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Abstract

Our society depends on advanced and complex technical systems and machines,
for example, cars for transportation, industrial robots in production lines, satel-
lites for communication, and power plants for energy production. Consequences
of a fault in such a system can be severe and result in human casualties, envi-
ronmentally harmful emissions, high repair costs, or economical losses caused by
unexpected stops in production lines. Thus, a diagnosis system is important, and
in some applications also required by legislations, to monitor the system health
in order to take appropriate preventive actions when a fault occurs. Important
properties of diagnosis systems are their capability of detecting and identifying
faults, i.e., their fault detectability and isolability performance.

This thesis deals with quantitative analysis of fault detectability and isola-
bility performance when taking model uncertainties and measurement noise
into consideration. The goal is to analyze diagnosability performance given a
mathematical model of the system to be monitored before a diagnosis system is
developed. A measure of fault diagnosability performance, called distinguishabil-
ity, is proposed based on the Kullback-Leibler divergence. For linear descriptor
models with Gaussian noise, distinguishability gives an upper limit for the fault
to noise ratio of any linear residual generator. Distinguishability is used to
analyze fault detectability and isolability performance of a non-linear mean value
engine model of gas flows in a heavy duty diesel engine by linearizing the model
around different operating points.

It is also shown how distinguishability is used for determine sensor placement,
i.e, where sensors should be placed in a system to achieve a required fault
diagnosability performance. The sensor placement problem is formulated as
an optimization problem, where minimum required diagnosability performance
is used as a constraint. Results show that the required diagnosability perfor-
mance greatly affects which sensors to use, which is not captured if not model
uncertainties and measurement noise are taken into consideration.

Another problem considered here is the on-line sequential test selection
problem. Distinguishability is used to quantify the performance of the different
test quantities. The set of test quantities is changed on-line, depending on
the output of the diagnosis system. Instead of using all test quantities the
whole time, changing the set of active test quantities can be used to maintain a
required diagnosability performance while reducing the computational cost of
the diagnosis system. Results show that the number of used test quantities can
be greatly reduced while maintaining a good fault isolability performance.

A quantitative diagnosability analysis has been used during the design of
an engine misfire detection algorithm based on the estimated torque at the
flywheel. Decisions during the development of the misfire detection algorithm
are motivated using quantitative analysis of the misfire detectability performance.
Related to the misfire detection problem, a flywheel angular velocity model for
misfire simulation is presented. An evaluation of the misfire detection algorithm
show results of good detection performance as well as low false alarm rate.
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Populärvetenskaplig Sammanfattning

Vårt samhälle är idag beroende av avancerade tekniska system, till exempel bilar
för transport, industrirobotar vid produktionslinor, satelliter för kommunikation
och kraftverk för energiproduktion. Ett fel i något av dessa system kan leda
till allvarliga konsekvenser och resultera i att människor skadas, miljöskadliga
utsläpp, dyra reparationskostnader eller ekonomiska förluster på grund av ovän-
tade produktionsstopp. Diagnossystem för att övervaka sådana tekniska system
är därför viktiga för att kunna identifiera när ett fel inträffar så att lämpliga
åtgärder kan vidtas. I vissa fall, till exempel inom fordonsindustrin, finns det
även lagkrav på att specifika funktioner hos fordonet måste övervakas av ett
diagnossystem.

Ett diagnossystem använder mätsignaler från systemet som ska övervakas
för att detektera om fel har uppstått och beräknar sedan möjliga förklaringar
på vilka fel som kan finnas i systemet. Finns det en matematisk modell som
beskriver systemet går det att jämföra mätsignaler med förväntat beteende
givet modellen för att detektera och isolera fel. När ett diagnossystem använ-
der metoder baserade på modeller för att övervaka ett system kallas det för
modellbaserad diagnos. Osäkerheter i modellen, mätbrus och var sensorer är
placerade i systemet begränsar hur bra diagnosprestanda som kan uppnås av
ett diagnossystem. Med hjälp av kunskap om osäkerheter, och var sensorer kan
placeras, kan ett diagnossystem konstrueras så att den negativa påverkan av
osäkerheterna begränsas.

I denna avhandling analyseras hur ett diagnossystem ska konstrueras med
hjälp av information om vad för feldetektions- och felisoleringsprestanda som
kan uppnås givet en matematisk modell av systemet som ska övervakas. Dia-
gnosprestanda analyseras kvantitativt genom att ta hänsyn till osäkerheterna
i modellen, mätbrus och hur varje fel ser ut. Ett mått för att analysera kvan-
tifierad diagnosprestanda för en given modell av ett system presenteras, som
kallas distinguishability, och exempel visar hur detta mått kan användas för att
analysera diagnosegenskaper givet en modell där modellosäkerheter och mätbrus
är kända. Distinguishability har tillämpats bland annat för att hitta den billigaste
uppsättning sensorer som uppfyller en önskad diagnosprestanda.

Att kunna analysera och kvantifiera diagnosprestanda under utvecklingen av
ett diagnossystem ger möjlighet att välja en design som ger bäst diagnosprestan-
da. En applikation som analyserats i detta arbete är detektion av misständningar
i bensinmotorer. Misständning sker i en cylinder exempelvis på grund av ett
trasigt tändstift och orsakar skador på katalysatorn samt förhöjda avgasutsläpp.
Detektion av misständningar försvåras bland annat av störningar i drivlinan,
variationer i last och hastighet i motorn och fel på mätutrustningen. Ett dia-
gnossystem har utvecklats för att detektera när misständning inträffar utifrån
varvtalsmätningar på motorns svänghjul med hjälp av kvantitativ analys av dia-
gnosprestanda för att maximera detektionsprestandan. Dessutom har en modell
av drivlinan utvecklats för att kunna simulera mätsignaler från svänghjulet när
misständning inträffar.
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Chapter 1

Introduction

Many parts in our society depend on advanced and complex technical systems and
machines, for example, cars for transportation, industrial robots in production
lines, satellites for communication, and power plants for energy production.
Consequences of a fault in such a system can be severe and result in human
casualties, environmentally harmful emissions, high repair costs, or economical
losses caused by unexpected stops in production lines. Thus, a diagnosis system
is important, and in some applications also required by legislations, to monitor
the system health and detect faults in order to take appropriate preventive
measures.

This thesis addresses the issue of analyzing fault diagnosability performance
by taking model uncertainties and measurement noise into consideration. The
information from a diagnosability analysis is utilized in the development process
of a diagnosis system, before the actual diagnosis system has been developed,
to improve the final performance. As an application, an engine misfire detec-
tion algorithm is developed using methods for quantitative analysis of fault
diagnosability performance. Related to the misfire detection problem, a model
for simulating the flywheel angular velocity signal when affected by misfires is
presented.

1.1 Fault diagnosis

A diagnosis system uses information from sensors and actuators of the monitored
system to detect abnormal behaviors caused by a fault in the system. Detecting
if there is a fault in the system without locating the root cause is referred to
as fault detection. In some applications, a diagnosis system that is only able to
detect faults is not sufficient. For example, different faults might require different
types of actions, thus requiring that the diagnosis system is able to make a
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2 Chapter 1. Introduction

correct identification of which faults that are present in the system. Identifying
the faults in the system is referred to as fault isolation. In this thesis, when
considering both fault detection and isolation is referred to as fault diagnosis.

The following example is used to introduce the principles of fault detection
and isolation. The example will also be referred back to later in this chapter.

Example 1 (Fault detection and isolation). Consider two thermometers, y1
and y2, measuring the outdoor temperature T ,

y1 = T

y2 = T.

If the two thermometers are working properly they should show the same temper-
ature, i.e.

y1 − y2 = 0.

Assume that the thermometer y1 is faulty showing the wrong temperature

y1 = T + f

where f ̸= 0 represents the sensor deviation from the true temperature T . Since
the two thermometers show different temperatures,

y1 − y2 ̸= 0. (1.1)

By comparing the two sensors, a fault in any of them can be detected when the
difference is non-zero. However, it is not possible to isolate which of the sensors
that is faulty because (1.1) will be non-zero in either case.

Assume that there is a third thermometer y3 = T . By comparing all ther-
mometers pairwise as in (1.1) gives that

y1 − y2 ̸= 0

y1 − y3 ̸= 0

y2 − y3 = 0,

(1.2)

i.e., it is only when comparing y1 to any other thermometer that the difference is
non-zero. By comparing the outputs of the three thermometers, the sensor y1 can
be isolated as the faulty thermometer. However, note that the case where the two
thermometers y2 and y3 are faulty and measuring the same faulty temperature
is also consistent to the observations in (1.2). Thus, the observations (1.2) can
be explained by either a fault in y1 or two faults in y2 and y3, where the first
case is the true scenario in this example. This means that there can be more
than one diagnosis in a given situation.

Monitoring the system health requires general knowledge of how the system
works and behaves, in order to detect when something is not working properly.
Knowledge about a system can be incorporated into a mathematical model
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Figure 1.1: A signal with little noise compared to the amplitudes of the inter-
mittent faults.
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Figure 1.2: A signal with much noise compared to the amplitudes of the inter-
mittent faults.

of the system based on, for example, physical principles, measurements, and
experience. If a mathematical model of the system is available, sensor data can
be compared to predicted behavior given by the model, actuators to the system,
and other sensors in order to detect and isolate faults. Fault diagnosis when
utilizing models of the system is referred to as model based diagnosis.

Even though a model is able to describe the general behavior of the system,
it is seldom perfect. Also, the sensor outputs are not necessarily the same as the
values of the measured states of the system. Model uncertainties and measure-
ment noise are common issues when working with applications utilizing models
of systems. For fault diagnosis purposes, a model should be able to distinguish
between model uncertainties and an actual fault of a required minimum magni-
tude. A more accurate model with less uncertainties will increase the possibility
of detecting even smaller faults. Two examples, where model uncertainties and
noise affects the fault diagnosability performance, are shown in Figure 1.1 and
Figure 1.2. The two figures show two noisy signals with intermittent faults.
In both signals, it is possible to detect the faults, which are visible as high
peaks in the signals. However, it is more difficult to distinguish the intermittent
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faults from the noise in Figure 1.2 since the ratio of the noise amplitude and the
amplitudes of the intermittent faults in Figure 1.1 is relatively small compared to
the signal in Figure 1.2. Thus, considering model uncertainties and measurement
noise is important when developing a diagnosis system because it will affect the
fault detectability and isolability performance.

There are many factors to consider when developing a diagnosis system.
The purpose of the diagnosis system determines the requirements of the fault
diagnosability performance. To be able to predict how difficult it will be to detect
or isolate a certain fault at an early stage of the development of the diagnosis
system, can save lots of development time and money. It might be necessary
to add new sensors or hardware to meet the diagnosability requirements. At
the same time, identifying unnecessary sensors and using a smart design of
the diagnosis algorithm, which reduces the required computational power, can
reduced hardware costs. Hardware changes are possible to deal with early in the
development process of a product but more complicated and expensive to deal
with later or once the product is manufactured. Thus, methods for evaluating
diagnosability performance early in the development process are important to
efficiently obtain a diagnosis system with satisfactory performance.

1.1.1 Model based diagnosis

Fault diagnosis of technical systems covers many different approaches from
different fields. This thesis will focus on model based diagnosis, i.e., there exists
a mathematical model describing the system. A trivial example of a mathematical
model is shown in Example 1, where it is assumed that all thermometers y1, y2,
and y3 measure the same temperature.

The term fault detection and isolation, FDI, often relates to model based
diagnosis methods founded in control theory and focuses on the application of
residual generators for fault detection, see for example Gertler (1991), Isermann
(1997), Gertler (1998), Chen and Patton (1999), Isermann (2005), Blanke et al.
(2006), Gustafsson (2000), and Patton et al. (2010). A residual is a function of
known signals and is zero in the fault-free case. The three pairwise comparisons
of measured temperatures in (1.2) are simple examples of residuals.

Within the field of artificial intelligence, model based diagnosis, DX, focuses
more on fault isolation and the use of logics to identify faulty behavior, see
for example Reiter (1987), de Kleer and Williams (1987), Feldman and van
Gemund (2006), and de Kleer (2011). In this thesis, diagnosis systems are
considered where fault detection is mainly performed using methods from the
FDI community and fault isolation is performed using methods from the DX
community, see for example Cordier et al. (2004).

Other approaches for fault diagnosis not considered here are, for example,
data-driven methods such as PCA and neural networks, see Qin (2012) and
Venkatasubramanian et al. (2003), and probabilistic approaches such as Bayesian
networks, see Pernestål (2009) and Lerner et al. (2000).

A schematic overview of a typical diagnosis system considered in this thesis
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is shown in Figure 1.3. The diagnosis algorithm takes observations from the
monitored system as input and computes possible statements about the system
health that are consistent with the observations, called diagnoses, see Gertler
(1991) and de Kleer and Williams (1987).

Fault
isolation
algorithm

Monitored
system

Test 1

Test 2

Test n

Alarm

Alarm

Alarm

Diagnosis algorithm

Diagnoses

Observations

Observations

Observations

...

Figure 1.3: An example of a diagnosis algorithm where observations from
the system are used to compute possible statements about the system health
consistent with the observations, referred to as diagnoses.

In Figure 1.3, the diagnosis system uses a set of tests to detect when there is
a fault present in the system. A test typically consists of a test quantity, e.g., a
residual, and a decision logic for triggering an alarm. The test quantity T can
be described as a function of known signals z, such as sensor outputs and known
actuators, and indicate if there is a fault present or not. If a mathematical model
of the system is available, a test quantity can be designed, for example, based
on a residual generator which uses observations from the system to compare
model predictions with measurements, see Blanke et al. (2006), Chen and Patton
(1999), Patton et al. (2010), Svärd (2012), and Frisk (2001).

To detect if there is a fault in the system, the test quantity T is evaluated
and compared to, for example, a threshold J . The test will generate an alarm if
the value of the test quantity exceeds the threshold, i.e, if

T (z) > J

where z is a vector of known signals. If there is no fault in the system, the test
quantity T should be below the threshold J , and above the threshold when there
is a fault. If the test alarms even though there is no fault in the system, it is
referred to as a false alarm, and if the test do not alarm when there is a fault
is referred to as a missed detection. Each test can be seen as a hypothesis test
where the null hypothesis is the fault-free case or a nominal case, see Nyberg
(1999) and Nyberg (2001).

Depending on how each test quantity is designed, different test quantities can
be sensitive to different sets of faults, i.e., each test quantity is designed to not
detect all faults. Then, fault isolation can be performed by using the knowledge
that different test quantities are sensitive to different sets of faults. A fault
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isolation algorithm, see Figure 1.3, combines the information of all triggered
tests to compute statements about the system health which are consistent with
the triggered tests, see Gertler (1991), de Kleer and Williams (1987), Nyberg
(2006), and de Kleer (2011). In Example 1, the three residuals (1.2) are sensitive
to different sets of faults given by which sensors that are used in each residual.
By combining the information from the residuals that are non-zero, two possible
diagnoses are a single fault in y1 or multiple faults in y2 and y3.

1.2 Fault diagnosability analysis

Analyzing fault diagnosability performance is an important part for the design
and evaluation of diagnosis systems. Before the development of the diagnosis
system, an analysis can give an understanding of how good performance that
can be achieved given the model of the system. This knowledge can be used, for
example, when designing the diagnosis system or specific test quantities, or to
decide if more sensors are needed. Here, a description of existing measures and
methods for analyzing diagnosability performance is presented.

Two important properties in fault diagnosis when evaluating the diagnosabil-
ity performance are fault detectability and fault isolability. Fault detectability
and isolability can be evaluated, both for a given model and for a given diagnosis
system. Evaluating fault detectability and isolability performance for a given
diagnosis system are described in, e.g., Chen and Patton (1999).

Measures used in classical detection theory for analyzing detectability per-
formance of specific tests are probabilities of detection, false alarm, and missed
detection, see Basseville and Nikiforov (1993) and Kay (1998). Other methods
for analyzing the performance of tests are, for example, Receiver operating
characteristics, or ROC curves, see Kay (1998), and power functions, see Casella
and Berger (2001). Computing the probabilities requires that the distributions
of the test quantity for the fault-free case and faulty case are known, or that
realistic approximations are available. These methods take the uncertainties
into consideration and give a quantitative measure of the fault detectability
performance. However, they do not consider fault isolability performance.

Methods for analyzing fault detectability and isolability performance for a
given diagnosis system, using probabilistic measures, are found in several works,
e.g., Wheeler (2011), Krysander and Nyberg (2008), Chen and Patton (1996),
Willsky and Jones (1976), and Emami-Naeini et al. (1988). The methods in
these works take model uncertainties and measurement noise into consideration.
However, the methods analyze diagnosability performance for a given diagnosis
system and not for a given model.

Methods for fault diagnosability analysis for a given model mainly considers
fault detectability and isolability. Fault detectability and isolability analysis
of linear systems can be found in, for example, Nyberg (2002). In Krysander
(2006), Trave-Massuyes et al. (2006), Ding (2008), Dustegör et al. (2006), and
Frisk et al. (2012), fault detectability and isolability analysis is performed by
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analyzing a structural representation of the model equations which enables the
analysis of non-linear systems. However, fault detectability and isolability are
in these works analyzed as deterministic properties of the models and do not
take the behavior of the fault, model uncertainties, or measurement noise into
consideration. The two signals in Figure 1.1 and Figure 1.2 show an example
where diagnosability performance is affected by noise. In both figures, the
intermittent faults are detectable, even though it is not as easy to detect them
in each case. To answer questions like: "How difficult is it to isolate a fault fi
from another fault fj?", when analyzing a model of the system, a method for
analyzing fault diagnosability performance is required where model uncertainties
and measurement noise are taken into consideration.

1.2.1 Utilizing diagnosability analysis for design of
diagnosis systems

In this section, some examples are presented where fault diagnosability analysis
can be utilized during the design process of a diagnosis system. This thesis
addresses the optimal sensor placement problem and on-line sequential test
selection problem.

The possibility of designing test quantities to detect and isolate a certain
fault, depends on which sensors that are available. Depending on where a fault
occurs in the system, it is not be possible to design a test quantity that is able
to detect the fault if the effects of the fault are not measured by a sensor. Thus,
having a suitable set of sensors which is able to monitor the whole system is an
important aspect when designing a diagnosis system. One example is given in
Example 1, where a third thermometer is required to isolate a fault in one of the
thermometers. Finding a set of sensors that fulfills a required fault detectability
and isolability performance is often referred to as the sensor placement problem,
see e.g. Raghuraj et al. (1999), Trave-Massuyes et al. (2006) Krysander and
Frisk (2008), Frisk et al. (2009), and Rosich (2012).

If there is a large number of test quantities in the diagnosis algorithm maybe
not all test quantities are necessary to be active all the time. Using all test
quantities can be computationally expensive and test quantities with poor
detectability performance that are mainly designed for isolating faults are not
useful unless a fault is detected. By sequentially updating which test quantities
to be used by the diagnosis algorithm, the computational power can be reduced
while maintaining sufficient fault isolability performance. This is referred to as
the on-line sequential test selection problem in Krysander et al. (2010).

There are several examples where diagnosability analysis methods are applied
during the design of the diagnosis system. For example, the sensor placement
problem is often formulated as to find a minimum set of sensors which achieves
a minimum required fault detectability and isolability performance, see Rosich
(2012), Raghuraj et al. (1999), Commault et al. (2008), Trave-Massuyes et al.
(2006), and Frisk et al. (2009). Another example is the design and selection of
test quantities such that the diagnosis system fulfills a required fault detectability



8 Chapter 1. Introduction

−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

 

 

Fault−free data

Faulty data

r

p
(r
)

Figure 1.4: Probability density functions of the output y of a residual generator
r for the fault-free case and the faulty case.

and isolability performance, see Staroswiecki and Comtet-Varga (2001), Svärd
(2012), Krysander (2006), and Rosich et al. (2012).

1.2.2 The Kullback-Leibler divergence

One important part in this thesis is the use of the Kullback-Leibler divergence,
see Kullback, S. and Leibler, R. A. (1951), to quantify diagnosability performance
given a model or diagnosis system. This section, motivates why the Kullback-
Leibler divergence is suitable for quantitative analysis of fault diagnosability
performance.

Consider the task of determine if a signal, e.g., a residual, r is useful for
detecting a specific fault f . The performance of a diagnosis system, or a single
test, depend on many different design parameters, such as which tests to use and
how to design the thresholds. To make such choices early in the development
process is not desirable if the design of the whole diagnosis algorithm, or a
single test, is not yet determined. Thus, the analysis of r should separate the
performance of r and the performance of the test based on r. Figure 1.4 shows
the probability density functions of the output of r when no fault is present,
pno fault(r), and when a fault f is present, pfault(r). The value of r lies around
0.25 with little variance in the fault-free case but when a fault is present the
output lies around one with higher variance.

One way to measure the performance of a residual r is to evaluate how likely it
is that a value of r comes from the fault-free distribution when a fault is present.
The most powerful test, for any given probability of false alarm determined by
J , is the likelihood ratio test by using the Neyman-Pearson lemma, see e.g.,
Casella and Berger (2001). If r has the distribution pno fault in the fault-free case
and pfault when a fault is present, then the likelihood ratio test, which rejects
H0 : pno fault(r) in favor of the alternative hypothesis H0 : pno fault(r), can be
written as

Λ(r) =
pfault(r)

pno fault(r)
≥ J. (1.3)
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The likelihood ratio tells how much more likely the value of r comes from the
faulty case than from the fault-free case. A high ratio corresponds to that a
fault is more likely. Thus, a high likelihood is good if a fault is present. Here,
the log-likelihood ratio,

log
pfault(r)

pno fault(r)
, (1.4)

is considered instead of the likelihood ratio. For different values of r, the log-
likelihood ratio is positive if a fault is more likely than the fault-free case and
negative if the fault-free case is more likely. In the example in Figure 1.4, the
log-likelihood ratio is positive for r > 0.5 and negative for r < 0.5.

The performance of r for detecting a fault f can be quantified by computing
the expected value of the log-likelihood ratio (1.4) when a fault is present. If r
in general has a large log-likelihood ratio in the faulty case, it should be easy to
select a threshold with high probability of detecting the fault while having a low
false alarm rate compared to if the log-likelihood ratio is small. The expected
value of (1.4) when a fault is present can be written as

Epfault

[
log

(
pfault(r)

pno fault(r)

)]
=

∫ ∞

−∞
pfault(x) log

pfault(x)

pno fault(x)
dx (1.5)

where Ep[q(x)] is the expected value of the function q(x) when the distribution
of x is given by p. Equation (1.5) is known as the Kullback-Leibler divergence
from pfault to pno fault denoted K(pfault∥pno fault), see Kullback, S. and Leibler,
R. A. (1951) and Eguchi and Copas (2006).

The Kullback-Leibler divergence can be related to the expected value of how
many times more likely that the output of r comes from the faulty case than
the fault-free case when a fault is present. If r is not sensitive to the fault f ,
the probability density functions pfault and pno fault are equal which gives that
(1.5) is zero. The benefit of using the Kullback-Leibler divergence is that the
distributions of r, i.e., model uncertainties and measurement noise, are taken
into consideration when analyzing how difficult it is to detect a fault.

Some examples of recent works where the Kullback-Leibler divergence has
been applied in fault diagnosis applications are Carvalho Bittencourt (2012) and
Svärd (2012). In Carvalho Bittencourt (2012), the Kullback-Leibler divergence
is used for condition monitoring of industrial robots, and in Svärd (2012) for
detecting faults in a diesel engine when the fault-free distribution varies for
different operating points of the engine. An application related to fault diagnosis
is change detection where the Kullback-Leibler divergence is used to measure
if a change has occurred, see for example Takeuchi and Yamanishi (2006) and
Afgani et al. (2008).

1.2.3 Engine misfire detection

In practice, the freedom when designing a diagnosis system is often limited by
computational power and which sensors that are available. Feedback from fault
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diagnosability analysis can be helpful in order to design a diagnosis system using
all available information as good as possible to detect and isolate faults.

In the automotive industry, the on-board diagnosis (OBDII) legislations
require that many systems of a vehicle are monitored on-line in order to detect
if a fault occurs. An overview of automotive diagnosis research is found in Mo-
hammadpour et al. (2012). One example of an automotive diagnosis application
is engine misfire detection.

Misfire refers to an incomplete combustion inside a cylinder and can be caused
by many different factors, for example a fault in the ignition system, see Heywood
(1988). Misfire detection is an important part of the OBDII legislations in order
to reduce exhaust emissions and avoid damage to the catalytic converters. The
legislations require that the on-board diagnosis system is able to both detect
misfires and identify in which cylinder the misfire occurred, see Heywood (1988)
and Walter et al. (2007).

The OBDII legislations define strict requirements in terms of the amount of
allowed missed misfire detections. Also, to avoid unnecessary visits to the garage
and annoyed customers, requires that the number of false alarms is minimized.
To fulfill both conditions is difficult and impose tough requirements on the
development and tuning of the misfire detection algorithm.

There are several approaches to detect misfires using different types of sensors,
e.g., ion current sensors, see Lundström and Schagerberg (2001), or crankshaft
angular velocity measured at the flywheel, see Osburn et al. (2006), Naik (2004),
and Tinaut et al. (2007). Misfire detection based on torque estimation using the
flywheel angular velocity signal has been studied in, e.g, Connolly and Rizzoni
(1994), Kiencke (1999), and Walter et al. (2007). A picture of a flywheel is
shown in Figure 1.5, where a Hall effect sensor is mounted close to the flywheel
and triggers when the punched holes, or teeth, passes the sensor. The flywheel
angular velocity signal measures the time it takes between two holes on the
flywheel to pass the Hall sensor. An example of the flywheel angular velocity
signal and the effect of a misfire is shown in Figure 1.6. A quantitative analysis of
diagnosability performance can be used when designing a test quantity based on
the flywheel angular velocity signal to improve misfire detectability performance.

Detecting misfires is a non-trivial problem which is complicated by, for
example, changes in load, speed, and flywheel manufacturing errors, see Naik
(2004) and Kiencke (1999). Flywheel errors results in that the measured time
periods between the holes, or teeth, are measured over nonuniform angular
intervals. The flywheel errors varies for different vehicles and this must be
compensated for by the misfire detection algorithm, see e.g. Kiencke (1999).

1.3 Scope

This thesis deals with quantitative analysis of fault detectability and isolability
performance when taking model uncertainties and measurement noise into
consideration. The fault diagnosability performance is analyzed for a given
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model of the system. The purpose of the quantitative analysis to utilize the
information of achievable diagnosability performance during the design of the
diagnosis system to improve the diagnosability performance. In this thesis, a
quantitative measure of fault detectability and isolability performance given a
model is proposed. The quantitative diagnosability measure is applied to the
sensor placement problem, i.e, where should sensors be placed in a system to
achieve a required fault diagnosability performance, and on-line sequential test
selection, i.e., updating the diagnosis system on-line to maintain a sufficiently
good fault isolability performance while reducing the computational cost.

Quantitative diagnosability analysis has also been applied during the design
of an engine misfire detection algorithm. Decisions during the development of
the misfire detection algorithm are motivated using quantitative analysis of
the misfire detectability performance. Related to the engine misfire detection
application, a flywheel angular velocity model for misfire simulation is presented.

1.4 Contributions

The main contributions of Paper A - E are summarized below.

Paper A

Paper A is an extended version of Eriksson et al. (2011a) and Eriksson et al.
(2011b). The main contribution is the definition of distinguishability, based on
the Kullback-Leibler divergence, which is used for quantitative fault detectability
and isolability analysis of stochastic models. The second main contribution
is the connection between distinguishability and linear residual generators for
linear descriptor models with Gaussian noise.

Paper B

The main contribution of Paper B is the use of distinguishability for optimal
sensor placement in time-discrete linear descriptor systems with Gaussian noise.
The sensor placement problem is formulated as an optimization problem, where
required fault detectability and isolability performance is taken into consideration
by using minimum required diagnosability performance as a constraint.

Paper C

Paper C proposes an on-line test selection algorithm where the active set of
residuals is updated depending on the present output of the diagnosis system.
The main contribution is that the performance of each residual is evaluated using
distinguishability and included in the test selection algorithm. The test selection
problem is formulated as a minimal hitting set problem where the best residuals
are selected to detect or isolate any present faults. The second contribution is a
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generalization of distinguishability to quantify fault isolability of one fault from
multiple faults.

Paper D

Paper D is an initial work considering the engine misfire detection problem where
a model of the crankshaft and driveline for misfire analysis is developed. The
main contribution in Paper D is a flywheel angular velocity model for misfire
simulation. The model is a multi-mass model of the crankshaft and driveline
where the cylinder pressure is computed using an analytical model in order to
model cylinder variations and misfire.

Paper E

Paper E presents an engine misfire detection algorithm based on torque estimation
using the flywheel angular velocity signal. The contribution is a misfire detection
algorithm based on the estimated torque at the flywheel. A second contribution
is the use of the Kullback-Leibler divergence for analysis and optimization of
misfire detection performance.

1.5 Publications

The following papers have been published.

Journal papers

• Daniel Eriksson, Erik Frisk, and Mattias Krysander. A method for quanti-
tative fault diagnosability analysis of stochastic linear descriptor models.
Automatica (Accepted for publication). (Paper A)

Conference papers

• Daniel Eriksson, Mattias Krysander, and Erik Frisk. Using quantitative
diagnosability analysis for optimal sensor placement. In Proceedings of the
8th IFAC Safe Process. Mexico city, Mexico, 2012. (Paper B)

• Daniel Eriksson, Erik Frisk, and Mattias Krysander. A sequential test
selection algorithm for fault isolation. In Proceedings to the 10th European
Workshop on Advanced Control and Diagnosis. Copenhagen, Denmark,
2012. (Paper C)

• Daniel Eriksson, Mattias Krysander, and Erik Frisk. Quantitative Fault
Diagnosability Performance of Linear Dynamic Descriptor Models. In
Proceedings of the 22nd International Workshop on Principles of Diagnosis
(DX-11). Murnau, Germany, 2011.
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• Daniel Eriksson, Mattias Krysander, and Erik Frisk. Quantitative Stochas-
tic Fault Diagnosability Analysis. In Proceedings of the 50th IEEE Con-
ference on Decision and Control. Orlando, Florida, USA, 2011.

• Erik Almqvist, Daniel Eriksson, Andreas Lundberg, Emil Nilsson, Niklas
Wahlström, Erik Frisk, and Mattias Krysander. Solving the ADAPT
Benchmark Problem - A Student Project Study. In Proceedings of the 21st
International Workshop on Principles of Diagnosis (DX-10). Portland,
Oregon, USA, 2010.

Technical reports

• Daniel Eriksson, Lars Eriksson, Erik Frisk, and Mattias Krysander. Anal-
ysis and optimization with the Kullback-Leibler divergence for misfire
detection using estimated torque. Technical Report LiTH-ISY-R-3057.
Department of Electrical Engineering, Linköpings Universitet, SE-581 83
Linköping, Sweden, 2013. (Paper E)

Submitted

• Daniel Eriksson, Lars Eriksson, Erik Frisk, and Mattias Krysander. Fly-
wheel angular velocity model for misfire simulation. Submitted to 7th
IFAC Symposium on Advances in Automotive Control. Tokyo, Japan, 2013.
(Paper D)
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Abstract

Analyzing fault diagnosability performance for a given model, before
developing a diagnosis algorithm, can be used to answer questions like
“How difficult is it to detect a fault fi?” or “How difficult is it to isolate a
fault fi from a fault fj?”. The main contributions are the derivation of a
measure, distinguishability, and a method for analyzing fault diagnosabil-
ity performance of discrete-time descriptor models. The method, based
on the Kullback-Leibler divergence, utilizes a stochastic characterization
of the different fault modes to quantify diagnosability performance. An-
other contribution is the relation between distinguishability and the fault
to noise ratio of residual generators. It is also shown how to design resid-
ual generators with maximum fault to noise ratio if the noise is assumed
to be i.i.d. Gaussian signals. Finally, the method is applied to a heavy
duty diesel engine model to exemplify how to analyze diagnosability
performance of non-linear dynamic models.
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1 Introduction

Diagnosis and supervision of industrial systems concern detecting and isolating
faults that occur in the system. As technical systems have grown in complexity,
the demand for functional safety and reliability has drawn significant research
in model-based fault detection and isolation. The maturity of the research field
is verified by the amount of existing reference literature, for example Gertler
(1998), Isermann (2005), and Patton et al. (2010).

When developing a diagnosis algorithm, knowledge of achievable diagnos-
ability performance given the model of the system, such as detectability and
isolability, is useful. Such information indicates if a test with certain diagnosabil-
ity properties can be created or if more sensors are needed to get satisfactory
diagnosability performance, see Commault et al. (2008) and Raghuraj et al.
(1999). In Düştegör et al. (2006), a structural diagnosability analysis is used
during the modeling process to derive a sufficiently good model which achieves
a required diagnosability performance. In these previous works, information of
diagnosability performance is required before a diagnosis algorithm is developed.

The main limiting factor of fault diagnosability performance of a model-based
diagnosis algorithm is the model uncertainty. Model uncertainties exist because
of, for example, non-modeled system behavior, process noise, or measurement
noise. Models with large uncertainties make it difficult to detect and isolate
small faults. Without sufficient information of possible diagnosability properties,
engineering time could be wasted on, e.g., developing tests to detect a fault that
in reality is impossible to detect.

The main contribution of this work is a method to quantify detectability
and isolability properties of a model when taking model uncertainties and fault
time profiles into consideration. It can also be used to compare achievable
diagnosability performance between different models to evaluate how much
performance is gained by using an improved model.

Different types of measures to evaluate the detectability performance of
diagnosis algorithms exists in the litterature, see for example Chen et al. (2003),
dos Santos and Yoneyama (2011), Hamelin and Sauter (2000), and Wheeler
(2011). A contribution of this work with respect to these previously published
papers, is to quantify diagnosability performance given the model without
designing a diagnosis algorithm.

There are several works describing methods from classical detection theory,
for example, the books Basseville and Nikiforov (1993) and Kay (1998), which can
be used for quantified detectability analysis using a stochastic characterization
of faults. In contrast to these works, isolability performance is also considered
here which is important when identifying the faults present in the system.

There exist systematic methods for analyzing fault isolability performance
in dynamic systems, see Frisk et al. (2010), Pucel et al. (2009), and Travé-
Massuyès et al. (2006). However these approaches are deterministic and only
give qualitative statements whether a fault is isolable or not. These methods give
an optimistic result of isolability performance and they tell nothing about how
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difficult it is to detect or isolate the faults in practice, due to model uncertainties.
The results in this paper are based on the early work done in Eriksson

et al. (2011b) and Eriksson et al. (2011a) where a measure is derived, named
distinguishability, for quantitative fault detectability and isolability analysis.
First, the problem is formulated in Section 2. The measure is derived in Section 3
for linear discrete-time descriptor models. How to compute the special case when
the noise is i.i.d. Gaussian is discussed in Section 4. In Section 5 the relation
between distinguishability and the performance of linear residual generators is
derived. Finally, it is shown in Section 6, via a linearization scheme, how the
developed methodology can be used to analyze a non-linear dynamic model of a
heavy duty diesel engine.

2 Problem formulation

The objective here is to develop a method for quantitative diagnosability analysis
of discrete-time descriptor models in the form

Ex[t+ 1] = Ax[t] +Buu[t] +Bff [t] +Bvv[t]

y[t] = Cx[t] +Duu[t] +Dff [t] +Dεε[t]
(1)

where x ∈ Rlx are state variables, y ∈ Rly are measured signals, u ∈ Rlu are
input signals, f ∈ Rlf are modeled faults, v ∼ N (0,Λv) and ε ∼ N (0,Λε) are
i.i.d. Gaussian random vectors with zero mean and symmetric positive definite
covariance matrices Λv ∈ Rlv×lv and Λε ∈ Rlε×lε . Model uncertainties and noise
are represented in (1) by the random vectors v and ε. The notation lα denotes
the number of elements in the vector α. To motivate the problem studied in
this paper, fault isolability performance is analyzed for a small example using a
deterministic analysis method. Then a shortcoming of using this type of method
is highlighted, based on the example.

Example 1. The example will be used to discuss the result when analyzing fault
detectability and isolability performance of a model by using a deterministic
analysis method from Frisk et al. (2009). A simple discrete-time dynamic model
of a spring-mass system is considered,

x1[t+ 1] = x1[t] + x2[t]

x2[t+ 1] = x2[t]− x1[t] + u[t] + f1[t]+ f2[t]+ ε1[t]

y1[t] = x1[t] + f3[t] + ε2[t]

y2[t] = x1[t] + f4[t] + ε3[t],

(2)

where x1 is the position and x2 the velocity of the mass, y1 and y2 are sensors
measuring the mass position, u is a control signal, fi are possible faults, and εi
are model uncertainties modeled as i.i.d. Gaussian noise where ε1 ∼ N (0, 0.1),
ε2 ∼ N (0, 1), and ε3 ∼ N (0, 0.5). For simplicity, the mass, the spring constant,
and sampling time are set to one. The faults are assumed additive and represent
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faults in the control signal, f1, a change in rolling resistance, f2, and sensor
biases, f3 and f4.

Analyzing fault isolability performance for the model (2) using a deterministic
method gives that all faults are detectable, f3 and f4 are each isolable from all
other faults, and f1 and f2 are isolable from the other faults but not from each
other. The result from the isolability analysis is summarized in Table 1. An X
in position (i, j) represents that the fault mode fi is isolable from fault mode fj
and a 0 represents that fault mode fi is not isolable from fault mode fj. The
NF column indicates whether the corresponding fault mode is detectable or not.

A shortcoming with an analysis like the one in Table 1 is that it does not
take model uncertainties into consideration, i.e., the analysis does not state
how difficult it is to detect and isolate the different faults depending on model
uncertainties and how the fault changes over time.

The example highlights a limitation when using a deterministic diagnosabil-
ity analysis method to analyze a mathematical model. Model uncertainties,
process noise, and measurement noise are affecting diagnosability performance
negatively and therefore it would be advantageous to take these uncertainties
into consideration when analyzing diagnosability performance.

3 Distinguishability

This section defines a stochastic characterization for the fault modes and in-
troduces a quantitative diagnosability measure based on the Kullback-Leibler
divergence.

3.1 Reformulating the model

First, the discrete-time dynamic descriptor model (1) is written as a sliding
window model of length n.

Table 1: A deterministic detectability and isolability analysis of (2) where an
X in position (i, j) represents that a fault fi is isolable from a fault fj and 0
otherwise.

NF f1 f2 f3 f4
f1 X 0 0 X X
f2 X 0 0 X X
f3 X X X 0 X
f4 X X X X 0
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With a little abuse of notation, define the vectors

z =
(
y[t− n+ 1]T , . . . , y[t]T , u[t− n+ 1]T , . . . , u[t]T

)T

x =
(
x[t− n+ 1]T , . . . , x[t]T , x[t+ 1]T

)T
,

f =
(
f [t− n+ 1]T , . . . , f [t]T

)T

e =
(
v[t− n+ 1]T , . . . , v[t]T , ε[t− n+ 1]T , . . . , ε[t]T

)T
, (3)

where z ∈ Rn(ly+lu), x ∈ R(n+1)lx , f ∈ Rnlf and e is a stochastic vector of a
known distribution with zero mean. Note that in this section the additive noise
will not be limited to be i.i.d. Gaussian as assumed in (1). Then a sliding
window model of length n can be written as

Lz = Hx+ Ff +Ne (4)

where

L =




0 0 . . . 0 −Bu 0 . . . 0
0 0 0 0 −Bu 0
...

. . .
...

...
. . .

...
0 0 . . . 0 0 . . . 0 −Bu

I 0 . . . 0 −Du 0 . . . 0
0 I 0 0 −Du 0
...

. . .
...

...
. . .

...
0 0 . . . I 0 0 . . . −Du




, H =




A −E 0 . . . 0
0 A −E 0
...

. . . . . .
...

0 0 . . . A −E
C 0 0 . . . 0
0 C 0 0
...

. . .
...

0 0 . . . C 0




,

F =




Bf 0 . . . 0
0 Bf 0
...

. . .
...

0 0 . . . Bf

Df 0 . . . 0
0 Df 0
...

. . .
...

0 0 . . . Df




, N =




Bv 0 . . . 0 0 0 . . . 0
0 Bv 0 0 0 0
...

. . .
...

...
. . .

...
0 0 . . . Bv 0 0 . . . 0
0 0 . . . 0 Dε 0 . . . 0
0 0 0 0 Dε 0
...

. . .
...

...
. . .

...
0 0 . . . 0 0 0 . . . Dε




,

and I is the identity matrix. Note that the sliding window model (4) is a static
representation of the dynamic behavior on the window given the time indexes
(t− n+ 1, t− n+ 2, ..., t).

The sliding window model (4) represents the system (1) over a time window
of length n. By observing a system during a time interval, not only constant
faults, but faults that vary over time can be analyzed. Let fi ∈ Rn be a vector
containing only the elements corresponding to a specific fault i in the vector
f ∈ Rnlf , i.e,

fi = (f [i], f [lf + i], f [2lf + i], . . . , f [(n− 1)lf + i])
T
. (5)
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A vector θ = (θ[t−n+1], θ[t−n+2], . . . , θ[t])T ∈ Rn is used to represent how a
fault, fi = θ, changes over time and is called a fault time profile. Figure 1 shows
some examples of different fault time profiles where n = 10.

t−9 t−8 t−7 t−6 t−5 t−4 t−3 t−2 t−1 t
0

0.2

0.4

0.6

0.8

1

Fault time profiles (n = 10)

q

θ
i[q

]

 

 

Constant fault

Intermittent fault

Ramp fault

Figure 1: Fault time profiles representing a constant fault, an intermittent fault,
and a fault entering the system like a ramp.

It is assumed that model (4) fulfills the condition that
(
H N

)
is full row-rank. (6)

One sufficient criteria for (1) to satisfy (6) is that

Dε is full row-rank and ∃λ∈C : λE −A is full rank, (7)

i.e., all sensors have measurement noise and the model has a unique solution for
a given initial state, see Kunkel and Mehrmann (2006). Assumption (7) assures
that model redundancy can only be achieved when sensors y are included. The
technical condition (6) is non-restrictive since it only excludes models where it
is possible to design ideal residual generators, i.e., residuals that are not affected
by noise.

It proves useful to write (4) in an input-output form where the unknowns, x,
are eliminated. If the model (4) fulfills assumption (6), the covariance matrix of
e for the model in input-output form will be non-singular. Elimination of x in
(4) is achieved by multiplying with NH from the left, where the rows of NH is
an orthonormal basis for the left null-space of H, i.e.,

NHH = 0,

This operation is also used, for example, in classical parity space approaches,
see Gertler (1997) and Zhang and Ding (2007). The input-output model can, in
the general case, then be written as

NHLz = NHFf +NHNe. (8)
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It is important to note that for any solution z0, f0, e0 to (8) there exists an x0

such that it also is a solution to (4), and also if there exists a solution z0, f0, e0, x0

to (4) then z0, f0, e0 is a solution to (8). Thus no information about the model
behavior is lost when rewriting (4) as (8), see Polderman and Willems (1998).

3.2 Stochastic characterization of fault modes

To describe the behavior of system (4), the term fault mode is used. A fault
mode represents whether a fault fi is present, i.e., fi ≠ 0̄, where 0̄ denotes a
vector with only zeros. With a little abuse of notation, fi will also be used to
denote the fault mode when fi is the present fault. The mode when no fault is
present, i.e., f = 0̄, is denoted NF.

Let τ = NHLz, which is the left hand side of (8). The vector τ ∈ Rnly−lx

depends linearly on the fault vector f and the noise vector e and represents the
behavior of the model, see Polderman and Willems (1998). A non-zero fault
vector f only affect the mean of the probability distribution of the vector τ .

Let p(τ ;µ), denote a multivariate probability density function, pdf, with
mean µ describing τ , where µ depends on f . The mean µ = NHFiθ, where
the matrix Fi ∈ Rn(lx+ly)×n contains the columns of F corresponding to the
elements of fi in (5), is a function of the fault time profile fi = θ. Let Θi denote
the set of all fault time profiles θ corresponding to a fault mode fi which for
example could look like the fault time profiles in Figure 1. For each fault time
profile fi = θ ∈ Θi which could be explained by a fault mode fi, there is a
corresponding pdf p(τ ;NHFiθ). According to this, each fault mode fi can be
described by a set of pdf’s p(τ ;µ), giving the following definition.

Definition 1. Let Zfi denote the set of all pdf’s p(τ ;µ(θ)), for all fault time
profiles θ ∈ Θi, describing τ which could be explained by the fault mode fi, i.e.

Zfi = {p(τ ;NHFiθ)|∀θ ∈ Θi}. (9)

The definition of Zfi is a stochastic counterpart to observation sets in the
deterministic case, see Nyberg and Frisk (2006). Each fault mode fi, including
NF, can be described by a set Zfi . The set ZNF describing the fault-free mode
typically only includes one pdf, pNF = p(τ ; 0̄). Note that the different sets, Zfi ,
does not have to be mutually exclusive since different fault modes could affect
the system in the same way, resulting in the same pdf. A specific fault time
profile fi = θ corresponds to one pdf in Zfi and is denoted

piθ = p(τ ;NHFiθ). (10)

Using Definition 1 and (10), isolability (and detectability) of a window model
(4) can be defined as follows.

Definition 2 (Isolability (detectability)). Consider a window model (4). A
fault fi with a specific fault time profile θ ∈ Θi is isolable from fault mode fj if

piθ /∈ Zfj .
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Zfi

Zfj

piθa

pjθb

Figure 2: A graphical visualization of the sets Zfi and Zfi and the smallest
difference between piθa ∈ Zfi and a pdf pj ∈ Zfj .

Similarly, if piθ /∈ ZNF, the fault is detectable, i.e., the fault is isolable from the
fault-free mode.

3.3 Quantitative detectability and isolability

Consider two pdf’s, piθa ∈ Zfi and pjθb ∈ Zfj , describing τ for two different faults
with given fault time profiles fi = θa and fj = θb respectively. The more the
distribution of the observations differ between two fault scenarios, the easier it
is to isolate the faults. Therefore, a measure of difference between probability
distributions can be used to quantify isolability between faults. The basic idea
is illustrated in Figure 2 where the difference of piθa and pjθb can graphically be
interpreted as the distance and the closer the pdf’s are, the more similar are
their distributions.

To motivate the distance measure that will be used, consider the task of
isolating a given fault time profile fi = θa from fault time profile fj = θb.
Therefore, consider the hypothesis test

H0 : p = pjθb

H1 : p = piθa .
(11)

and, to solve it, consider as test statistic the log-likelihood ratio

λ(τ) = log
Lpi

θa
(τ)

Lpj
θb

(τ)

where Lp(τ) is the likelihood of τ given the pdf p. In case that hypothesis H0

is true, i.e., fault fj = θb is the true fault, then observations τ are drawn from
a distribution pjθb and E[λ(τ)] ≤ 0. In case hypothesis H1 is true, i.e., fault
fi = θa is the true fault, observations are drawn from piθa and E[λ(τ)] ≥ 0, see
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Casella and Berger (2001). Thus, λ changes sign, in the mean, with the two
hypotheses. Therefore, the mean of λ(τ), under H1

Epi
θa

[λ(τ)] = Epi
θa


log

Lpi
θa
(τ)

Lpj
θb

(τ)


 (12)

is an indicator on how difficult it is to isolate fault fi = θa from fault fj = θb.
The right hand side of (12) can be identified as the Kullback-Leibler divergence
Kullback, S. and Leibler, R. A. (1951) and will be denoted K(piθa∥p

j
θb
).

Generally, the Kullback-Leibler divergence between two pdf’s pi and pj is
defined as

K(pi∥pj)=
∫ ∞

−∞
pi(v) log

pi(v)

pj(v)
dv = Epi

[
log

pi

pj

]
(13)

where Epi

[
log pi

pj

]
is the expected value of log pi

pj given pi. The Kullback-Leibler
divergence has the following properties

K(pi∥pj) ≥ 0,
K(pi∥pj) = 0 iff pi = pj .

(14)

In the hypotheses in (11), fault sizes are completely specified but in the
general case the fault sizes are not known and we want to isolate a particular
fault fi = θ from a fault mode fj . It is then natural to quantify the isolability
performance as the minimal expected value of λ(r), i.e., the Kullback-Leibler
divergence K(piθ∥pj), for any pj ∈ Zfj . Also, minimizing K(piθ∥pj) with respect
to pj ∈ Zfj is the same as maximizing the maximum likelihood estimate of
pj ∈ Zfj to piθ, see Eguchi and Copas (2006). Based on this discussion, the
measure of isolability performance is then defined as follows.

Definition 3 (Distinguishability). Given a sliding window model (4), distin-
guishability Di,j(θ) of a fault fi with a given fault time profile θ from a fault
mode fj is defined as

Di,j(θ) = min
pj∈Zfj

K
(
piθ∥pj

)
(15)

where the set Zfj is defined in Definition 1 and piθ in (10).

Note that in Definition 3, the additive noise in (1) is not required to be
i.i.d. Gaussian. Distinguishability can be used to analyze either isolability or
detectability performance depending on whether Zfj describes a fault mode or
the fault-free case.

The measure defined in Definition 3 does not directly relate to, for example,
probability of detection or isolation of a specific fault. However, it turns out that
distinguishability is, in the Gaussian case, closely related to the performance
of optimal residual generators. This fact is explained in detail and discussed
further in Section 5.
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Two properties of the index Di,j(θ) are given in the following propositions.
Proposition 1 presents a necessary and sufficient condition for isolability, while
Proposition 2 shows that it is easier to detect faults than isolate faults.

Proposition 1. Given a window model (4), a fault fi = θ ∈ Θi is isolable from
a fault mode fj if and only if

Di,j(θ) > 0 (16)

Proof. The Kullback-Leibler divergence K(piθ∥pj) is zero if and only if piθ = pj .
Given Definition 2, fi = θ is isolable from fj if piθ ̸= pj for all pj ∈ Zfj and (16)
holds. If (16) holds then piθ ̸= pj for all pj ∈ Zfj and fi = θ is isolable from fj
which proves Proposition 1.

Proposition 2. If 0̄ is a boundary point of Θj for a fault mode fj then

Di,j(θ) ≤ Di,NF(θ). (17)

Proof. If 0̄ is a boundary point of Θj , then pNF is a boundary point of Zfj and
there exists a limit pj ∈ Zfj such that

lim
pj→pNF

K
(
piθ∥pj

)
= K

(
piθ∥pNF

)
.

Then
Di,j(θ) = min

pj∈Zfj

K
(
piθ∥pj

)
≤ K

(
piθ∥pNF

)
= Di,NF(θ)

which proves Proposition 2.

From now on, it is assumed that Θi = Rn \ {0̄} for all i = 1, 2, . . . , lf and
then Proposition 2 holds.

4 Computation of distinguishability

The definition of distinguishability in Section 3.3, given a model in the form (4),
is general for any type of multivariate pdf (10) describing the vector τ for a given
θ ∈ Θi. Computing (15) requires solving a minimization problem which can in
general be difficult. In this section, the vector e in (4) is assumed to be Gaussian
distributed with covariance Λe ∈ Rn(lv+lε)×n(lv+lε). Model uncertainties and
disturbancies only containing a limited band of frequencies, e.g., low-frequency
disturbances, can be included in (1) by adding noise dynamics to the model, see
Glad and Ljung (2000). If e is Gaussian and (6) is fulfilled, then NHNe in (8)
is Gaussian distributed with positive definite covariance matrix

Σ = NHNΛeN
TN T

H ,

and (15) can be computed explicitly.
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To simplify the computations of (15), it is assumed without loss of generality
that Σ is equal to the identity matrix, that is

Σ = NHNΛeN
TN T

H = I (18)

Note that any model in the form (4), satisfying (6), can be transformed into
fulfilling Σ = I by multiplying (4) with an invertible transformation matrix T
from the left. The choice of matrix T is non-unique and one possibility is

T =

(
Γ−1NH

T2

)
(19)

where Γ is non-singular and

NHNΛeN
TN T

H = ΓΓT (20)

is satisfied, and T2 is any matrix ensuring invertability of T . Matrix Γ can, for
example, be computed by a Cholesky factorization of the left hand side of (20).

Given the assumption in (18), it holds that Σ = I. In (8), all modeled faults
f are additive and only affect the mean of τ . Then the pdf, p(τ ;µ), describing τ
in the Gaussian case is defined as

p(τ ;µ) =
1

|2π| d2
exp

(
−1

2
(τ − µ)T (τ − µ)

)

which is the multivariate Gaussian pdf with unit covariance matrix.
The vector τ is described, for any fault time profile, by a multivariate Gaussian

pdf. Thus the Kullback-Leibler divergence is computed for two multivariate
Gaussian pdf’s with equal covariance Σ = I, pi ∼ N (µi, I) and pj ∼ N (µj , I).
Then (13) can be written as

K(pi∥pj) = 1

2
∥µi − µj∥2I−1 =

1

2
∥µi − µj∥2. (21)

Note that (21) is invariant to linear transformations, i.e., multiplying (4) from the
left by an invertible matrix T will not affect the computed distinguishability. The
invariance is easily verified by using p̃i ∼ N (Tµi, TT

T ) and p̃j ∼ N (Tµj , TT
T )

where T is a non-singular transformation matrix, then

K(p̃i∥p̃j) = 1

2
∥T (µi − µj)∥2(TTT )−1 =

=
1

2
∥µi − µj∥2 = K(pi∥pj).

(22)

To derive an explicit expression of (15), the following standard result will be
used.

Lemma 1. For a matrix A ∈ Rn×m and a vector b ∈ Rn, with n > m, it holds
that

min
x

∥Ax− b∥2 = ∥NAb∥2. (23)

where the rows of NA is an orthonormal basis for the left null space of A.



36 Paper A. A method for quantitative fault diagnosability analysis of . . .

Proof. Minimizing the left hand side of (23) is equivalent to projecting b onto the
orthogonal complement of A, Ker(A), with the projection matrix P = N T

ANA.
This gives that

min
x

∥Ax− b∥2 = ∥Pb∥2 = bTPb = bTN T
ANAb = ∥NAb∥2.

Theorem 1. Distinguishability for a sliding window model (4) with Gaussian
distributed stochastic vector e, under assumption (18), is given by

Di,j(θ) =
1

2
∥N(H Fj)Fiθ∥2 (24)

where the rows of N(H Fj) is an orthonormal basis for the left null space of
(H Fj).

Before proving Theorem 1, note that distinguishability for a general model
in the form (4) under assumption (6) can be computed by:

1. applying the transformation (19),

2. redefining the matrices L, H, F , and N given the transformed model
fulfilling assumption (18), and

3. computing distinguishability using (24).

Proof. The set Zfj is parametrized by fj = θj , thus minimizing (15) with the
respect to pj ∈ Zfj is equal to

Di,j(θ) = min
pj∈Zfj

K
(
piθ∥pj

)
=

= min
θj

1

2
∥NHFiθ −NHFjθj∥2Σ−1

Assumption (18) gives that Σ = I. Then,

Di,j(θ) = min
θj

1

2
∥NH(Fiθ − Fjθj)∥2 =

= min
θj ,x

1

2
∥Hx− Fiθ + Fjθj∥2 =

= min
θj ,x

1

2
∥
(
H Fj

)(x
θj

)
− Fiθ∥2 =

=
1

2
∥N(H Fj)Fiθ∥2

where Lemma 1 is used in the second and fourth equality.
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Note that, if a fault time profile θ is multiplied with a scalar α ∈ R, Theorem
1 gives that distinguishability is proportional to the square of the parameter α,
i.e., Di,j(αθ) = α2Di,j(θ).

Example 2. In this example, distinguishability is computed to analyze diagnos-
ability performance and the result is compared to the deterministic analysis of the
spring-mass model (2) made in Example 1. The model is rewritten as a window
model of length three in the form (4). Then, distinguishability is computed for
each fault pair where the fault time profile is assumed to be constant of ampli-
tude one, i.e., θ = (1, 1, 1)T . The computed distinguishability is summarized in
Table 2.

Table 2: Computed distinguishability of (2) when rewritten on the form (4)
where n = 3 and θ = (1, 1, 1)T .

Di,j(θ) NF f1 f2 f3 f4
f1 0.16 0 0 0.11 0.05
f2 0.16 0 0 0.11 0.05
f3 1.02 1.00 1.00 0 0.05
f4 1.07 1.00 1.00 0.11 0

Table 2 shows that it is easier to detect the sensor faults f3 and f4 than
the actuator fault f1 and a change in rolling resistance f2 for the constant
fault time profile, since 1.02 > 0.16 and 1.07 > 0.16. A comparison of Table 2
and Table 1 shows that all positions marked with X in Table 1 correspond to
nonzero distinguishability in Table 2. Table 2 also shows that distinguishability of
isolating each of the faults from the other faults never exceeds distinguishability
of detecting the faults, which follows from Proposition 2.

If instead a window model of length n = 6 is analyzed, i.e., the window
length is doubled, then the computed distinguishability is shown in Table 3. A
comparison of Table 3 and Table 2 shows as expected that the increased window
length results in higher distinguishability for the different fault pairs. Note also
that, for example, distinguishability is higher for detecting f1 and f2, 4.21, than
f3 and f4, 2.47 and 3.87 respectively, which were the opposite situation for n = 3.

If instead the window length is decreased from n = 3, detectability and
isolability performance is lost. In Table 4 distinguishability is computed where
n = 2. The analysis shows that, for the spring-mass model, if the window length
is lower than three then a constant fault f1 or f2 can not be detected or isolated.
When analyzing the model (2) it turns out that to have enough redundancy in
the data to detect f1 and f2, a window length of at least n = 3 is needed due to
the model dynamics. To detect and isolate f3 and f4 from f1 and f2 requires
only n = 1 because it is sufficient to take the difference of the two sensors y1
and y2 for obtaining redundancy.
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To illustrate how a different fault time profile effects the distinguishability
consider as a comparison to the constant fault time profile used in the computation
of Table 3 a step where θ = (0, 0, 0,

√
2,
√
2,
√
2)T . The amplitude of the step is

chosen such that the energy of the fault time profile here is equal to a constant
fault of amplitude one, i.e., θT θ is equal for the two fault time profiles in the
comparison. The distinguishability for this step fault is shown in Table 5. The
distinguishability in Table 3 is lower except for isolating f3 and f4 from f1 and f2
then in Table 5. Thus it is more difficult to detect or isolate a fault behaving like
a step even though the amplitude is higher compared to a constant fault. Finally,
in Table 5, distinguishability for detecting f1 and f2, is lower than detecting f3
and f4 which is the opposite to Table 3. This is due to the fact that only three
time instances in the time window are effected by the fault and hence is similar
to the case in Table 2.

Table 4 contains more zeros than Table 1 which states that n = 2 is not
enough to detect and isolate some faults. If only Table 4 is used to state which
faults that are theoretically isolable in (1), then it could be wrongly concluded
that f1 and f2 are not isolable at all. Therefore, distinguishability should be
computed for n ≥ lx+1, or a deterministic isolability analysis could be performed,
see Nyberg (2002).

Table 3: Computed distinguishability of (2) when rewritten on the form (4)
where n = 6 and θ = (1, 1, 1, 1, 1, 1)T .

Di,j(θ) NF f1 f2 f3 f4
f1 4.21 0 0 3.04 1.65
f2 4.21 0 0 3.04 1.65
f3 2.47 2.00 2.00 0 1.65
f4 3.87 2.00 2.00 3.04 0

Table 4: Computed distinguishability of (2) when rewritten on the form (4)
where n = 2 and θ = (1, 1)T .

Di,j(θ) NF f1 f2 f3 f4
f1 0 0 0 0 0
f2 0 0 0 0 0
f3 0.67 0.67 0.67 0 0
f4 0.67 0.67 0.67 0 0
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5 Relation to residual generators

An important property of the computed distinguishability for a model (4) with
Gaussian distributed stochastic vector e is the connection to the performance
of residual generators. The connection between distinguishability and residual
generators shows the relation between computed distinguishability and achievable
diagnosability performance. In this section these relations are derived.

A linear residual generator is here defined, in a direct stochastic extension
to the definitions in Frisk and Nielsen (2006); Frisk and Nyberg (2001); Zhong
et al. (2003), as

Definition 4 (Linear residual generator). A linear function r = Rz, with the
scalar r as output and z as defined in (3), is a residual generator for (4) if r is
zero mean in the fault free case. A residual is sensitive to a fault if the transfer
function from fault to residual is non-zero.

A residual generator that isolates a fault fi from fj , is a residual that is
sensitive to fi but not to fj . To design a residual generator isolating faults from
fault mode fj , multiply (4) from the left with γN(H Fj) where γ is a row-vector
to obtain

r = γN(H Fj)Lz = γN(H Fj)Ff + γN(H Fj)Ne (25)

Here, γN(H Fj)Lz is a residual generator that isolates from fault mode fj . If
only detectability, and not isolability, of fi is considered, N(H Fj) is replaced
by NH . The vector γ parametrizes the space of all linear residual generators
decoupling fj , and is a design parameter selected to achieve fault sensitivity.

To quantify the performance of a residual generator (25), the following
definition is used.

Definition 5 (Fault to noise ratio). For a residual generator (25) where e is
a stochastic vector with covariance Λe. The fault to noise ratio, FNR, for a
given fault fi = θ, is defined as the ratio between the amplified fault time profile,
λ(θ) = γN(H Fj)Fθ and the standard deviation of the noise σ as

FNR =
λ(θ)

σ
(26)

Table 5: Computed distinguishability of (2) when rewritten on the form (4)
where n = 6 and θ = (0, 0, 0,

√
2,
√
2,
√
2)T .

Di,j(θ) NF f1 f2 f3 f4
f1 0.63 0 0 0.44 0.23
f2 0.63 0 0 0.44 0.23
f3 2.08 2.00 2.00 0 0.26
f4 2.32 2.00 2.00 0.50 0
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where
σ2 = γN(H Fj)NΛeN

TN T
(H Fj)

γT .

Note that (25) is in the same form as (4) and can be seen as a scalar model.
Therefore distinguishability, and Theorem 1 can directly be used to analyze
isolability performance of a residual generator. A superscript γ is used, Dγ

i,j(θ), to
emphasize that it is computed distinguishability of a specific residual generator
with a given γ. The connection between distinguishability and the FNR is
given by the following result, which also gives an alternative way of computing
distinguishability for a scalar model.

Theorem 2. A residual generator (25), for a model (4) where e is Gaussian
distributed under assumption (6), is also Gaussian distributed N (λ(θ), σ2) and

Dγ
i,j(θ) =

1

2

(
λ(θ)

σ

)2

where θ is the fault time profile of a fault fi, and λ(θ)/σ is the fault to noise
ratio with respect to fault fi in (25).

Proof. Assumption (6) on the model (4) directly implies that (6) is fulfilled
also for the residual generator (25). However, there is no guarantee that (25)
fulfills (18) and the 3-step procedure after Theorem 1 must be used. After the
transformation, the model is

γN(H Fj)L

σ︸ ︷︷ ︸
=:L

z =
γN(H Fj)F

σ︸ ︷︷ ︸
=:F

f +
γN(H Fj)N

σ︸ ︷︷ ︸
=:N

e (27)

where σ is the standard deviation of the residual in (25). Note that the matrices
L, F , and N are redefined in (27) and the new corresponding H is the empty
matrix. Model (27) fulfills (18) and Theorem 1 gives that

Dγ
i,j(θ) =

1

2

∥∥∥∥
γN(H Fj)Fiθ

σ

∥∥∥∥
2

=
1

2

(
λ(θ)

σ

)2

.

Theorem 2 shows a direct relation between FNR in a residual isolating fault
fi from fault fj and the computed distinguishability Dγ

i,j(θ) for the residual.
An important connection between Dγ

i,j(θ) and Di,j(θ) is given by the inequal-
ity described by the following theorem.

Theorem 3. For a model (4) under assumption (18), an upper bound for Dγ
i,j(θ)

in (25) is given by
Dγ

i,j(θ) ≤ Di,j(θ)

with equality if and only if γ and
(
N(H Fj)Fiθ

)T are parallel.
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Proof. Since both NH and N(H Fj) define orthonormal bases and the row vectors
of N(H Fj) are in the span of the row vectors of NH , there exists an α such that
N(H Fj) = αNH and

I = N(H Fj)N T
(H Fj)

= αNHN T
HαT = ααT

Using this result and assumption (18), the variance σ2 in Theorem 2 can be
written as

σ2 = γN(H Fj)NΛNTN T
(H Fj)

γT =

= γαNHNΛNTN T
HαT γT = γγT

Finally, Cauchy-Schwarz inequality gives

Dγ
i,j(θ) =

1

2

(γN(H Fj)Fiθ)
2

γγT
=

1

2

⟨γT ,N(H Fj)Fiθ⟩2
∥γ∥2 ≤

≤ 1

2
∥N(H Fj)Fiθ∥2 = Di,j(θ)

with equality if and only if γ and
(
N(H Fj)Fiθ

)T are parallel.

Theorem 3 shows that distinguishability of a residual never can exceed the
distinguishability of the corresponding model. The result of Theorem 3 shows
that an optimal residual for isolating a fault mode fi from a fault mode fj

is obtained if γ = k
(
N(H Fj)Fiθ

)T for any non-zero scalar k. Such a residual
has the highest FNR of fault fi that any residual decoupling fj can have. A
key observation here is that by computing distinguishability for a model (4),
maximum achievable FNR of a residual generator (25) is known. To implement
a diagnosis algorithm with optimal single fault distinguishability to detect and
isolate lf single faults from each other thus requires at most

lf︸︷︷︸
detect

+(lf − 1)lf︸ ︷︷ ︸
isolate

= l2f tests.

Example 3. Now, Theorem 3 is applied to the spring-mass model (2), with
n = 3, to generate residual generators which achieves maximum FNR. The fault
time profile is chosen as θ = (1, 1, 1)T , i.e., a constant fault with amplitude one.
Maximum distinguishability is given in Table 2 and shows the upper limit of
FNR which can be achieved.

The vector γ is computed as

γ = k
(
N(H Fj)Fiθ

)T

where k ∈ R is non-zero, and an optimal residual generator, isolating a constant
fault fi from any fault fj, is computed using (25) as

r = γN(H Fj)Lz = k
(
N(H Fj)Fiθ

)T N(H Fj)Lz. (28)
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Using (28) and a suitable k, a residual generator isolating f3 from f1 with
maximum FNR is

r =

t∑

m=t−2

(y1[m]− y2[m]) (29)

which has a FNR, with respect to f3,

FNR =
1 + 1 + 1√

1 + 1 + 1 + 0.5 + 0.5 + 0.5
= 1.41.

Distinguishability of r in (29) for isolating f3, with a constant fault time profile
of amplitude one, from f1 is computed using Theorem 2 as 1.00 which is equal
to the corresponding position in Table 2. This means that (29) is also optimal
in isolating f3 from f2 and also isolating f4 from f1 and f2 respectively.

The performance of a residual generator can also be visualized using a ROC-
curve which shows the ratio between the probability of detection and false alarm,
see Kay (1998). Consider the computed distinguishability for the spring mass
model in Table 3. Distinguishability for detecting f2 is higher than detecting f3,
4.21 > 2.47, and the ROC-curve for the corresponding optimal residuals using
Theorem 3 is shown in Figure 3. A higher distinguishability corresponds to a
higher ratio between the probability of detection and false alarm.
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Figure 3: A ROC-curve comparing probability of detection and false alarm for
two residuals with different computed values of distinguishability. A higher dis-
tinguishability corresponds to a higher ratio between the probability of detection
and false alarm.
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6 Diesel engine model analysis

Distinguishability, as a measure of quantified isolability, has been defined for
discrete-time linear descriptor models written in the form (4). Typically, many
industrial systems exhibits non-linear behavior. The purpose here is to demon-
strate how the developed theory can be used also to analyze dynamic non-linear
models of industrial complexity. Here, a model of a heavy duty diesel engine
is analyzed by linearizing at different operating points of the engine and then
computing distinguishability for each linearization point.

6.1 Model description

The considered model is a mean value engine model of gas flows in a heavy duty
diesel engine. The model is documented in Wahlström and Eriksson (2011) and
an overview is shown in Figure 4. The model considered here has 11 internal
states; four actuators: fuel injection uδ, valve controls uegr and uvgt, and throttle
control uth; and four measured signals: turbine speed ωt, pressures pem and
pim, and air mass-flow past the compressor Wc. The model has been extended
with 13 possible faults indicated by arrows in Figure 4. The faults are briefly
described in Table 6 and can be divided into four groups: f1, . . . , f4 are actuator
faults, f5, . . . , f8 are sensor faults, f9, . . . , f12 are leakages, and f13 is degraded
compressor efficiency. Actuator faults and sensor faults are modeled as a bias
of the nominal value. Leakage flow is modeled as proportional to the square
root of the pressure difference over the leaking hole. Degraded efficiency of
the compressor is modeled as a proportional negative fault to the compressor
efficiency map. The faults fi are shown in Table 6 and the fault sizes fi = θi
have been selected in the order of 10% of a nominal value of the corresponding
model variable.

Uncertainties must be introduced in the model, and it is important how
it is made because it significantly affects the result of the analysis. In this
case, model uncertainties, actuator noise and measurement noise have been
modeled as i.i.d. Gaussian noise. In Wahlström and Eriksson (2011), the model
uncertainties for each sub model were analyzed by comparing simulation with
measurement data. The model uncertainties are modeled as process noise where
the standard deviations of the process noise are selected proportional to the
uncertainties in the model according to Wahlström and Eriksson (2011). The
model uncertainties are assumed proportional to the amplitude of the submodel
outputs, e.g., the flow out of the throttle. More detailed information of the sub
models are described in Wahlström and Eriksson (2011). Also, actuator noise
and sensor noise were added, where the standard deviation of the actuator noise
is chosen as 5% of maximum value and sensor noise as 5% of a nominal value.
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Figure 4: Overview of diesel engine model. The arrows indicate the locations in
the model of the modeled faults in Table 6.
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Table 6: Implemented faults in the diesel engine model where nom =
”nominal value” and ∆px = px − patm.

Fault Modeling Descr.
f1 uδ = unom

δ + f1 Act. fault
f2 uegr = unom

egr + f2 Act. fault
f3 uvgt = unom

vgt + f3 Act. fault
f4 uth = unom

th + f4 Act. fault
f5 yωt

= ynom
ωt

+ f5 Sensor fault
f6 ypem = ynom

pem
+ f6 Sensor fault

f7 ypim = ynom
pim

+ f7 Sensor fault
f8 yWc = ynom

Wc
+ f8 Sensor fault

f9 Wc,leak = sgn(∆pc)f9
√

∆pc Leakage
f10 Wegr,leak = sgn(∆pem)f10

√
∆pem Leakage

f11 Wth,leak = sgn(∆pc)f11
√

∆pc Leakage
f12 Wt,leak = sgn(∆pem)f12

√
∆pem Leakage

f13 ηc = ηnom
c (1− f13) Degr. eff.

6.2 Diagnosability analysis of the model

The dynamic non-linear diesel engine model is analyzed to see how the dis-
tinguishability for the different faults varies with the operating point of the
engine.

The non-linear model is time-continuous and in the form
ẋ(t) = g (x(t), u(t), f(t), v(t))

y(t) = h (x(t), f(t), ε(t)) .
(30)

To linearize (30), the system is simulated when a constant actuator signal
u[t] = us is applied to the fault-free and noise-free system until steady-state is
reached, i.e.,

0 = g(xs, us, 0, 0)

ys = h(xs, us, 0, 0).
(31)

Then (31) is static and linearized around x(t) = xs, u(t) = us, f(t) = 0, v(t) = 0,
and ε(t) = 0 and written as a static version of (1) where E = 0 and

A =
∂g(x, us, 0, 0)

∂x

∣∣∣
x=xs

, Bu =
∂g(xs, u, 0, 0)

∂u

∣∣∣
u=us

,

Bf =
∂g(xs, us, f, 0)

∂f

∣∣∣
f=0

, Bv =
∂g(xs, us, 0, v)

∂v

∣∣∣
v=0

,

C =
∂h(x, us, 0, 0)

∂x

∣∣∣
x=xs

, Du =
∂h(xs, u, 0, 0)

∂u

∣∣∣
u=us

,

Df =
∂h(xs, us, f, 0)

∂f

∣∣∣
f=0

, Dε =
∂h(xs, us, 0, ε)

∂v

∣∣∣
ε=0

.
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In this analysis, the model is static and no fault dynamics are considered.
Therefore, the window length is chosen as n = 1.

Then, distinguishability can be applied for each linearization point. The
operating points are selected from the World Harmonized Transient Cycle
(WHTC), see for Europe Inland Transport
Committee (2010). WHTC is used world-wide in the certification of heavy duty
diesel engines and should therefore be suitable to get linearization points which
covers most of the operating points of the engine.

Computing distinguishability for each linearization point results in a huge
amount of data that is difficult to visualize. For the engine case, 13 faults result
in a 13× 14 sized table of data for each linearization point, if only single faults
are considered. Here, to illustrate some of the analysis results, distinguishability
for each fault is plotted against a relevant system state variable to see how it
varies depending on the operating point. For easier physical interpretation of the
result, the square root of the computed distinguishability is plotted. We expect
that distinguishability, when trying to isolate a fault fi = θi from another fault
mode fj , never exceeds the detectability performance for the fault according
to Proposition 2. What we do not know is how much distinguishability will
decrease when isolating from the different faults.

Figure 5 shows the computed distinguishability of a leakage after the com-
pressor f9 from four different fault modes: no fault, a leakage after the throttle
f11, a fault f8 in the sensor measuring Wc and a fault f1 in control signal uδ.
The stars in Figure 5 correspond to the detectability performance which in-
creases with pressure after the compressor and seems proportional to

√
pc − patm.

This is expected since the detection is easier with increasing flow. Also, the
shape corresponds to how the fault was modeled, see Table 6. The computed
distinguishability for the leakage from the fault in uδ does not differ noticeably,
from the no fault case, which is expected since the locations of the faults are
not close to each other. Instead, the computed distinguishability for the leakage
from the sensor fault or the leakage after the throttle are much lower since they
are physically closer to each other in the model. This means that isolating a
leakage after the compressor from a leakage after the throttle, or from a fault in
the sensor measuring Wc, should be more difficult than only trying to detect the
leakage. However, there is little difference between detectability performance
and isolating from an actuator fault in uδ.

In Figure 6, computed distinguishability for a fault f7 in the sensor measuring
the pressure pim is shown. Detectability of the sensor fault, represented by the
stars, has a peak around pim ≈ patm where the fault is relatively large compared
to pim. When isolating the sensor fault from a compressor degradation f13
distinguishability is not changed which could be explained by that the faults are
located far from each other. Note that distinguishability is clearly lower when
isolating the sensor fault from a fault f5 in the sensor measuring ωt, comparing
to the degradation, except an increase around pim ≈ patm. Even though the
faults are close to each other the isolability performance is different. When
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isolating the sensor fault from a leakage after the throttle f11, distinguishability
is low but increases when pim decreases. This behavior could be explained
by that the sensor fault becomes relatively larger when the measured pressure
decreases. The increase of distinguishability around pim ≈ patm seems to depend
on the feedback from the compressor which is decoupled when isolating from
the leakage.

The computed distinguishability in Figure 5 and Figure 6 shows how diag-
nosability performance of a non-linear model is analyzed. Non trivial results
are presented but also physical interpretations of the analyzes which shows that
distinguishability also could be used in the non-linear case. Both Figure 5 and
Figure 6 show how distinguishability varies for different operating points. This
information is useful when designing a diagnosis algorithm because it tells when
it should be easiest to detect the different faults and isolate them from the other
faults.
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Figure 5: Computed distinguishability for a leakage after the compressor. Dis-
tinguishability for a leakage after the compressor from the no fault case, i.e.,
detectability performance, increases by increasing compressor pressure. Isolating
the leakage from a leakage after the throttle, or a fault in the sensor measur-
ing the mass flow through the compressor, affects the performance negatively
while isolating from a fault in control signal uδ does not affect the performance
noticeably.
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Figure 6: Computed distinguishability for an additive fault in sensor measuring
pim. Distinguishability is not changed when isolating from a degradation in the
compressor compared to detectability. There is a peak for distinguishability
around pim ≈ patm except when isolating from a leakage after the compressor.
Distinguishability increases when pim goes to zero because the sensor fault
becomes relatively large compared to the measured pressure.

7 Conclusions

The topic addressed in this paper is how to quantify diagnosability properties
of a given model, without designing any diagnosis system. Here, discrete-time
dynamic descriptor models are considered where uncertainties are described by
stochastic processes with known characteristics. The descriptor model is written
as a window model by considering the model dynamics for a time window of
certain length.

A key contribution is the definition of distinguishability, a detectability and
isolability performance measure, which is based on the Kullback-Leibler diver-
gence to measure the difference between probability distributions of observations
under different fault modes. It is important that distinguishability is a model
property. Also, a method to analyze quantitative diagnosability performance
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using distinguishability is derived1.
A second key contribution is the analysis of the connection between distin-

guishability and residual generators. If the model uncertainties are Gaussian
distributed then it is proved that distinguishability of the model gives an upper
bound to the fault to noise ratio (FNR) for any residual generator. It is also
shown how to design a residual generator with maximum FNR.

Finally, the developed theory and algorithms are applied to a non-linear
industrial sized model of a diesel engine. The analysis is used to evaluate and
exemplify an application of the methodology derived in this paper. Non-trivial
results are derived on how detectability and isolability performance varies with
the operating point of the diesel engine.

1A Matlab implementation can be found at http://www.vehicular.isy.liu.se/Software/.
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Abstract

A good placement of sensors is crucial to get good performance in
detecting and isolating faults. Here, the sensor placement problem is cast
as a minimal cost optimization problem. Previous works have considered
this problem with qualitative detectability and isolability specifications.
A key contribution here is that quantified detectability and isolability
performance is considered in the optimization formulation. The search
space for the posed optimization problem is exponential in size, and to
handle complexity a greedy optimization algorithm that compute optimal
sensor positions is proposed. Two examples illustrate how the optimal
solution depends on the required quantified diagnosability performance
and the results are compared to the solutions using a deterministic
method.
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1 Introduction

In model-based diagnosis, diagnosis is performed by comparing on-line system
information and a system model. The on-line information is mostly obtained by
installed sensors and therefore the placement of the sensors is important for the
diagnosability performance.

Sensor placement for fault diagnosis has been treated in several papers.
Example of previous works are Yassine et al. (2008), Commault and Dion (2007),
Krysander and Frisk (2008), Raghuraj et al. (1999), and Trave-Massuyes et al.
(2006) which all use structural descriptions of the model to find a set of sensors
which achieves a required deterministic isolability performance. Deterministic
isolability states whether a fault is isolable or not, given the selected set of
sensors. In Rosich et al. (2010) and Debouk et al. (2002) the optimal minimum
cost sensor set is sought given a required deterministic isolability performance.
In Frisk et al. (2009) an analytical approach is used to find all sets of sensors
fulfilling the required deterministic isolability performance.

A limitation of deterministic isolability analyses is that they only provide a
yes or no answer to questions like: is a fault detectable? Sensor placement based
on deterministic isolability can provide sensor sets that in practice are not good
for diagnosis due to noise and model uncertainties.

A method for analyzing quantified diagnosability performance, distinguisha-
bility, was introduced in Eriksson et al. (2011b) for linear static models, and
extended to time-discrete dynamic linear descriptor models in Eriksson et al.
(2011a). Distinguishability is used in this paper to optimize sensor placement for
fault diagnosis to find a cheapest sensor set which achieves a required quantified
diagnosability performance. The proposed method is applied to two example
models where the solutions are analyzed and compared to the results using a
deterministic method.

2 Introductory example

Before presenting the problem formulation in this paper, the result of using a
deterministic algorithm on a linear model for finding optimal sensor sets will be
discussed. Then a discussion will follow on how the performance of a diagnosis
algorithm, based the computed set of sensors, is affected by model uncertainties
and why this should be considered when finding optimal sensor sets.

A discretized version of a small continuous linear dynamic example model,
discussed in Krysander and Frisk (2008),

x1[t+ 1] = x2[t] + x5[t]
x2[t+ 1] = −x2[t] + x3[t] + x4[t]
x3[t+ 1] = −2x3[t] + x5[t] + f1[t] + f2[t]
x4[t+ 1] = −3x4[t] + x5[t] + f3[t]
x5[t+ 1] = −4x5[t] + f4[t]

(1)
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is considered where xi are state variables and fi are modeled faults.
A deterministic method finds sets of sensors that achieves maximum deter-

ministic fault isolability, i.e., a set of sensors which makes it possible to isolate all
faults that are isolable from each other. A set of sensors which fulfills maximum
deterministic fault isolability, where no subset of sensors fulfills it, is called a
minimal sensor set, see Krysander and Frisk (2008).

2.1 Sensor placement using deterministic method

If xi in (1) are possible sensor locations and model uncertainties and measurement
noise are ignored, a deterministic analysis of maximum fault isolation can be
performed, e.g., using the method in Frisk et al. (2009). Maximum deterministic
fault isolability can be computed by including all possible sensors, and the result
is summarized in Table 1. An X in position i, j represents that fault mode fi
is isolable from fj and a 0 if not. The NF column represents if the fault is
detectable, i.e., if fi is isolable from the no fault case then it is detectable. The
analysis shows that all faults are detectable, f1 and f2 are isolable from the
faults f3 and f4 but not from each other, and that f3 and f4 are fully isolable
from the other faults.

Table 1: Achievable maximum fault isolability of the example model (1).

NF f1 f2 f3 f4
f1 X 0 0 X X
f2 X 0 0 X X
f3 X X X 0 X
f4 X X X X 0

It is not necessary to measure all states xi in (1) to achieve the isolability in
Table 1. Applying the deterministic sensor placement method in Krysander and
Frisk (2008), gives all minimal sensor sets,

{x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, and {x3, x4}, (2)

that achieve the deterministic fault isolability in Table 1. Each set in (2), and
all supersets, represents all sensor sets that achieves maximum deterministic
fault isolability.

The minimal sensor sets in (2) are found without taking model uncertainties
and measurement noise into consideration. If model uncertainties and mea-
surement noise are considered, the choice of minimal sensor set will affect the
achieved diagnosability performance. The deterministic analysis does not state
which sensor set in (2) that will give the best performance of a diagnosis sys-
tem. It neither gives any information if the number of sensors is enough to get
sufficient diagnosability performance.
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2.2 Analysis of minimal sensor sets using distinguisha-
bility

In Eriksson et al. (2011b) and Eriksson et al. (2011a) a measure, distinguishabil-
ity, for quantifying diagnosability performance of time-discrete linear dynamic
systems was introduced. Distinguishability gives the upper limit for the fault to
noise ratio, FNR, of an residual by considering model uncertainties and fault
time profiles. A fault time profile is a vector θi = (θ[t − n + 1], . . . , θ[t])T de-
scribing how the fault, fi = θi, varies during a time period of length n. A higher
distinguishability value corresponds to a higher diagnosability performance.

Before computing distinguishability for the different minimal sensor sets,
(2), some assumptions are made. First, all possible sensors in this example
are assumed to have additive measurement noise which is i.i.d. Gaussian with
variance one, i.e., yi = xi + ei where ei ∼ N (0, 1). For simplicity, it is assumed
that the added sensors can not become faulty, i.e., no new faults are introduced
in the model. It is also assumed that the system is observed for a time window
length of five samples, and that the faults to be isolated are constant faults with
amplitude one, i.e. θi = 1̄ = (1, 1, . . . , 1)T for each fault mode fi.

Consider first the minimal sensor set {x2, x3} in (2). The computed distin-
guishability is presented in Table 2. A non-zero value in position i, j corresponds
to a constant fault fi is isolable from the fault mode fj . A higher distinguishabil-
ity value means that the fault is easier to detect or isolate. The same information
about deterministic isolability performance as in Table 1 can be stated in Table 2
since all non-isolable fault pairs have distinguishability value zero. Table 2 also
shows that, for example, it is easier to detect f1 than f3, since 0.308 is greater
than 0.033, and it is easier to isolate f1 from f3 than vice versa since 0.230 is
greater than 0.020.

Table 2: Distinguishability for each fault pair {fi, fj}, if fi = 1̄, given the sensor
set {x2, x3}.

{x2, x3} NF f1 f2 f3 f4
f1 0.308 0 0 0.230 0.017
f2 0.308 0 0 0.230 0.017
f3 0.033 0.020 0.020 0 0.017
f4 0.018 0.001 0.001 0.010 0

If instead the minimal sensor set {x2, x4} in (2) is used, the computed
distinguishability is presented in Table 3. A comparison of Table 2 and Table 3
gives that the sensor set {x2, x4} makes it easier to detect and isolate f3 from f1
than the sensor set {x2, x3}, since 0.123 is greater than 0.020, but more difficult
to detect and isolate f1 and f3, since 0.037 is less than 0.230.

The analysis shows that no minimal sensor set in (2) gives the best diagnos-
ability performance for all pairs of fault modes. It could also be that none of the
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minimal sensor sets are sufficient to get satisfactory diagnosability performance
in practice. If model uncertainties are considered, when finding an optimal sensor
set, then the solution could be different from the solution of the deterministic
analysis.

The example shows that if model uncertainties and measurement noise are
not considered, when selecting a minimal sensor set, then sufficient diagnosability
performance might not be achievable if the faults are too small. If process noise
and measurement noise were considered then an optimal sensor set could be
found which gives a required performance, for example FNR, of the diagnosis
system.

3 Problem formulation

The objective here is to utilize distinguishability for quantified diagnosability
performance to optimize sensor placement for fault diagnosis purposes. The type
of models that will be considered are time-discrete linear dynamic descriptor
models written as

Ex[t+ 1] = Ax[t] +Buu[t] +Bff [t] +Bvv[t]

y[t] = Cx[t] +Duu[t] +Dff [t] +Dεε[t]
(3)

where x ∈ Rlx are state variables, y ∈ Rly are measured signals, u ∈ Rlu are
input signals, f ∈ Rlf are modeled faults, v ∼ N (0,Λv) and ε ∼ N (0,Λε) are
i.i.d. Gaussian vectors with zero mean and symmetric positive definite covariance
matrices Λv ∈ Rlv×lv and Λε ∈ Rlε×lε . The model matrices are of appropriate
dimensions. Note that the matrix E can be singular.

Assume that a model (3), denoted with M, and a set of possible sensors O
are given. Each sensor s ∈ O has a sensor position and a known noise variance.
Let DS

i,j(θi;n) define distinguishability for a fault fi with a given fault time
profile θi and a window length n from a fault mode fj for a given sensor set
S. A formal definition of distinguishability will be presented in Section 4. The
objective is to find a minimum cost sensor set which fulfills a minimum required
distinguishability, Dreq

i,j (θi;n), for each fault pair {fi, fj}.

Table 3: Distinguishability for each fault pair {fi, fj}, if fi = 1̄, given the sensor
set {x2, x4}.

{x2, x4} NF f1 f2 f3 f4
f1 0.062 0 0 0.037 0.023
f2 0.062 0 0 0.037 0.023
f3 0.171 0.123 0.123 0 0.023
f4 0.014 0.005 0.005 0.002 0
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The sensor placement problem is now formulated as an optimization problem,

min
S⊆O

h (S)

s.t. DS
i,j(θi;n) ≥ Dreq

i,j (θi;n), ∀i, j,
(4)

where S ⊆ O is a set of selected sensors, h(S) is a cost function, and DS
i,j(θi;n)

is the achieved distinguishability for each fault pair {fi, fj} given the sensors S.
The cost function h(s) could, for example, be the total sensor cost

h(s) =
∑

sl∈S

cost(sl)

or the total number of sensors if cost(sl) = 1 for all sl ∈ O.
The objective in this paper is, given a model M in the form (3) and an

available set of sensors O, to find a solution to (4). That is, finding a minimum
cost sensor set which fulfills the required diagnosability performance defined by
Dreq

i,j (θi;n).

4 Background theory

The theory presented here is needed to define distinguishability. A more thorough
description can be found in Eriksson et al. (2011b) and Eriksson et al. (2011a).

4.1 Model

Before analyzing the time-discrete descriptor model (3) it is written as a sliding
window model, i.e., a sliding window of length n is applied to (3), see, e.g.,
Eriksson et al. (2011a). Define the vectors

z = (y[t− n+ 1]T , . . . , y[t]T , u[t− n+ 1]T , . . . , u[t]T )T

x = (x[t− n+ 1]T , . . . , x[t+ 1]T )T ,

f = (f [t− n+ 1]T , . . . , f [t]T )T

e = (v[t− n+ 1]T , . . . , v[t]T , ε[t− n+ 1]T , . . . , ε[t]T )T ,

where z ∈ Rn(ly+lu), x ∈ R(n+1)lx , f ∈ Rnlf and e ∈ N (0,Λe) is an i.i.d.
Gaussian vector with zero mean and Λe ∈ Rn(le+lv)×n(le+lv) is a positive definite
symmetric covariance matrix. Then a sliding window model of length n can be
written as

Lz = Hx+ Ff +Ne (5)
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where

L =




0 0 . . . 0 −Bu 0 . . . 0
I 0 0 −Du 0 0
0 0 0 0 −Bu 0
0 I 0 0 −Du 0
...

. . .
...

...
. . .

...
0 0 0 0 0 −Bu

0 . . . 0 I 0 . . . 0 −Du




, H =




A −E 0 . . . 0 0
C 0 0 0 0
0 A −E 0 0
0 C 0 0 0
...

. . . . . .
...

0 0 0 A −E
0 0 . . . 0 C 0




,

Fn =




Bf 0 . . . 0
Df 0 0
0 Bf 0
0 Df 0
...

. . .
...

0 0 Bf

0 0 Df




, N =




Bv 0 . . . 0 0 0 . . . 0
0 0 0 Dε 0 0
0 Bv 0 0 0 0
0 0 0 0 Dε 0
...

. . .
...

...
. . .

...
0 0 Bv 0 0 0
0 0 . . . 0 0 0 . . . Dε




.

The sliding window model (5) is a static representation of the dynamic behavior
on the window given the time indexes (k − n+ 1, ..., k).

To guarantee, given the sliding window model (5), that no noise-free residuals
can be created, it is assumed that

(
H N

)
has full row-rank. (6)

Assumption (6) is fulfilled, e.g., if all sensors have measurement noise. To
simplify the computations, it is assumed that the covariance matrix Σ̄ of variable
NHLe is equal to the identity matrix, that is

Σ̄ = NHNΛNTNT
H = I (7)

where the rows of NH forms an orthonormal basis for the left null-space of
matrix H. Note that any model satisfying (6) can be transformed into fulfilling
Σ̄ = I. The choice of an invertible transformation matrix T is non-unique and
one possibility is

T =

(
Γ−1NH

T2

)
(8)

where Γ is non-singular and satisfying

NHNΛNTNT
H = ΓΓT (9)

and T2 is any matrix ensuring invertibility of T .
It is convenient to eliminate the unknown variables x in (5) by multiplying

with NH from the left such that

NHLz = NHFf +NHNe. (10)
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The model (10) is in an input-output form. For any solution z0, f0, e0 to (10)
there exists an x0 such that it also is a solution to (5), and also if there exists
a solution z0, f0, e0, x0 to (5) then z0, f0, e0 is a solution to (10). Thus no
information about the model behavior is lost when rewriting (5) as (10).

To quantify diagnosability performance, define the vector r = NHLz. The
vector r ∈ Rn(ly−lx) depends on the fault vector f and the noise vector e and
represents the behavior of the model (5).

4.2 Quantified diagnosability performance

Let piθi be the probability density function, pdf, describing the vector r when
there is a fault fi present in the system represented by the fault time profile θi.

The set of pdf’s of r representing the fault mode fi, corresponding to all
possible fault time profiles θi is defined as

Zfi =
{
piθi |piθi consistent with fault mode fi

}
. (11)

Each fault mode fi is thus described by a set Zfi of all pdf’s consistent with
the fault mode. Consider two different sets, Zfi and Zfj , for two fault modes
fi and fj in Figure 1. Assume that there is a measure to quantify the distance
from a specific pdf piθi ∈ Zfi given a fault time profile θi to any pjθj ∈ Zfj .
Then, the shortest distance from piθi to any pdf in Zfj is a quantified isolability
performance of a fault fi = θi from the fault mode fj .

Zfi

Zfj

piθi

pjθj

Figure 1: A graphical visualization where the smallest difference between piθi ∈
Zfi and a pdf pj ∈ Zfj is the quantified diagnosability measure.

To quantify the difference between the pdf’s, piθi and pjθj , of r for two faults
fi = θi and fj = θj the Kullback-Leibler divergence

K(piθi∥p
j
θj
)=

∫ ∞

−∞
piθi(v) log

piθi(v)

pjθj (v)
dv = Epi

θi

[
log

piθi
pjθj

]
(12)

is used, see Kullback and Leibler (1951).
Then, to quantify isolability of a fault mode fi with fault time profile θi from

a fault mode fj with an unknown fault time profile, a measure for isolability
performance is defined as follows.
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Definition 1 (Distinguishability). Given a sliding window model (5) of length
n, under assumption (6), distinguishability Di,j(θi;n) of a fault fi with a given
fault time profile θi from a fault mode fj is defined as

Di,j(θi;n) = min
pj∈Zfj

K
(
piθi∥pj

)
. (13)

Distinguishability can be used to analyze either isolability or detectability
performance depending on whether Zfj describes a fault mode or the fault free
case. Note that distinguishability is asymmetric in general, i.e., Di,j(θi;n) ̸=
Dj,i(θi;n), which is a natural property.

By using Theorem 2 and Theorem 3 in Eriksson et al. (2011a), distinguisha-
bility gives the maximum achievable FNR for any residual given the window
model (5) of length n.

Theorem 1. For a window model (5) of length n under assumption (7), a tight
upper bound for the fault to noise ratio of any residual based on (5) is given by

Di,j(θi;n) ≥
1

2

(
λ

σ

)2

where λ(θi)/σ is the fault to noise ratio for a residual with respect to fault fi
and a fault time profile θi.

For a sliding window model (5) an explicit computation of (13) is stated in
the following theorem.

Theorem 2. Distinguishability for a sliding window model (5) under assumption
(6) is given by

Di,j(θi;n) =
1

2
∥NH̄Fiθi∥2 (14)

where H̄ =
(
H Fj

)
and the rows of NH̄ is an orthonormal basis for the left null

space of H̄.

Proofs of Theorem 1 and Theorem 2 can be found in Eriksson et al. (2011b).
A detectability and isolability analysis of the descriptor model (3) can be

made using distinguishability if the model is written as a sliding window model
(5). The distinguishability measure depends on the window length n and the
fault time profile θi.

5 The small example revisited

Consider again the example model (1). This time a minimal sensor set is sought
which is a solution to the optimization problem (4). It is assumed that the faults
to be detected are constants over time with amplitude one and a window model
of length n = 5 is used when computing distinguishability.
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Selecting the appropriate constraints, Dreq
i,j (1̄; 5) for each fault pair, {fi, fj},

can be difficult if Dreq
i,j (1̄; 5) contains many elements. A more convenient approach

is to select Dreq
i,j (1̄; 5) as a fraction p of maximum achievable distinguishability,

Dmax
i,j (1̄; 5) for each fault pair {fi, fj}, where p ∈ [0, 1] is a scalar. In this

way only one parameter is required for all elements. Note that there is still
complete freedom in selecting Dreq

i,j (1̄; 5) for each fault pair individually. As
when maximum fault isolability in Section 2.1 was determined, the maximum
achievable distinguishability can be computed by including all sensors in O.
The computed Dmax

i,j (1̄; 5) is shown in Table 4. If Dreq
i,j (1̄; 5) is selected higher

than Dmax
i,j (1̄; 5) for any fault pair, then the optimization problem can not be

solved. By comparing Table 2 and Table 3 to Table 4 show that none of the two
minimum sensors sets reaches Dmax

i,j (1̄; 5).

Table 4: Maximum achievable distinguishability for each fault pair, if the
maximum number of sensors is used.

Dmax
i,j (1̄; 5) NF f1 f2 f3 f4

f1 0.385 0 0 0.341 0.275
f2 0.385 0 0 0.341 0.275
f3 0.213 0.187 0.187 0 0.161
f4 0.251 0.177 0.177 0.187 0

Assume that a minimal sensor set is to be found which achieves at least 50%
of Dmax

i,j (1̄; 5) for each fault pair. That is, the sensor placement problem can be
written as

min
S⊆O

|S|

s.t. DS
i,j ≥ 0.5×Dmax

i,j (1̄; 5), i, j = 1, 2, 3, 4
(15)

where |S| is the cardinality of S, and Dmax
i,j (1̄; 5) can be found in Table 4. A

global search gives that a solution to (15) is the unique optimal sensor set, of
cardinality four, which measures the states: x1, x3, x4, and x5.

The analysis is expanded to see how the cardinality of the minimal sensor
set, required to achieve a fraction p of Dmax

i,j (1̄; 5), depends on p. The result
is presented in Figure 2. Note that the minimum number of required sensors
coincides with the cardinality of the minimal sensor sets (2) given by the
deterministic analysis when p → 0+.

Since there is only one minimal sensor set with four sensors achieving at
least 50% of maximum distinguishability, the analysis in Figure 2 gives that the
minimal sensor set measuring the states: x1, x3, x4, and x5, achieves almost
80% of Dmax

i,j (1̄; 5). The number of sensors in the minimal sensor sets given by
the structural analysis is two, which is not able to achieve more than 3% of
Dmax

i,j (1̄; 5).
The result of the analysis in this section shows that the minimum cost

sensor sets (2) given by the deterministic analysis results in a solution where the
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Figure 2: The least number of sensors required to exceed a certain percentage of
maximum distinguishability given the example model (1). Note that the number
of sensors when required performance goes to zero is equal to the cardinality of
the minimal sensor sets (2) from the structural analysis.

achieved diagnosability performance is relatively low given Dmax
i,j (1̄; 5) (< 3% of

Dmax
i,j (1̄; 5)). By using minimum required distinguishability as the constraints of

the optimization problem, a solution is found which better fits the requirements
when designing a diagnosis system.

For the small system (1), a global search could be performed to find the
solution. For larger systems, this is not realistic because of high computational
complexity. The number of sensor combinations, 2k where k is the number of
possible sensors, grows exponentially with the total number of sensors. A more
efficient algorithm to reduce complexity is needed to find the optimal solution.
An algorithm which iteratively adds new sensors to the solution, would be more
appealing since it reduces the complexity. A heuristic is needed to implement
such an iterative approach.

6 A greedy search approach

A heuristic greedy search algorithm starts with an empty set and iteratively
adds the sensor with the largest utility to the solution. The iteration continues
until the solution fulfills the constraints. Thus, a utility function must be defined
to use the greedy search heuristic.

In the iterative search, the heuristic adds the sensor s which best improves the
previously selected set of sensors S to fulfill the constraints, i.e., the algorithm
adds the sensor s ∈ O \ S that maximizes the utility function µ(s). The utility
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function is here the sum, over all fault pairs, of the distinguishability improve-
ments when adding a sensor s. There is no utility in improving distinguishability
more than what is required by Dreq

i,j . Thus, the utility function can be written as

µ(s) =
∑

i,j

max
(
min

(
Dreq

i,j ,D
S
⋃
{s}

i,j

)
−DS

i,j , 0
)
.

The algorithm SelMinSensSetGreedy for greedy selection of minimal sensor
set is given below. The inputs to the algorithm are the model M in the form (3),
a set of sensors O where each sensor measures one model variable and has a
known noise variance, and a minimum required distinguishability Dreq

i,j . The
output from the algorithm is a set of sensors S. If the achieved distinguishability,
DS

i,j , given the set of sensors S fulfills the constraints Dreq
i,j then the solution S is

returned. If Dreq
i,j is lower than the maximum achievable distinguishability, given

M and O then SelMinSensSetGreedy will always return a set of sensors S
fulfilling the constraints in (4).
1: function SelMinSensSetGreedy(M,O,Dreq

i,j (θi;n))
2: S := ∅
3: while O ̸= ∅ do
4: s∗ := argmaxs∈O µ(s)
5: S := S

⋃
{s∗}

6: O := O \ s∗
7: if DS

i,j(θi;n) ≥ Dreq
i,j (θi;n), ∀i, j then

8: return S
9: end if

10: end while
11: return S
12: end function

The complexity of the algorithm SelMinSensSetGreedy is linear in the
number of sensors in O. This approach is faster than a global search, however,
the approach can of course not guarantee that the found solution is optimal.

7 Sensor placement using greedy search

In this section, the greedy algorithm presented in Section 6 is applied to a slightly
larger example, but still small enough to compare the solution to the global
optimal solution.

Consider the sensor placement problem given a time-discrete linear model
where one sensor can be selected to measure each unknown variable xi. A
minimum cost sensor set is to be found which achieves a minimum required
distinguishability for each fault pair.

7.1 Model

The example is a static linear model describing a flow through a set of 15
branches visualized in Figure 3. The input flow u is known and xi represents
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Figure 3: A schematic overview of a model describing a static flow through a
number of nodes. The input u is known and the flows through the branches xi,
i = 1, 2, . . . , 15, are unknown, and f1, f2, f3 are three additive faults.

the flow through each branch. For each node the sum of all branches is zero, e.g.
x8 = x5 +x6. The equations describing the flow through each node, has a model
uncertainty which is assumed additive i.i.d. Gaussian N (0, 0.1), defines the
model M. The set of available sensors O, one for each flow xi, has measurement
noise N (0, 1). There are three possible leaks added to the model, fi, i = 1, 2, 3,
and they are assumed to be additive in the equation describing the flow through
the specific node, e.g., x3 + x4 = x1 + f1. To compute distinguishability, a
window model of length one is assumed since the model is static and all fault
time profiles are assumed amplitude one.

Note that, in the model described above, there are no equations in the model
describing how the flow splits when the flow branches. This underdetermined
model is analyzed first, and then in a second step the model is extended with
equations describing how flow splits in the branches. This exactly determined
model is analyzed to illustrate how diagnosability performance changes with
modelling effort.

7.2 Analysis of the underdetermined model

Using the global search algorithm, the minimum number of sensors will depend on
the minimum required distinguishability Dreq

i,j (1; 1). A higher Dreq
i,j (1; 1) requires

more sensors added to the system to be fulfilled. The global search is used
to analyze how the cardinality of S depends on Dreq

i,j (1; 1) = pDmax
i,j (1; 1). The

maximum achievable distinguishability for each fault pair is shown in Table 5.
The solid line in Figure 4 shows that the minimal number of sensors which
achieves full deterministic isolability performance, i.e., four sensors, only is able
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Figure 4: The least number of sensors required to exceed a certain percentage
of maximum distinguishability given the underdetermined model described in
Figure 3, for the underdetermined case and the exactly determined case, given a
global search.

to achieve approximately 30% of maximum distinguishability, for each fault pair.
To achieve 70% of Dmax

i,j (1; 1) for each fault pair a solution requires at least that
10 of 15 unknown variables, xi, are measured by a sensor.

Table 5: Maximum achievable distinguishability for the underdetermined model
in Figure 3.

Dmax
i,j (1; 1) NF f1 f2 f3

f1 1.228 0 0.693 0.875
f2 0.831 0.470 0 0.621
f3 1.086 0.774 0.812 0

Assume that a minimal sensor set is to be found using the greedy algorithm
which fulfills 50% of maximum distinguishability for each fault pair. The solution
requires six sensors, selected by the greedy algorithm in the following order: x15,
x14, x8, x7, x13, and x2. In this case the solution of the greedy algorithm is
optimal since it has the same cardinality as the optimal solution given by the
global search in Figure 4.

The greedy algorithm always tries to find the sensor which best improves the
distinguishability to fulfill the constraints and therefore some solutions could
be missed. Consider, for example, in Figure 3 that a set of sensors are to be
found to isolate f1 from f2 and f3. Assume that the optimal solution would be
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to measure x1, x3 and x4, and that the algorithm has already selected x1. Since
neither only measuring x3 or x4 is enough to isolate f1, a sensor measuring, for
example, x8 is selected. This sensor selection will improve the solution of the
greedy search locally but will miss the global optimal solution. A solution to
this could be to use the solution of a deterministic analysis and then improving
the result by adding more sensors. Alternatively, more advanced search methods
could be used, see e.g. Russell and Norvig (2003).

7.3 Analysis of the exactly determined model

Assume now that the flows in Figure 3 where a branch is split are approximately
equal, i.e., x3 ≈ x4. This information is included in the underdetermined model,
for example, by adding the equations x1 = x2+v1, x3 = x4+v2, and x9 = x10+v3,
where vi ∼ N (0, 1), which makes the model exactly determined. The solution of
the greedy algorithm, given the exactly determined model, which fulfills 50% of
the maximum achievable distinguishability of the underdetermined model, in
Table 5, is: x13, x14, x8, and x15. Note that the exactly determined model has a
higher maximum achievable distinguishability than the underdetermined model,
see Table 6. This is expected as additional process knowledge is incorporated in
the model.

Table 6: Maximum achievable distinguishability for the exactly determined
model in Figure 3.

Dmax
i,j (1; 1) NF f1 f2 f3

f1 1.399 0 0.786 1.162
f2 0.849 0.477 0 0.680
f3 1.192 0.990 0.954 0

An extended analysis of the exactly determined case can be seen as a dashed
line in Figure 4. The number of sensors required to achieve a certain percentage
of maximum distinguishability is lower compared to the underdetermined case.
For the exactly determined case, only ten sensors are needed to achieve Dmax

i,j (1; 1)
of the underdetermined model, in Table 5, where 15 sensors are required for the
underdetermined case. Comparing the results analyzing the underdetermined
and the exactly determined model shows that better diagnosability performance
can be achieved using fewer sensors at the price of more modeling work.

8 Conclusion

A key contribution in this paper, is the use of quantitative diagnosability analysis,
distinguishability, to find optimal sensor sets for diagnosis. The sensor placement
problem is formulated as a minimum cost optimization problem and a main



70 Paper B. Using quantitative diagnosability analysis for optimal . . .

observation is that the optimal solutions here differ significantly from solutions
given by previously published deterministic methods.

The search space for the optimization problem is exponential in size and
a heuristic greedy search algorithm is proposed as a solution to this for large
problems. The algorithm iteratively adds the sensor which best improves diag-
nosability to fulfill the requirements.

Two examples are analysed to illustrate properties of the optimal solutions
when using quantified diagnosability performance in the sensor placement opti-
mization, e.g., how the number of sensors in the solution depends on the required
diagnosability performance, and that better diagnosability performance can be
achieved using fewer sensors by improving the model.
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Abstract

A sequential test selection algorithm is proposed which updates the set
of active test quantities depending on the present minimal candidates.
By sequentially updating the set of active test quantities, computational
time and memory usage can be reduced. If test quantities are generated
on-line, a sequential test selection algorithm gives information about
which test quantities that should be created. The test selection problem
is defined as an optimization problem where a set of active test quantities
is chosen such that the cost is minimized while the set fulfills a required
minimum detectability and isolability performance. A quantitative diag-
nosability measure, distinguishability, is used to quantify diagnosability
performance of test quantities. The proposed test selection algorithm is
applied to a DC-circuit where the diagnosis algorithm generates residuals
on-line. Experiments show that the sequential test selection algorithm
can significantly reduce the number of active test quantities during a
scenario and still be able to identify the true faults.
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1 Introduction

A diagnosis algorithm uses test quantities to detect and isolate faults present
in the system. An overview of a diagnosis algorithm is shown in Figure 1. If
different test quantities are sensitive to different sets of faults a fault isolation
algorithm can be used to isolate and identify which faults that are present given
the alarmed test quantities, see de Kleer and Williams (1987). Often, different
sets of faults, candidates, are consistent with the set of alarmed tests. The goal
is to have a set of tests which can identify the present faults.

Fault
isolation
algorithm

Test 1

Test 2

Test n

Alarm

Alarm

Alarm

Diagnosis algorithm

Candidates

Observations

Observations

Observations

Figure 1: A diagnosis algorithm consists of a set of test quantities and a fault
isolation algorithm to compute (minimal) candidates.

Since different test quantities are good at detecting and isolating different
sets of faults, not all available test quantities are necessary to be active during a
scenario in the diagnosis algorithm. By choosing different sets of test quantities
depending on the present candidates, the total number of active test quantities
can be reduced while still having sufficient diagnosability performance.

A sequential test selection algorithm becomes interesting, for example, if
there exists a large number of available test quantities or if new test quantities
should be automatically selected and generated on-line. To use all available test
quantities during a scenario could be too computationally expensive. Therefore,
a smart test selection algorithm can be used to reduce the number of active
test quantities while maintaining a satisfactory diagnosability performance. As
an example, a system considered here is a re-configurable DC-circuit where a
number of relays are used to distribute power from three batteries to two load
banks. A number of sensors are used to measure voltages and currents in the
circuit. The DC-circuit is a part of the diagnosis test bed ADAPT which is
described in Poll et al. (2007), see Figure 2. The number of test quantities that
can be generated based on a model of the DC-circuit is large because of high
redundancy in the system.

A quantitative diagnosability measure called distinguishability which is in-
troduced in Eriksson et al. (2011a) and Eriksson et al. (2011b) is used when
implementing the diagnosis algorithm to automatically generate residual gen-
erators with maximum fault to noise ratio. Distinguishability will be used to
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Figure 2: Schematics of the diagnosis test bed ADAPT. The dark area to the left
represents the three batteries and the two dark areas to the right are two load
banks. Sensors in the circuit are marked as circles. The DC-circuit considered
in this work is inside the dotted line.

quantify detectability and isolability performance of the residual generators in
order to choose the residual generators which fulfills a required quantitative
diagnosability performance.

There are other works where sequential diagnosis are used to improve fault
isolation, for example de Kleer and Williams (1987). In Krysander et al. (2010),
a sequential test selection algorithm, FlexDX, updates the active set of test
quantities during run-time to isolate the faults. In Svärd (2012), a greedy test
selection algorithm is used off-line to find a set of test quantities which fulfills
a required single fault isolability performance. In these previous works, only
deterministic fault detectability and isolability performance are considered. In
this work, a measure for quantitative diagnosability performance is used to
quantify the performance of a test quantity when choosing the active set of test
quantities.
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First, the problem formulation is presented in Section 2. Then some previous
results regarding distinguishability are presented in Section 3 and a generalization
of distinguishability for multiple faults is presented in Section 4. A sequential test
selection algorithm is presented in Section 5. Some experimental results when
applying the test selection algorithm in a diagnosis algorithm for a DC-circuit are
shown in Section 6. Then some tuning aspects of the test selection algorithm are
discussed and compared to other works in Section 7 and finally some conclusions
are presented in Section 8

2 Problem formulation

The purpose here is to develop a sequential test selection algorithm to auto-
matically compute which available test quantities that should be active in the
diagnosis algorithm during run-time depending on the present candidates. A can-
didate is a hypothesis about the system state given the alarmed test quantities,
de Kleer and Williams (1987).

A candidate represents a set of faults d = {f1, f2, . . . , fl}, that is consistent
with the alarmed test quantities. If d is a candidate where no subset d′ ⊂ d is a
candidate then d is called a minimal candidate.

Let T = {T1, T2, . . . , Tn} be the set of all available test quantities T . Each
test quantity T is sensitive to a set of faults fi. The cost to use a test quantity
Ti is defined as c(Ti). The cost could, for example, be the computational cost
of generating and using Ti. Let D be a set of minimal candidates di, i.e.,
D = {d1, d2, . . . , dk}. We want to find a cheapest set of tests T ∗ ⊆ T where each
minimal candidate d ∈ D can be rejected by at least one test quantity T ∈ T ∗.
The test selection problem can be formulated as a binary integer programming
(BIP) problem,

min
∑

T∈T
c(T )xT

s.t.
∑

T∈Edi,dj

xT ≥ 1,∀Edi,dj
: dj ∈ D

xT = {0, 1},∀T

(1)

where Edi,dj
⊆ T contains a set of tests which can reject dj for a new minimal

candidate di = {fa} ∪ dj where fa ̸∈ dj and xT is a binary variable determining
whether a test quantity T should be active or not. The solution T ∗ contains all
tests T ∈ T where xT = 1.

To assure that each test T ∈ Edi,dj
have satisfactory performance, distin-

guishability is used to quantify the diagnosability performance for each test T .
Each set Edi,dj can be chosen such that, for example, only test quantities which
have a sufficiently high distinguishability when rejecting dj for di are included.
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3 Background theory

Here, some useful results from Eriksson et al. (2011a) and Eriksson et al. (2011b)
are recalled. A definition of distinguishability and some useful properties are
presented here which will be used for quantifying detectability and isolability
performance. There are also some results of how to generate residual generators
with maximum fault to noise ratio, FNR. For more details and proofs, the reader
is referred to previous mentioned papers.

3.1 Distinguishability

The models considered here are discrete-time linear models written in the form

Lz = Hx+ Ff +Ne (2)

where z are known signals, x are unknown signals, f are fault signals and
e is Gaussian distributed with known co-variance matrix Λ. Discrete-time
descriptor models when observed for a given time interval n can be written as
(2), see Eriksson et al. (2011b). Thus, model dynamics and fault time profiles
θ = (θ(t− n+ 1), θ(t− n+ 2), . . . , θ(t))

T , describing how a fault changes over
the time interval can be considered. It is assumed that the model (2) fulfills

(
H N

)
is full row-rank. (3)

The model (2) is written in an input-output form, see Polderman and
Willems (1998), by multiplying with NH from the left, where the rows of NH is
an orthonormal basis for the left null-space of H, which gives

NHLz = NHFf +NHNe. (4)

If the linear model (2) fulfills assumption (3) the co-variance matrix of the vector
NHNe will be non-singular.

To be able to quantify diagnosability performance, a stochastic representation
of different fault modes is required. Let τ = NHLz, then let p(τ, µ) denote a
multivariate probability density function where µ(θ) = NHFiθ is the mean of τ
where Fi is the ith row of F corresponding to fault mode fi.

Let Θi denote the set of all fault time profiles θ of fault fi = θ which could
be explained by fault mode fi. Each fault mode can thus be described by a set
of pdf’s p(τ, µ) given the following definition.

Definition 1. Let Zfi denote the set of all pdf’s, p(τ, µ), for all fault time
profiles θ ∈ Θi, describing τ which could be explained by the fault mode fi, i.e.,

Zfi = {p(τ,NHFiθ)|∀θ ∈ Θi} . (5)

�



80 Paper C. A sequential test selection algorithm for fault isolation

Definition 1 is a stochastic counterpart to observation sets in the deterministic
case, see Frisk et al. (2009). A specific pdf given that fi = θ is denoted
piθ = p(τ,NHFiθ) and pNF = p(τ, 0̄) corresponds to the no fault case.

Now, the measure for quantitative diagnosability performance can be defined
by using the Kullback-Leibler divergence, K(p∥q) =

∫∞
−∞ p(ν) log p(ν)

q(ν)dν, see
Kullback and Leibler (1951), as follows.

Definition 2 (Distinguishability). Given a sliding window model (2), distin-
guishability Di,j(θ) of a fault fi with a given fault time profile θ from a fault
mode fj is defined as

Di,j(θ) = min
pj∈Zfj

K
(
piθ∥pj

)
(6)

where the set Zfj is defined in Definition 1. �

The definition of distinguishability fulfills the following two propositions.

Proposition 1. Given a window model (2), a fault fi = θ ∈ Θi is isolable from
a fault mode fj if and only if

Di,j(θ) > 0 (7)

�

Proposition 2. If 0̄ is a boundary point of Θj, where Θj = Rn \ {0̄}, for a
fault mode fj then

Di,j(θ) ≤ Di,NF(θ). (8)

�

It is assumed, without loss of generality, that

cov (NHNe) = I (9)

where I is the identity matrix, see Eriksson et al. (2011a). Since the noise in (2)
is Gaussian distributed, distinguishability can be computed explicitly given the
following theorem.

Theorem 1. Distinguishability for a sliding window model (2) with Gaussian
distributed stochastic vector e, under assumption (9), is given by

Di,j(θ) =
1

2
∥N(H Fj)Fiθ∥2 (10)

where the rows of N(H Fj) is an orthonormal basis for the left null space of
(H,Fj). �
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3.2 Relation of residual generators

To design a residual generator r isolating faults from fault mode fj , multiply (2)
from the left with γN(H Fj) where γ is a row-vector to obtain

r = γN(H Fj)Lz = γN(H Fj)Ff + γN(H Fj)Ne. (11)

The residual generator (11) is a scalar model in the same form as (2). Therefore,
distinguishability can be computed for the residual generator, which is denoted
Dγ

i,j(θ), where the superscript γ is used to distinguish from when computing
distinguishability for the model. The connection between distinguishability and
FNR of r is given by the following theorem, which also gives an alternative way
of computing distinguishability for a scalar model.

Theorem 2. A residual generator (11), for a model (2) where e is Gaussian
distributed under assumption (3), is also Gaussian distributed N (λ(θ), σ2) and

Dγ
i,j(θ) =

1

2

(
λ(θ)

σ

)2

where θ is the fault time profile of a fault fi, and λ(θ)/σ is the fault to noise
ratio with respect to fault fi in (11).

An important connection between Dγ
i,j(θ) and Di,j(θ) is given by the inequal-

ity described in the following theorem.

Theorem 3. For a model (2) under assumption (9), an upper bound for Dγ
i,j(θ)

in (11) is given by
Dγ

i,j(θ) ≤ Di,j(θ)

with equality if and only if γ and N(H Fj)Fiθ are parallel. �

Theorem 3 shows that Di,j(θ) gives an upper limit of the FNR which can be
achieved by any residual generator (11). Note that if a fault fi = θ is isolable
from a fault mode fj , then the theorem shows how to design a residual generator
with maximum FNR by choosing γ = (N(H Fj)Fiθ)

T . This will be used when
automatically generating new residual generators by the sequential test selection
algorithm described in the following section.

4 Generalization of distinguishability

The definition of distinguishability in Section 3 only considers fault modes
containing single faults. Here, it is also interesting to quantify how easy it is to
isolate a fault fa from several faults dj . This corresponds to quantifying how easy
it is to reject a minimal candidate dj for a new minimal candidate di = {fa}∪dj .
In order to handle fault modes with multiple faults a generalization of the
previous definition of distinguishability is presented here. Most results presented
here can be derived in a similar way as for the single fault case in Section 3.
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First, a generalization of the sets Zfj in Definition 1 is defined by considering
combinations of different fault time profiles for each fault in the fault mode.
Consider all faults present given a fault mode dj and let θ̄ ∈ Θdj denote a matrix
θ̄ = (θ1, θ2, . . . , θk) where each column corresponds to a fault time profile f = θ
for each fault f ∈ dj . Then, a generalization of Definition 1 can be made as
follows.

Definition 3. Let Zdj
denote the set of all pdf’s, p(τ, µ), for all combination

of fault time profiles θ̄ ∈ Θdj
, describing τ which could be explained by the fault

mode dj,
Zdi

=
{
p(τ,NHFdj

θ̄)|∀θ̄ ∈ Θdj

}
(12)

where Fdj
contains the rows of F corresponding to the faults f ∈ dj. �

Recall that paθ = p(τ,NHFaθ). Since isolating a fault fa from all faults dj
corresponds to rejecting dj for di = {fa} ∪ dj , a generalization of Definition 2
can be formulated as follows.

Definition 4 (Distinguishability of multiple faults). Given a sliding window
model (2), distinguishability Ddi,dj

(θ) of a fault fa ̸∈ dj where di = {fa} ∪ dj
with a fault time profile θ from a fault mode dj with multiple faults is defined as

Ddi,dj (θ) = min
pj∈Zdj

K
(
paθ∥pj

)
(13)

where the set Zdj
is defined in Definition 3. �

In the Gaussian case it follows from Theorem 1 that (13) can be computed
explicitly using

Ddi,dj
(θ) =

1

2
∥N(H Fdj

)Faθ∥2 (14)

where Fdj are the rows of F corresponding to the faults in dj .
Proposition 1 holds given the new definition of distinguishability and a

generalization of Proposition 2 can be formulated as follows.

Proposition 3. Let dk ⊂ dj and fa ̸∈ dk, dj. Then let dl = {fa} ∪ dk and
di = {fa} ∪ dj, then the following inequality holds.

Ddi,dj
(θ) ≤ Ddl,dk

(θ). (15)

�

The proposition states that it performance always decreases when isolating
a specific fault from an increasing set of faults. If we want to generate a
residual generator which is sensitive to few faults then a residual generator with
maximum FNR can never have higher FNR than if we would create an residual
with maximum FNR which is sensitive to a super-set of faults.
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To design a residual generator which is sensitive to a fault fa but no fault
f ∈ dj multiply (2) from the left with γN(H Fdj

) to obtain

γN(H Fdj
)Lz = γN(H Fdj

)Ff + γN(H Fdj
)Ne (16)

Theorem 2 and Theorem 3 can be generalized to the case of multiple faults. As
follows from Theorem 3, a residual generator with maximum FNR isolating a
fault fa = θ from the faults dj is designed by choosing γ = (N(H Fdj

)Faθ)
T .

5 Sequential test selection

Here, an algorithm for sequential test selection is presented. The algorithm
updates the set of active test quantities in the diagnosis algorithm given the
present minimal candidates. The algorithm applies the results in Section 4 to
generate residual generators and to quantify their diagnosability performance.
Finally, the sequential test selection algorithm is evaluated using an academic
example.

5.1 Principles

A diagnosis algorithm computes minimal candidates consistent with the alarmed
test quantities, see Figure 1. New test quantities are selected which are able to
reject any present minimal candidates and fulfills a required minimum distin-
guishabiliy. Each time one or more test quantities alarms, D is updated and a
new set of test quantities is selected.

The fault isolation algorithm used here is described in de Kleer and Williams
(1987) and updates the set of minimal candidates each time new test quantities
alarms. A rejected minimal candidate dj is replaced by new minimal candidates
di such that di = {fa} ∪ dj where fa ̸∈ dj . If any of the new minimal candidates
is a super-set of any other minimal candidate then the new candidate is removed.
Note that it is assumed here, that the available test quantities are designed such
that the risk of false alarms is minimized.

To be able to reject a minimal candidate dj for another candidate di =
{fa} ∪ dj requires a test quantity which is sensitive to fa but not any f ∈ dj ,
see de Kleer and Williams (1987). The following example shows how a lattice
set representation of all possible candidates can be used to visualize what kind
of isolablity performance that is required by the active set of test quantities.

Example 1. Consider a system with three possible faults f1,f2, and f3. All
possible candidates can be described using a lattice set, see Figure 3. Each node
is a candidate where all nodes at each level have the same cardinality. Each node
have arrows going to all nodes at the next level which are super-sets of the first
node. For example from node {f1} goes arrows to {f1, f2} and {f1, f3}. The
bottom node represents the fault-free case.
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∅

{f1} {f2} {f3}

{f1, f2} {f1, f3} {f2, f3}

{f1, f2, f3}

Figure 3: A lattice set representation of all possible candidates for a system
with three possible faults where ∅ corresponds to the fault-free case. If D =
{{f1}, {f2}} then tests, able to reject {f1} for {f1, f2} and {f1, f3} and able to
reject {f2} for {f1, f2} and {f2, f3}, are needed to improve D.

If the present minimal candidates are {f1} and {f2}, then tests need to be
activated with the capability of rejecting {f1} for each of the candidates {f1, f2}
and {f1, f3}, and rejecting {f2} for each of the candidates {f1, f2} and {f2, f3}
to be able to refine the candidates. This is visualized in Figure 3 by thicker arrows
going from the present minimal candidates to new possible minimal candidates
if a new test quantity alarms. �

Sequentially updating the minimal candidates in the fault isolation algorithm
requires an active set of test quantities able to reject each dj ∈ D for each
di = {fa} ∪ dj where fa ̸∈ dj . By using the results in Section 3, the set of active
test quantities can be selected and generated for each minimal candidate dj ∈ D
if there exists a test quantity in the set which have maximum distinguishability,
or fulfills a minimum required distinguishability, when rejecting that minimal
candidate dj .

5.2 Algorithm

In the previous subsection a discussion was made regarding which types of test
quantities to use depending on the present set of minimal candidates D. How
well the present faults can be identified, depends on which test quantities T ∈ T
that are active in the diagnosis algorithm.

Let Ei,j contain each test quantity T ∈ T which can reject dj for di, where
di = {fa}∪ dj and fa ̸∈ dj , and fulfills a minimum required distinguishability. If
there exists at least one test which is able to reject a minimal candidate dj for
a new minimal candidate di with at least minimum required distinguishability
then Ei,j ̸= ∅. Otherwise if Ei,j = ∅, then dj can not be rejected for di.

The sequential test selection algorithm is summarized in the following steps.
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I Initialize the set of minimal candidates, D = ∅.

II Solve (1) given D to compute a new set of test quantities.

III Replace the previous set of active test quantities by the new set of test
quantities.

IV Run the new set of test quantities until a test alarms.

V Update D given the alarmed test quantities.

VI Return to step II.

The optimization problem (1) is a minimum hitting set problem which is NP-
hard, see Moret and Shapiro (1985), but there exists many heuristic search
methods to find a solution, see for example de Kleer (2011) and references. The
following example considers a small system and is used to describe how the
sequential test selection algorithm updates the set of active test quantities as
the minimal candidates are updated.

Example 2. Consider the system with three possible faults. Here, a diagnosis
algorithm applying the sequential test selection algorithm is designed to detect
and isolate faults while minimizing the number of active tests, i.e., c(T ) = 1
in (1), ∀T ∈ T . Assume that there are seven available test quantities, T =
{T1, T2, . . . , T7} where the detectability performance of each test quantity and
fault is quantified using distinguishability, see Table 1. First in the considered
fault scenario, a fault f1 enters the system and then later another fault f3 also
enters the system.

When choosing each set Edi,dj
, the performance of each test quantity is chosen

to fulfill a required minimum distinguishability. In this example, we choose that
if the cardinality of di is 1 then distinguishability should be at least 2.0, if the
cardinality of di is 2 then distinguishability should at least be 1.0, and if the

Table 1: The performance of each test is quantified using distinguishability.
Distinguishability of a test Ti detecting a fault fj = θ is written in position
(i, j).

f1 f2 f3
T1 2.5 2.4 2.0
T2 2.2 1.5 2.3
T3 2.0 0.8 0
T4 0 1.3 1.5
T5 0 0 1.2
T6 0.5 0 0
T7 0 0.6 0
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cardinality of di is 3 then distinguishability should at least be 0.5. Based on the
distinguishability of the test quantities given in Table 1, the sets will be

E{f1},∅ = {T1, T2, T3}, E{f2},∅ = {T1},
E{f3},∅ = {T1, T2}, E{f1,f2},{f1} = {T4},
E{f1,f3},{f1} = {T4}, E{f1,f2},{f2} = ∅,
E{f2,f3},{f2} = {T5}, E{f1,f3},{f3} = {T3},
E{f2,f3},{f3} = ∅, E{f1,f2,f3},{f1,f2} = {T5},
E{f1,f2,f3},{f1,f3} = {T7}, E{f1,f2,f3},{f2,f3} = {T6}. (17)

Note that some sets are empty, for example E{f1,f2},{f2} = ∅ because there are
no test quantities which are sensitive to f1 but not to f2 with sufficiently high
distinguishability.

When the diagnosis algorithm is initialized the only minimal candidate is the
empty set, i.e., D = {d0} where d0 = ∅. The first set of active test quantities is
the solution to the problem

min

7∑

i=1

xi

s.t. x1 + x2 + x3 ≥ 1, (E{f1},∅)
x1 ≥ 1, (E{f2},∅)
x1 + x2 ≥ 1, (E{f3},∅)
xi = {0, 1}, i = 1, 2, . . . , 7.

The optimal solution is x1 = 1, and xi = 0,∀i ̸= 1, which means that only T1 is
activated. Then a fault f1 enters the system and T1 alarms. The new minimal
candidates are D = {d1, d2, d3} where d1 = {f1}, d2 = {f2}, and d3 = {f3}. To
update the set of test quantities, the following problem is solved

min

7∑

i=1

xi

s.t. x4 ≥ 1, (E{f1,f2},{f1})
x4 ≥ 1, (E{f1,f3},{f1})
x3 ≥ 1, (E{f1,f3},{f3}) (18)
x5 ≥ 1, (E{f2,f3},{f2})
xi = {0, 1}, i = 1, 2, . . . , 7.

Note that E{f1,f2},{f2} and E{f2,f3},{f3} are empty sets and therefore not included
in (18). The new set of active test quantities are T3, T4, and T5. Later T3 alarms
and the remaining minimal candidates are D = {d1, d2}. The corresponding
new set of active test quantities is T4 and T5. Since only f1 is present in the
system and there is no test quantity which have sufficient performance to reject
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the other candidate {f2} for {f1, f2}, {f1} can not be isolated from {f2}. Note
that by using another selection criteria when defining each set Edi,dj could let
E{f1,f2},{f2} contain T6 which is sensitive to f1 but not f2.

Later a fault f3 also enters the system which first results in that T4 alarms.
The new minimal candidates becomes D = {d2, d4} where d4 = {f1, f3}. The
corresponding new activated test quantities are T5 and T7. Later T5 alarms
which replaces d2 with d5 = {f2, f3} and activates the test quantities T6 and T7.
Finally T6 alarms which removes d5 since the new candidate {f1, f2, f3} is a
super-set of d4 which is the true and remaining candidate. �

The properties of each set in (17) can be visualized using the lattice in
Figure 3. If Edi,dj

= ∅ then there exists no test quantity which have sufficiently
high distinguishability to reject dj for di, see Table 1. Each set Edi,dj

is related
to an arrow from dj to di, see Figure 4. All non-empty sets Edi,dj are represented
by thicker arrows.

∅

{f1} {f2} {f3}

{f1, f2} {f1, f3} {f2, f3}

{f1, f2, f3}

(
E{f1},∅ =

)
{T1, T2, T3}

{T1}
{T1, T2}

{T4}
{T4}

∅ {T5}

{T3}
∅

{T5}
{T7}

{T6}

Figure 4: A lattice set representation of all possible candidates for a system with
three possible faults. The set at each arrow represents which test quantities that
are able to reject dj for di and fulfills a specified distinguishability criteria.

6 Case study: DC circuit

The sequential test selection algorithm presented in Section 5 is applied to a DC-
circuit. The DC-circuit is a part of the diagnosis test bed ADAPT, see Poll et al.
(2007). The analyzed system is similar to the circuit analyzed in Gorinevsky
et al. (2009) except that some additional faults are included here while outputs
and faults in batteries and loads are unknown and not considered.

6.1 System

The system contains 19 sensors measuring voltages and currents in the circuit
and 12 sensors measuring the positions of the relays. The number of faults
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included in the model is 38, both relay faults and sensor faults. Not all faults are
detectable because there are not enough sensors and some parts of the circuit
are assumed unknown, e.g., the power consumption of the loads and the output
from the batteries. Some faults are not fully isolable from each other because
several faults affect the same part of the system.

A model of the DC-circuit has been developed by formulating the Sparse
Tableau Analysis (STA) equations, see Gorinevsky et al. (2009). Model uncer-
tainties have been included as i.i.d. Gaussian measurement noise and the faults
are modeled as additive signals. The model of the DC-circuit is linear and static
and is written in the form (2) where n = 1.

6.2 Diagnosis algorithm

The implemented diagnosis algorithm applies the result from Theorem 3, i.e.,
how to generate residuals with maximum FNR, to automatically design and
generate residuals during run-time. One problem when sequentially updating the
set of active test quantities is how to find residuals which have sufficiently high
distinguishability given the present minimal candidates. When choosing which
residual to generate the inequality (15) is used. Based on the inequality, residuals
should be generated where as few faults are decoupled as possible while still being
able to reject dj for di to maximize distinguishability. Residuals with maximum
distinguishability can be generated, using the result in Section 4, by considering
each of the present minimal candidates. As the minimal candidates are updated,
new tests with maximum distinguishability are automatically generated.

The distinguishability criteria when selecting the sets Edi,dj
are such that

each set Edi,dj contains the residual with highest distinguishability when rejecting
dj for di. Also, if there are more residuals able to reject dj for di, they are
included in Edi,dj

if they fulfill a minimum required distinguishability.
In this implementation, when a new set of active residuals is selected the

residuals are activated when the next sample of data is received from the system.
This implementation has been chosen to visualize how the number of active
residuals changes each time one or more residuals alarms. Note that this way
of implementation results in a delay in the fault isolation process because a
fault could be isolated faster if new residuals are used directly on previous data
samples, see Krysander et al. (2010). Such a change in the implementation can
easily be made and do not affect the sequential test selection algorithm.

Here, the optimization problem (1) is solved by using a simple greedy test
selection algorithm to find a solution. The greedy search algorithm iteratively
picks the residual with maximum distinguishability in each set Edi,dj

if no other
residual in the set is already selected.

6.3 Evaluation

The sequential test selection algorithm described in section 5.2 is evaluated using
a number of different test scenarios. In the first scenario, a relay breaks, f10,
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Figure 5: The number of active residuals during a scenario where a relay gets
stuck open, f10, occurs at 159 s. The total number of active residuals during
the scenario is 64.

at 159 s. The number of active residuals at any time during the scenario is
shown in Figure 5. In the first evaluation, residuals are included in Edi,dj

if
their corresponding distinguishability is higher than 0.5, which corresponds to
FNR = 1 if the fault amplitude is 1. Note that if only the residuals which have
maximum distinguishability in each set Edi,dj

is active from the start the number
of used residuals would exceed 370.

The total number of used residuals is 64 but the maximum number of active
residuals is mostly below 30, except right after the fault is detected where the
number of active residuals rises to almost 40.

If the required distinguishability is chosen lower, for example 0.045 (FNR =
0.3), the number of active residuals used during the scenario is reduced which is
shown in Figure 6. The number of active residuals are less than 15 most of the
time and less than 25 when the fault is detected. The total number of generated
residuals during the whole scenario is 41.

The final minimal candidates for the two choices of minimum distinguisha-
bility are in this case equal and are shown in Figure 7. Each row represent a
minimal candidate and the only candidate of minimum cardinality, {f10}, is also
the correct isolated fault.

In the second scenario two sensor faults, one voltage sensor f35 and one
current sensor f24, occurs simultaneously. The diagnosis algorithm have been
run twice, first with minimum required distinguishability chosen to be 0.5 and
the second time to be 0.045. The number of active residuals during the first
run is shown in Figure 8. The total number of generated residuals is 54 and the
number of active residuals is below 30 except right after the faults are detected.

In the second run the number of active residuals is reduced to 12 during the
whole scenario except right after the faults are detected. The total number of
generated residuals is 40.
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Figure 6: The number of active residuals during a scenario where a relay gets
stuck open, f10, occurs at 159 s. The required minimum distinguishability for
each residual is lower compared to the result in Figure 5 resulting in fewer active
residuals during the scenario. The total number of active residuals during the
scenario is 41.

Figure 7: The final minimal candidates for the first scenario given by the
diagnosis algorithm, sorted by cardinality. The final candidates are in this case
the same for both choices of minimum required distinguishability.
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Figure 8: The number of active residuals during a scenario where two sensors
fail, f24 and f35, occurs at 168 s. The total number of active residuals during
the scenario is 54.
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Figure 9: The number of active residuals during a scenario where two sensors
fail, f24 and f35, occurs at 168 s. The required minimum distinguishability for
each residual is lower compared to the result in Figure 8 resulting in fewer active
residuals during the scenario. The total number of active residuals during the
scenario is 40.
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Figure 10: The final minimal candidates given by the diagnosis algorithm, sorted
by cardinality. In this case, both choices of required minimum distinguishability
resulted in the same final candidates.

The total number of minimal candidates is 121, see Figure 10. The number of
candidates with minimum cardinality equal to two are {f24, f35} and {f23, f35}
where {f24, f35} is the true candidate. The other candidate, {f23, f35}, can not
be rejected because f23 and f24 are not isolable from each other.

Choosing a lower required distinguishability when creating the sets Edi,dj
can

result in solutions where the set of active test quantities has lower cardinality.
A lower number of active test quantities is a trade off which will probably result
in reduced diagnosability performance since the diagnosis algorithm will accept
active test quantities with lower distinguishability when rejecting some minimal
candidates. In this analysis, the actual faults in the measured data are relatively
large compared to the fault amplitudes used when analyzing distinguishability.
This could explain why the minimal candidates are equal in the two scenarios
even though the required distinguishability is changed.



7. Tuning the test selection algorithm 93

7 Tuning the test selection algorithm

Here, some extra tuning steps which could be added to the test selection algorithm
are discussed. The proposed algorithm is also related to test selection algorithms
presented in other works. It is shown how the problem formulation in this work
can be used to describe other test selection algorithms.

7.1 Off-line

If the available set of test quantities T is large and many of the sets Edi,dj
have

high cardinality then it will be computationally expensive to find an optimal
solution to (1). There might be several test quantities that will never be used
because there are other test quantities that have better performance. This might
be the case if tests quantities are generated automatically off-line or sequentially
during run-time or if a developer have not been able to remove not so good
redundant test quantities.

If the set of available test quantities T is generated off-line, the computational
time for solving (1) on-line, and the memory needed for storing all test quantities,
could be reduced by first solving (1) for all sets of possible minimal candidates
off-line, i.e., D = {all possible minimal candidates}. By using only the set of test
quantities in the solution as available test quantities T will remove unnecessary
test quantities when the diagnosis algorithm is on-line.

Another approach to reduce the computational time for solving (1) could
be to neglect minimal candidates of higher cardinality. If multiple faults of
cardinality higher than q > 0 are assumed to be unlikely then only test quantities
able to reject minimal candidates of lower cardinality need to be considered. In
Svärd (2012), an algorithm for automatically generating residuals off-line for a
non-linear system uses a greedy search algorithm to find a set of test quantities
able to detect and isolate single faults. This corresponds to solving (1) for
all minimal candidates dj of maximum cardinality one. In Svärd (2012), only
deterministic performance of test quantities are considered which is the same as
letting Edi,dj contain all test quantities able to reject dj for di independent of
quantitative performance.

7.2 On-line

In Krysander et al. (2010), the proposed sequential test selection algorithm
solves the optimization problem (1) every time the minimal candidates are
updated, but do not consider any quantitative diagnosability performance which
is done in this work. Although, in Krysander et al. (2010), an extra constraint
to the solution of (1) requires that any combination of faults should always be
detectable if possible. For example, there could be situations where two faults
could cancel out each other which would in such a case not be detectable. An
example is a residual r = f1 + f2 which would be zero if f1 = 1, f2 = −1. Such
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cases could be assumed highly unlikely, and therefore neglected, but this extra
constraint can also easily be included in the algorithm proposed in this paper.

One approach to save computational time is to let each set Edi,dj
only contain

the best test quantity, i.e., the test quantity with highest distinguishability. Then,
all sets Edi,dj

would either contain one element or no elements depending on
whether there exists a test quantity able to reject dj for di or not. Then the
optimal solution to (1) is found by simply selecting the test quantity in each set
Edi,dj where dj ∈ D. This assures that the diagnosis algorithm always uses the
best set of tests given D at the cost of requiring more active tests used at the
same time. Note that in such a case where each set Edi,dj

maximally contains
one element, it is trivial to find the optimal solution.

7.3 Other measures of diagnosability performance

Here, distinguishability has been used to quantify diagnosability performance
when selecting a set of test quantities with sufficient detectability and isolability
performance. The proposed test selection algorithm is not limited to the use of
distinguishability but could use any type of measure to quantified diagnosability
performance to compare the performance of different sets of test quantities, see
for example Wheeler (2011).

8 Conclusion

A sequential test selection algorithm to update an active set of test quantities
given the present minimal candidates is proposed. A contribution here is the use
of a measure for quantitative diagnosabiltiy performance, distinguishability, to
choose which test quantities to be used to reject the present minimal candidates.
A generalization of distinguishability is introduced in order to handle isolability
from multiple faults.

The test selection algorithm proves useful when, for example, implementing
a diagnosis algorithm where the set of tests are automatically selected and gener-
ated on-line. As an example, a diagnosis algorithm for a DC-circuit is evaluated
which automatically generates new residuals with maximum distinguishability
given the present minimal candidates. The example shows that the number of
test quantities can be greatly reduced by using the test selection algorithm while
fulfilling a required quantitative detectability and isolability performance.

The proposed sequential test selection algorithm is also compared and related
to other works, including both off-line and on-line test selection algorithms.
Different tuning parameters can be used to reduce computational time or change
the properties of the solution. The proposed algorithm can be used for both
on-line and off-line test selection algorithms.
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Abstract

A flywheel angular velocity model for misfire and disturbance simulation
is presented. Applications of the model are, for example, initial parameter
calibration or robustness analysis of misfire detection algorithms. An
analytical model of cylinder pressure is used to model cylinder torque and
a multi-body model is used to model crankshaft and driveline oscillations.
Different types of disturbances, such as cylinder variations, changes in
auxiliary load, and flywheel manufacturing errors can be injected in
the model. A qualitative validation of the model shows that simulated
angular velocity captures the amplitude and oscillatory behavior of real
measurements and the effects of different types of disturbances, e.g.
misfire and flywheel manufacturing errors.
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1 Introduction

Engine misfire detection is an important part of the OBDII legislations that
reduce exhaust emissions and avoid damage to the catalytic converters. Misfire
detection based on angular velocity measured at the flywheel has been studied in
several papers, e.g, Connolly and Rizzoni (1994), Kiencke (1999), and Tinaut et al.
(2007). An overview of misfire detection research is found in Mohammadpour
et al. (2012). Detecting misfire is a non-trivial problem which is complicated by,
for example, changes in load and speed and flywheel manufacturing errors, see
Naik (2004).

Development and validation of a misfire detection algorithm can require lots
of resources using test rigs and real cars which is expensive and time consuming.
A misfire simulation model is beneficial for reducing development costs by, for
example, automating the initial calibration of the parameters of the misfire
detection algorithm. One example is to investigate which teeth of the flywheel
to measure the time difference between to best capture a misfire event while
reducing the number of measurements during a revolution.

Another application is to make a quantitative analysis of how different sizes of
disturbances affect the observations. This can be used for example for robustness
analysis of a misfire detection algorithm to analyze how large disturbances it
can handle.

In Minelli et al. (2004), a model for simulating misfire is proposed which
considers the effects of misfire and the subsequent oscillations in the angular
velocity signal. A contribution in this work with respect to the previous men-
tioned paper is that other types of disturbances, such as flywheel manufacturing
errors and changes to auxiliary loads, can be simulated and the cylinder pressure
is computed using an analytical model to make it possible to model cylinder
variations.

In Schagerberg (2003) a model to estimate cylinder pressure using torque
sensors is developed. A multi-body model of the crankshaft is used to model
torsional vibrations in the crankshaft. In contrast to Schagerberg (2003) the focus
in this work is the use of angular velocity measurements instead of measuring
torque.

Another similar application of driveline modeling is torsional vibration anal-
ysis, e.g., Rabeih (1997), Nickmehr et al. (2012), and Crowther and Zhang
(2005). In contrast to these works, a contribution here is the use of the cylinder
pressure model in Eriksson and Andersson (2002). A further contribution is the
addition of capabilities for simulating cycle to cycle variations in the cylinder
pressure. This is used, e.g., to simulate the effects of misfire to the angular
velocity measurements at the flywheel.

Here, a multi-body model similar to the model in Schagerberg (2003) together
with the cylinder pressure model in Eriksson and Andersson (2002) is used to
model crankshaft oscillations. Also, a driveline model, similar to the model in
Nickmehr et al. (2012), is used to model the torsional vibration modes of the
driveline. Experiments have been carried on parameter tuning of misfire detection
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algorithms but the focus here is on the modeling work. The contribution in this
work is a model to simulate angular velocity measurements at the flywheel when
different types of disturbances are injected in the model such as misfire and
change in auxiliary loads. The model is designed using a modular structure to
easily extend the model depending on the vehicle configuration, e.g., the number
of cylinders.

2 Model requirements

A common approach to detect misfire is to use a test quantity based on the
crankshaft angular velocity measurements at the flywheel. To distinguish changes
in the measurements caused by misfire from disturbances in the engine and
driveline is a non-trivial problem, mainly due to complicating factors such as
changes in load and speed, cold starts, engines with a large number of cylinders,
and the resolution of the angular velocity measurements.

The purpose of the model, developed in this work, is to simulate flywheel
angular velocity when misfire and disturbances are injected in the model. A list
of implemented disturbances that can be injected in the model is

• Combustion variations:

– Misfire

– Cold starts

– Cylinder variations

• Crankshaft torsional vibrations.

• Auxiliary load variations, e.g. turning on and off air conditioning.

• Disturbances in road load torques, e.g. crossing a railroad.

• Flywheel resolution and measurement errors.

The model can be used to analyze how different types of disturbances complicates
misfire detection and to evaluate and optimize misfire detection algorithms by
using data from different simulated scenarios.

For model analysis and validation, high resolution data from a vehicle with a
four cylinder engine is used. Low resolution angular velocity measurements from
a five cylinder vehicle is also used for validation. To handle different types of
vehicle configurations, the model is designed using an extensible block structure
describing different parts of the system to easily modify the model depending
on the vehicle configuration.
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3 Model

First in this section, an outline of the model is presented. Then each part of
the model is described and finally a description is given of how the disturbances
listed in the previous section are implemented in the model.

3.1 Model outline

The developed model is divided into two subsystems: engine and driveline, see
Figure 1. The engine model consists of a crankshaft including a damping wheel,
ncyl cylinders, and the flywheel. The crankshaft is modeled as rotating masses
connected with springs and dampers. Each rotating mass is represented by two
circles connected by a vertical line. Each mass connected to the cylinders are
affected by a cylinder torque Tcyl,i.

Damping
wheel

×ncyl

Cylinders

Tcyl,i

Flywheel

Engine

×2

Transmission

Ideal
gearbox

×2

Treq

Drive shaft

Driveline

⋆ ⋆ ⋆
⋆

Figure 1: An overview of the model without disturbances. The engine driveline
model is composed by a number of connected rotating masses. The connections
between the masses are modeled as springs and dampers. The friction at each
rotating mass is modeled as a damper connected to ground. The model has
ncyl cylinders where the torque from each cylinder affects a rotating mass of the
crankshaft. The gearbox is assumed ideal. Modeled disturbances are marked as
stars in the figure.

As input to the model, the mean angular velocity of the crankshaft and
driveline is set by a required torque Treq at the drive shaft. The torque from
each cylinder is modeled using an analytical pressure model, see Eriksson and
Andersson (2002), describing the cylinder pressure during the combustion and a
model of the moving piston mass, see Rizzoni and Zhang (1994).

Angular velocity measurements are simulated from the flywheel by computing
time periods for angular intervals corresponding to the teeth angles of the
flywheel.

The locations of disturbances in the model, listed in Section 2, are marked
with stars in Figure 1. A more detailed description of how each disturbance is
modeled can be found in Section 3.4.
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3.2 Engine

Here, models of the different parts of the engine subsystem are described in
detail.

Crankshaft

The crankshaft consists of 2+ncyl rotating masses, corresponding to the damping
wheel, ncyl cylinders, and the flywheel. The connection between two masses is
modeled as a spring and a damper. The friction at each mass is modeled as a
damper connected to ground.

Each rotating mass connected to a cylinder is affected by a torque Tcyl,i
related to the moving piston. A model of each rotating mass at position i, where
i = 1, . . . , ncyl, is described as

Ji ω̇i = Tcyl,i + ci+1,i(ωi+1 − ωi)− ci,i−1(ωi − ωi−1)−
− ci ωi + ki+1,i(θi+1 − θi)− ki,i−1(θi − θi−1)

θ̇i = ωi (1)

where θi and ωi are angular position and angular velocity respectively of the
rotating mass i, Ji is the inertia, ci−1,i and ki−1,i are damping constant and
spring constant respectively between the masses at position i− 1 and i, ci is the
damping constant modeling friction, and Tcyl,i is the cylinder torque.

The damping wheel is positioned at the end of the crankshaft and is connected
to auxiliary loads. A change in auxiliary load, for example if the AC is turned
on, is modeled as a negative torque on the damping wheel Taux which affects
the damping wheel, represented by position index 0, as

J0 ω̇0 = −Taux + c1,0(ω1 − ω0)− c0 ω0 + k1,0(θ1 − θ0)

θ̇0 = ω0 (2)

Cylinder

Each cylinder is modeled as a moving piston mass connected to the crankshaft
by a rod. The resulting torque Tcyl,i on the rotating mass at position i is the
sum of two force components: compression pressure force Fc,i and piston mass
force Fp,i, see Figure 2.

Each cylinder angle is modeled using a local angle θ̃i around TDC. The angle
θi of the corresponding rotating mass in the crankshaft model is translated to
θ̃i by adding a constant δθi to the angle θi. As an example, for a four cylinder
engine the cylinder angles θ̃i = θi + δθi where, depending on the firing order,
δθi ∈ {0, 180◦, 360◦, 540◦}. The resulting torque Tcyl,i as a function of θ̃i, Fp,i,
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and Fc,i, is given by

Tcyl,i(θ̃i) =


r sin(θ̃i) +

r2 sin(2θ̃i)

2
√
l2 − r2 sin2(θ̃i)


×

×
(
Fp,i(θ̃i) + Fc,i(θ̃i)

)
. (3)

l

r

Fc,i

Fp,i

Tcyl,i

xi

θ̃i

Figure 2: The cylinder model describes cylinder torque Tcyl,i as a function of
compression pressure force Fc,i and the piston mass force Fp,i.

Compression pressure force The cylinder pressure force is modeled as the
pressure difference between cylinder pressure and crankcase pressure multiplied
with the cylinder area as

Fc,i(θ̃i) = A
(
pcyl,i(θ̃i)− pcrank

)
, (4)

see Rizzoni and Zhang (1994). The cylinder pressure pcyl,i is computed using an
analytic model given in Eriksson and Andersson (2002) as

pcyl,i = f
(
θ̃i, θign,i, θd,i, θb,i, pim,i, pem,i, λi, ωi, χmf

)
(5)

describing the cylinder pressure for each cylinder at position i as a function
of ignition angles: θign,i, θd,i, θb,i, representing ignition time, 10% fuel burned
and 90% fuel burned, intake manifold pressure pim,i, exhaust manifold pressure
pem,i, air to fuel ratio λi, crankshaft angle velocity ωi, and a fuel conversion
efficiency factor χmf to simulate misfire. The factor χmf ∈ {0, 1} is added to the
expression for computing ηf in (6) in Eriksson and Andersson (2002) as

ηf (λ, χmf) = χmf (0.95 min(1, 1.2λ− 0.2)) , (6)
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Figure 3: Cylinder pressure model compared to measurement data.

where χmf = 0 when simulating a misfire.
In Figure 3, the output of the cylinder pressure model (5) is compared to

a measured pressure trace. The model is able to simulate cylinder pressure
and by varying the input parameters, different pressure traces can be modeled.
For a more detailed description of the pressure model, the reader is referred to
Eriksson and Andersson (2002).

Piston mass force The moving piston mass results in an additional force
component Fp,i, see Figure 2. The significance of this force increases at higher
speeds. The mass of the rod connecting the piston to the crankshaft is modeled
such that it is translated to the piston mass and rotating mass of the crankshaft.
The piston mass velocity and acceleration as functions of the angle θ̃i are given
by

dxi(θ̃i)

dθ̃i
= −r sin(θ̃i)−

r2 sin(θ̃i) cos(θ̃i)√
l2 − r2 sin2(θ̃i)

(7)

d2xi(θ̃i)

dθ̃2i
= −r cos(θ̃i)−

r2
(
cos2(θ̃i)− sin2(θ̃i)

)

√
l2 − r2 sin2(θ̃i)

−

− r4 sin2(θ̃i) cos
2(θ̃i)(√

l2 − r2 sin2(θ̃i)

)3 , (8)
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see Rizzoni and Zhang (1994). Since the model is simulated in the time domain,
the piston mass acceleration as a function of time is given by

d2xi(θ̃i)

dt2
=

d2xi

dθ̃2i
ω2
i +

dxi

dθ̃i
ω̇i, (9)

and the resultant force is given by Newton’s second law as

F (θ̃i) = m
d2xi(θ̃i)

dt2
. (10)

The term dxi

dθ̃i
ω̇i in (9) is modeled by a variable inertia in (1) as

Ji(θ̃i) = Ji,c −m


r sin(θ̃i) +

r2 sin(2θ̃i)

2
√

l2 − r2 sin2(θ̃i)


 dx(θ̃i)

dθ̃i
(11)

where Ji,c is the inertia of the rotating mass of the crankshaft and the piston
mass force Fp,i(θ̃i) is given by

Fp,i(θ̃i) = m
d2xi

dθ̃2i
ω2
i . (12)

Flywheel

The model describing the flywheel is the same as (1) excluding Tcyl,i. The
timing and interrupts when the sensor passes the flywheel teeth are simulated
by computing the time period between two specified angles of the flywheel, see
Figure 4. The simulated angular velocity measurement can be generated off-line
using simulated data.

To keep track of the angle of the flywheel, two teeth are removed which helps
to identify the start of each revolution. To simulate low resolution measurements,
time periods are computed over several teeth.

Manufacturing errors resulting in unequal distances between teeth angles of
the flywheel are important to consider because they will affect the accuracy of
the measurements between different vehicles, see Kiencke (1999).

3.3 Driveline

The driveline model is based on the model described in Nickmehr et al. (2012)
and represents the system from the transmission to the drive shaft. The model
consists of repeated blocks of connected rotating masses which means that the
model can be easily adapted by adding or removing blocks for different system
configurations, see Figure 1.
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θ

Figure 4: Angular velocity measurements are generated by computing the time
difference between two teeth when the flywheel rotates. Two teeth are removed
to keep track of the angular position of the flywheel.

The transmission is modeled using three rotating masses as in Figure 1,
modeling clutch and gearbox. The transmission is modeled as ideal,

T1 = γT2

ω2 = γω1

(13)

where γ is the selected gear ratio.
The driveline after the transmission out to the wheels are modeled as addi-

tional rotating masses. In this implementation three rotating masses are included
after the transmission to model the drive shaft as indicated in Figure 1. The
required torque Treq at the wheel is modeled at the last rotating mass on the
driveline.

3.4 Modeling disturbances

As discussed in Section 2, a main purpose of the developed model is to simulate
flywheel angular velocity measurements and the effects of injected disturbances.
The considered disturbances are related to combustion variations, flywheel
errors, auxiliary load variations, and disturbances in road load torques. Here a
description of how the disturbances are modeled is presented.

By varying the angles describing the ignition, θign,i, θd,i, and θb,i, in the
cylinder pressure model (5), cycle to cycle variations can be modeled. Different
types of fuel quality affecting combustion can be modeled by generating the
angles θd,i and θb,i as random variables changing from cycle to cycle. Late
ignitions are modeled by using later ignition angles θign,i. A misfire is modeled
by setting χmf in (6) to zero which corresponds to a fuel conversion efficiency
equal to zero. The occurance of these types of disturbances affecting combustion
can be specified from cycle to cycle. The cycle to cycle variation is implemented
by using a vector for each parameter in (5) where a counter, which is updated
each cycle, specifies which element in the vector to use.

In Figure 5, a real pressure trace for one cylinder is compared with simulated
pressure. In the simulation the ignition angle is varied from cycle to cycle and
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during the last combustion the ignition is chosen to occur relatively late which
is shown by the lower pressure and a small extra peak. Simulating with late
ignition angles can be used to simulate for example cold starts and gear shifts.

Auxiliary load variations, for example turning on and off the AC, is modeled
as an additional torque Taux in (2). A disturbance at the driveline, for example
when crossing a railroad, is modeled as an extra torque component added to the
required road load torque Treq.

Errors in the angular velocity measurement or different resolutions can be
simulated by making small changes to the angles where measurements are made.
Manufacturing errors can result in inaccurate teeth angles which are cyclic for
each vehicle but varying between different vehicles.

4 Model validation

First a short description of experimental data is presented. Then the results
from a qualitative evaluation of the model is discussed.

4.1 Experimental data

Two types of validation data have been used. High resolution measurements
from a four cylinders vehicle with angular resolution of 0.5 degrees is used for
model validation. Data is used where the time period between two teeth is
measured with angular resolution of 36 degrees. A typical data sequence is shown
in the upper figure in Figure 6. The data is used to validate simulated flywheel
measurement data from the model. Depending on what type of validation data
that is used the number of cylinders in the model is adapted.

4.2 Validation

One problem with experimental data is that the disturbances are not measured
making a quantitative validation impossible. This is also one intended application
of the model, to investigate how different diagnosis methods can decouple these
types of disturbances. A qualitative analysis of the model is performed by
simulating the different types of disturbances and comparing the result with real
data. Measurement data is not available for all types of disturbances.

In Figure 6, angular velocity data are simulated for a five cylinder engine
shown in the lower figure which is compared to real data in the upper figure.
The angles θd,i and θb,i are generated as Gaussian distributed random variables
to simulate cycle to cycle variations, see Eriksson (2000). The simulated data
resembles the real data capturing the oscillations from the cylinder combustions
but also the amplitude of the oscillations.

In Figure 7, manufacturing errors on the flywheel are modeled by adding
random teeth angle errors visible as the cyclic variations in the measurement
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Figure 5: Measured cylinder pressure in one cylinder in the upper figure compared
to simulated cylinder pressure with varying ignition angle in the lower figure.
The last peak is a simulated late ignition
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Figure 6: Simulated angular velocity measurements at the flywheel for a five
cylinder engine. A qualitative comparison with the real measurement data in
Figure 6 shows that the model is able to mimic the behavior of the real data.
The cyclic measurement error caused by manufacturing error of the flywheel
is marked in the upper figure and a simulation of a similar error in the lower
figure.



5. Conclusions 113

2 2.05 2.1 2.15 2.2
4.12

4.14

4.16

4.18

4.2

4.22

4.24

4.26

4.28
x 10

−3

t

∆
 t

Figure 7: Errors have been added to the teeth angles where measurements on
the flywheel are made.

data which repeats every fifth oscillation. An example of the same type of
repetitive behavior is marked in the real measurement data in Fig 6.

A simulated misfire is visible at t = 1.05 in Figure 8 as a swift increase
in time passed per angular interval. The amplitude of the signal during the
misfire is almost equal for the real data and the simulation and the subsequent
oscillation follows of the winding of the crankshaft which is captured by the
model.

There is no data available to compare simulations of change in auxiliary
loads and disturbances to the required torque to real data. Anyhow, data from
simulations are provided to visualize how a disturbance of the required torque
and a change in auxiliary load connected to the damping wheel affects the
measurements, see Figure 9 and Figure 10 respectively. A driveline disturbance
is simulated as an impulse to a constant required torque. The result in Figure 9
shows that the disturbance is shown but there is no large change during one
combustion like for a misfire see Figure 8. Simulation of a negative step change
in torque at the damping wheel is shown in Figure 10 which resembles more the
oscillations caused by a misfire. The result indicates that a large sudden change
in auxiliary load could be mistaken for a misfire.

5 Conclusions

A flywheel angular velocity model for misfire and disturbance simulation is
developed. Different types of disturbances can be injected in the model to
analyze their effects on the flywheel measurements. The model is modular to
enable easy adaptation of the model structure to different vehicle configurations.

The disturbances that can be injected are misfire, cylinder variations, flywheel
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Figure 8: In the lower figure simulated angular velocity measurements at the
flywheel are shown during a misfire and in the upper figure real measured angular
velocity during a misfire.
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Figure 9: Simulated driveline disturbance at time 2 measured at the flywheel.
Disturbance modeled as an impulse added to the constant required torque.
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Figure 10: Simulated auxiliary load disturbance at time 2 measured at the
flywheel. The auxiliary load is modeled as a step of negative torque at the
damping wheel.
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manufacturing errors, change in auxiliary load, and disturbances to road load
torques.

A qualitative validation of the model is performed where simulations are
compared to real data. Results show that the model captures the important
behavior of the angular velocity measurements at the flywheel including misfire.

During the development of the misfire model, parameter tuning has been
performed manually to capture the qualitative behavior shown in measured data
which was validated in the previous section. A more systematic tuning of model
parameters is useful to generate misfire data behaving like real measurement
data from a specific car configuration.
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Abstract

Engine misfire detection is an important part of the On-Board Diagnos-
tics (OBDII) legislations to reduce exhaust emissions and avoid damage
to the catalytic converters. The flywheel angular velocity signal is
analyzed, investigating how to use the signal in order to best detect
misfires. An algorithm for engine misfire detection is proposed based
on the flywheel angular velocity signal. The flywheel signal is used to
estimate the torque at the flywheel and a test quantity is designed by
weighting and thresholding the samples of estimated torque related to
one combustion. During the development process, the Kullback-Leibler
divergence is used to analyze the ability to detect a misfire given a test
quantity and how the misfire detectability performance varies depending
on, e.g., load and speed. The Kullback-Leibler divergence is also used
for parameter optimization to maximize the difference between misfire
data and fault-free data. Evaluation shows that the proposed misfire
detection algorithm is able to have a low probability of false alarms while
having a low probability of missed detections.
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1 Introduction

Engine misfire detection is an important part of the On-Board Diagnostics
(OBDII) legislations to reduce exhaust emissions and avoid damage to the
catalytic converters, see Mohammadpour et al. (2012). Misfire refers to an
incomplete combustion inside a cylinder and can be caused by many different
factors, for example, a failure in the ignition system or a clogged fuel injector,
see Heywood (1988). The On-Board Diagnostics system is required to both
detect misfires and identify in which cylinder the misfire occurred, see Heywood
(1988) and Walter et al. (2007).

An overview of engine misfire detection research is found in Mohammadpour
et al. (2012). There are several approaches to detect misfires using different
types of sensors, e.g., ion current sensors, see Lundström and Schagerberg
(2001), or crankshaft angular velocity measured at the flywheel, see Osburn
et al. (2006), Naik (2004), and Tinaut et al. (2007). Misfire detection based on
torque estimation using the flywheel angular velocity signal has been studied
in, e.g, Connolly and Rizzoni (1994), Kiencke (1999), and Walter et al. (2007).
Detecting misfires is a non-trivial problem which is complicated by, for example,
changes in load, speed, and flywheel manufacturing errors, see Naik (2004) and
Kiencke (1999).

As a tool during the design process of the misfire detection algorithm,
the Kullback-Leibler divergence is proposed to evaluate misfire detectability
performance Eguchi and Copas (2006). The Kullback-Leibler divergence can be
used to quantify the separation of two distributions, for example, to evaluate
the misfire detectability performance before a test quantity is designed or when
optimizing algorithm parameters to maximize the separation. Other examples
where the Kullback-Leibler divergence is used for quantifying diagnosability
performance are Eriksson et al. (Accepted for publication) and Eriksson et al.
(2012).

A misfire detection algorithm is proposed based on torque estimation at
the flywheel using flywheel angular velocity measurements. The test quantity
is designed by weighting the estimated torque related to one combustion such
that the distributions of fault-free data and misfire data are as separated as
possible. To handle variations of the estimated torque due to cold starts and
varying load and speed, the parameters of the misfire detection algorithm depend
on the operating point. Parameterization of the misfire detection algorithm is
performed automatically given training data and evaluations show that misfires
are detected with low probability of missed detections while having few false
alarms.

A short presentation of the vehicle control system signals is given in Section 2
and an analysis of the flywheel angular velocity signal and the effects of misfire is
presented in Section 3. In Section 4, the Kullback-Leibler divergence is described
which is used to analyze misfire detectability performance. The flywheel angular
velocity signal is used to estimate the torque at the flywheel in Section 5 and the
estimated torque is analyzed using the Kullback-Leibler divergence. Then, the
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misfire detection algorithm is presented in Section 6 and evaluated in Section 7.
Finally, the conclusions are presented in Section 8 and future works in Section 9.

2 Vehicle control system signals

A list of the vehicle control system signals and variables used by the misfire
detection algorithm is presented in Table 1. All data used in this work are
measured from real cars from Volvo. The flywheel angular velocity signal is used
to detect misfires and the crank counter, load, speed, and the catalytic converter
warming flag are used to identify the operating point of the engine, in which
cylinder the combustion occurs, and if it is during a cold start or not. All signals
are sampled crankshaft angle synchronous, instead of time synchronous, at the
same rate which depends on the number of cylinders.

During the data collection, misfires have been injected by interrupting the
combustion in different cylinders. The misfires are occurring with fixed intervals
between cycles while switching which cylinder that is misfiring. Note that it is
not known if the data contains more misfires than the injected misfire. Therefore,
all samples not related to an injected misfire is assumed fault-free. Thus, only
intermittent misfires are analyzed is this work and no occurrence of a constant
misfiring cylinder. However, intermittent misfires are considered more difficult
to detect since the fault appears and disappears randomly.

Table 1: A list of vehicle control system signals used by the misfire detection
algorithm.

Signal Unit
Flywheel angular velocity signal µs/∆θ
Crank counter -
Speed rpm
Load g/rev
Catalytic converter warming flag -

The flywheel angular velocity signal is the measured time period for different
angular intervals of the flywheel, see Ken-jen Lang, Lela Liu, Alec L. Lang, and
Louis Yizhang Liu (2005). The angular intervals are determined and limited by
the angles between the teeth on the flywheel, which are usually 6◦. Two teeth
are removed to keep track of the angle of the flywheel as shown in Figure 1. The
available flywheel angular velocity signals have the lower resolution of 30◦ for
five cylinder engines and 36◦ for six cylinder engines, see Table 2. This results
in 20 samples per cycle for five cylinder engines and 24 samples per cycle for
six cylinder engines. In both cases, this results in four samples per cylinder
combustion.

To keep track of the angle of the flywheel in the vehicle control system, a
crank counter variable is used. The crank counter is increased by one for each
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Table 2: A summary of the flywheel angular velocity signal resolution for different
number of cylinders.

Num. cylinders Resolution samples/rev. samples/cycle samples/cyl.
5 36◦ 10 20 4
6 30◦ 12 24 4

θ

Figure 1: The flywheel angular velocity signal is generated by computing the
time difference between two following teeth when the flywheel rotates. Two
teeth are removed to keep track of the angular position of the flywheel.

new sample of the flywheel angular velocity signal. As shown in Table 2, there
are four samples of the flywheel angular velocity signal between two combustions.
The firing order of the five cylinder engine is 1-2-4-5-3 and for the six cylinder
engine 1-5-3-6-2-4. The crank counts associated to each cylinder for five and six
cylinder engines are presented in Table 3 and follows the firing order of each
engine. The crank counts have been selected by analyzing when the signal is
affected by misfire which is discussed more in Section 5.1.

Table 3: The crank counter values in the vehicle control system that are associated
to each cylinder for five and six cylinder engines.

Crank counts
Cylinder Five cylinder engine Six cylinder engine

1 0, 1, 2, 3 1, 2, 3, 4
2 4, 5, 6, 7 17, 18, 19, 20
3 16, 17, 18, 19 9, 10, 11, 12
4 8, 9, 10, 11 21, 22, 23, 0
5 12, 13, 14, 15 5, 6, 7, 8
6 - 13, 14, 15, 16

The speed signal is an estimation of the crankshaft angular velocity measured
in revolutions per minute (rpm). The load signal measures the air mass in the
cylinders per revolution, measured in grams per revolution (r/rev). To handle
dependencies of the flywheel angular velocity signal to different speeds and loads,
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the samples related to one cylinder, see Table 3, are associated to one of the
operating points in Table 4. The operating points have been chosen the same
as in the misfire detection algorithm used by Volvo Cars. Samples related to
one combustion are classified to the closest, in the Euclidean sense, operating
point given the speed and load signal at the last sample for the cylinder. The
last sample is given at the last crank count for each cylinder, see Table 3. As an
example for a six cylinder engine, samples of the flywheel angular velocity signal
from cylinder 1 is classified to the closest operating point corresponding to the
value of the speed and load at crank count 4.

Table 4: Data is categorized in 42 different operating points depending on the
speed and load.

Load Speed [rpm]
[g/rev] 500 1000 1500 2000 2500 3000

0.3 ∗ ∗ · · · · · · ∗
0.4 ∗ ∗

...

0.6
...

. . .
0.8
1.2

1.6
...

. . .
...

2.0 ∗ · · · · · · ∗

A catalytic converter warming flag in the vehicle control system is used to
indicate when the ignition angle is chosen late in order to heat the catalytic
converter during cold starts. Cold starts are known to be complicated when
trying to detect misfires and the flag is used to identify when this occurs. Cold
starts will be considered separately in the misfire detection algorithm using the
catalytic converter warming flag.

3 Analysis of the flywheel angular velocity
signal

Here, the flywheel angular velocity signal is analyzed and examples of how
misfire and cold starts affect the flywheel are shown. The flywheel signal from
a five cylinder engine is shown in Figure 2 where the samples related to one
combustion of cylinder 3 are marked in the figure.

In Figure 3, two examples of the flywheel angular velocity signal from a
five cylinder engine with misfire are shown. The effect of misfires are visible as
a sudden increase in the measured time period. The increased time period is
caused by the deceleration of the crankshaft and driveline due to the missed
torque from the combustion. Flywheel angular velocity signals with misfires from
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a six cylinder engine are shown in Figure 4. The same characteristic behavior is
visible in the signals from a misfire as for the five cylinder engine. Comparing
the two examples in Figure 3 and Figure 4, respectively, shows that the effects
of a misfire to the flywheel signal varies depending on load and speed, which
complicates misfire detection.

0 5 10 15 20 25 30 35 40

8000

8200

8400

8600

Speed ≈ 720 rpm
Load ≈ 0.3 g/rev

Sample

µ
s

Figure 2: Example of angular velocity measurements at the flywheel from a five
cylinder engine. Data related to one combustion from cylinder 3 is marked with
circles.

As mentioned in the previous section, it is more difficult during cold starts to
detect a misfire in the flywheel angular velocity signal, see Figure 5. The signal
has a more stochastic nominal behavior and it is more difficult to distinguish
an injected misfire from the other data because there are several jumps in the
signal that are not related to any known misfire. Note that it is not known if
these sudden increases in the signal are misfires or not.

The flywheel angular velocity signal depends on the speed and load which
varies during a driving scenario. Figure 6 shows the flywheel angular velocity
signal at one operating point, speed 1500 rpm and load 1.2 g/rev, for four of six
cylinders. The blue curves represents the signal during the fault-free case and
the red curves during the misfire case. The red curves are all within the variation
of the blue curves and it is thus difficult to separate a misfire from fault-free
data by just looking at the plots. Generally, in order to detect a misfire, the
goal is to manipulate the data such that the fault-free data and misfire data are
as separated as possible. The more the data from the two cases are separated,
the easier it is to detect a misfire, using for example thresholding.

Comparing different methods to systematically improve misfire detectability
requires a measure to quantify the separation between fault-free data and misfire
data. To quantify the separation, the Kullback-Leibler divergence is used which
is presented in the next section.
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Figure 3: Examples of the flywheel angular velocity signal from a five cylinder
engine. The signals contain misfires which are visible as increased measured
time.
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Figure 4: Examples of the flywheel angular velocity signal from a six cylinder
engine. The signals contain misfires which are visible as increased measured
time.
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Figure 5: An example of the flywheel angular velocity signal from a six cylinder
engine during cold start. Compared to signals in Figure 4, a misfire is more
difficult to detect.
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Figure 6: Flywheel angular velocity signal related to cylinder 1, 5, 3 and 6, see
Table 3, during normal driving at operating point speed 1500 rpm and load 1.2
g/rev.
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4 The Kullback-Leibler divergence

the Kullback-Leibler divergence is used here to quantify the misfire detectability
performance of a signal or test quantity. The Kullback-Leibler divergence is
suitable since it can be used to quantify the separation of the distributions of a
given signal during the fault-free case and misfire case before constructing the
misfire detection algorithm.

The Kullback-Leibler divergence Kullback, S. and Leibler, R. A. (1951) is
a non-symmetric measure of the difference between two probability density
functions, pf and pnf defined as

K(pf∥pnf) =

∫ ∞

−∞
pf(x) log

pf(x)

pnf(x)
dx (1)

and is defined if:

• pnf(x) > 0 for all x where pf(x) > 0.

• If pf(x) = 0 then pf(x) log
pf(x)
pnf(x)

= 0.

The Kullback-Leibler divergence is non-negative, i.e., K(pf∥pnf) ≥ 0 with equality
if and only if pf = pnf, and asymmetric, i.e, in general K(pf∥pnf) ̸= K(pnf∥pf).
A large value of (1) corresponds to that the distributions pf and pnf are well
separated and it is easy to detect a misfire.

If pnf is the distribution of the null hypothesis (no fault) and pf is the
distribution for the alternative hypothesis (misfire), then K(pf∥pnf) can be
interpreted as the expected log-likelihood ratio if pf is the true hypothesis, see
Eguchi and Copas (2006). In Eriksson et al. (Accepted for publication), an
alternative interpretation of the Kullback-Leibler divergence is: "How easy is
it to distinguish if a sample is drawn from pf (misfire) and not from pnf (no
fault)?". Thus, maximizing K(pf∥pnf) would make it easier to detect a misfire.
A value close to zero corresponds to the probability density functions, pf and
pnf, being similar, i.e. it is hard to distinguish misfire data from fault-free data.

Computing (1), requires that the probability distributions of pf and pnf
are known. Often, an analytical solution of (1) is not available. However, a
numerical approximation can be made using training data. There are several
approaches to compute approximations of the distributions pf and pnf if data are
available. The distribution of the data can be approximated either by assuming
a known parametric distribution, for example, the Gaussian distribution Casella
and Berger (2001), or by using a non-parametric method such as kernel density
estimators, see Bishop (2006). A kernel density estimator approximates a
distribution by summing up a number of kernels, e.g., Gaussian distributions,
centered around each sample of the data. A kernel density estimator for a one
dimensional distribution, where each sample xn of the signal is represented by a
Gaussian probability density function with a mean value equal to the value of
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the sample, is

p̂(x) =
1

N

N∑

n=1

1

(2πσ2)
1/2

e−
(x−xn)2

2σ2 (2)

where p̂(x) is the estimated probability density function, N is the length of the
signal, and σ is the standard deviation of the Gaussian components, see Bishop
(2006). If data from the misfire case and the fault-free case are clearly separated
then the computation of (1) will depend only of the tails of the distribution
pnf since pf is close to zero for fault-free data. The tails of the distribution are
difficult to estimate since there are few data measured from the tails. When the
distributions are well separated, parametric approximated distribution of the
data can be used to model the tails.

If pf and pnf are Gaussian distributions with known means, µf and µnf, and
co-variance matrices, Σf and Σnf, then (1) can be computed exactly, see Casella
and Berger (2001). For a one-dimensional Gaussian distributed variable where
pf ∼ N (µf, σ

2
f ) and pnf ∼ N (µnf, σ

2
nf), the Kullback-Leibler divergence K(pf∥pnf)

is given by

K(pf∥pnf) =
1

2

(
σ2

f
σ2

nf
+

(µnf − µf)
2

σ2
nf

− log
σ2

f
σ2

nf
− 1

)
. (3)

Thus, by approximating the fault-free and misfire distributions of a signal
as Gaussian distributions, the Kullback-Leibler divergence can be computed
explicitly.

5 Torque estimation based on the angular ve-
locity signal

As observed in Section 3, it is possible in most cases to manually identify a
misfire in the flywheel angular velocity signal. However, when comparing several
measurements at the same operating point, see Figure 6, it is difficult to select a
fixed threshold to detect misfires while having a low probability of false alarms.
Therefore, some additional signal processing is needed and here, the flywheel
angular velocity signal is used to estimate the torque at the flywheel. Methods
where cylinder torque is estimated in real-time for misfire detection can be found
in, for example, Connolly and Rizzoni (1994) and Kiencke (1999). In Kiencke
(1999), the torque affecting the flywheel is described as

Jω̇ =

ncyl∑

i=1

(Tci + Tp,i)− Tload − Tfr (4)

where J is the inertia of the flywheel, ω is the angular velocity of the flywheel, Tci

is the torque from cylinder pressure at cylinder i, Tp,i is the torque from piston
mass at cylinder i, Tload is load torque and Tfr is friction. Each combustion
results in a torque contribution Tci which is is not present during a misfire.
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The flywheel angular velocity signal x[θ] is sampled at a fixed angular interval
∆θ. The flywheel angular velocity signal x[θ] measures the time period ∆t for a
fixed angular interval ∆θ. An approximation of the flywheel angular velocity
during the angular interval ∆θ is computed as ω = dθ

dt ≈ ∆θ
∆t = ∆θ

x[θ] . Since the
signal is angle synchronous, the relation (4) is written as

J
dω

dθ

dθ

dt︸︷︷︸
=ω

= T (5)

where T =
∑ncyl

i=1 (Tci + Tp,i)− Tload − Tfr. The factor dω
dθ is approximated using

Euler forward as
dω

dθ
≈

∆θ
x[θ+∆θ] − ∆θ

x[θ]

∆θ
. (6)

A simple estimate of T is then given by

J
∆θ

x[θ]

(
∆θ

x[θ+∆θ] − ∆θ
x[θ]

∆θ

)
= J∆θz[θ] (z[θ +∆θ]− z[θ]) = T (7)

where z[θ] = x−1[θ] and J∆θ is assumed constant and can be seen as a scaling
factor.

Two examples of estimated torque using the flywheel angular velocity signal
are shown in Figure 7. The flywheel angular velocity signals from a five cylinder
engine that have been used are shown in Figure 3. A combustion in a cylinder
results in an increase in torque but a misfire results in a smaller peak. Compared
to the flywheel angular velocity signal, the estimated torque oscillates around
zero, although the mean value is slightly positive. This is convenient since there
is no need of compensation in the signal for the variation in speed which will be
shown in Section 5.1.

In Figure 8, two examples of estimated torque are shown using the flywheel
angular velocity signal from the six cylinder engine shown in Figure 4. The
estimated torque oscillates around zero but it shows a bigger torque drop from
a misfire compared to Figure 7. The difference in shape between misfires in
Figure 7 and Figure 8 are similar for different speeds and loads. The relative
torque loss during misfire is bigger in general for the six cylinder engine case
than for the five cylinder engine case.

Data from cold starts is only available from a six cylinder engine. Figure 9
shows the estimated torque from flywheel measurements during cold start where
the corresponding flywheel angular velocity signal is shown in Figure 5. It is
difficult to distinguish the misfire from other torque drops. However, there are
some torque drops that are almost as low as the known misfire but it is not
known if these drops are also caused by misfires.

To summarize this section, by estimating the torque at the flywheel, a misfire
can be identified as a smaller torque gain from the misfiring cylinder. Also,
since the estimated torque oscillates around zero, all data associated to the same
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Figure 7: Examples of estimated torque from a five cylinder vehicle. The data
contains misfires which are visible as smaller torque gain.

operating point will have the same mean value. Thus, it is not necessary to
compensate for varying speed when comparing data from each operating point to
identify a misfire. The misfire detectability performance of using the estimated
torque is further analyzed in Section 5.1
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Figure 8: Examples of estimated torque from a six cylinder vehicle. The data
contains misfires which are visible as smaller torque gain.
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Figure 9: An example of estimated torque during cold start from a six cylinder
vehicle. Compared to data in Figure 7, a misfire is more difficult to detect during
cold starts.
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5.1 Analyzing misfire detectability performance of es-
timated torque signal

In the previous section, the flywheel angular velocity signal is used to estimate
the torque at the flywheel. An interesting question is how much performance is
gained by using the estimated torque instead of the original flywheel signal. It is
also interesting to analyze how the performance varies, depending on operating
point and if it is during cold start or not. Here, the estimated torque based on
fault-free data and misfire data is analyzed using the Kullback-Leibler divergence
described in Section 4.

Signal distribution at one operating point

First, a comparison is made between torque estimation of fault-free data and
misfire data for each cylinder separately at one operating point. An example of
estimated torque for fault-free combustions and misfires for different cylinders at
operating point speed 1500 rpm and load 1.2 g/rev are shown in Figure 10. Each
plot shows the data from one cylinder where the upper left plot is cylinder 1,
upper right plot is cylinder 5, lower left plot is cylinder 3 and lower right plot
is cylinder 6. The plots show that the estimated torque clearly differs between
normal behavior and misfire compared to the flywheel angular velocity signal
shown in Figure 6. The difference between the distributions for each of the four
cylinders in Figure 10 is largest at the second sample in each plot and smallest
at the last sample.

Consider the upper left plot in Figure 10. The distribution of fault-free data
and misfire data for each sample of cylinder 1 is plotted in Figure 11. The upper
left plot is the distribution of the first sample of the combustion, the upper right
is the second sample and so on. By comparing the four plots, it is clear that the
distributions are separated the most at the second sample (upper right plot) and
the least at the last sample (lower right plot) which is also shown in Figure 10.

Figure 12 shows the estimated torque during cold starts, at operating point
speed 1500 rpm and load 1.2 g/rev. During cold starts, when the catalytic
converter is heated, the difference between fault-free data and misfire data is
smaller compared to the normal case which indicates that misfire detection is
more difficult during cold starts compared to normal driving since the data is not
as separated as in Figure 10. Note that some of the torque traces are similar to
the torque during normal driving in Figure 10, which have maximum torque in
the second sample. This might be caused by a latency in the catalytic converter
warming flag.

A comparison of the sample distributions of cylinder 1 during cold start in
the upper left plot in Figure 12 is shown in Figure 13. The distributions of
fault-free data and misfire data are most separated in the last sample and the
least in the first sample. A possible explanation for this is that during cold
start the ignition angle is intentionally set later to heat the catalytic converter.
Therefore, since the combustion occurs later, the effect of a combustion is visible
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Figure 10: Estimated torque of cylinder 1, 5, 3, and 6 during normal driving at
operating point speed 1500 rpm and load 1.2 g/rev.

later in the estimated torque compared to the results in Figure 11.
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Figure 11: The distribution of the torque of cylinder 1, i.e., crank counts 1,
2, 3, and 4, during normal driving at operating point speed 1500 rpm and
load 1.2 g/rev. A normalized histogram of the data and an approximation of
each distribution using kernels is shown in each plot. The separation between
torque from a fault-free combustion and a misfire is largest at the second sample
and smallest at the last sample.
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Figure 12: Estimated torque of cylinder 1, 5, 3, and 6 during cold start at
operating point speed 1500 rpm and load 1.2 g/rev.
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Figure 13: The distribution of the torque of cylinder 1, i.e., crank counts 1, 2, 3,
and 4, during cold start at operating point speed 1500 rpm and load 1.2 g/rev.
A normalized histogram of the data and an approximation of each distribution
using kernels is shown in each plot. The separation between torque from fault-
free combustion and a misfire is largest at the last sample and smallest at the
first sample.
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Analyzing signal distribution using the Kullback-Leibler diver-
gence

Here, the Kullback-Leibler divergence is computed by approximating the fault-
free data and misfire data as Gaussian distributed and using (3) to quantify
the separation. The results are shown in Figure 14 for normal driving and in
Figure 15 for cold starts. Comparing the normalized histograms of the data
and the approximated Gaussian distributions shows that the approximation is
not always representative of the data. However, a value of Kullback-Leibler
divergence around 50 seems to correspond to well separated distributions but
already around 20 the distributions are fairly separated such that few or no data
from the fault-free case and misfire case are overlapping.

An interesting aspect is to analyze the gain by using the estimated torque
instead of the original flywheel angular velocity signal. The computed Kullback-
Leibler divergence in Figure 14 is compared to the Kullback-Leibler divergence
of the corresponding flywheel angular velocity signal shown in the upper left plot
in Figure 6. The distributions and computed Kullback-Leibler divergence are
presented in Figure 16. The Kullback-Leibler divergence are all below 0.5 for all
samples which is expected since the approximated distributions are similar. The
differences in Kullback-Leibler divergence indicate that the estimated torque
is more suitable to detect misfires compared to the original flywheel angular
velocity signal.

Computing the Kullback-Leibler divergence, for example, for different cylin-
ders or operating points, can be used to get an overview of how misfire de-
tectability varies for different operating points. As an example, data from a city
driving scenario in Gothenburg, Sweden, is used to compute the Kullback-Leibler
divergence in Table 5. The Kullback-Leibler divergence is computed for fault-free
data and misfire data for cylinder 1 and crank count 2 for different operating
points. If data is not available from both the fault-free case and misfire case, the
Kullback-Leibler divergence is not computed which is represented by an empty
field. The computed Kullback-Leibler divergence is above 20 for all cases and
increases for high speeds and high loads. The results indicate that it should be
more difficult, in general, to detect a misfire at low loads and speeds around
1000 rpm compared to high speeds and loads.

Another example, using the same driving scenario, but estimated torque
for cylinder 6 and crank count 14 is shown in Table 6. The Kullback-Leibler
divergence is lower at low speeds and loads compared to Table 5 but increases
for higher loads and speeds. The result from the two tables indicate that it
should be in general more difficult to detect a misfire at low speed and load but
easier at high speed and load.

In this section, the Kullback-Leibler divergence has been used to analyze
the estimated torque to be used for misfire detection. The estimated torque is
compared to the original flywheel angular velocity signal and the results show
that the estimated torque is more suitable to use because it gives a higher value
of Kullback-Leibler divergence. The Kullback-Leibler divergence is a useful
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tool to get an overview of how misfire detectability varies during a combustion
and for different operating points. The analyzes have shown that, for example,
depending on if it is during normal driving or a cold start, different samples
during the combustion should be used to detect a misfire.
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Figure 14: The distribution of the estimated torque of cylinder 1, i.e., crank
counts 1, 2, 3, and 4, during normal driving at operating point speed 1500 rpm
and load 1.2 g/rev. A normalized histogram of the data and an approximation
of each distribution as a Gaussian is shown in each plot.

Table 5: Computed Kullback-Leibler divergence of Gaussian approximations of
data from cylinder 1 (crank count 2) for different operating points.

Load Speed [rpm]
[g/rev] 500 1000 1500 2000 2500 3000

0.3 20.94 39.60
0.4 51.95 20.30 28.21
0.6 31.05 24.48 32.64 37.81
0.8 27.54 44.22 38.11
1.2 53.85 72.69
1.6 94.76 96.45
2.0 108.43
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Figure 15: The distribution of the estimated torque of cylinder 1 during cold
start at operating point speed 1500 rpm and load 1.2 g/rev. A normalized
histogram of the data and an approximation of each distribution as a Gaussian
is shown in each plot.

Table 6: Computed Kullback-Leibler divergence of Gaussian approximations of
data from cylinder 6 (crank count 14) for different operating points.

Load Speed [rpm]
[g/rev] 500 1000 1500 2000 2500 3000

0.3 9.57 32.22
0.4 33.17 12.73 23.20
0.6 15.45 25.50 30.91 31.70
0.8 31.07 46.54 32.34
1.2 54.62 80.84
1.6 27.44 69.84 124.20
2.0 162.28 117.68 151.52
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Figure 16: The distribution of the flywheel signal of cylinder 1 during normal
driving at operating point speed 1500 rpm and load 1.2 g/rev. A normalized
histogram of the data and an approximation of each distribution as a Gaussian
is shown in each plot.
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6 An algorithm for misfire detection

The flywheel angular velocity signal is used to estimate the torque at the flywheel.
The Kullback-Leibler divergence has been used to show how misfire detectability
performance depends on speed and load, and that fault-free data and misfire
data are more separated at different samples depending on if it is during a cold
start or not.

Here, a proposal for a misfire detection algorithm is presented based on the
estimated torque. When designing the misfire detection algorithm, one goal has
been to keep the solution simple in order to simplify parameter tuning. Another
purpose is to let different steps in the design procedure be as independent from
each other as possible. In that way, each step can be improved or replaced
without the need of changing or removing other steps when tuning or running
the algorithm.

6.1 Algorithm outline

Here, an outline of the misfire detection algorithm is presented. The algorithm
can be summarized in the following steps.

1. Estimate the torque from the flywheel angular velocity signal.

2. Compute a test quantity using weights for data at different operating
points.

3. Threshold the test quantity to detect a misfire.

The algorithm is designed such that all parameterization are automated, i.e.,
parameters and thresholds, are set automatically given training data. Step 1 of
the algorithm has been described previously in Section 5. Step 2 is presented in
Section 6.2 and step 3 is presented in Section 6.3.

6.2 Design of test quantity

Since the distribution of the estimated torque varies for different speeds and
loads, the estimated torque from each operating point is considered separately.
Also, estimated torque from normal driving and from cold starts are considered
separately.

Step 1 of the algorithm described in Section 6.1, is to estimate the torque
at the flywheel from the flywheel angular velocity signal. The torque at the
flywheel is estimated using (7). The estimated torque from one combustion is
classified to the closest operating point, see Table 4, given the value of the speed
and load variables from the vehicle control system at the last sample of the
combustion.

In this report, an adaptive compensation of flywheel manufacturing errors
has not been considered. The difference in distribution of estimated torque
for different cylinders at the same operating point is probably partly caused
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by flywheel errors. If available, a flywheel error compensation can be included
in the first step of the algorithm. Here, to handle the errors which affect the
torque estimation, each cylinder is considered separately. For the given number
of operating points based on speed and load, the number of cylinders, and the
catalytic converter heating flag will result, in total of 42 ∗ 5 ∗ 2 = 420, modes to
be parameterized for a five cylinder engine. However, if an adaptation of the
estimated torque is included, such that the distribution is compensated for all
cylinders, the number of modes would reduce by a factor five to 84.

In Section 5.1, the separation between the distributions of fault-free data
and misfire data have been compared for each sample separately. One simple
approach to design a test quantity is to take the one data point where the
separation between the distributions are maximally separated. However as
shown in Section 5.1, a misfire is more or less visible in all samples related to
the cylinder depending on how much the misfire and fault-free distributions are
separated. Instead of looking at each sample independently, the different samples
can be weighted together such that a good misfire detectability performance is
achieved. In Figure 17, the three last samples of the estimated torque, denoted T2,
T3, and T4, shown in Figure 11 and Figure 13, are plotted in a three dimensional
space. The three dimensional distributions of estimated torque during cold starts
and normal driving are marked in the figure. The two cases are clearly distinct
from each other, thus requiring different weights to detect misfires for each case.
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Figure 17: Estimated torque for three of the four samples shown in Figure 11
and Figure 13. The estimated torque at crank count 2 is T2, the estimated
torque at crank count 3 is T3, and the estimated torque at crank count 4 is T4.
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There are many ways to utilize all samples from one combustion to find
a test quantity where the distribution of fault-free data and misfire data are
as separated as possible, e.g., data-driven methods, see Bishop (2006). An
implementation of a misfire detection algorithm where computational power is
limited, requires that the complexity of the misfire detection performed on-line
should be as low as possible. To reduce complexity of the misfire detection
algorithm, a linear weighting function is applied when designing the test quantity.
During each combustion, the torque is estimated four times, {T1, T2, T3, T4}. A
test quantity y for detecting misfires is designed using linear weights as

y =

4∑

i=1

αiTi (8)

where αi is the weight for the estimated torque Ti and ∥α∥2 = 1. The weights
{α1, α2, α3, α4} are chosen such that the value of y during the fault-free case
and during misfire are as separated as possible.

Finding the weights α = (α1, α2, α3, α4) can be formulated as an optimization
problem

max
α

M(pf, pnf;α)

s.t. ∥α∥ = 1 (9)

where M(pf, pnf;α) is a measure of the separation between the distributions of
y for fault-free data pnf and misfire data pf for a given α. Since pnf and pf are
unknown, the probability density functions are approximated using training
data.

As an example to visualize the weights of the vector α, the direction of
one vector α is plotted together with the training data. The training data in
Figure 17 is separated in two sets shown in Figure 18, the upper plot contains
data from normal driving and the lower plot contains data from cold starts since
these two cases have clearly separated distributions. The outlier in the cold
start data is the same as the outlier in Figure 12. As an example, the solid lines
represents the vector of the weights α for each data set which are parallel to the
direction in which the distributions are separated.

In the upper plot in Figure 18 a threshold, exemplified by a dashed line,
can easily be chosen such that a classification can be made with low risk of
missed detection or false alarms. In the lower plot, the distributions are more
overlapped and it is not possible by linear weights α to find a threshold which
completely separates the data from the two cases. The weights α are different for
normal driving and cold starts. Note that the weights α are largest for samples
where the distributions where separated the most in Figure 14 and Figure 15, for
example α2 and α3 for normal driving data and α3 and α4 for cold start data.

Here follows two proposed measures M(pf, pnf;α) that can be used to find a
suitable α.
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Figure 18: The data in Figure 17 is separated in normal driving, the upper plot,
and cold starts, the lower plot. The solid lines represent the weights α such that
the distributions of fault-free data and misfire data are well separated. Examples
of thresholds to separate fault-free data and misfire data are shown as dashed
lines.
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Maximizing the Kullback-Leibler divergence

One choice of M(pf, pnf;α) could be to find weights α which maximizes the
Kullback-Leibler divergence, i.e,

M(pf, pnf;α) = K(pf(α)∥pnf(α)) (10)

where pf(α) and pf(α) represents the distributions of y for the misfire case and
fault-free case respectively for the given weights α. By maximizing (10), the
distributions are optimally separated given the definition of Kullback-Leibler
divergence.

As an example, optimized weights α which maximizes the Kullback-Leibler
divergence for cylinder 1 at different operating points are presented in Figure 19.
The weights are optimized given data from a driving scenario in Gothenburg.
Each plot represents one sample for the different operating points. The Kullback-
Leibler divergence is computed by estimating the distributions pf(α) and pnf(α)
using the kernel density estimator in (2).

Comparing the weights for each sample in Figure 19 shows that the weights
for each sample varies for different operating points. The second sample (crank
count 2) has a high weight for most of the operating points while the other three
samples (crank counts 1, 3, and 4) varies around zero. The misfire detection
algorithm is evaluated when optimizing the weights using the Kullback-Leibler
divergence in the next section.

Maximizing the gap between distributions

Let ynf denote the vector of all fault-free data of the test quantity and yf all
misfire data.

M(pf, pnf;α) =

{
min(ynf)−max(yf) if min(ynf) > max(yf)
min(yf)−max(ynf) if max(ynf) < min(yf)

(11)

Maximizing the gap is also applied in support vector machines to find planes
which separate different classes given training data, see Bishop (2006). Note
that maximizing the gap is sensitive to outliers since it only considers the closest
data points of the two distributions.

In Figure 20, optimized weights are shown which maximizes the gap between
distributions of the fault-free data and misfire data for cylinder 1 at different
operating points. The data used here is the same data as in Figure 19. Comparing
the optimized weights in Figure 20 and Figure 19, shows that the weights appear
to vary less when maximizing the gap compared to maximizing the Kullback-
Leibler divergence. The misfire detection algorithm is evaluated when optimizing
the weights such that the gap is maximized in the next section.
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Figure 19: Optimized weights α for samples from cylinder 1 which maximizes
the Kullback-Leibler divergence from the misfire distribution to the fault-free
distribution.

6.3 Thresholding

The simplest and most common approach to detect a change in a test quantity
y is the use of a fixed threshold J such that

y > J concludes no misfire
y ≤ J concludes misfire.

Depending on the fault-free and misfire distributions of the test quantity, the
threshold are chosen to balance the risk of missed detections and false alarms.

By using training data to approximate the distributions of fault-free data and
misfire data, thresholds can be automatically selected to balance the required
performances.
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Figure 20: Optimized weights α for samples from cylinder 1 which maximizes
the gap between the fault-free and misfire distributions.
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7 Evaluation of the misfire detection algo-
rithm

The purpose of this evaluation is to see how well separated misfire data and
fault-free data are for a designed test quantity. One goal is to see if it is possible
to select thresholds such that all misfires can be detected with few false alarms.

A test quantity is designed by estimating the torque from the flywheel
angular velocity signal using (7). By using the speed and load variables, the
crank counter, and the catalyst warming flag, from the vehicle control system,
the estimated torque is associated to a specific operating point, cylinder, and
if it is during a cold start or not. For each case, a vector α in (8) which solves
(9), has been optimized using Matlab and an interior-point search algorithm,
see Byrd et al. (2000). The distributions of the test quantity are estimated
using a set of training data. Two versions of the misfire detection algorithm are
evaluated using two different sets of vectors α. The first version has weights
α such that the Kullback-Leibler divergence (10) is maximized and the second
version has weights α such that the gap between fault-free data and misfire
data (11) is maximized. Note that a misfire is detected by analyzing samples
associated to one specific cylinder. Thus, identification of the misfiring cylinder
is obtained automatically.

Constant thresholds, which decides when a misfire is detected, are selected
for each operating point, cylinder, and state of the catalyst warming flag.
Parameterization of the algorithm is made given a set of training data in the
following order.

1. Estimate torque using (7).

2. Compute vectors α for the test quantity y in (8) for each operating point
using (9).

3. Compute thresholds which fulfills required probabilities for false alarm and
missed detection.

All parameterization is performed automatically using training data and the only
necessary manual tuning is to choose probabilities for false alarm and missed
detection.

To be sure that there is a sufficiently large set of training data for all operating
points in the validation data, the validation data is included in the training data.
Thresholds are chosen just above the highest value of the test quantity for any
misfire in the training data, i.e., all misfires in the training data are detected.
This choice of the thresholds is used to analyze how separated the distributions
of misfire data and fault-free data are, by looking at the number of false alarms.
If the number of false alarms is high when all misfires are detected then it is not
possible to reduce the number of false alarms without increasing the number of
missed detections.
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For a six cylinder engine, the misfire detection algorithms are evaluated using
one normal driving scenario and three cold start scenarios. The two versions
of the misfire detection algorithm are compared to Volvo’s misfire detection
algorithm which is used as a reference where the number of detected true misfires,
false alarms and missed detections are compared. Note that Volvo’s misfire
detection algorithm is the implemented algorithm for the vehicle and is not
tuned using the training data as for the other algorithms. The results for each
scenario are shown in Tables 7-10. Table 7 summarizes the result from the
normal driving scenario. The two versions of the algorithm have no false alarms
and an example of the test quantities and thresholds are shown in Figure 21 and
Figure 22 respectively. In the cold starts scenarios, there are some false alarms
for both versions of the algorithm which is inevitable since the fault-free data and
misfire data are overlapping, as shown in Figure 18, and can not be completely
separated. The results in Tables 8-10 show that both maximizing the Kullback-
Leibler divergence and maximizing the gap give a better performance than the
reference algorithm in almost all cases. However, maximizing the Kullback-
Leibler divergence seems to give a slightly better performance compared to
maximizing the gap.

Examples of the test quantities and thresholds when maximizing the Kullback-
Leibler divergence and maximizing the gap are shown in Figure 21 and Figure 22
respectively. The figures show how the threshold varies depending on speed, load,
and cylinder, where a large jump corresponds to a change in operating point and
the small variations are different cylinders. The two dips of the test quantity
are the result of misfires. Given the data in both Figure 21 and Figure 22,
the thresholds can be chosen higher without significantly increasing the risk of
false alarms. This is also visible when looking at the separation between the
distributions of the test quantities shown in Figure 23 and Figure 24 which
gives examples of the distributions for two operating points and two cylinders.
The thin lines are normalized histograms of the fault-free data and misfire
data and the thick lines are approximated distributions using (2). The test
quantities during cold start when maximizing the Kullback-Leibler divergence
and maximizing the gap are shown in Figure 25 and Figure 26 respectively.
The distributions of the test quantities are shown in Figure 27 and Figure 28.
Misfires during cold starts are most difficult to detect at the operating point
load 1.2 g/rev and speed 1500 rpm but the distributions are better separated
compared to looking at each sample individually, see Figure 12.

The evaluation of the two versions of the misfire detection algorithm for a five
cylinder engine is shown in Table 11 and Table 12. The algorithms are evaluated
using two driving scenarios. No cold start scenarios where available for the five
cylinder engine and the performance in this case has not been evaluated. The
number of false alarms for the two versions of the misfire detection algorithm
are fewer compared to the reference algorithm.

The evaluations show some promising results that the misfire detection
algorithms proposed in this work are able to detect all misfires while having
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few false alarms. Two approaches to choose the weights α are compared and
they seem to give similar performance considering number of false alarms when
detecting all misfires.

Table 7: Results for a six cylinder engine from a normal driving scenario. The
number of combustions during the scenario is 60356.

Max. K-L Max. gap Ref.
Detected true misfires 1021 1021 871
Missed detections 0 0 150
False alarms 0 0 58

Table 8: Results for a six cylinder engine from a cold start scenario at 7◦C. The
number of combustions during the scenario is 6137.

Max. K-L Max. gap Ref.
Detected true misfires 127 127 61
Missed detections 0 0 66
False alarms 9 13 19

Table 9: Results for a six cylinder engine from a cold start scenario at 21◦C.
The number of combustions during the scenario is 3962.

Max. K-L Max. gap Ref.
Detected true misfires 82 82 14
Missed detections 0 0 68
False alarms 13 19 16

Table 10: Results for a six cylinder engine from a cold start scenario at 25◦C.
The number of combustions during the scenario is 3251.

Max. K-L Max. gap Ref.
Detected true misfires 66 66 10
Missed detections 0 0 56
False alarms 7 6 11

Table 11: Results for a five cylinder engine from a normal driving scenario. The
number of combustions during the scenario is 122283.

Max. K-L Max. gap Ref.
Detected true misfires 953 953 945
Missed detections 0 0 8
False alarms 9 24 78
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Table 12: Results for a five cylinder engine from a normal driving scenario. The
number of combustions during the scenario is 10339.

Max. K-L Max. gap Ref.
Detected true misfires 2 2 2
Missed detections 0 0 0
False alarms 21 18 23
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Figure 21: An example of the test quantity and threshold, when maximizing
the Kullback-Leibler divergence, for a six cylinder engine during normal driving.
The threshold variations depends on operating point and cylinder.
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Figure 22: An example of the test quantity and threshold, when maximizing the
gap, for a six cylinder engine during normal driving. The threshold variations
depends on operating point and cylinder.
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Figure 23: The distribution of the test quantity for different loads and speeds
when maximizing the Kullback-Leibler divergence.
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Figure 24: The distribution of the test quantity for different loads, speeds, and
cylinders, when maximizing the gap.
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Figure 25: An example of the test quantity and threshold, when maximizing
the Kullback-Leibler divergence, for a six cylinder engine during cold start. The
threshold variations in the figure depend on the different cylinders.
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Figure 26: An example of the test quantity and threshold, when maximizing the
gap, for a six cylinder engine during cold start. The threshold variations in the
figure depend on the different cylinders.
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Figure 27: The distribution of the test quantity during cold start for different
loads and speeds when maximizing the Kullback-Leibler divergence.
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Figure 28: The distribution of the test quantity during cold start for different
loads, speeds, and cylinders, when maximizing the gap.
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8 Conclusions

A misfire detection algorithm is proposed where the torque at the flywheel is
estimated based on the flywheel angular velocity signal. The estimated torque is
associated to different operating points depending on speed, load, cylinder, and
the catalytic converter warming flag in the vehicle control system. A test quantity
is designed by weighting data from each combustion such that the distributions
of the test quantity for fault-free data and misfire data are separated. Then,
thresholds for detecting misfires are selected for each operating point which
balances the probabilities of false alarms and missed detections. All tuning steps
are performed automatically given a set of training data which simplifies the
tuning of the algorithm.

As a tool for designing and evaluating the misfire detection algorithm, the
Kullback-Leibler divergence is proposed. The Kullback-Leibler divergence quan-
tifies the separation between two distributions, in this case describing fault-free
data and misfire data, and gives information of when it is easy to detect a misfire.
Using the Kullback-Leibler divergence has the advantage that the separation
between the distributions is summarized into a scalar value which makes it
possible to easily get an overview of the performance of several operating points
at the same time. The Kullback-Leibler divergence has proven useful during the
whole design process, from analyzing the misfire detectability performance for
different samples and operating points to optimizing algorithm parameters.

Two versions of the proposed misfire detection algorithm are evaluated using
real data from both a five cylinder engine and a six cylinder vehicle. The
difference is how the weights are chosen. In the first version, the weights are
chosen such that the Kullback-Leibler divergence is maximized from the misfire
data to the fault-free data. In the second version, the weights are chosen such
that the gap is maximized between the distributions of the test quantity for
the fault-free data and misfire data. The performance of the algorithms are
compared to a reference algorithm and evaluations show that the proposed
algorithm is able to detect all misfires while having a low probability of false
alarms.

9 Future works

In this work, flywheel manufacturing errors that affect the flywheel angular
velocity signal are not considered. The errors are different for different vehicles
which will affect the results of the misfire detection algorithm. A compensation
for these errors should be included in the misfire detection algorithm before it
can be used in a production vehicle.

Even though all parameter tuning is performed automatically there are many
parameters in the misfire detection algorithm. Both weights for the estimated
torque and thresholds at different operating points but also for different cylinders.
The number of parameters can possibly be reduced by compensating for the



160 Paper E. Analysis and optimization with the Kullback-Leibler . . .

flywheel manufacturing errors. It should be analyzed if the number of parameters
can be reduced without significantly degrading the performance of the misfire
detection algorithm.

10 Acknowledgment

This work has been supported by Volvo Cars. The authors would like to thank
Sasa Trajkovic at Volvo Cars for helping us with the data collection.



References 161

References

Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

Richard H. Byrd, Jean Charles Gilbert, and Jorge Nocedal. A trust region
method based on interior point techniques for nonlinear programming. Mathe-
matical Programming, 89:149–185, 2000.

George Casella and Roger L. Berger. Statistical Inference. Duxbury Resource
Center, Pacific Grove, CA, 2001.

Francis T. Connolly and Giorgio Rizzoni. Real time estimation of engine torque
for the detection of engine misfires. Journal of Dynamic Systems, Measurement,
and Control, 116(4):675–686, 1994.

Shinto Eguchi and John Copas. Interpreting Kullback-Leibler divergence with
the Neyman-Pearson lemma. J. Multivar. Anal., 97:2034–2040, October 2006.

Daniel Eriksson, Mattias Krysander, and Erik Frisk. Using quantitative diag-
nosability analysis for optimal sensor placement. Proceedings of IFAC Safe
Process 2012, Mexico city, Mexico, 2012.

Daniel Eriksson, Erik Frisk, and Mattias Krysander. A method for quantitative
fault diagnosability analysis of stochastic linear descriptor models. Automatica,
Accepted for publication.

J.B. Heywood. Internal combustion engine fundamentals. McGraw-Hill series
in mechanical engineering. McGraw-Hill, 1988.

Ken-jen Lang, Lela Liu, Alec L. Lang, and Louis Yizhang Liu. Multi-Purpose
Flywheel (MPF) and Misfire Detection. SAE Technical Paper 2005-01-1141,
2005.

U. Kiencke. Engine misfire detection. Control Engineering Practice, 7(2):203 –
208, 1999.

Kullback, S. and Leibler, R. A. On Information and Sufficiency. Ann. Math.
Statist., 22(1):79–86, 1951.

D. Lundström and S. Schagerberg. Misfire Detection for Prechamber SI Engines
Using Ion-Sensing and Rotational Speed Measurements. SAE Technical Paper
2001-01-0993, 2001.

J Mohammadpour, M Franchek, and K Grigoriadis. A survey on diagnostic
methods for automotive engines. International Journal of Engine Research, 13
(1):41–64, 2012.



162 Paper E. Analysis and optimization with the Kullback-Leibler . . .

Sanjeev Naik. Advanced misfire detection using adaptive signal processing.
International Journal of Adaptive Control and Signal Processing, 18(2):181–198,
2004.

Andrew W. Osburn, Theodore M. Kostek, and Matthew A. Franchek. Residual
generation and statistical pattern recognition for engine misfire diagnostics.
Mechanical Systems and Signal Processing, 20(8):2232 – 2258, 2006.

Francisco V. Tinaut, Andrés Melgar, Hannes Laget, and José I. Domínguez.
Misfire and compression fault detection through the energy model. Mechanical
Systems and Signal Processing, 21(3):1521 – 1535, 2007.

Andreas Walter, Uwe Kiencke, Stephen Jones, and Thomas Winkler. Misfire
Detection for Vehicles with Dual Mass Flywheel (DMF) Based on Reconstructed
Engine Torque. SAE Technical Paper 2007-01-3544, 2007.



Notes 163


	1 Introduction
	1.1 Fault diagnosis
	1.1.1 Model based diagnosis

	1.2 Fault diagnosability analysis
	1.2.1 Utilizing diagnosability analysis for design of diagnosis systems
	1.2.2 The Kullback-Leibler divergence
	1.2.3 Engine misfire detection

	1.3 Scope
	1.4 Contributions
	1.5 Publications
	References

	Publications
	A A method for quantitative fault diagnosability analysis of stochastic linear descriptor models
	1 Introduction
	2 Problem formulation
	3 Distinguishability
	3.1 Reformulating the model
	3.2 Stochastic characterization of fault modes
	3.3 Quantitative detectability and isolability

	4 Computation of distinguishability
	5 Relation to residual generators
	6 Diesel engine model analysis
	6.1 Model description
	6.2 Diagnosability analysis of the model

	7 Conclusions
	References

	B Using quantitative diagnosability analysis for optimal sensor placement
	1 Introduction
	2 Introductory example
	2.1 Sensor placement using deterministic method
	2.2 Analysis of minimal sensor sets using distinguishability

	3 Problem formulation
	4 Background theory
	4.1 Model
	4.2 Quantified diagnosability performance

	5 The small example revisited
	6 A greedy search approach
	7 Sensor placement using greedy search
	7.1 Model
	7.2 Analysis of the underdetermined model
	7.3 Analysis of the exactly determined model

	8 Conclusion
	References

	C A sequential test selection algorithm for fault isolation
	1 Introduction
	2 Problem formulation
	3 Background theory
	3.1 Distinguishability
	3.2 Relation of residual generators

	4 Generalization of distinguishability
	5 Sequential test selection
	5.1 Principles
	5.2 Algorithm

	6 Case study: DC circuit
	6.1 System
	6.2 Diagnosis algorithm
	6.3 Evaluation

	7 Tuning the test selection algorithm
	7.1 Off-line
	7.2 On-line
	7.3 Other measures of diagnosability performance

	8 Conclusion
	9 Acknowledgment
	References

	D Flywheel angular velocity model for misfire simulation
	1 Introduction
	2 Model requirements
	3 Model
	3.1 Model outline
	3.2 Engine
	3.3 Driveline
	3.4 Modeling disturbances

	4 Model validation
	4.1 Experimental data
	4.2 Validation

	5 Conclusions
	References

	E Analysis and optimization with the Kullback-Leibler divergence for misfire detection using estimated torque
	1 Introduction
	2 Vehicle control system signals
	3 Analysis of the flywheel angular velocity signal
	4 The Kullback-Leibler divergence
	5 Torque estimation based on the angular velocity signal
	5.1 Analyzing misfire detectability performance of estimated torque signal

	6 An algorithm for misfire detection
	6.1 Algorithm outline
	6.2 Design of test quantity
	6.3 Thresholding

	7 Evaluation of the misfire detection algorithm
	8 Conclusions
	9 Future works
	10 Acknowledgment
	References



