iηTc

Jlω̇w = Tw − Tb − rwFw (3.6)

where ωw is the wheel speed, Tw is the torque transmitted to the wheel and rw

is the wheel radius. Fw is the resulting friction force at the wheel. The braking
torque Tb is determined by a normalized brake level ub ∈ [0, 1] and a maximum
torque parameter kb,

Tb(ub) = kbub. (3.7)

When neutral gear is engaged, the engine transmits zero torque to the driv-
eline and

Tc = Tw = 0 (3.8)

holds. The ratio i and efficiency η of neutral gear are defined to be zero.
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3.1.5 Gear Shifts

Gear shifts are assumed to be carried out by engine control. This can be ac-
complished with different approaches. The basic challenges are nevertheless
the same. To engage neutral gear without using the clutch, the transmission
should first be controlled to a state where no torque is transmitted. The engine
torque should then be controlled to a state where the input and output revolu-
tion speeds of the transmission are synchronized when the new gear is engaged.
(Pettersson and Nielsen, 2000)

A shift will be modeled by a constant period of time τshift where the neutral
gear is engaged before the new gear is engaged. The number of the currently
engaged gear will be denoted g. The ratio i and efficiency η then becomes
functions of g. The control signal that selects gear will be denoted ug. Assume
that ug changes value from g1 to g2 at t = 0 and thereby commands a shift.
The currently engaged gear g(t) will then be described by

g(t) =







g1 , t < 0
0 , 0 ≤ t ≤ τshift

g2 , t > τshift

(3.9)

where gear zero corresponds to neutral gear.

3.1.6 Resisting Forces

In the vehicle longitudinal direction, the main resisting forces are considered to
be air drag, rolling resistance and the gravitational force (Wong, 2001; Gillespie,
1992).

Air drag Fa is commonly estimated by

Fa =
1

2
cwAaρav2 (3.10)

where cw is the air drag coefficient, Aa is the cross section area of the vehicle,
ρa is the air density and v is the velocity of the vehicle relative to the wind.

In the literature, there exists many empirical formulas for the rolling resis-
tance. They usually entails the tire normal force FN multiplied with a rolling
resistance coefficient cr. The coefficient is often dependent on velocity but
sometimes also on tire pressure and temperature. A model for the resistance is
then

Fr = crFN = crmg0 cos α (3.11)

where g0 is the acceleration of gravity, α is the road slope and m is the ve-
hicle mass. The coefficient cr is here assumed constant in the evaluation and
prediction models.

The resistance due to gravity is the longitudinal component Fl of the grav-
itational force. It is dependent on the road slope α and the mass of the vehicle
m,

Fl = mg0 sinα. (3.12)
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3.1.7 Wheels

The traction force developed at tire-ground contact patch mainly depends on
the longitudinal slip. If the lateral slip is assumed low, the situation of pure
longitudinal slip can be used for the sake of simplicity. Longitudinal slip s is
commonly defined as

s =
rwωw − v

rwωw

or s =
rwωw − v

v
(3.13)

where rw is the wheel radius, v is vehicle velocity and ωw is the wheel speed of
revolution. The longitudinal force depends nonlinearly on the slip s. (Wong,
2001; Pacejka, 2002)

The tire dynamics will be neglected and a rolling condition is assumed,

v = reωw (3.14)

which statically relates tire rotation ωw and vehicle speed v through an effective
radius re. Using (3.13), it is seen that this corresponds to a situation of a
constant slip level.

3.1.8 Vehicle Motion

The vehicle motion in the longitudinal direction is modeled. The governing
dynamics for the velocity v is

m
dv

dt
= Fw − Fa(v) − Fr(α) − Fl(α) (3.15)

where α is the road slope.

3.1.9 Fuel Consumption

The mass flow of fuel ṁ is determined by the fueling level uf [g/cycle] and the
engine speed ωe [rad/s]. The mass flow in [g/s] is then

ṁ(ωe, uf ) =
ncyl

2πnr

ωeuf (3.16)

where ncyl is the number of cylinders and nr is the number of crankshaft revolu-
tions per cycle. When neutral gear is engaged, the fuel flow is assumed constant
and

ṁ = ṁidle (3.17)

where ṁidle is the idle fuel flow. The fuel consumption is then simply the
integral of the flow.
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3.1.10 Combined Equations

Combining the governing equations for the engine (3.2) and driveline dynamics
(3.6), using the rolling condition (3.14) and inserting into the motion equation
(3.15) gives

dv

dt
=

rw

Jl + mr2
w + ηi2Je

(

iηTe(v, uf )

−Tb(ub) − rw (Fa(v) + Fr(α) + Fl(α))
)

(3.18)

when a gear is engaged. In case of neutral gear, using Equation (3.8) in the
equations for the engine and driveline dynamics gives

dv

dt
=

rw

Jl + mr2
w

(−Tb(ub) − rw (Fa(v) + Fr(α) + Fl(α))) . (3.19)

The gear ratio i(g) and efficiency η(g) are functions of the engaged gear number,
denoted g. Neutral gear gives i(0) = η(0) = 0. Equations (3.18) and (3.19) can
now finally be written as

dv

dt
(x, u, α) =

rw

Jl + mr2
w + η(g)i(g)2Je

(

i(g)η(g)Te(v, uf )

−Tb(ub) − rw (Fa(v) + Fr(α) + Fl(α))
)

(3.20)

where
x = [v, g]

T
u = [uf , ub, ug]

T (3.21)

denote the state and control vector respectively. The states are the velocity v

and currently engaged gear g and the controls are fueling uf , braking ub and
gear ug. In case of a gear shift, Equation (3.9) describes the currently engaged
gear g.

Using (3.6) and (3.14) together with (3.16) and (3.17) gives the fuel flow

ṁ(x, u) =

{

ncyl

2πnr

i(g)
rw

vuf , g 6= 0

ṁidle, g = 0
(3.22)

where ug and g denotes the gear control and state respectively. The fuel con-
sumption for an interval [t0, tf ] is then given by

∫ tf

t0

ṁ(x, u) dt. (3.23)

3.1.11 Prediction Model

The powertrain dynamics are given by (3.20) with resisting forces according
to (3.10) to (3.12). The engine torque (3.1) will in the prediction model be



3.2. Criterion 19

modeled as a linear function of the amount of fueling uf and engine speed ωe in
an operating range. The range is defined as the set F of feasible controls and
engine speeds,

F = {uf , ωe | 0 ≤ uf ≤ uf,max(ωe), ωe,min ≤ ωe ≤ ωe,max} (3.24)

where ωe,min and ωe,max are constants. The upper fueling bound is modeled as

uf,max(ωe) = afω2
e + bfωe + cf (3.25)

where af , bf , cf are constants. In the operating range, the engine torque (3.1)
is described by

Te(ωe, uf ) = aeωe + beuf + ce (3.26)

where ae, be, ce are constants. The fuel consumption is given by (3.23).
The prediction model will be transformed to be dependent on position rather

than time. Denoting traveled distance with s and the trip time with t, then for
a function h(t(s))

dh

ds
=

dh

dt

dt

ds
=

1

v

dh

dt
(3.27)

is obtained using the chain rule where v > 0 is assumed. By using (3.27), the
models can be transformed as desired.

3.1.12 Evaluation Model

The powertrain dynamics are given by (3.20) with resisting forces according
to (3.10) to (3.12). The engine torque Te is assumed to be dependent on the
amount of fueling uf and engine speed ωe, see Equation (3.1). In the evaluation
model, this function is interpolated from steady state measurements performed
in a test cell. The fuel consumption is given by (3.23).

The different components are implemented in a simulation environment as
a number of separate entities, see further in Chapter 6.

3.2 Criterion

This section deals with the formulation of a control criterion. The verbally
stated objective is to minimize the energy required for a given drive mission.
The fundamental trade off with this objective is between fuel use and trip time.
One approach is to a constrain the available time for the mission. Another way
is to include a measure of the trip time or a measure of the violation of the
constraint in the criterion function. The use of a look-ahead horizon, which
means that the horizon in the original problem is divided into smaller parts,
makes it difficult to set a well-founded constraint for the look-ahead horizon.
Therefore, the trip time will be included in the criterion.
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3.2.1 Continuous Formulation

The prediction model is expressed with traveled distance as the independent
variable. Hence, to consider the trip time in the criterion either the time or
velocity trajectory can be used. In the following, these two methods are used
to devise control criteria. The first proposed function is based on the use of
a velocity constraint and an inclusion of a measure of violation. The second
proposal includes a direct measure of the trip time in the criterion.

The two proposed criteria will now be formulated mathematically. A step
function denoted κ will be used in the following,

κ(e) =

{

1, e ≥ 0
0, e < 0

. (3.28)

The fuel mass, denoted M , is a central quantity. On a trip from s = s0 to
s = sf ,

M =

∫ sf

s0

1

v
ṁ(x, u)ds (3.29)

where 1
v
ṁ(x, u) is the mass flow per unit length as function of the states x and

control u.

Velocity Penalty

Suppose there is a desired cruising speed denoted vr. The criterion may then
include a measure of the amount of disagreement between the velocity trajectory
and vr. However, only velocities above vr should be penalized. Define the
deviation e from the desired speed vr as

e(v) = vr − v (3.30)

where v is the vehicle velocity. A measure of the violation P of the bound over
a route is then

P =

∫ sf

s0

e2κ(e)ds (3.31)

where κ is the step function (3.28) that only is non-zero when the bound is
violated, that is when v ≤ vr. The trip time is thus taken into account implicitly
by first stating a constraint on the velocity trajectory and then including a
measure of the constraint violation into the criterion.

To weigh fuel and time use, the cost function is chosen as

I = M + βP (3.32)

where β is a scalar factor that can be tuned to receive the desired trade off.
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Time Penalty

The trip time T is simply

T =

∫ sf

s0

ds

v
. (3.33)

To weigh fuel and time use, the cost function chosen is

I = M + βT (3.34)

where β is a scalar factor that can be tuned to receive the desired trade off.

3.2.2 Stationary Analysis

A stationary model is derived to facilitate analysis for the purpose of determin-
ing criterion parameters. The introduction of the look-ahead horizon raises the
need to study how to choose the terminal cost. Under the assumption that there
is a stationary solution, the model is used to show how the criterion parameters
can be chosen in order to receive a desired trade off between fuel and time use.

Stationary Model

A model that assumes constant states x̂ and controls û is now to be derived.
The gear state and gear control signal are assumed to be identical to a given
gear number. The brake control is assumed to be zero.

Assume that there exists at least one fueling level ûf for the given gear,
for which the bounds in (3.25) holds and that gives a stationary velocity v̂.
From the prediction model in Section 3.1.11, the resisting forces (3.10)-(3.12),
the driveline and engine equations (3.20) and (3.26), it is concluded that the
control ûf can be written as

ûf = c1v̂
2 + c2v̂ + f(α) (3.35)

where

c1 =
rwcwAaρa

2iηbe

, c2 = − i

rw

ae

be

f(α) =
mg0rw

iηbe

(cr cos α + sinα) − ce

be

where c1 and c2 are constants and f(α) is a function corresponding to the rolling
resistance and gravity, and thus being a function of the road slope α.

From Equation (3.22) and (3.27), it is concluded that the mass flow of fuel
per unit length is directly proportional to the control ûf for the given gear,

1

v
ṁ(x, u) = c4ûf , c4 =

ncyl

2πnr

i

rw

(3.36)

where c4 is the proportionality constant.
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Velocity Penalty

With the control ûf in (3.35), the cost function (3.32) is

Î(v̂) =







∫ sf

s0

(

c4

(

c1v̂
2 + c2v̂ + f(α)

)

+ βe(v̂)2
)

ds, v̂ ≤ vr

∫ sf

s0

(

c4

(

c1v̂
2 + c2v̂ + f(α)

))

ds, v̂ > vr

(3.37)

where the integrands clearly are constant with respect to s if a constant slope
is assumed. A stationary point to Î is found by setting the derivative equal to
zero,

dÎ

dv̂
=

∫ sf

s0

(c4 (2c1v̂ + c2) − 2βe(v̂)) ds = 0 (3.38)

if v̂ ≤ vr. Solving the equation for β gives

β =
c4

2e(v̂)
(2c1v̂ + c2) (3.39)

and can be interpreted as the value of β such that a stationary velocity v̂ ≤ vr

is the solution to (3.38). Note that e(v̂) → 0, β → ∞. This means that it is not
possible to achieve a solution exactly vr of the criterion with any finite β. With
an optimization approach that quantizes the state space, the discrepancy e can
be chosen to a value in the magnitude of the quantization level. If v̂ > vr the
factor β has no influence on the cost function (3.32) and can therefore not be
used to control the stationary solution.

Time Penalty

With the control ûf in (3.35), the cost function (3.34) is

Î(v̂) =

∫ sf

s0

(

c4

(

c1v̂
2 + c2v̂ + f(α)

)

+
β

v̂

)

ds (3.40)

where the integrand clearly is constant with respect to s if a constant slope is
assumed. A stationary point to Î is found by setting the derivative equal to
zero,

dÎ

dv̂
=

∫ sf

s0

(

c4 (2c1v̂ + c2) −
β

v̂2

)

ds = 0. (3.41)

Solving the equation for β gives

β = c4v̂
2 (2c1v̂ + c2) (3.42)

and can be interpreted as the value of β such that a stationary velocity v̂ is the
solution to (3.41). Note that the value of β neither depends on the vehicle mass
m nor the slope α. The calculated β will thus give the solution v̂ of the criterion
for any fixed mass and slope as long as there exists a control ûf satisfying the
bounds in (3.25).
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Dynamic Programming

The dynamic programming technique (DP) became a methodical instrument for
optimization following the works of Bellman (Bellman, 1957, 1961; Bellman and
Dreyfus, 1962). These works started to uniform the theory and showed the wide
scope of applicability of DP. Research that further developed, explained and
investigated aspects of the theory and demonstrated applications were initiated
(Larson and Casti, 1978; Denardo, 1982; Bertsekas, 1995).

Dynamic programming for deterministic multi-stage decision processes will
be studied in this chapter. The theory will be surveyed and discretization and
computational aspects will be discussed.

4.1 Review of the Theory

The system studied is a deterministic multi-stage decision process described by

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1 (4.1)

where k denotes the stage number. The state vector x is n-dimensional and the
control vector u is m-dimensional,

xk ∈ Sk ⊂ Rn

uk ∈ Uk(x) ⊂ Rm (4.2)

where it is clearly expressed that the admissible states Sk and controls Uk(x)
may vary with stage and state. The initial conditions

x(0) = x0 (4.3)

23
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are given. A performance criterion is stated in the form

ζN (xN ) +
N−1
∑

i=0

ζi(xi, ui) (4.4)

where ζN is the terminal cost and ζi defines the intermediate costs. Denote the
minimum value of the criterion J∗

0 (x0), then

J∗

0 (x0) = min
u0,...,uN−1

ζN (xN ) +

N−1
∑

i=0

ζi(xi, ui) (4.5)

is the problem faced.
The concept of DP is the Principle of optimality :

An optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first deci-
sion. (Bellman, 1957, p. 83)

The principle is easily justified by contradiction. Assume that an optimal policy
P is found. At stage i, if the remaining truncated policy p is not optimal from
stage i there is another policy p′ from this stage with a lower cost. If p was
replaced with p′ in the entire policy P , the total cost for P would then be
lowered which contradicts the fact that P is optimal.

The DP solution to the problem (4.5) is to solve the functional equation

Jk(xk) = min
uk

{ζk(xk, uk) + Jk+1(fk(xk, uk))} (4.6)

for k = N − 1, N − 2, . . . , 0 starting from

JN (xN ) = ζN (xN ) (4.7)

being the terminal cost. When finished,

J∗

0 (x0) = J0(x0) (4.8)

is the minimum cost. In a DP algorithm that proceeds backwards from the last
stage, the entity Jk+1(fk(xk, uk)) is called the cost-to-go since it is the minimum
cost from a state xk+1 = fk(xk, uk) to an end state.

The recurrence equation (4.6) follows from the principle of optimality. Straight-
forward rewrites also show that the algorithm yields the desired minimum (Lar-
son and Casti, 1978; Bertsekas, 1995). Analogous to Equation (4.5), denote
with

J∗

k (xk) = min
uk,...,uN−1

ζN (xN ) +

N−1
∑

i=k

ζi(xi, ui) (4.9)



4.2. Discretization 25

the minimum criterion value at stage k for a state xk. This entity is rewritten
to (4.6) by

J∗

k (xk) = min
uk,...,uN−1

{

ζN (xN ) +

N−1
∑

i=k

ζi(xi, ui)

}

= min
uk

min
uk+1,...,uN−1

{

ζk(xk, uk) + ζN (xN ) +

N−1
∑

i=k+1

ζi(xi, ui)

}

= min
uk

{

ζk(xk, uk) + min
uk+1,...,uN−1

{

ζN (xN ) +

N−1
∑

i=k+1

ζi(xi, ui)

}}

= min
uk

{ζk(xk, uk) + Jk+1(fk(xk, uk))} .

The first step uses the definition (4.9). The second step splits the minimiza-
tion and the summation into two parts. In the third step, the minimiza-
tion over uk+1, . . . , uN−1 is moved inside the first set of brackets since it does
not affect the term ζk(xk, uk). The last step is the identification of the term
Jk+1(fk(xk, uk)) where xk+1 = fk(xk, uk) from Equation (4.6). The minimum
value J∗

0 (x0) of the criterion (4.4) can thus be obtained by solving Equation (4.6)
for k = N − 1, N − 2, . . . , 0.

4.2 Discretization

In a straightforward DP approach, continuous state and control variables are
discretized. The choice of grid granularity is a trade off between accuracy and
complexity. A finer grid generally gives a better approximation to the original
problem but an increased complexity.

For the purpose of an illustration, let xi
k denote the quantized state i in stage

k. Further, denote with u
i,j
k the quantized control j that is applied in state i

at stage k. A state xk+1 in the next stage is then given by xk+1 = f(xi
k, u

i,j
k )

and a cost ζk(xi
k, u

i,j
k ) is incurred. The algorithm (4.6) can now be illustrated

as shown in Figure 4.1. The minimum for every state of the transition cost for
a control and the cost-to-go of the state resulting from the control is sought.

4.2.1 Interpolation

Interpolation may become necessary in a DP algorithm. The simplest methods
to accomplish this are to use the nearest grid point or through linear inter-
polation of adjacent grid points. This issue was pointed out in e.g. Bellman
and Dreyfus (1962) and these simple ways are still commonly used. The linear
interpolation approach will be outlined in the following.

A need for interpolation can arise when evaluating the recurrence equa-
tion (4.6). When computing xk+1 = fk(xk, uk) at the state grid point xk with
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Figure 4.1: Illustration of the dynamic programming algorithm.

a discretized value of uk, a state grid point will probably not be hit exactly, see
the left part of Figure 4.2. The value of the cost-to-go Jk+1(fk(xk, uk)) must
then be approximated. One way is interpolation between the costs at adjacent
states. For example, if a computed state x can be written as

x =

j+1
∑

i=j

ξixi, xj ≤ x ≤ xj+1 (4.10)

where xi are the grid points, then

Ĵ(x) =

j+1
∑

i=j

ξiJ(xi). (4.11)

is a linearly interpolated cost-to-go.
If the optimal trajectory is to be recovered when the DP algorithm is finished,

another traversing of the stages is needed. When computing the system equation
at a state grid point with the stored optimal control, another state grid point
will probably not be hit exactly, see the right part of Figure 4.2. The resulting
state and the optimal decision from that state must then be approximated. If
the computed state can be written as in (4.10), a linear interpolation scheme
set the interpolated control to

û =

j+1
∑

i=j

ξiui (4.12)

where ui is the optimal control from the state xi.
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Figure 4.2: Left: Interpolating the cost-to-go Ĵ(x) when finding the optimal
solution. Right: The optimal control û is interpolated when recovering the
solution.

4.3 Computational Aspects

In the following, some aspects of a numerical solution with the DP algorithm
will be examined. The different contributions to the computational complexity
will be studied and techniques to reduce complexity and increase the accuracy
are proposed.

4.3.1 Complexity

The computational complexity is determined by the dimensions and the number
of quantization levels used for the state and control spaces. Denote with Ni the
number of levels of state variable i and with Mi the number of levels of the
control variable j. The total number of state grid points is then Nx and the
total number of discrete controls Nu,

Nx =
n
∏

i=1

Ni Nu =
m
∏

j=1

Mj , (4.13)

where n,m are the dimensions of the state and control spaces respectively. With
a horizon of N steps, the required computation time becomes

T = kNNxNu (4.14)

where k is a constant. The constant is dependent on the specific implementation
but mainly on the capacity and speed of the available computer hardware. From
Equation (4.13) and (4.14) it is evident that the complexity grows exponentially
with the dimensions of the state and control spaces.

The storage requirements are related to the dimension of the state space
grid, Nx. If the minimum cost and the optimal decision are stored for each
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state, the number of storage locations is

M = (m + 1)NNx. (4.15)

For an illustration assume two state variables, two control variables and a
horizon of twenty steps where each quantity is made discrete with one hundred
quantization levels. The effort with dynamic programming is T = k · 20 · 104+4

= k · 2 · 109 according to (4.14). For comparison, brute enumeration must con-
sider the number of combinations of the control levels for the length of the
horizon. This yields T = k ·

(

104
)20

= k · 1080 as an approximation of the com-
putation time. If each calculation requires about ten floating point operations
and the hardware could do 109 operations per second1, the constant k becomes
in the order of 10−8. DP would then finish in about 20 seconds but the enumer-
ation procedure would require substantially more time. The number of memory
locations becomes M = 6 · 105. Using a single-precision floating point represen-
tation with 32 bits renders a memory requirement of about 2.3 megabytes2.

4.3.2 State Space

The number of state grid points Nx adds to the complexity multiplicatively
according to (4.14). If the grid size is kept but the volume of the state space
that is searched can be reduced a priori without loosing solutions to the original
problem, the complexity is reduced.

The volume of the state space that is searched for the solution is called
the search space and is made up of the feasible states given in (4.2). The
system model (4.1) can further be used to reduce the search space by removing
unreachable and undesired states. The unreachable states are the states that are
not possible to attain with all the admissible controls for the system model. A
trajectory through an undesired state will inevitable violate the feasible bound
at some later time.

The problem to find the reachable states can be formulated as an optimiza-
tion problem with the objective to maximize the rate by which the state vector
changes. The undesirable states are not in general determined in a straightfor-
ward way. However, in a specific application there may be ways to analytically
or approximately identify some states as undesired. In (Back, 2006), similar
concepts to infeasible and unreachable sets are used for a first-order system and
optimal control theory is utilized to find these sets.

4.3.3 Control Space

Quantization of the control space gives rise to the need for interpolation as
explained earlier. If the system equations are possible to invert, it can be used

1One GFLOPS is equivalent to 109 floating point operations per second which most stan-

dard personal computers of today slightly exceeds.
2In order to reach the limit for fast memory of a current standard personal computer, the

value of M must approach about 108.
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to avoid interpolation. Rather than testing quantized values, the control for
a state transition is calculated. Since no grid size has to be selected for the
control, the number of algorithm parameters is reduced. However, inversion of
the system equations may be difficult, time consuming or even impossible.

If the method is possible to apply, the number of controls Nu that have to be
evaluated for each state is limited by the number of state grid points Nx. The
required computation time would hence increase with the square of the number
of state grid points Nx,

T = kNN2
x (4.16)

according to (4.14) where k is a constant and the horizon has N steps.

Optimality Guided Fast Search

For a first-order system, the method of calculating rather than quantizing the
control can be combined with a search method better than the straightforward
one. The idea relies on the observation that, provided that the discretization
grid used is sufficiently fine-grained, optimal paths can not cross each other due
to the principle of optimality. The set of states that is to be traversed is sorted in
order and then divided into two parts repeatedly. The optimal controls already
calculated will then limit the set of states that is needed to be processed.

Figure 4.3 depicts an example. The search space is shaded in gray. The
states are dots and optimal controls are shown with arrows. The set of states
that is reachable from one stage to the next is indicated with dashed lines. The
states are assumed to be sorted in order from the lower to the upper bound. To
the left a state near the middle is selected in a stage k. The optimal decision is
then searched for by calculating the required control, if it exists, to the reachable
states in the next stage k + 1. For this instant, the reachable set of states was
a subset of the states in the next stage. The next step is to select two states
near the middle of the respective parts in stage k. The optimal control from the
previous iteration will now limit the set of states that needs to be searched. For
this iteration, there are reachable states outside the search space but since it
is assumed that optimal paths do not cross, there is no need to consider these.
The procedure is then continued until all states have been processed.

Let Nx = 2n denote the number of states per stage. In the first iteration one
state is selected in the current stage k and at maximum Nx states is considered
in the next stage k + 1. The next iteration selects two states in the stage k and
the maximum number of states to consider in stage k +1 is still Nx. The states
in stage k can be divided by two n times. The total number of combinations
that has to be considered is then

n
∑

i=1

Nx = nNx = n2n = Nx log2 Nx

where log2 denotes the logarithm with base 2. The required time can now be
estimated by

T = kNNx log2 Nx (4.17)
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Optimal control
State

k+1kk+1k

Reachable limit
Search space

Upper bound

Lower bound

Figure 4.3: Two iterations of a DP search method. Left: The reachable states
and the constraints limit the search space at first. Right: In subsequent itera-
tions the search space is also limited by previously calculated optimal controls.

which should be compared with (4.16). The complexity dependency on the
number of state grid points Nx is thus reduced from N2

x to Nx log2 Nx.
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A Fuel-optimal Algorithm

The look-ahead control strategy is a predictive control scheme where the prob-
lem in each iteration is truncated, discretized and solved by dynamic program-
ming algorithm. This chapter formulates the optimization algorithm. The aim
is a fuel-optimal algorithm by which it is possible to obtain satisfactory solutions
in real-time on-board a vehicle. An analysis will be undertaken to investigate
numerical properties of the algorithm that are shown to be crucial for satisfac-
tory performance.

5.1 Constraints

The allowed velocities are, according to the problem formulation in Section 2.1,
constrained to a set that is determined by e.g. acceptable trip time in combina-
tion with legal and safety considerations. Let s be the position along the route,
i.e. the traveled distance. Denote the vehicle velocity v, then

A = {v | vmin(s) ≤ v ≤ vmax(s)} (5.1)

is the allowed interval. In this chapter, the bounds will be considered constant
over the horizon. The brake system is assumed to be powerful enough to keep
the upper bound vmax. On the other hand, the lower bound vmin is not expected
to be feasible over the entire horizon on all road profiles. Though, it is assumed
that it is possible to keep a velocity, denoted vlim(s), which is positive at all
times. If Equation (5.1) was to be used, it would not be certain to find any
feasible solution. Therefore, the constraints on the vehicle speed v are expressed

31
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as,
A = {v | min {vmin, vlim(s)} ≤ v ≤ vmax} . (5.2)

5.2 Discrete Prediction Model

Since the approach in this chapter is numerical, the prediction model and the
look-ahead horizon should be made discrete. The prediction model given in
Chapter 3 is used, having the velocity and the engaged gear making up the
state vector, the fueling, brake level and gear selector as control signals and
the road slope as a measurable disturbance. The horizon will be divided into
equidistant steps denoted h.

The value of the state vector x(s) at stage k will be denoted

xk =

[

vk

gk

]

= x(kh) (5.3)

where vk, gk is the velocity and engaged gear. The control signals u(s) will be
considered piece-wise constant during a step,

uk =





uf

ub

ug



 = u(kh) (5.4)

where uf controls the fueling, ub determines the braking torque and ug selects
gear. Finally, the road slope αk is set to the mean value over the step,

αk =
1

h

∫ (k+1)h

kh

α(s)ds. (5.5)

The system dynamics is thus

xk+1 = f(xk, uk, αk) (5.6)

where f(xk, uk, αk) is given by (3.20) and (3.9). The output is the integral of
the fuel flow (3.22).

5.3 Discrete Criterion

The continuous criteria was formulated in Chapter 3. The approach in this
chapter is numerical and the criterion should therefore be made discrete. With
the notation from Chapter 3, denote

mk =

∫ (k+1)h

kh

1

v
ṁ(x, u)ds, tk =

∫ (k+1)h

kh

ds

v
,

pk =

∫ (k+1)h

kh

e2κ(e)ds. (5.7)
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A quantization of the state and control spaces may lead to that the solu-
tion switches frequently between neighboring grid points. In order to enable
smoothing of the numerical solution the terms

ak = |vk − vk+1| bk = κ(|gk − gk+1|) (5.8)

are introduced where κ is the step function (3.28).
The discrete cost function is expressed as

J = ζN +

N−1
∑

k=0

ζk(xk, xk+1, uk, αk) (5.9)

where ζk is the running cost and ζN the terminal cost.

5.3.1 Running Cost

For the criterion (3.32) with the velocity penalty, the weighting function ζk for
stage k is chosen as

ζk = [1, β, γ, ϑ]









mk

pk

ak

bk









, k = 0, 1, . . . , N − 1 (5.10)

where β, γ, ϑ are scalar penalty parameters for controlling the properties of
solutions.

The weighting functions for the criterion (3.34) with the penalty on the trip
time become

ζk = [1, β, γ, ϑ]









mk

tk
ak

bk









, k = 0, 1, . . . , N − 1 (5.11)

where β, γ, ϑ are, again, scalar penalty parameters for controlling the properties
of solutions.

5.3.2 Terminal Cost

As described in Chapter 2, the DP formulation is an approximation of the
problem where the horizon is truncated to N steps. The approach is to choose
an approximation of the cost-to-go for the problem over the entire horizon.
Known methods for approximation involve offline and online calculations. One
offline approach is to simplify the present model and use it for deriving the
approximation. Online calculations can e.g. be based on a heuristic control law
where the cost is computed analytically or through simulations. (Bertsekas,
1995, 2005)
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In the present work the terminal cost is set to zero and instead, the terminal
states are constrained. This will be exploited in a preprocessing stage to further
reduce the search space prior to the application of the DP algorithm. A well
chosen terminal cost can probably approximate the solution to the original
problem in a better way, although it may come at the cost of a slightly increased
complexity. However, the better the terminal cost approximation the shorter
look-ahead horizon is needed which also would reduce complexity.

5.4 Preprocessing

As mentioned in Chapter 4, the number of state grid points Nx that are used
in the DP algorithm will add to the complexity multiplicatively. If, for a fixed
quantization, the volume of the state space that is searched can be reduced a
priori the complexity may be reduced.

The search space XSS , is a subset of the entire state space X. The set A of
allowed velocities is defined by the problem formulation, see Equation (5.2). To
determine A and the set of reachable states, denoted R, the prediction model
is simulated. Maximum and minimum torque is assumed to be obtained with
maximum and minimum fueling respectively. All feasible gears are tried to find
the gear giving maximum acceleration with maximum torque.

The terminal states are constrained and assigned a terminal cost of zero
as explained. This is done after the reachable set has been determined by a
forward simulation. The horizon is then traversed backwards in order to remove
the states U that are undesired.

Finally, the states belonging to A and R but not U determines the search
space,

XSS = (A ∩ R) \U. (5.12)

One example is given in Figure 5.1 where the respective sets are indicated. The
allowed set A is given by the problem formulation. With a set of initial and
terminal states specified, the reachable states R and the undesired states U are
determined by the maximum acceleration and deceleration.

5.5 A DP Algorithm

To summarize, the optimal control problem at hand is the minimization of the
objective,

min
u

N−1
∑

k=0

ζk(xk, xk+1, uk, αk)

where ζk is given by the selected objective in Section 5.3. The system dynamics
is given by

xk+1 = f(xk, uk, αk) k = 0, 1, . . . , N − 1
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Figure 5.1: Search space example.

according to (5.6). The constraints are

0 < min {vmin, vlim(kh)} ≤ vk ≤ vmax k = 0, 1, . . . , N − 1

according to (5.2). Due to the rolling horizon setting, the initial state x0 is
given.

The preprocessing algorithm gives, for each stage, an interval of velocities
that are to be considered. For every stage the interval [vlo, vup] is discretized in
constant steps of δ. This makes up a set Vk,

Vk = {vlo, vlo + δ, vlo + 2δ, . . . , vup} . (5.13)

With a given velocity, only a subset of the gears in the gearbox is feasible.
If the operating region of the engine is defined with bounds on the engine speed
[ωe,min, ωe,max], it is easy to select the set of feasible gears. Only gears with a
ratio that gives an engine speed in the allowed range are then considered. In a
state with the velocity v, the set of usable gears Gv is thus defined as

Gv = {g | ωe,min ≤ ωe(v, g) ≤ ωe,max} (5.14)

where ωe(v, g) is the engine speed at vehicle velocity v and gear number g.
Braking is only considered in the algorithm if the upper velocity bound is

encountered. Braking without recuperation is an inherent waste of energy and
therefore braking will only occur when the velocity bounds would otherwise
be violated. This reduces the complexity since the number of possible control
actions lessens.

A state x is made up of velocity v and gear number g. The possible states in
stage k are denoted with the set Sk and it is generated from the velocity range
Vk given in (5.13) and the set of gears Gv given in (5.14). This yields

Sk = {{v, g} |v ∈ Vk, g ∈ Gv} . (5.15)
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Standard Approach

For the standard approach the controls needs to be discrete. The fueling uf

and braking ub are normalized and then quantized in constant steps. Possible
values of the gear control ug are given by the finite and discrete set of usable
gears (5.14).

For each state xk in stage k, all combinations of fueling levels and gears are
applied to the system. The next state xk+1 and the cost ζk is given by evaluating
the system equations. The cost-to-go Jk+1(xk+1) is linearly interpolated from
the neighboring grid points as described in Section 4.2.1. If the simulated state
xk+1 is written as

xk+1 =

j+1
∑

i=j

ξixi,
vj ≤ v ≤ vj+1

gj = g = gj+1 (5.16)

where xi are the grid points in stage k + 1, then

Ĵk+1(xk+1) =

j+1
∑

i=j

ξiJ(xi). (5.17)

is the interpolated cost-to-go.
If no feasible control is found from the state xi, all quantized braking levels

are applied to the system. If still no feasible controls are found, the cost-to-go
Jk(xi) is set to infinity, which with a numerical approach means a very large
number.

The algorithm is outlined below. The set Uk denotes the set of allowed
controls, that is all combinations of either fueling levels uf or braking levels ub

and the gear control ug.

1. Let JN (x) = 0.

2. Let k = N − 1.

3. Let
Jk(x) = min

u∈Uk

{ζk(x, u) + Jk+1(f(x, u))} , x ∈ Sk.

4. Repeat (3) for k = N − 2, N − 3, . . . , 0.

5. The optimal cost is J0, and the sought control is the set of optimal controls
from the initial state.

If the optimal solution for the entire horizon is to be recovered, the optimal
controls probably needs to be interpolated as explained in Section 4.2.1. If the
state is written as in (5.16), the interpolated control û become

û =

j+1
∑

i=j

ξiui (5.18)

where ui is the optimal control from the state xi.
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Inverse Approach

The inverse approach is an alternative to the standard approach where the
control for a state transition is calculated instead of testing quantized levels.
At a stage k, feasible control actions u

i,j
k that transform the system from a

state xi ∈ Sk to another state xj ∈ Sk+1 are sought. The control is found by
an inverse simulation of the system equations. If there are no fueling level uf

and gear ug that transforms the system from state xi to xj at stage k, there are
two possible resolutions. If there exist a feasible braking control ub the cost of
the transition is set accordingly. If there is no feasible braking control the cost
is set to infinity.

When the gear state is neutral gear g = 0 inverse simulation is not possible
and a forward simulation is performed. The cost-to-go is then taken as the
nearest grid point.

The algorithm is outlined below.

1. Let JN (i) = 0.

2. Let k = N − 1.

3. Let
Jk(xi) = min

xj∈Sk+1

{

ζ
i,j
k + Jk+1(x

j)
}

, xi ∈ Sk.

4. Repeat (3) for k = N − 2, N − 3, . . . , 0.

5. The optimal cost is J0 and the sought control is the optimal control set
from the initial state.

In this approach, the quantization of the controls is determined implicitly by
the resolution of the state space grid and the number of algorithm parameters
is thus reduced in comparison with the standard approach.

5.5.1 Summing up

Two criteria were proposed in Equation (3.32) and (3.34) with discrete formula-
tions in Equation (5.10) and (5.11). The criterion for the present work is chosen
as the latter since it besides the fuel mass includes a direct measure of the trip
time and the basic trade off for fuel-optimal control is between these quantities.
Results with the other criterion are given in Hellström et al. (2006).

The approach taken in the current work is the inverse approach, i.e. the
method of inversely calculating the required control for a state transition. A
benefit of this method is that there is no need to discretize the control and
no interpolation of cost or control is therefore needed. It relies on that the
model equations can be inverted which is true for a fixed gear. For the present
problem, this methodology can further be combined with the fast search method
explained in Section 4.3.3 in order to reduce complexity.
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5.6 Numerical Analysis

Performing numerical optimization of dynamical systems inevitable leads to
errors such as rounding and truncation errors. Floating point arithmetics always
introduces a rounding error. If the original problem has continuous components,
they must be given discrete approximations. This will, in general, give rise to
truncation errors. It is of course desirable, but hard to guarantee, that such
errors do not lead to that the numerical solution differ from the true solution
to the original problem.

During the algorithm development solutions were obtained that were un-
desired. To avoid such behavior in the final algorithm both parameter tuning
and analysis of guiding examples were performed. In the following first some
potential problems that can occur are presented. These must be avoided, and
therefore test problems and guiding examples are analyzed to accomplish this.

5.6.1 Potential Numerical Problems

Potential problems caused by numerical errors are presented in the following.
The shown solutions are obtained by applying the inverse approach with the
selected criterion (5.11). The prediction model in Section 3.1.11 are used and
flat road is assumed. The grid is 20 steps of 50 m and a velocity quantization
of 0.2 km/h is used.

Oscillating solutions are obtained when the Euler forward method is used to
discretize the model equations. The forward method applied to the prediction
model is stable for the step lengths used so a stability analysis can not explain
the behavior. Figure 5.2 shows characteristic appearance. The oscillating solu-
tion obtained when using Euler forward is shown to the left. The more stable
solution to the right is obtained with Euler backward. This type of behavior
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Figure 5.2: Using different methods to discretize the model used for optimiza-
tion. Left: Euler forward. Right: Euler backward.

was seen both with the standard and the inverse approach. Using a finer grid
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does not remove the behavior completely, but a very short step length or a
lot of smoothing reduces the oscillations. However, a short step length gives
more stages for the same horizon length in the DP algorithm and thus a higher
complexity.

Allowing neutral gear gives irrational solutions with the inverse approach.
An example of such a solution is seen to the left in Figure 5.3. When neutral
gear is engaged, inverse simulation is not possible and, in general, the cost-
to-go must be approximated. In the inverse approach, this is done by nearest
neighbor interpolation. A bound on the overestimation of the state is derived
in this section that is used to prevent the irrational solutions. When using this
bound, the solution to the right in Figure 5.3 is obtained instead.
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Figure 5.3: Left: Using nearest grid point interpolation. Right: Utilizing bound
on state overestimation.

5.6.2 Test Problem

The test problem is the vehicle in Figure 2.1 (p. 8) with one additional as-
sumption. The resisting force is assumed to be independent of x, that is
f(x, v) = f(v). The function is still assumed to be monotonically increasing
for v > 0 according to Equation (2.1). A model for the system is given by (2.4),

mv
dv

dx
= g(u) − f(v). (5.19)

The objective considered is to minimize the work needed to bring the system
from x = 0, v(0) = v0 to x = s, v(s) = v0. According to (2.5), the work needed
is

W =

∫ s

0

g(u) dx =

∫ s

0

f(v) dx (5.20)

since the kinetic energy at the start and the end of the interval is the same.
The time is constrained by

∫ s

0

dx

v
≤ T (5.21)
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Assume now that the entire horizon, i.e. the integration interval is subdi-
vided into only three mesh points

0 < h < 2h (5.22)

where h denotes the step size that equals half the horizon length. The control
u is assumed constant on each subinterval,

u(x) =

{

u0 , 0 ≤ x < h

u1 , h ≤ x < 2h

The objective can then be stated as

J = min
u0,u1

h (g(u0) + g(u1)) (5.23)

or equivalently
J = min

v0,v1

h (f(v0) + f(v1)) (5.24)

using Equation (5.20) and where v(0) = v0, v(h) = v1. The maximum time T

is chosen as

T =
2h

v0
. (5.25)

Using Equation (5.23) for interpretation, the problem is to choose the control
u0 and u1 which gives v1 as the intermediate velocity and v0 as the end velocity
such that the objective is minimized. By (5.24) the problem is interpreted as the
selection of the intermediate velocity v1, which implicitly determines the control,
as to minimize the objective. The objective (5.24) will increase if v1 > v0. Since
v1 < v0 would violate the time constraint (5.25), the optimal path is constant
speed, v1 = v0.

5.6.3 Discretization Errors

The choice of discretization method affects algorithm complexity, and three well
known and simple methods for solving ordinary differential equations are the
Euler forward and backward method and the trapezoidal rule. The effects of
using these methods on the test problem will be studied in the following.

The forward Euler method applied on the model (5.19) gives

vi+1 − vi

h
=

dv

dx
(xi) =

1

mvi

(g(ui) − f(vi)) (5.26)

and Euler backward

vi+1 − vi

h
=

dv

dx
(xi+1) =

1

mvi+1
(g(ui) − f(vi+1)) (5.27)
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and finally, the trapezoidal rule yields

vi+1 − vi

h
=

1

2

(

dv

dx
(xi) +

dv

dx
(xi+1)

)

=
1

2m

(

g(ui) − f(vi)

vi

+
g(ui) − f(vi+1)

vi+1

)

. (5.28)

Now, study the value of the objective (5.23) when using these different meth-
ods. Letting i = {0, 1}, the equations (5.26) to (5.28) can be solved for g(u0)
and g(u1) in each case. Due to the terminal constraints, v2 = v0. Insertion into
the objective (5.23) gives when using the forward Euler method,

WEF (v0, v1) = h (f(v0) + f(v1)) − m (v1 − v0)
2 (5.29)

and when using the backward Euler method,

WEB(v0, v1) = h (f(v0) + f(v1)) + m (v1 − v0)
2
. (5.30)

Using the trapezoidal rule yields

WTR(v0, v1) = 2h
v0f(v1) + v1f(v0)

v0 + v1
. (5.31)

In the following some observations are made from these basic calculations. Note
that f(v1) > f(v0) for v1 > v0 holds by the assumption (2.1).

Observations

Looking at the objective value (5.29) that is obtained when using the Euler
forward method, it is seen that the expression might have a lower value for
v1 > v0 than for v1 = v0. When using the Euler backward method (5.30)
or the trapezoidal rule (5.31) it is seen that there is no v1 > v0 such that the
objective becomes lower than when v1 = v0. The minimum of the objective is
expected to occur for v1 = v0. Therefore, using the Euler forward method does
not guarantee that the solution to the test problem is preserved. When using
the Euler backward method and the trapezoidal rule, the solution to the test
problem is still constant speed.

Studying only the first term of the Euler forward approximation (5.26), it
is seen that the contribution to the motion from a given control ui will always
be overestimated if vi+1 > vi. The opposite is true for the Euler backward
approximation (5.27). The symmetric trapezoidal rule (5.28) include the mean
of the overestimating and underestimating terms respectively. The problem is
to find the control that minimizes a criterion that includes a measure of the
required energy. Therefore, underestimating the required energy for certain
control and state trajectories is unsound.

All three tried methods are known to be convergent and stable for sufficiently
small step lengths but these concepts do not reveal if the known solution is
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preserved for the test problem. Also note that if the same dynamical model
(5.19) is used with an objective of maximizing instead of minimizing the criterion
(5.20), the trapezoidal rule would not cause trouble but the Euler forward would
instead be preferred over the Euler backward method for this test problem.

Alternative Problem Description

For the test problem, an alternative problem description can be achieved by
using that

dv

dt
= v

dv

dx
=

1

2

d

dx
v2

which yields
m

2

d

dx
v2 = g(u) − f(v)

by using the governing dynamics in (5.19). By introducing the state y

y =
1

2
mv2, v =

√

2

m
y

of kinetic energy instead of the velocity v,

dy

dx
= g(u) − f(

√

2

m
y)

is obtained. The objective value (5.23) then becomes

WEF = WEB = WTR = h (f(v0) + f(v1))

regardless of which one of these methods that is used.

5.6.4 State Errors

To study state errors, two solution trajectories to the test problem are com-
pared, see Figure 5.4. The first is the known optimal path with constant speed
v(x), x ∈ {0, h, 2h}. The other is an oscillating trajectory with an intermediate
speed v(h) = v1 > v0. The amount of perturbation in the intermediate velocity
v1 that gives the oscillating trajectory a lower objective value than the constant
speed trajectory will be quantified.

In order to obtain explicit results, it will for this analysis be assumed that
the resisting force is given by

f(v) = Cv2 + D (5.32)

where C,D are positive constants. The objective for the test problem is then

W =

∫ s

0

f(v) dx = C

∫ s

0

v(x)2 dx + Ds (5.33)

according to (5.20).
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Position

v0 v0 v0

v1

0 h 2h

Figure 5.4: Two possible state trajectories for the test problem.

Exact Solution

The two paths in Figure 5.4 are studied. Denote the constant velocity function
by vc and a piece-wise continuous velocity function for the oscillating trajectory
by va. Assume, for the oscillating trajectory, that the acceleration is constant
and equals a,

dva

dt
=

{

a, 0 ≤ x ≤ h

−a, h ≤ x ≤ 2h
(5.34)

where a > 0. Rewrite according to

dv

dt
=

dv

dx

dx

dt
= v

dv

dx
(5.35)

then, integration yields
v(x) =

√
2ax + 2c0 (5.36)

where c0 is a constant determined by the initial condition, v(0) =
√

2c0. The
velocity functions can thus be written as

vc(x) = v0, 0 ≥ x ≥ 2h (5.37)

and

va(x) =

{
√

2ax + v2
0 , 0 ≥ x ≥ h

√

−2a(x − h) + v2
1 , h ≥ x ≥ 2h

(5.38)

using (5.36). Denote with Wo the objective value of the oscillating trajectory
and with Wc the objective value of the constant speed trajectory. The difference
∆Wp is then

∆Wp = Wo − Wp = C

∫ 2h

0

va(x)2 − vc(x)2 dx = Ch(v2
1 − v2

0) (5.39)

according to Equation (5.33). This is the true difference in the work needed for
the two paths.
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Perturbed Solution

Introduce an error ǫ in the velocity v1. The error can be interpreted as a gain
or loss of kinetic energy, ∆Wk where

∆Wk =
m

2
((v1 + ǫ)2 − v2

1) =
m

2
(ǫ2 + 2v1ǫ). (5.40)

The solution can only be altered if the kinetic energy is overestimated, that is
ǫ > 0 is assumed from now on. If the error ∆Wk is greater than the unperturbed
difference of the objective values ∆Wp, the oscillating trajectory becomes opti-
mal. Therefore, define the function e(ǫ) as

e(ǫ) = ∆Wp − ∆Wk = Ch(v2
1 − v2

0) − m

2
(ǫ2 + 2v1ǫ)

= −m

2
ǫ2 − 2v1ǫ + Ch(v2

1 − v2
0). (5.41)

using (5.39) and (5.40). If e(ǫ) > 0, ǫ > 0 holds, the solution is not altered. The
roots of (5.41) are

ǫ = −v1 ±
√

v2
1 +

2Ch(v2
1 − v2

0)

m

This yields two real roots r1 and r2 since it was assumed that v1 > v0. The
second derivative of (5.41) is negative and e(0) > 0 and hence e(ǫ) > 0 for
0 < ǫ < r2 where r2 is the larger root,

r2 = −v1 +

√

v2
1 +

2Ch(v2
1 − v2

0)

m

= v1



−1 +

√

√

√

√1 +
2Ch

m

(

1 −
(

v0

v1

)2
)



 . (5.42)

Since 2Ch
m

> 0,

r2 > v1

(

−1 +
√

1
)

= 0

holds, it is concluded that r2 is positive, that is, there is a margin of error that
can be accepted without altering the solution. Using a series expansion, (5.42)
can be written as

r2 = v1

(

−1 + 1 +
1

2

(

2Ch

m

(

1 −
(

v0

v1

)2
))

− . . .

)

≈ v1

(

Ch

m

(

1 −
(

v0

v1

)2
))

= v1

(

Ch

m

(

1 +
v0

v1

)(

1 − v0

v1

))

(5.43)
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and since v0

v1
≈ 1, then 1 + v0

v1
≈ 2 which yields

r2 ≈ 2Ch

m
(v1 − v0) ≥ 2hδ

C

m
(5.44)

where δ is the state quantization step. If the perturbation is less than this
bound, the solution to the test problem is preserved. An oscillating solution
with an amplitude of δ = v1 − v0 can be insignificant with a fine grid. If an
acceptable level of perturbation of the solution is denoted τ ,

τ = v1 − v0 = nδ, n > 1

then
ǫ < 2hnδ

C

m
(5.45)

should hold. Equation (5.45) shows how the physical parameters C,m and the
optimization parameters h, δ influences the bound.

Numerical Values

Let the constant C in the resisting force model (5.32) correspond to the air
drag, i.e.

C =
1

2
cwρaAa

according to (3.10) where cw is the air drag coefficient, Aa is a cross section
area and ρa is the air density. For typical values of a truck,

C ≈ 1

2
· 0.6 · 1.2 · 10 = 3.6 > 3.

Studying heavy trucks, the mass m will be some ten tonnes but usually less
than 60 tonnes. The optimization parameters should then satisfy (5.45) where

2hnδ
C

m
> 2hnδ

3

60 · 103
=

1

2
10−4 · 2hnδ. (5.46)

With a horizon length 2h of more than 1000 m, the bound (5.46) becomes
n
2 10−1δ. The allowed perturbation is thus about an order of a magnitude less
than the quantization step δ.

When performing numerical computations on a computer, the floating point
representation always gives a rounding error. The IEEE floating point stan-
dard (IEEE Standards Board, 1985) for single precision gives a relative rounding
error less than

1

2
2−23 < 5.97 · 10−8.

For a velocity about 90 km/h, that is 25 m/s, the absolute error becomes about
1.49 · 10−6. Comparing this to Equation (5.46) with n = 1, it is seen that if

2hδ > 0.03
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holds, the margin will be greater than the floating point accuracy. Thus, the
used precision sets a bound on how fine a usable grid may be constructed.
Since the horizon length 2h is about 1000 m, it is expected that for grids with
manageable sizes, using the standard floating point representation with single
precision will not introduce oscillations.

5.7 Conclusions

An analysis has been carried out to avoid numerical problems in the final al-
gorithm. Oscillating solutions may appear despite established stability and
convergence properties of the discretization method. The interplay between the
objective and the errors is crucial. An error in the velocity state correspond
to an error in kinetic energy and it may lead to that the algorithm erroneously
finds a solution different from the true optimum. The analysis in Section 5.6
gives, even though simplified, understanding into what measures to take. The
results are as follows. Regarding discretization errors, it was shown that the
Euler backward method or the trapezoidal rule is preferred over the Euler for-
ward method for the test problem. For the more complex prediction model,
the example in Figure 5.2 shows that undesired solutions are avoided if an ap-
propriate method is used. Concerning state errors, the bound (5.45) estimates
the amount of perturbation of a velocity state allowed for the test problem.
This bound is used in the inverse approach when the cost-to-go must be ap-
proximated. The example with the prediction model in Figure 5.3 shows that
unwanted solutions is prevented by the use of the bound.

The outcome of this chapter is a well performing dynamic programming
algorithm. The complexity is lowered by a preprocessing algorithm that reduces
the search space prior to the optimization. Besides the standard approach, an
inverse approach for the evaluation of the core functional equation is formulated.
By using a proposed fast search method combined with this approach, it would
be possible to reduce the complexity further. The method chosen for the coming
evaluation of the algorithm is the inverse approach.



6

Evaluation Setup

The look-ahead control strategy has been evaluated in both simulations and ex-
periments. In this chapter, the equipment used and the basis for the parameters
in the model and in the algorithm will be described. Further, the realization of
the experimental and simulation environments are explained. The estimation
of the road slope for the trial route is also briefly described.

6.1 Vehicle

The truck simulated and used in the experiments is a scania tractor and semi-
trailer. The specifications of the experimental vehicle are given in Table 6.1.

Figure 6.1: A scania tractor and trailer.

47
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Component Type Characteristics
Engine DC9 cylinders: 5

displacement: 9 dm3

max.torque: 1,550 Nm
max.power: 310 Hp

Gearbox GRS890R 12 gears
Vehicle - total weight: 39,410 kg

Table 6.1: Truck specifications.

The truck has a relatively small engine displacement in comparison to the total
vehicle weight. This was a deliberate choice with the intention that the road
slope should make noticeably influence the motion of the vehicle.

The only parameter in the prediction model, see Section 3.1.11, that is
identified from measured data is the mass. The tractor and semi-trailer were
weighed before the experiments. Other parameters were set from e.g. data
sheets.

6.2 Algorithm Parameters

The algorithm parameters are presented in Table 6.2. The verbal interpretation
of these parameters is that the controller will look ahead 1500 m at the road
slope and optimize the velocity trajectory in the interval from 79 km/h to
89 km/h. The horizon is divided into 30 steps of 50 m and the velocity state
space grid in the optimization has a resolution of 0.2 km/h.

Parameter Function Value
h Step length 50 m
N Number of steps 30

h · N Horizon 1500 m
δ Velocity discretization 0.2 km/h

vmin Min. allowed vel. 79 km/h
vmax Max. allowed vel. 89 km/h

Table 6.2: User parameters.

Alongside the conventional cruise controller, the truck is equipped with a
brake controller. The system is activated when the truck velocity reaches above
a certain offset from the cruise controller set speed. In the experiments, it
was assured that this limit was the same for each pair of runs that was to be
compared.

The chosen penalty factors are shown in Table 6.3. The trade off between fuel
and time use is done by calculating a value of β in order to receive a stationary
solution in the middle of the desired velocity interval, that is 84 km/h. The
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magnitudes of the fuel term and time term in the cost function (5.11) are about
10−1 and 100 respectively with current parameters. The smoothing term ak has
a magnitude of about 10−1. The size of the factor γ is chosen for smoothing
but still such that this term becomes considerable smaller than the others.
The parameter ϑ for damping gear shifts is not used since the shifting is not

Factor Penalizes Value
Fuel use 1.0

β Time use 6.2
γ Velocity changes 0.1

Table 6.3: Penalty factors.

optimized. Instead a model of the automated manual transmission is taken into
account in the optimization. This is further explained in Section 6.3.1.

6.3 The Experiment Vehicle

The information flow in the experimental setup is shown schematically in Fig-
ure 6.2. The coordinates from a GPS receiver are matched against a stored road

Set speed

Current velocity and gear

slope
Road

Position

database

GPS

Road
DP algorithm

C
A

N
 b

us

Figure 6.2: Information flow overview.

database from where the slope along the current horizon can be extracted and
fed to the algorithm. The algorithm receives the current velocity and gear, and
sends set speeds to the cruise controller via the CAN bus. The cruise controller
is thus an inner loop that determines the actual fueling level. The outer loop,
the optimization algorithm, feeds the inner loop with new set points.

A robust inner loop is needed which can follow the algorithm output in an
acceptable way. Open loop control will, for example, not be able to keep a con-
stant speed on level road if the estimate of the vehicle mass is inaccurate. Using
a structure with a cruise controller, which has been proved to be robust, as an
inner loop has apparent advantages considering model errors and disturbances.

The software needed for the controller is implemented in C++ on a portable
computer. The laptop has an Intel Centrino Duo 1.20 GHz processor and 1 GB
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RAM. An overview of the implementation is given in Figure 6.3. With the
used algorithm parameters, a solution is calculated in tenths of a second on this
computer. A number of software modules are designed for different tasks, see
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Figure 6.3: Implementation overview.

Table 6.4. The modules run as independent processes and communicate with
each other by shared memory. Signals are received and transmitted to a number
of components in the truck. The current velocity is measured with a tachometer
and the current gear is reported by the gear box. The cruise controller is fed
with the optimal set point and the maximum allowed velocity is sent to the
brake system. A GPS receiver gives the coordinates for the current position.
Although only the first sample of the solution is used for control, the optimal
solution for the entire horizon is saved with the purpose to graphically show
the solution on the laptop. The visualization module updates a window with
the optimal velocity trajectory and the predicted gear every time the algorithm
outputs a new solution. The estimated road slope along the look-ahead horizon
is also integrated and shown together with the solution.

Module Purpose
CAN Conduit handles CAN communication
Optimization implements the fuel-optimal algorithm

Road database extracts slopes ahead of the current position
Supervisor acts as the central node for the system

Visualization graphically displays the solution on the laptop

Table 6.4: Description of software modules.

Two views from inside the truck are portrayed in Figure 6.4. One computer,
seen to the left, was used to log data from control units in the truck. A second
computer, seen to the right, run the described software modules. Two GPS
receivers were used. One cheaper unit (about $100) provided the algorithm
with a position at 4 Hz for the purpose of matching the position against the
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stored road database and extracting the slope along the look-ahead horizon.
Another unit (about $1000) provided the log computer with a position at 20 Hz
enabling all vehicle data to be logged together with the current coordinates.

Figure 6.4: Views from the passenger seat inside the truck. Left: The com-
puter used for collecting data from the control units in the vehicle. Right: The
computer running the optimization algorithm and the accompanying software
modules.

6.3.1 Adjustments for the Experiments

Some adaptations of the control strategy were made with respect to the trans-
mission and cruise controller of the experimental vehicle.

Gear Shift Prediction

The algorithm controls the vehicle by adjusting the set speed sent to the conven-
tional cruise controller, as depicted in Figure 6.2. The existing cruise controller
is already prepared to receive and handle set points from other control units.
This is for example the case in adaptive cruise controller systems. For the gear
box, this is however not yet the case. Therefore, it was decided not to control
the gear selection. Gear shifting is instead fully controlled by the existing sys-
tem for automatic gear shifting of manual gearboxes. This is handled in the
optimization algorithm by making a simple model of the shift control system
and taking it into account when calculating transition costs.

The gear shift prediction model simply consists of tabulated values of gear
number and two engine speed threshold values. If the lower threshold is reached
on the corresponding gear, a shift to the next lower gear is predicted. Likewise,
the upper threshold determines the point of a shift to the next higher gear. This
model of the automatic shift system, in spite of the crude nature, demonstrated
to have satisfactory performance, as will be seen in Section 7.1.

In the optimization algorithm, a shift that is not predicted is assigned an
infinite cost. Due to this large penalty, shifts which are not possible outputs
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from the prediction model will not be part of the solution.

Improving Cruise Controller Tracking

Before the trial runs, drives were made merely to test the system functionality.
In these runs, it was noticed that the velocity trajectory given from the opti-
mization was poorly effectuated. The existing cruise controller did not respond
well to the small changes of the set point between consecutive samples. The
cruise controller is primarily designed to keep a constant speed and also to give
a comfortable acceleration when for example resuming to a previous set point.
The controller is however not designed to track a trajectory such as the output
from the algorithm. The solution trajectory will at most change as much as
the maximum acceleration (or minimum deceleration) given by the prediction
model. In this experiment, a step length of 50 m was used. The maximum
possible change in the velocity over this length together with present signal
noise evidently makes it hard for the existing cruise controller to effectuate the
optimal solution.

To tackle this problem, simple ad-hoc rules were set to increase or decrease
the set point, more than the given by the actual solution, in certain situations.
By studying the fueling level for a number of samples of the solution, it is
guessed whether a large acceleration or deceleration is wanted. The rules are
verbally stated as follows.

Torque mode If the mean value of the fueling level for the next R samples
is above a set threshold, increase the set point to the upper optimization
bound.

Drag mode If the mean value of the fueling level is below a set threshold
for the next R samples, decrease the set point to the lower optimization
bound.

The rules worked rather well as will be demonstrated by experimental results in
Chapter 8. It is also possible to model the cruise controller and take the inverse
model into account in order to improve the response but then the algorithm
complexity would increase. Another way to remedy the tracking problem could
be a cruise controller design where the desired acceleration can be given as
input.

6.4 The Simulation Environment

The evaluation model described in Section 3.1.12 is implemented in Matlab

Simulink and interfaces to the algorithm code are created. Owing to these
interfaces, exactly the same algorithm code are used in the simulation envi-
ronment as in the experiments. The implementation uses templates from the
Center for Automotive Propulsion Simulation (Eriksson et al., 2004).
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6.5 Road Database

The trial route is a segment of about 120 km on the highway E4 in Sweden
between the cities of Södertälje and Norrköping.

The slope in front of the vehicle for the length of the look-ahead horizon
is needed to be known in advance. For this reason, the road slope along the
trial route is estimated off line prior to the experiments. This is done by aid
of a non-stationary forward-backward Kalman filter (Hellström et al., 2007;
Sahlholm et al., 2007). The measurements were obtained at 20 Hz from a GPS
unit. The filter inputs are vertical and horizontal velocity of the vehicle, altitude
and the number of reachable GPS satellites.

The estimated slope and calculated altitude are shown in Figure 6.5. The
slope is rather moderate. It ranges from -4% to +4% but is mostly in between
about -2% to 2%.
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Figure 6.5: Estimated road slope and calculated altitude along the trial route.
The route is the highway E4 between the cities of Södertälje and Norrköping.

The position is measured by a GPS unit and after the closest position that
is stored in the database is found, the slope values ahead of the vehicle are
extracted.

6.5.1 Road Segments

In the coming chapters, it will be interesting to study truck behavior in more
detail. For that purpose representative road segments have been chosen. An
overview of the segments are given in Figure 6.6. The start of a road segment
is marked with a circle and the end with a cross.
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Figure 6.6: For detailed studies a number of road segments along the trial route
have been selected and named. The bounds of a segment are marked with a
circle and a cross. Coordinates are given in decimal degrees.

To study controller characteristics in detail, two segments have been chosen.
The first is a 2.5 km segment close to Södertälje and is named the Järna segment,
see e.g. Figure 7.6. The second one is a 3.5 km segment about halfway on the
trial route and called the Hållet segment, see e.g. Figure 7.5.

For validation purposes two segments have been used. The first is the Hållet
segment. The second one is 6 km just before the Hållet segment and called the
Olstorp segment, see Figure 7.1. These segments are both close to the city of
Nyköping that is situated about halfway between Södertälje and Norrköping.

In order to study the rolling horizon used by the controller, three segments
have been used. The first two are the Järna and the Hållet segments. The
last one is a 2.5 km segment close to Norrköping labeled the Stavsjö segment,
see Figure 8.7. To study gear shifting strategies a 14 km segment close to the
Stavsjö segment is selected and named the Getå segment, see Figure 7.12.



7

Model Validation and

Parameter Studies

The model based control in this work uses a model to predict vehicle motion
and energy consumption. The validity of this model will be investigated by
comparing its predictions with measurements. To evaluate the potential of look-
ahead control, simulations are carried out to predict performance in terms of
overall impact on fuel consumption and travel time as well as detailed controller
behavior. Comparison of these results with the experimental results obtained
gives an indication on the accuracy to expect from such simulation results.
Simulations are well suited for parameter studies. The influence of a number of
parameters on the solution will be investigated through simulations using the
setup and parameters described in Chapter 6.

Whenever reviewing a vehicle control strategy claiming to save energy, the
trip time must be considered in combination with stated fuel consumption num-
bers. There is no challenge in saving fuel by traveling slower. For a convincing
result on controller performance, the fuel use must be lowered without increas-
ing the trip time in comparison with the used measure.

7.1 Prediction Model Validity

The performance of the simple prediction model is investigated by comparing
measured data and offline simulations. The measured control signals fueling,
braking and gear together with estimated road slope are used as inputs to the
prediction model. The output, acceleration and fuel flow, are integrated and
compared to the measured velocity and fuel use. The measured velocity is
also used as input to the prediction model for gear selection and the output is

55
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compared to the actual gear used. The data that are used come from drives
with the cruise controller active, and were recorded at about the same time of
day on two consecutive days. The road segments in the coming figures are the
Olstorp and the Hållet segments, see Section 6.5.1.
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Figure 7.1: The Olstorp segment. The absolute prediction error becomes large,
especially in the right figure. Still, the dynamic response to the control and
road slope is captured acceptably.

In Figure 7.1 the Olstorp segment is shown. The velocity prediction performs
significantly better in the left figure. The absolute error becomes large in the
right figure. Still, the influence of the varying road slope on the predicted
acceleration is seen to be generally satisfactory. The prediction of the gear
selection is rather good with the exception of the shift at 4.5 km in the left figure
which is not predicted to occur at all. Comparing the measured data on the
segment between 2.5 km and 3.5 km in the left and right figures are interesting.
The fuel use curve reveals that the fueling is zero. In the left figure the truck
keeps about the same velocity while in the right figure, the truck accelerates.
Between 500 m and 1100 m there is also a segment with zero fueling. In this
segment, the difference in the acceleration is not as large. Since it does not seem
to be a general trend comparing the two drives, the cause could for example be
a transient increase of the load from air drag or an auxiliary device. However,
no certain conclusion can be drawn from the recorded data on what the cause
of this is. The prediction model does not capture these effects, but the trends
in the velocity are yet captured well after 3 km in the right figure, although the
absolute value has drifted away.

Figure 7.2 shows the Hållet segment. The gear selection is predicted well.
By visual inspection, it is seen that the sum of the errors in the prediction
of velocity is about the same in the left and right figure. In both runs, it is
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Figure 7.2: The Hållet segment. The predictions are poor about the midsection
and this suggests that the slope might be badly estimated here.

apparent that there is a negative prediction error at first and a large positive
error around 2 km. The positive and negative accelerations around 1.5 km are
poorly captured. In the previous figure it was seen that the influence of the
road slope was captured rather well. Since this is not the case here, it suggests
that the slope might be crudely estimated.

The prediction model is rather simple. The data presented in this section in-
dicate that changes from one drive to another can notably influence the absolute
prediction performance. One way to enhance performance could be to identify
model parameters online. Further, the prediction naturally relies heavily on
estimated vehicle mass and estimated road slope. The vehicle mass is however
expected to be estimated accurately since the entire vehicle was weighed. The
quality of the road slope information relies on the estimation method but is
hard to evaluate since there is no recognized and accurate source of informa-
tion about the true road topography. The important property of the prediction
model is however to be able to accurately estimate the energy consumption of
one control signal trajectory relative to another. Therefore, the principle effects
on vehicle motion and fuel consumption from control signals and road slope
should be well captured.

It should finally be noted that the prediction horizon used in the optimiza-
tion is 1.5 km and thus much shorter than the distances in these validations.
The horizon is one fourth of the distance in Figure 7.1 and about half the
distance in Figure 7.2.
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7.2 Performance Prediction

An interesting question is how accurate simulation studies are in their assess-
ments. With careful modeling and evaluation, the fuel consumption of a heavy
truck can be predicted with an error of a few percent (Sandberg, 2001b). How-
ever, when evaluating control strategies the absolute accuracy is of less impor-
tance as long as the relative impact on the objectives due to different strategies
can be judged well. In the present application, the relative change in time and
fuel use is thus of main interest. A simulation environment is used with the
same setup as in the experiments. This facilitates comparisons between the
predicted performance through the simulation environment and actual perfor-
mance obtained on the road, see Chapter 8. .

7.2.1 Overall Results

A number of simulations are undertaken in order to compare the fuel consump-
tion of the conventional cruise controller (CC) and the look-ahead controller.
The algorithm parameters are held constant and only the CC set speed is varied.

The results in Figure 7.3 show that a CC set speed of about 85 km/h will
render the same trip time as with the look-ahead controller. The overall results
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Figure 7.3: Simulated look-ahead control performance compared to ordinary
cruise control with varying set speed.

with this set speed are shown in Figure 7.4. These are calculated as the average
of the values in both directions. For these mean values, the look-ahead controller
lowers the fuel consumption with almost three percent without increasing the
trip time traveling back and forth. Studying the simulations in further detail
also reveals that the simulated number of gearshifts is reduced notably in both
directions. Although the shifts were not controlled directly, the look-ahead
algorithm evidently affected the shifts indirectly.
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Figure 7.4: Simulated results showing potential for fuel saving and a reduction
of the number of gear shifts.

7.2.2 Control Characteristics

The controller behavior will now be examined in detail for a number of se-
lected road segments along the trial route. These are the Järna and the Hållet
segments, see Section 6.5.1. The same segments are used in Chapter 8 for
evaluating the actual behavior achieved in the on-road experiments.

The figures, see e.g. Figure 7.5, have four sub-figures and all data are dis-
played with position as the horizontal axis. The road topography is shown at
the top. The second sub figure shows the simulated velocity for the look-ahead
controller (LC) and the standard cruise controller (CC). The third part shows
normalized fueling (thick lines) and brake levels (thin lines). The last part
displays both the engaged gear number and the accumulated fuel use. Data
connected to the simulation of the LC is displayed in solid lines and data asso-
ciated with the CC is displayed with dashed lines in these figures. The simulated
travel time and fuel use on the segment are shown together with the relative
change (∆fuel,∆time) above the top figure. A negative value means that the
value is lowered by the look-ahead controller. Note that the relative changes on
these short segments of a few kilometers are not comparable to the results on
the entire route which ranges more than 100 km.

The Hållet Segment

Figure 7.5 shows simulations on the Hållet segment. In the left figure, at 500 m
it is seen that the LC accelerates prior to the uphill that begins at 750 m. This
avoids the gear shift that the CC is forced to, and leads to a higher velocity
climbing the hill up to 1750 m. At the top of the hill at 1750 m, the LC slows
down in contrast to the CC. The truck is thus let to accelerate by the slope.
The CC will however use a non-zero fueling as long as the truck is going slower
than the set point. The slow-down reduces the need for braking later in the
downslope and thereby the inherent waste of energy is lessened. From the fuel
integral at the bottom, it is seen that the LC consumes more fuel the first 1.5 km
owing to the acceleration. However, in total less fuel is spent by the LC due to
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the slow-down at the top of the hill.
Simulating the other direction, see the right half of Figure 7.5, gives similar

features. A gain of speed at 250 m and then a slow-down at the top of the hill
at 2250 m. In both directions, time as well as fuel are saved.
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Figure 7.5: Simulation on the Hållet segment. Left: The LC accelerates at 500 m
prior to the uphill thereby avoiding a gear shift. At 1750 m the LC slows down
and the truck is let to accelerate in the downslope. Right: Similar characteristics
are seen with an acceleration at 250 m and a slow-down at 2250 m.

The Järna Segment

In Figure 7.6, simulations on the Järna segment are shown. The left figure show
that the LC begins to gain speed at 200 m, before the uphill begins at 400 m.
At 1300 m, the LC slows down and lets the truck accelerate in the downslope.
In total, the LC uses more fuel but travels faster than the CC on this segment.

In the right half of Figure 7.6 a simulated drive in the other direction is
shown. The LC slows down at 1400 m and thereby avoids the braking that the
CC is forced to at about 2000 m.

7.3 Parameter Evaluation

It is of interest to study the influence of horizon length, gear shifting strategy,
neutral gear, cruising speed and vehicle mass on principle behavior. The impact
of these parameters on the fuel consumption and travel time will be evaluated
through simulations in the following sections.
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Figure 7.6: Simulation on the Järna segment. Left: The LC gains speed at
200 m prior to the uphill and slows down at 1300 m and the truck is let to
accelerate in the downslope. Right: The LC slows down at 1400 m thereby
avoids braking later on.

7.3.1 Mass

The vehicle mass in relation to the available engine power is one important
influencing factor on the nature of the present problem. To study this, simu-
lations are made with varying mass, and the fuel consumption and travel time
are compared. In these simulations the cruise controller (CC) set speed was ad-
justed in order to make the change in travel time small. The results are shown
in Figure 7.7.

The potential of look-ahead information is evidently dependent on the vehi-
cle mass considering other model parameters constant. This is expected since
the mass will determine the effect the road slope will have on vehicle motion.
The results should be dependent on the road topography as well. For example,
on a more difficult route where significant slopes are more frequent it is ex-
pected that the range of vehicle masses where there is evident potential would
be larger.

7.3.2 Set Speed

The cruising speed is chosen to be around 84 km/h in most of the simulations
in this chapter. To suggest the significance of this choice, the simulations in
Section 7.2.1 are repeated at other cruising levels.

Regarding the optimization parameters, the allowed velocity interval is low-
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Figure 7.7: Simulations with varying mass. The cruise controller (CC) set speed
has been adjusted as to make the change in travel time small.

ered from [79,89] to [69,79] [km/h] and the penalty parameter β is chosen to
4.3 in order to receive a stationary solution in the middle of the new velocity
interval, that is 74 km/h.

These new algorithm parameters are held constant and the cruise controller
(CC) set speed is then varied. The trip time with the cruise controller will
vary with the set point and the resulting fuel consumption can be compared
to the one obtained with the look-ahead controller. The results are shown in
Figure 7.8. According to the figure, a CC set speed of about 74 km/h should
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Figure 7.8: Simulated performance compared to ordinary cruise control with
varying set speed with another velocity interval.

yield the same trip time as with the look-ahead controller.
Comparing Figure 7.8 with the previous results in Figure 7.3 reveals that

the potential of look-ahead control is about the same for the respective velocity
intervals.
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7.3.3 Horizon

The length of the look-ahead horizon determines how far the information about
the upcoming road topography reaches. The division of the horizon into a
number of steps determines the position resolution of this information. Since
adding more information means an increased algorithm complexity a trade off is
made. In this section the impact on algorithm performance due to the horizon
length is investigated. The step size is held at 50 m and the number of steps is
varied to obtain different horizon lengths.

In Section 7.2 the controller performance is predicted in terms of the impact
on the fuel consumption and travel time on the trial route. Those simulations
do not optimize gear shifts since only shifts predicted by the model are allowed.
Unlike those, the simulations here will optimize gear shifts.

Simulation results are shown in Figure 7.9. The fuel consumption is reduced
with about two to three percent while keeping about the same trip time. In
the direction towards Norrköping the best results are obtained with an horizon
of more than 750 m. In the other direction, a horizon longer than 1000 m is
required.

0 500 1000 1500 2000 2500 3000
−4

−3

−2

−1

0

1

2

Horizon [m]

R
el

at
iv

e 
ch

an
ge

 [%
]

Södertälje − Norrköping

 

 

∆fuel
∆time

0 500 1000 1500 2000 2500 3000
−4

−3

−2

−1

0

1

2

Horizon [m]

R
el

at
iv

e 
ch

an
ge

 [%
]

Norrköping − Södertälje

 

 

∆fuel
∆time

Figure 7.9: Simulations with varying horizon length with optimized gear shifts.

7.3.4 Gear Shifts

Gear selection was not controlled directly by the look-ahead controller in the
experiments, as mentioned in Chapter 6. A model of the automatic gear shifting
system is instead taken into account. The impact on the performance of this
restriction will now be studied. For this reason, the varying horizon simulations
from Section 7.3.3 are repeated with the change that the prediction model of
the automatic gear shift system is taken into account. Adding another degree
of freedom to an optimization problem should at least give the same solution
but hopefully a better solution, that is a lower objective value in a minimization
problem. The results from simulations are shown in Figure 7.10 that should be
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compared to Figure 7.9. Comparing the figures reveals that the improvement
is rather small. The gain of optimizing gear shifts with the current setup on
this route thus seems low. It should be noted that the route reflects highway
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Figure 7.10: Simulations with varying horizon length without optimizing gear
shifts.

driving with relatively few gear shifts. Simulations of the evaluation model with
standard cruise control indicated about 14 shifts in either direction of the 120 km
route with the current setup according to Section 7.2.1. This indicates the
number of sections where differences in the control with and without optimized
gear shifts probably appears. Due to the rather low number of shifts compared
to the route length, small changes in the objectives are expected.

Since it is generally fuel efficient to have the highest applicable gear engaged,
a down-shift will probably occur only when it is unavoidable. With look-ahead
information down-shifts may be avoided or the position of the shifts changed in
comparison to a system with no look-ahead. For short but significant uphills,
a shift may be avoided by gaining speed prior to the hill. The shift points may
be moved such that a down-shift is made in advance when a difficult segment
approaches or that a lower gear is kept if there are more uphills ahead.

7.3.5 Neutral Gear

The use of neutral gear to reduce fuel consumption is one interesting approach.
Computer simulation results (Fröberg et al., 2005; Hellström et al., 2006) have
indicated that there is a possible potential and there are also commercially
available transmissions (Volvo press release, 2006) with integrated logic that
aims at a reduced fuel consumption by the use neutral gear.

The possible potential of using neutral gear will now be studied. The sim-
ulations with varying horizon from Section 7.3.3 are therefore repeated with
the change that neutral gear is an allowed control in the algorithm. Allow-
ing neutral gear adds another degree of freedom to the optimization problem
and should therefore give the same solution or a better one with regard to the
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current objectives. The gain is shown by comparing the simulation results in
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Figure 7.11: Simulations with varying horizon length with optimized gear shifts
including neutral gear.

Figure 7.11 with the previous results in Figure 7.9. The fuel consumption and
the travel time reduction is slightly reduced. The change that appears in the
direction towards Södertälje is somewhat more apparent.

It has been noted when performing these simulations that the results are
rather sensitive to the modeling of the idle fuel flow and the shift process.

7.4 Shifting Strategies

In order to illustrate shifting behavior the Getå segment is used, see Sec-
tion 6.5.1. The allowed velocity interval is set to [69,79]. The penalty parameter
β is chosen to 4.3 in order to obtain a stationary solution of 74 km/h. The re-
sults are shown in Figure 7.12 where the left part comes from a simulation with
optimized gear shift and the right part is the result without gear shift opti-
mization. The positions at which the shifts are made are moved slightly. The
most evident difference occurs around 2 km where the optimized sequence holds
gear 12 for about 200 m extra and then directly shifts into gear 10. The non-
optimized sequence arrives at the same gear at about 2300 m but through two
shifts. In Section 7.3.4 it was shown that the optimization of gear shifts did not
give a significant improvement in terms of fuel and time use on the trial route.
However, the shifting behavior is influenced which can increase the maximum
slope that can be handled without driver intervention and improve the driver
comfort.

7.5 Conclusions

The validation of the prediction model shows that the dynamical response to
control and road slope variations is good in general. There are some effects that
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Figure 7.12: Simulation on the Getå segment. The optimized gear trajectory(to
the left) shifts at slightly different positions compared to the non-optimized
trajectory (to the right). This is most evident around 2 km.

are not captured by the simple model, but since it is used in the optimization
the complexity should be kept low, and it performs quite satisfactory.

Simulations show that with the chosen setup, the fuel consumption can be
reduced with almost three percent on the trial route without increasing the
travel time and the number of gear shifts is reduced significantly. The depen-
dency on vehicle mass shows an interesting behavior, see Figure 7.7. With other
parameters fixed there are notable increases in fuel gain for larger masses. When
the velocity interval considered for optimization was lowered with 10 km/h it
was discovered that the potential for fuel saving still were about the same. By
varying the horizon length, it was shown that a look-ahead horizon of about
1000 m or more gave the best results. A longer horizon length was shown not
to give noticeable improvements.
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Experimental Results

Trial runs has been performed on a segment of about 120 km on the highway E4
in Sweden between the cities of Södertälje and Norrköping. The experiments
were carried out in collaboration with scania. In this chapter, the performance
of the look-ahead controller is examined by demonstrating overall impact on
fuel consumption, time use and shifting behavior as well as detailed controller
characteristics. The setup for the experiments is explained in Chapter 6. Vehicle
specifications are given in Table 6.1 and algorithm parameters are given in
Table 6.2 and 6.3.

8.1 Performance

In total, five comparative trial runs were made. Each run consisted of one drive
with look-ahead control and one with standard cruise control in a direction
on the road from Södertälje to Norrköping. The algorithm parameters were
the same for all runs. The trip time will then become about the same for
all drives with the look-ahead control. The set point for the cruise controller
was chosen in order to achieve a trip time close to the one obtained with look
ahead. The set points used are stated in Table 8.1. In the table some notes
about the weather and road conditions are also given to provide a sketchy
picture of the situation. Further, the traffic was light to moderate during the
experiments. The experiment in November was only performed in the direction
from Södertälje and Norrköping whereas the other experiments were performed
in both directions each day.

67
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Date Weather Road CC set speed
1 Nov. -06 0.5◦C, rainy, windy wet 86 km/h
11 Dec. -06 5◦C, some rain, windy wet 85 km/h
12 Dec. -06 5◦C, calm wet 84 km/h

Table 8.1: Trial run setting. Weather notes give a rough idea of the conditions.

8.1.1 Overall Results

The relative change in fuel consumption and trip time (∆fuel,∆time) are shown
in Figure 8.1 for each direction on the trial road. A negative value means that
the look-ahead controller (LC) has lowered the corresponding value. The set
point for the cruise controller (CC) increases along the horizontal axis. The
left-most result is maybe the most convincing since it reduces fuel use and trip
time in both directions.
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Figure 8.1: Relative changes in fuel consumption (∆fuel) and trip time (∆time)
obtained in the trial run. The set point for the cruise controller (CC) is varied
in the experiments and increases along the horizontal axis.

In Figure 8.2 the overall results are shown. These are calculated as the
average of the values obtained with the experiments made in December, where
drives in both directions of the trial road were made on each day. The results
thus entails four runs back and forth on the trial road, two runs with the CC and
two with the LC. For these mean values the fuel consumption was lowered with
3.53%, from 36.33 L/100km to 35.03 L/100km, with a negligible reduction of the
trip time (0.03%) in comparison with the CC. Also interesting to note is that the
mean number of gear shifts on this route decreases from 20 to 12 with the LC. By
accelerating before significant uphills some shifts are avoided by the LC as will
be seen in the detailed figures in the following sections. The controller behavior
has been appreciated as comfortable and natural by participating drivers and
passengers.

The fuel consumption results in Figure 8.2 agrees well with the values ob-
tained in simulations, see Figure 7.4 (p. 59). The simulated trip time is about
3 min longer but this is partly due to that the simulations are done over a
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Figure 8.2: Overall results showing a fuel saving potential of about 3.5% without
an increased trip time. The mean number of gear shifts is also notably reduced.

longer distance than in the measurements. The predicted number of gear shifts
are considerably underestimated but the relative decrease of gear shifts due to
look-ahead control is well captured. The relative change for the other measures
agrees rather well with the simulations.

8.1.2 Control Characteristics

With the intention to give a representative demonstration of controller char-
acteristics in detail two road segments have been chosen. These are the Järna
and the Hållet segments, see Section 6.5.1. Data from the trial runs on these
segments, in each direction, will be presented. In Chapter 7, the controller
behavior was simulated on the same set of road segments.

In agreement with the corresponding figures in Chapter 7, each figure is
divided into four sub-figures, see e.g. Figure 8.3, all having the position as the
horizontal axis. The road topography is shown at the top and the coordinates
for the start and final position are also given on the horizontal axis. The next
subfigure shows the velocity trajectories for the look-ahead controller (LC) and
the standard cruise controller (CC). The third part shows normalized fueling
(acc) and retarder (brake) levels with thick and thin lines respectively. At the
bottom, both the engaged gear number and the fuel use are shown. Data related
to the LC is displayed in solid lines and data associated to the CC is displayed
with dashed lines in these figures. Above the figures, the time and fuel spent on
the section are shown together with the relative change (∆fuel,∆time) in these
values between the two controllers. A negative value means that the value is
lowered by the look-ahead controller.

The Hållet Segment

Figure 8.3 shows the Hållet segment. The corresponding simulation is shown in
Figure 7.5 (p. 60). In the left figure, as in the simulation, the LC accelerates
at 500 m prior to the uphill and slows down at the top of the hill at 1750 m
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in comparison to the CC. In contrast, the simulated results show that the LC
avoids the gear shift but this is not the case in this measurement.

The trip in the other direction is shown in the right half of Figure 8.3 and
Figure 7.5. Similar features are seen again. A gain of speed at 250 m and then
a slow-down at the top of the hill at 2250 m. The gear shifts around 2 km do
however not appear in the simulated trip. In the measurements, both controllers
reach a lower velocity around the top of the hill compared to the simulations
which explain this discrepancy.

In both directions, time as well as fuel are saved. The absolute values of
measured and simulated fuel and time use are close but the relative changes
differ more clearly.
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Figure 8.3: The Hållet segment. Left: The LC accelerates at 500 m prior to
the uphill and slows down at 1750 m when the top is reached. Right: Similar
characteristics, an acceleration at 250 m and a slow-down at 2250 m.

The Järna Segment

In Figure 8.4, the Järna segment is shown. The matching simulation is shown
in Figure 7.6 (p. 61). The left figure shows that the LC begins to gain speed at
200 m and slows down at 1400 m. This agrees well with the simulated behavior.
In the measurements, the LC avoids the gear shift that the CC is forced to do
around 1 km while there are no gear shifts in the simulation. The reason is
likely the fact that the simulated velocity near the top of the hill is slightly less
than measured.

In the right half of Figure 8.4 and Figure 7.6 a drive in the other direction
is shown. In the experiment, the LC accelerates at 500 m and starts to slow
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down at 1400 m. The slow-down lessen the braking effort needed at about
2000 m. The acceleration at 500 m do not appear in the simulated drive and
here clear differences arise compared to the experiment. The cause of this will
be investigated further in the following section.

The absolute values of fuel use differ, especially for the road segment to the
left in the figures. A comparison in the other direction is not justified since the
velocity trajectories are so different.
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Figure 8.4: The Järna segment. Left: The LC gains speed at 200 m prior to
the uphill and avoids a gear shift. At 1400 m the LC slows down and the truck
is let to accelerate in the downslope. Right: The LC accelerates at 500 m and
slows down at 1400 m thereby reducing the braking effort needed later on.

8.1.3 Rolling Horizon

To further study properties of look-ahead control, the solution trajectories ob-
tained in each iteration are compared to the set point sent to the cruise controller
and the resulting velocity. The road segments studied earlier will be examined.
This will reveal some effects of feedback to the look-ahead controller and also
aid in explaining some of the observed behavior of the controller characteristics.
The road segments used are the Järna and the Hållet segments studied earlier
and the Stavsjö segment, see Section 6.5.1.

The look-ahead control strategy repeatedly solves an optimization problem
online by using a truncated horizon, see Section 2.4 and Figure 2.2, that with
current parameters is 1500 m. In each iteration, a control and state sequence
is found that minimizes a criterion. The velocity trajectory of the solution is
studied here.
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The trajectories were obtained offline by applying the algorithm every 50 m
with the initial values given by the recorded data and using the same road data.
Each figure is divided into two both having position as the horizontal axis, see
e.g. Figure 8.5. The top part shows the road topography and the bottom part
shows the velocity trajectories. The solution trajectories are drawn with solid
thin lines in the figures. The measured velocity is drawn with a thick solid line
and the measured set point that was fed to the cruise controller is drawn with
a thin dashed line.

The Hållet Segment

Figure 8.5 shows the Hållet segment. The corresponding controller character-
istics are shown in Figure 8.3. In the left half of the figure the trajectories are
rather agreeing. A spread appears at about the top of the hill at 1500 m where
many solution trajectories lies above the measured. Between 2.5 km and 3 km,
all solutions stays at 89 km/h which was the upper bound in the optimization
interval.

In the right half of Figure 8.5, the trajectories are not as agreeing as in
the other direction. Between 250 m and 500 m it is seen that the solution
trajectories start with a velocity clearly higher than the previous trajectory for
at least three samples. In the beginning, the actual acceleration thus seems
to be larger than predicted. On the other hand, the deceleration at the top
of the hill seems larger than predicted and thus causing a spread among the
trajectories. The road segment in Figure 8.5 is the same as in Figure 7.2 in
Section 7.1 where a comparison between measured and predicted data suggests
that the slope is crudely estimated in this particular road segment. Figure 8.5
indicates that the slope at the beginning and around the top of the hill at
about 2 km might be underestimated which would explain the spread of the
trajectories. If for example the estimated vehicle mass was the main source of
these errors, the errors would be agreeing. At first the errors are equivalent to
an estimated mass higher than in reality and later the situation is the opposite.
A certain conclusion, though, can not be drawn from these data.

The segment around 2 km in Figure 8.5 reveals some effects of feedback
to the look-ahead controller. Since the initial velocity is fed to the algorithm
every trajectory should start out reasonable accurately. But if the slope is
underestimated, the solution trajectories will continue to lie above the one that
will actually result if it is not possible for the inner loop to realize the solution
trajectory.

The Järna Segment

Figure 8.6 shows the Järna segment. The matching controller characteristics
are shown in Figure 8.4. In the left half of the figure, the trajectories are rather
consistent with the exception for an interval around 1 km.
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Figure 8.5: The Hållet segment. Left: Consistent solution trajectories. Right: A
spread of the trajectories in the beginning and the second half of the section.

In the right half of Figure 8.6, the road segment is shown in the other
direction. The trajectories have a large spread from 500 m to the end of the
segment. At about 500 m, it shows that the solution trajectories do not entail an
acceleration prior to the uphill in the middle of the segment. The control rules
do however wrongly interpret the solution as an acceleration and adjust the set
point accordingly. In the downhill the acceleration is clearly underestimated.
The resulting trip time and fuel use are however satisfactory in comparison with
the cruise controller, see Figure 8.4. A possible downside is the perception of
the ride due to the fact that the set point makes a large step for one sample at
about 700 m causing the acceleration to cease for that sample. However, the sole
source of this behavior is the mentioned problem with tracking characteristics
that should be made obsolete by another configuration of the inner control loop
that is, the cruise controller.
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Figure 8.6: The Järna segment. Left: The trajectories are consistent besides
around 1 km. Right: A large spread of the trajectories in most of the section.
The control rule increases the set point at 500 m and that gives an actual
trajectory different than the solution trajectories.



74 Chapter 8. Experimental Results

The Stavsjö Segment

In Figure 8.7 the Stavsjö segment is shown. This road segment is chosen to illus-
trate how the rolling horizon influences the solution trajectories. The look-ahead
horizon is 1500 m and the downhill is therefore not visible for the controller in
the beginning of the segment. The more of the downhill that is covered by the
horizon, the greater the deceleration prior the downhill becomes. This lead to a
gradual decrease of the set point at first until at about 1200 m when the control
rule decides to set the lowest possible set point value of 79 km/h.
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Figure 8.7: The Stavsjö segment. The slow-down prior to the downhill becomes
more evident as the vehicle and the look-ahead horizon proceeds.

8.2 Conclusions

A fuel consumption reduction of about 3.5% on the 120 km route without an
increase in trip time was obtained in the experiments. The mean number of
gear shifts was reduced with 42% due to shifts avoided by gaining speed prior to
uphills. The look-ahead control mainly differs from conventional cruise control
near significant downhills and uphills where the look-ahead control in general
slows down or gains speed prior to the hill. Slowing down prior to downhills
is intuitively saving fuel, and accelerating prior to uphills is one way which,
at least for shorter hills, gives a higher velocity throughout the hill and will
reduce the need for lower gears. The crucial problem is really how and when to
effectuate these control actions. This depends non-trivially on the vehicle and
the road, e.g. the mass and road slope, and the algorithm handles this well.

By comparing simulations with the experiments, it was seen that the overall
impact of look-ahead control on the performance measures are well predicted.
Further, the controller characteristics were studied in more detail on selected
interesting road segments. The behavior was captured relative to simulations,
and thus giving validating evidence of both model and algorithm in real exper-
iments.
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Conclusions

A look-ahead control strategy has been developed with the aim to reduce the
fuel consumption of a heavy truck by utilizing information about the road to-
pography ahead. The strategy repeatedly solves a discretized and truncated
problem online by means of a tailored dynamic programming algorithm.

The mass is the most important parameter in the current context. The
vehicle mass of a heavy truck is tens of tonnes. Due to the large mass even
moderate slopes become significant. Therefore it is in general not possible to
keep a desired cruising speed, the velocity will inevitably vary. Further, the
loss of propulsion force when shifting gear has a noteworthy influence on vehicle
motion. A prediction model taking these effects into account is of hybrid nature
and includes time delays. The large vehicle mass thus causes a challenging
optimization problem.

The optimization algorithm gives satisfactory solutions with a sufficiently
low computational complexity. A key step was to avoid problems due to nu-
merical errors. The final algorithm computes a solution in tenths of a second
on a modern laptop computer and this allowed realization in a demonstrator
vehicle and experimental evaluation.

The prediction model was demonstrated to capture the dynamics due to
control and road topography. The simulation environment predicted the per-
formance of the look-ahead controller close to the actual values measured in real
trial runs. The validation of the models for prediction and evaluation forms a
reliable base for algorithm development. It also reinforces the current experi-
mental results by showing how the potential of the control vary with a number
of parameters.
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Experiments were performed on a 120 km segment on a Swedish highway
with moderate slopes. The demonstrator showed about 3.5% reduction of the
fuel consumption without an increase in the travel time back and forth on this
route. Further, the number of gearshifts was notably reduced. The typical
characteristics of the velocity trajectories obtained with look-ahead control are
intuitive. The crucial issue is the detailed shape of the solution and its actuation
such that a positive end result is obtained, and this is shown to be handled
well by the algorithm. Finally, the controller behavior has been perceived as
comfortable and natural by drivers and passengers that have participated in
tests and demonstrations.
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