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“On a given day, a given circumstance, you think you have a limit.
And you then go for this limit and you touch this limit, and you think,

’Okay, this is the limit’. And so you touch this limit, something
happens and you suddenly can go a little bit further.”

— Ayrton Senna





Abstract

As development in sensor technology, situation awareness systems, and compu-
tational hardware for vehicle systems progress, an opportunity for more ad-
vanced and sophisticated vehicle safety-systems arises. With the increased
level of available information—such as position on the road, road curvature
and knowledge about surrounding obstacles—future systems could be seen uti-
lizing more advanced controls, exploiting at-the-limit behavior of the vehicle.
Having this in mind, optimization methods have emerged as a powerful tool
for offline vehicle-performance evaluation, providing inspiration to new control
strategies, and by direct implementation in on-board systems. This will, how-
ever, require a careful choice of modeling and objectives, since the solution to
the optimization problem will rely on this.

With emphasis on vehicle modeling for optimization-based maneuvering ap-
plications, a vehicle-dynamics testbed has been developed. Using this vehicle
in a series of experiments, most extensively in a double lane-change maneuver,
verified the functionality and capability of the equipment. Further, a compara-
tive study was performed, considering vehicle models based on the single-track
model, extended with, e.g., tire-force saturation, tire-force lag and roll dynam-
ics. The ability to predict vehicle behavior was evaluated against measurement
data from the vehicle testbed.

A platform for solving vehicle-maneuvering optimization-problems has been
developed, with state-of-the-art optimization tools, such as JModelica.org and
Ipopt. This platform is utilized for studies concerning the influence different
vehicle-model configurations have on the solution to critical maneuvering prob-
lems. In particular, different tire modeling approaches, as well as vehicle-chassis
models of various complexity, are investigated. Also, the influence different
road-surface conditions—e.g., asphalt, snow and ice—have on the solution to
time-optimal maneuvers is studied.

The results show that even for less complex models—such as a single-track
model with a Magic Formula based tire-model—accurate predictions can be ob-
tained when compared to measurement data. The general observation regarding
vehicle modeling for the time-critical maneuvers is similar; even the least com-
plex models can be seen to capture certain characteristics analogous to those of
higher complexity.

Analyzing the results from the optimization problems, it is seen that the
overall dynamics, such as resultant forces and yaw moment, obtained for dif-
ferent model configurations, correlates very well. For different road surfaces,
the solutions will of course differ due to the various levels of tire-forces being
possible to realize. However, remarkably similar vehicle paths are obtained,
regardless of surface. These are valuable observations, since they imply that
models of less complexity could be utilized in future on-board optimization-
algorithms, to generate, e.g., yaw moment and vehicle paths. In combination
with additional information from enhanced situation-awareness systems, this
enables more advanced safety-systems to be considered for future vehicles.
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Chapter 1

Introduction

With an ever growing vehicle-transportation fleet, demands on vehicle and traf-
fic safety increase, both from a consumer point-of-view, Koppel et al. (2008), as
well as in shape of more stringent legislation requirements. Passive safety has
seen a lot of refinements over the last decades, such as seat belts and structural
deformation zones. Also active safety systems have experienced a vast improve-
ment and a more extensive area of application recently. However, considering
the vision of a partially, or even fully, autonomous vehicle fleet, still only a frac-
tion of the potential for active safety systems is utilized today. Though, even
if the technology was present, issues arise from public and political acceptance,
legal responsibilities and integration with the current vehicle fleet. Advanced
driver assistant systems therefore arise as a natural technological step in vehicle
safety. The general purpose of these systems is to assist the driver in critical
situations, thus, preventing accidents or minimizing injuries. Examples of such
systems are Anti-lock Braking System (AntiBlockierSystem), ABS, and Elec-
tronic Stability Control, ESC, which have emerged as standard equipment in
modern vehicles.

When considering future advanced driver assistant systems in general, the
underlying subsystems could roughly be categorized into the following areas;
situation awareness, driver interaction and vehicle control actions. In situation
awareness systems the surrounding environment of the vehicle is considered, us-
ing various combinations of, e.g., camera and radar sensors, satellite-based po-
sitioning systems, road-map databases, as well as vehicle-to-vehicle and vehicle-
to-roadside communication, Faezipour et al. (2012). For driver interactions, two
different approaches could be considered to span the majority of the area; inter-
preting the driver intentions solely through driver input actions, or completely
neglect these and determine the most beneficial actions based on the vehicle
and surrounding circumstances. The former is preferable when little to none of
the situation awareness information is accessible, e.g., the less complex variants

1



2 Chapter 1. Introduction

of ESC only use steering-wheel angle and forward velocity as a references for
stabilizing the vehicle, see, e.g., Van Zanten (2002). The latter is on the other
hand valuable for situations where the driver commands are not trustworthy
or when irrational driver behavior is expected, as for post-impact collision sys-
tems, such as in Yang et al. (2012). However, for most applications, some kind
of intermediate variant is probably what to expect. When it comes to vehicle
control actions, two elements of importance are covered; when to intervene and
how to control the vehicle. To some extent, it is preferable to intervene as late
as possible, to prevent undesired assistance. This, in turn, requires an accurate
estimation and prediction of the vehicle motion, as well as knowledge about
surrounding objects and road characteristics.

With the advancements in situation awareness systems, more advanced and
sophisticated vehicle control systems will be possible, where knowledge about
position on the road, road curvature, and sudden obstacles can be utilized for
the control strategies. Also, more complex control algorithms and enhanced
vehicle modeling may be enabled by the progress in computational-hardware
development. This opens for more advanced control systems, utilizing at-the-
limit modes and expanding the envelope of vehicle control. Voser et al. (2010)
suggest that maneuvering inspired by race and rally car drivers could be ex-
ploited in future systems, and presents a drifting controller for a rear-wheel
driven vehicle. Similarly, a handbrake drifting controller is developed in Vele-
nis (2011). In these studies a rather simple vehicle model is used, namely, the
single-track model, as for example described in Ellis (1994). It has seen an ex-
tensive use in vehicle-control applications, primarily due to its simple structure,
while still capturing some of the essential dynamics. However, for applications
where feedback is limited or more comprehensive predictions are necessary, a
revised approach to the vehicle modeling might be necessary.

Although chassis modeling is an important and nontrivial part in vehicle
dynamics applications, modeling of the tire-to-ground contact-patch is an even
more intricate area, having an immense effect on the overall vehicle dynamics.
Adding to the complexity is the constantly varying characteristics for differ-
ent road surfaces, tire and road temperatures, tire wear, etc., while variations
in chassis characteristics often are limited to changes in mass related proper-
ties. For example, Carlson and Gerdes (2005) show that for a single tire, the
longitudinal stiffness can vary between 20–100 %. In Svendenius et al. (2009)
and Braghin et al. (2006) two separate tire models are validated for different
road conditions, showing a radical variance for several of the tire characteristics.
Another tire-model related issue, arising for at-the-limit modeling and control,
is combined slip conditions. This is when longitudinal and lateral forces are
employed simultaneously, for example, braking while cornering. Usually the
friction-ellipse model is used for these applications, due to its simple structure.
However, for large slip it becomes fallacious. In Pacejka (2006) an alternative
approach using weighting functions is presented, that can be considered valid
for a larger span, but, it also brings an increased model complexity and an
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expanded set of model parameters.

The use of optimization technologies as a tool in the development of vehicle
dynamics applications has been proven to be beneficial in several aspects. The
optimization algorithms could be implemented and utilized in the on-board con-
trol systems, while solutions to optimization problems obtained offline could be
of great value in itself, as it can provide insight to certain phenomenas or used
as inspiration for control strategies, as stated in Sharp and Peng (2011). Opti-
mization tools can also be an asset in the evaluation process, providing valuable
understanding of the performance potential for different system configurations,
or choice of model parameters. Several studies have been performed for this
purpose, e.g., in Sundström et al. (2010) safety-critical situations for a maxi-
mum entry-speed formulation are studied, and in Yang et al. (2012) a minimum
lateral-deviation problem is considered. Similar tools have also seen an exten-
sive use in more performance oriented applications, often with a minimum-time
objective. Casanova et al. (2000) evaluate vehicle performance, based on ma-
neuvering time, for various vehicle parameters, and in Kelly and Sharp (2010)
a method for minimizing lap time of a race car is presented.

Even though optimization methods can be considered a powerful tool, the
solution to an optimization problem will always rely on the problem formula-
tion, i.e., the choice of optimization objectives and model configurations. Thus,
model validity plays an even more crucial role, compared to in simulation, where
a congruent model only is necessary in the areas of intended operation. In op-
timization, however, it becomes imperative to ensure that inconsistencies or
invalid model behavior are not within reach for the solver, to prevent the solu-
tion from utilizing these shortcomings.

1.1 Contributions

Here follows a brief summary of the main contributions in Paper A–D.

Paper A

In Paper A a vehicle dynamics testbed is developed, based on a Volkswagen Golf
2008 equipped with an optical slip-angle sensor, an optical roll/pitch measure-
ment system, accelerometers, etc. Different variants of the single-track model
are then parametrized and evaluated towards measurement data from the ve-
hicle testbed. The study demonstrates the potential of utilizing the vehicle
testbed in vehicle-dynamics analysis of aggressive and rapid nature. It can also
be concluded that low-complexity models, such as the ones studied here, can
predict vehicle behavior for the most essential variables.
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Paper B

A platform for solving optimization problems in vehicle maneuvering is devel-
oped, based on modern high-level optimization tools and existing vehicle mod-
els, also utilized in Paper C and D. A minimum-time optimization problem is
formulated for a hairpin-turn maneuver, and solved using a single-track model
coupled to different tire-modeling approaches. The results indicate that even
a few-state vehicle model can replicate advanced maneuvering—often associ-
ated with experienced rally drivers—in optimal-maneuvering applications, and
can give valuable information for the development of improved vehicle safety
systems.

Paper C

Using the optimization methodology presented in Paper B, a comparative anal-
ysis is performed considering different vehicle models in time-critical optimal
maneuvering problems. Five different chassis models are treated, ranging from
a single-track model to a double-track model with roll and pitch dynamics in-
cluding load transfer. A minimum-time optimization problem is then applied
to two maneuvers; a 90◦-turn and a double lane-change scenario. The main
findings suggest that variables potentially important for safety systems, such as
yaw rate, slip angle, and vehicle path, are qualitatively the same for all models.
Thus, less complex models could be sufficient for future on-board optimization-
based safety systems.

Paper D

In Paper D the influence of different road-surface conditions in critical vehicle
maneuvering is studied. Tire models representing asphalt, snow, and ice, are
composed based on published experimental data. The minimum-time optimiza-
tion problem is then applied to a hairpin turn, and solved for each surface. The
obtained results show fundamental differences in the control strategies. How-
ever, the geometric path throughout the maneuver are remarkably similar for
the different road-conditions.

1.2 Publications

A list of relevant publications by the author follows below.
The conference paper Investigating Vehicle Model Detail for Close to Limit

Maneuvers Aiming at Optimal Control, Kristoffer Lundahl, Jan Åslund, and
Lars Nielsen, presents a shorter and more preliminary work of the posterior
study Vehicle Dynamics Platform, Experiments, and Modeling Aiming at Crit-
ical Maneuver Handling, Kristoffer Lundahl, Jan Åslund, and Lars Nielsen,
published as an internal technical report at the Department of Electrical Engi-
neering, Linköping University.
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Vehicle Dynamics Platform, Experiments, and

Modeling Aiming at Critical Maneuver Handling

Kristoffer Lundahl, Jan Åslund, and Lars Nielsen

Vehicular Systems, Department of Electrical Engineering,

Linköping University, SE-581 83 Linköping, Sweden

Abstract

For future advanced active safety systems, in road-vehicle applications,
there will arise possibilities for enhanced vehicle control systems, due to
refinements in, e.g., situation awareness systems. To fully utilize this,
more extensive knowledge is required regarding the characteristics and
dynamics of vehicle models employed in these systems. Motivated by
this, an evaluative study for the lateral dynamics is performed, con-
sidering vehicle models of more simple structure. For this purpose, a
platform for vehicle dynamics studies has been developed. Experimental
data, gathered with this testbed, is then used for model parametriza-
tion, succeeded by evaluation for an evasive maneuver. The considered
model configurations are based on the single-track model, with different
additional attributes, such as tire-force saturation, tire-force lag, and
roll dynamics. The results indicate that even a basic model, such as the
single-track with tire-force saturation, can describe the lateral dynamics
surprisingly well for this critical maneuver.
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1 Introduction

The increasing level of sensory instrumentation and control actuators in mod-
ern vehicles, along with higher demands on traffic safety, enables and motivates
more advanced safety systems for future vehicles. To exploit these opportuni-
ties in the most beneficial way, extensive knowledge in terms of vehicle handling
and dynamics will be essential. Also, perhaps even more important, is insight
into the vehicle characteristics certain modeling approaches are able to cap-
ture in critical situations, and the extent of their appropriateness for on-board
applications.

Inspired to investigate questions raised for the above topics, a platform for
vehicle-dynamics studies has been developed. This testbed, shown in Figure 1, is
based on a standard car equipped with vehicle-dynamics sensor-instrumentation
for highly dynamic maneuvering. Experimental data from this testbed is here
used in an evaluative study, primarily considering modeling and validation of the
lateral dynamics. A similar study, with more preliminary results, was presented
in Lundahl et al. (2011).

The intention of this study is to give a brief insight to the potential of estab-
lished, simple structured, vehicle models, in terms of their ability to describe
essential vehicle states and variables. With emphasis on the lateral dynamics,
the considered models are based on the single-track model, extended with dif-
ferent additional characteristics, such as tire-force saturation, tire-force lag, and
roll dynamics. To find parameters for these models, a number of experiments
have been conducted, with the above mentioned vehicle testbed. Each of the
model configurations was parametrized, followed by an evaluative comparison
for a double lane-change maneuver.

Figure 1: The vehicle-dynamics testbed for studying critical maneuver handling.
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2 Experimental Equipment

With the intention to offer a precise evaluation instrument for vehicle dynamics
studies and applications, a vehicle testbed has been developed. The platform
is based on a Volkswagen Golf V, 2008, equipped with a set of state-of-the-art
sensors, measuring, e.g., slip angle, roll and pitch angles, accelerations, and
angular rates. In addition, information from the internal sensors are accessible
over the vehicle CAN bus. This CAN access has been made possible through
collaboration with Nira Dynamics AB, supporting with hardware and software
interfaces to the vehicle. The additional sensors mainly consist of four different
systems; an IMU, a GPS, a slip-angle sensor, and a roll/pitch measurement
system. A measurement PC is used for sampling these systems, as well as for
the data stream from the vehicle CAN bus. In Figure 2 a simplified scheme
over the system is shown.

A more detailed description of the measurement systems and individual sen-
sors follows below. Table 1 specifies measurement range, accuracy, and sampling
frequency for the variables of most relevance.

Slip-Angle Sensor

The slip angle sensor is a Corrsys-Datron Correvit S-350. It uses optical instru-
mentation to measure speed and direction, with algorithms taking advantage of
the irregularities in the road-surface micro-structure. The sensor is mounted in
the front of the vehicle, and outputs measures for the longitudinal and lateral
velocities of this position. However, arbitrary points can be described, e.g., the

Figure 2: A schematic sketch over the measurement system.
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Table 1: Technical specifications for the additional sensors.

Variable Range Accuracy Frequency

Corrsys-Datron Correvit S-350
Long. velocity, vx 0.5–250 km/h 0.1 % 250 Hz
Lateral velocity, vy 0.1 % 250 Hz
Slip angle, β ±40 deg 0.1 deg 250 Hz

Corrsys-Datron HF-500C
Height 125–625 mm 0.2 % 250 Hz
Roll angle, φ ±15 deg 0.08 deg 250 Hz
Pitch angle, θ ±11 deg 0.06 deg 250 Hz

Xsens MTi
Accelerations ax, ay, az ±17 m/s2 0.02 m/s2 100 Hz
Angular rates φ̇, θ̇, ψ̇ ±300 deg/s 0.3 deg/s 100 Hz

u-blox AEK-4P
Position (GPS) 2.5 m 4 Hz

vehicle center of gravity, using these signals in combination with yaw-rate data.
For further technical specifications see Cor (2009b).

Roll and Pitch Angle Measurement System

The system for roll and pitch angle measurement mainly consists of three height
sensors, Corrsys-Datron HF-500C, mounted around the vehicle, and thereby
mapping the plane of the vehicle body relative the ground. The sensors emit
a visible laser at the road surface, and determine the height from the reflected
light beam. The accuracies of the measured roll and pitch angles are linearly
correlated to the relative placement of the sensors, assuming chassis deflections
are neglected. For further technical specifications see Cor (2009a).

IMU — Accelerometer and Gyroscope

The inertial measurement unit, IMU, is an Xsens MTi, measuring accelerations
and angular rates in three dimensions. Additionally, it has a built in magne-
tometer for possible yaw angle measurements, however, the responsiveness of
this is a bit too slow for rapid vehicle dynamics studies. For further technical
specifications see Xse (2009).
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GPS

For vehicle positioning a GPS module of u-blox AEK-4P type is used. For more
specific information see u-b (2005).

Internal Sensors

On the vehicle CAN bus several sensors, with relevance for vehicle dynamics
applications, are accessible at a sampling rate of 10 Hz. Many of these are
redundant due to the additional sensors, and of worse quality in terms of ac-
curacy and noise. However, signals for steering wheel angle and wheel angular
velocities are of great importance since no additional equipment has been added
to sample these, or equivalent variables.

Test Track

Through a collaborative effort with Linköpings Motorsällskap, LMS, permission
has been given to access their race and test track, Linköpings Motorstadion.
Figure 3 illustrates a double lane-change maneuver at this facility.

3 Vehicle Modeling

The vehicle models that will be evaluated are of a simple structure, e.g., ne-
glecting load transfer and individual wheel-dynamics. The model configurations
use the single-track model as a basis, to describe the lateral dynamics of the ve-
hicle, coupled to tire models of different complexity. Additionally, an extended

Figure 3: A double lane-change maneuver at Linköpings Motorstadion.
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Figure 4: The single-track model.

version of the single-track model is considered, where roll dynamics has been
added. The number of considered model configurations adds up to a total of
four.

Single-Track Model

The single-track model is a simplified planar model describing the chassis dy-
namics, with left and right wheels lumped into a single front and a single rear
wheel, see, e.g., Wong (2008). The model is illustrated in Figure 4, and has its
dynamics described by

m(v̇y + vxψ̇) = Fy,f cos(δ) + Fy,r + Fx,f sin(δ), (1)

Izzψ̈ = lfFy,f cos(δ) − lrFy,r + lfFx,f sin(δ), (2)

where m represents the total vehicle mass, Izz the yaw inertia, lf , lr the dis-
tances from front and rear wheel axles to the center of gravity (CoG), δ the
steer angle for the front wheels, vx, vy the longitudinal and lateral velocity at
the CoG, ψ̇ the yaw rate, and Fx, Fy longitudinal and lateral tire forces for the
front and rear wheels. Since this study is focused on the lateral dynamics, no
longitudinal excitations will be considered, hence, Fx,f = 0.

Single Track with Roll Dynamics

An extended variant of the above single-track model is also considered, where
the roll angle, φ, has been added as an additional degree of freedom, i.e., the
rotational motion about the x-axis, as depicted in Figure 5. Thus, the motion
dynamics follows from

m(v̇y + vxψ̇)−mshφ̈ = Fy,f cos(δ) + Fy,r + Fx,f sin(δ), (3)

Izzψ̈ = lfFy,f cos(δ)− lrFy,r + lfFx,f sin(δ), (4)

Ixxφ̈+Dφφ̇+Kφφ = mshay. (5)

Here ms is the sprung mass of the vehicle body, Ixx the roll inertia, h the
distance between CoG and the roll center, Kφ the roll stiffness, and Dφ the roll
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Figure 5: Illustration of the roll dynamics.

damping. The lateral acceleration ay is described by the following relation,

ay = v̇y + vxψ̇.

Note that the variables vx, vy , and ay, in this model, describe the motions of
the roll center, rather than the CoG (which is moving from side to side, relative
the remaining chassis dynamics).

3.1 Tire Modeling

For the tire modeling, three different models of various complexity are con-
sidered; a linear model, a nonlinear model, and a nonlinear model capturing
tire-force lag. The slip angle, α, is defined as

αf = δ − arctan

(

vy + lf ψ̇

vx

)

, (6)

αr = − arctan

(

vy − lrψ̇

vx

)

, (7)

for the front and rear axles, following the definitions in Pacejka (2006).

Linear Tire-Model

The linear tire-model assumes a linear relation between the tire force and slip
angle, described by

Fy,i = Cα,iαi, i = f, r, (8)

where Cα,f , Cα,r are the cornering stiffness for the front and rear axles.

Magic Formula

To represent the nonlinear force–slip tire characteristics, the Magic Formula
tire model, Pacejka (2006), has been considered. The model is described by

Fy,i = µy,iFz,i sin(Cy,i arctan(By,iαi − Ey,i(By,iαi − arctanBy,iαi))), (9)



3. Vehicle Modeling 21

with i = f, r. Here µy represent the lateral friction-coefficient and Cy,i, Ey,i are
model parameters, while By,i can be calculated from

By,i =
Cα,i

Cy,iµy,iFz,i
.

The normal loads, Fz,f and Fz,r, are here considered static, since no load trans-
fer is included in the chassis model. Hence, they are given by

Fz,f = mg
lr
l
, Fz,r = mg

lf
l
, (10)

where g is the gravity constant and l the wheel base according to l = lf + lr.

Relaxation Length

Due to compliences in the tire structure, a reduced response appears for the
lateral tire-forces. This force lag can be described by a relaxation length, σ,
introducing a time-delay for the slip angles, Pacejka (2006). The delayed slip
angle, denoted α∗, is described by

α̇∗

i

σ

vx,i
+ α∗

i = αi, i = f, r. (11)

This slip angle is then used in the tire-force equation, thereby forming a delayed
tire-force response. The relaxation-length model will here only be used together
with the Magic Formula tire-model, where Fy is described, analogous to (9), as

Fy,i = µy,iFz,i sin(Cy,i arctan(By,iα
∗

i − Ey,i(By,iα
∗

i − arctanBy,iα
∗

i ))), (12)

with i = f, r.

3.2 Model Configurations

The four different model configurations, composed of the above submodels, are
the following:

• Single-track model, (1)–(2), with the linear tire model, (8).

• Single-track model, (1)–(2), with the Magic Formula tire model, (9).

• Single-track model, (1)–(2), with the Magic Formula tire model and re-
laxation length, (11)–(12).

• Single-track model with roll dynamics, (3)–(5), and the Magic Formula
tire model, (9).

These models are summarized in Table 2, where also the corresponding model
notations are stated.
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Table 2: Notations for the considered model configurations.

Model Notation

Single-track with linear tire-model ST-L
Single-track with Magic Formula ST-MF
Single-track with Magic Formula and relaxation length ST-MF-RL
Single-track with roll dynamics and Magic Formula ST-Roll-MF

4 Test Scenarios

Three different test scenarios, for parametrization and validation purposes, have
been considered. The tests were held at Linköpings Motorstadion, using the
vehicle testbed presented in Section 2.

The slalom test consists of seven lined up cones, separated by 17 m. The
vehicle is driven through the course, in a slalom pattern, at constant speed.

The double lane-change maneuver is a standardized test, often used for
vehicle stability evaluations, ISO 3888-2:2011 (2011). An overview sketch is
shown in Figure 6.

An additional test, here referred to as the rock’n’roll test, is carried out for
the vehicle at stand-still. The sprung body is pushed from the side, or rocked
back and forth, initiating in a vibrating motion in the roll direction. Hence the
name; the vehicle is rocked and then rolls. The sequence of interest is when the
vehicle body is left to roll-vibrate freely, with no external forces being applied.

The experiments above have been conducted at two separate occasions, un-
der slightly different weather conditions. The vehicle parameters, such as inertia
and mass properties, are considered equal for both occasions, however, the tire
parameters are not. Therefore, when referring to the measurement data, two
separate batches are considered; measurement batch 1 and measurement batch 2.
The first batch consists of 26 different double lane-change maneuvers with dif-
ferent entry speeds. The second batch includes seven slalom runs, two double
lane-change maneuvers, and the rock’n’roll test for two different load cases (nor-
mal load-condition and with a 75 kg roof load).

Figure 6: A sketch over the double lane-change maneuver.
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5 Model Parameter Estimation

The parametrization, for the models in Section 3, has been carried out with
established estimation methods, on data sets gathered with the vehicle testbed
presented in Section 2.

5.1 Estimation Method

A prediction-error identification method (PEM), Ljung (1999), has been used
for the parameter estimations. Consider a system represented by

ẋ(t, θ) = f(x(t), u(t); θ), (13)

y(t, θ) = h(x(t, θ), u(t); θ) + e(t), (14)

with x being the state vector, u the input, y the system output (i.e., the mea-
surements), e the measurement noise and θ the parameter set. A prediction for
the output of this system, ŷ, can then be formulated according to

˙̂x(t, θ) = f(x̂(t, θ), u(t); θ), (15)

ŷ(t, θ) = h(x̂(t, θ), u(t); θ), (16)

where x̂ represent the estimated state vector. A cost function, V , based on the
predictive error, ε, is then defined as

ε(t, θ) = y(t, θ)− ŷ(t, θ), (17)

V (θ) =
1

N

tN
∑

t0

ε(t, θ)TWε(t, θ), (18)

for the measurement set of N samples. The weighting matrix W is a diagonal
matrix which enables the user to weight the different error predictions against
each other, based on noise, relative magnitude, or confidence to a specific sensor.
The estimated parameter set, θ̂, is then found by minimizing the cost function,

θ̂ = arg min
θ

V (θ). (19)

To perform this estimation procedure, the Matlab toolbox System Identifica-
tion Toolbox, The MathWorks, Inc. (2013), has been utilized.

5.2 Vehicle Parameters

The vehicle parameters that need to be determined, are the ones used in (1)–
(2) and (3)–(5), being m, lf , lr, and Izz , if temporarily neglecting parameters
for the roll dyanmics (they will be treated below). The total vehicle mass, m,
and CoG-to-wheel-axis distances, lf and lr, have been determined in a more
straightforward fashion, not utilizing the above estimation routine, with a vehi-
cle scale and manual tape-measuring. To determine the yaw inertia, Izz , data



24 Paper A. Vehicle Dynamics Platform, Experiments, and Modeling

from five different slalom runs and two double lane-change runs were used, be-
longing to measurement batch 2. The estimation method was then employed
to determine Izz and the complete set of tire parameters for the ST-MF model
(using ST-MF-RL or ST-Roll-MF instead, results in equivalent values for Izz).
Since, the validation procedure will consider measurement batch 1, and the
tire parameters found here only are valid for measurement batch 2, these are
discarded.

Roll Dynamics Parameters

To determine the parameters corresponding to the roll dynamics, data from the
stand-still rock’n’roll test was used. In (5), five parameters appear; Ixx, Dφ,
Kφ, ms, and h, but only three lumped parameters can be distinguished from
this equation;

Dφ

Ixx
,

Kφ

Ixx
, and

msh

Ixx
.

However, in (3) msh appears apart from Ixx. Thus, as a minimum, the following
four parameters need to be determined;

Ixx, Dφ, Kφ, and msh.

For this purpose, two different load cases of the rock’n’roll test was used; no ad-
ditional loading and a 75 kg roof-load. The roof load was here treated as a point
mass, maux = 75 kg, located haux = 1.60 m above ground, thus, contributing
with an additional roll inertia of Iaux = maux(haux − hrc)

2.
If the vehicle is considered to vibrate freely about the roll axis, which is

the case for the rock’n’roll tests, this implies no external forces are present, i.e.
ay = 0. Thus, (5) can therefore be rewritten as

Ixxφ̈+Dφφ̇+Kφφ = 0,

for the normal load-case and

(Ixx + Iaux)φ̈+Dφφ̇+Kφφ = 0,

for the load case with a roof load. Applying the estimation method on these
two equations, with data from the rock’n’roll tests, the lumped parameters in
Table 3 can be determined. These four parameters forms an overdetermined
system for the unknown parameters, Ixx, Dφ, and Kφ, which is solved with the
least square method.

The remaining roll parameters, i.e., the lumped parameter msh and the
roll-center height hrc, was subsequently estimated simultaneously with the tire
parameters, from the double lane-change tests. Here the relation

ay = ay,imu + (himu − hrc)φ̈,
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Table 3: Estimated lumped roll-dynamics parameters.

Load case Notation Value Std. dev.

No load Dφ/Ixx 7.255 0.045
Kφ/Ixx 173.2 0.57

Roof load Dφ/(Ixx + Iaux) 5.617 0.029
Kφ/(Ixx + Iaux) 138.5 0.32

was utilized to determine hrc, where ay represent the lateral acceleration at the
roll center, while ay,imu is the lateral acceleration the IMU sensor sees, i.e., at
a distance himu = 0.40 m from the ground.

In Table 4 all the determined vehicle parameters are specified, with corre-
sponding standard deviations for Izz, msh, and hrc. The low magnitude of
these standard deviations, in relation to the parameter values, indicates a con-
fident estimate for these parameters. Standard deviations are not specified for
m, lf , and lr since no estimation method has been involved to acquire them,
and neither for Ixx, Dφ, and Kφ because they are simply least-square values
from the parameters in Table 3. For all the parameters in Table 4, reason-
able values are obtained when considering physical dimensions. Except for the
lumped parameter msh. The sprung mass ms is only a subset of the total mass
m, thus, ms < m. However, for this condition to hold, the CoG-to-roll-center
height needs to be h > 0.57 m. This implies a CoG height of h > 0.74 m, which
by physical means, seems a bit high. This indicates that the lumped param-
eter msh is capturing characteristics beside the physical quantities ms and h,
or that it compensates for poor parametrization of, e.g., the roll inertia or roll
stiffness/damping.

Table 4: Vehicle parameters.

Notation Value Unit Std. dev.

m 1415 kg -
lf 1.03 m -
lr 1.55 m -
Izz 2581 kgm2 13.5
Ixx 616 kgm2 -
Dφ 4390 Nms/rad -
Kφ 106600 Nm/rad -
msh 807 kgm 0.67
hrc 0.165 m 0.0046
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5.3 Tire Parameters

The tire parameters were determined from 23 different double lane-change runs,
sampled in measurement batch 1, leaving three tests from this batch for valida-
tion purpose (see the following section). The tire parameters were estimated for
ST-MF, ST-MF-RL, and ST-Roll-MF separately, and is summarized in Table 5
with corresponding standard deviations. For ST-L, the cornering stiffness, Cα,f
and Cα,r—being the only tire parameters for this model—were taken from the
estimated ST-MF parameter-set. In Figure 7 the force–slip characteristics is
shown for the different estimated parameter-sets. Here the cornering stiffness
seems less stiff for ST-MF, compared to ST-MF-RL and ST-Roll-MF, which is
congruent with the specified values for Cα in Table 5. Since ST-MF does not
incorporate any kind of response delay, such as relaxation length in ST-MF-RL
or the roll dynamics in ST-Roll-MF, it compensates for this with a more com-
pliant force model. Also, the cornering stiffness for the front wheels is lower,
compared the rear-wheel cornering-stiffness, for all models. This should be a
combined effect of different normal loads, Fz , on the wheel axes, as well as
more compliance in front suspension and steering. For the rear wheel force–slip
curves in Figure 7, considerable deviations between the models can be seen for
slip angles α > 0.07 rad. This is a result of a limited number of data samples in
this region, which is also indicated by the high standard deviations for Cy and
Ey, suggesting these are unreliable parameter values. The characteristics seen
in this region is therefore purely an extrapolated effect of the parametrization
at lower slip angles. However, this will only be an issue if the vehicle models
are subjected to maneuvers provoking very large slip angles.

Table 5: Estimated tire parameters.

ST-MF ST-MF-RL ST-Roll-MF
Notation Value Std. dev. Value Std. dev. Value Std. dev.

Cα,f 103600 701 114600 648 128200 881
Cα,r 120000 1288 138400 1923 162300 991
µy,f 1.20 0.079 1.12 0.019 1.07 0.062
µy,r 0.85 0.002 0.91 0.011 0.86 0.001
Cy,f 1.15 0.86 0.809 0.026 1.13 0.78
Cy,r 1.46 0.055 0.924 0.031 1.82 0.13
Ey,f 0.41 2.18 -0.73 0.073 0.354 1.51
Ey,r -1.55 0.19 -4.47 0.28 -0.029 0.22
σ - - 0.571 0.0066 - -
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Figure 7: Tire forces vs slip angles, for the different models.

6 Model Validation and Analysis

As a basis for the model validation, data from three double lane-change tests,
belonging to measurement batch 1, were used. These tests were employed with
different initial speeds, thus, triggering various levels of dynamics. The tests
are denoted Test 1, Test 2, and Test 3, corresponding to the results shown
in Figure 8, 9 and 10. In these figures, measurement data for yaw rate ψ̇,
lateral acceleration ay, front slip-angle αf , and rear slip-angle αr are displayed
along with simulated data for the models in Section 3, with the parameter
sets from Section 5. In Figure 11–13 the measured roll angle is compared to
the simulated for ST-Roll-MF. The simulation results are acquired with an
ODE solver, using steer-wheel angle δ and longitudinal velocity vx from the
measurement data as input signals. Table 6 specifies the initial velocity vinit
and maximum values for steering-wheel angle δsw, steering-wheel-angle rate-
of-change δ̇sw, yaw rate ψ̇, lateral acceleration ay, slip angle α, and slip-angle
rate-of-change α̇, corresponding to measurement data for Test 1–3. Notice that
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δsw here denotes the angle the driver is turning the steering wheel, unlike δ,
which denotes the steer angle of the front wheels. The values in Table 6 give
a representative overview for the tests, indicating the nature of each test run.
The fundamental differences between these runs are the different entry speeds,
which propagates to affect the overall behavior. A higher entry speed requires
more rapid maneuvering, in terms of δ̇sw, resulting in higher values for ψ̇, ay,
α, and α̇.

In Figure 8, showing results for Test 1, the different models produce very
consistent behavior, with good agreement to the experimental data. This is
natural since the maneuvering mainly is making use of the linear region of the
tire models, which is indicated by the measured maximum slip-angle values,
αf,max and αr,max, in Table 6. Although this test would be considered as quite
a hefty maneuver compared to normal driving, for example in terms of ay,max
and δ̇sw,max, it is still not enough to trigger notable effects from relaxation
length or roll dynamics.

For Test 2, in Figure 9, larger tire forces are required to handle the more
rapid dynamics. Hence, slip angles outside of the linear region are utilized, see
Figure 7. The ST-L model therefore becomes less valid for these parts of the
maneuver, being most obvious for ψ̇ and ay around t = 2.7 s. For the other
three models, only minor differences appear.

In Test 3, more distinct differences appear for the different models, see Fig-
ure 10. This is simply a consequence of the faster and more aggressive level
of dynamics, e.g., in terms of ay,max, α̇f,max, and α̇r,max, that comes with the
higher entry speed. The differences are most pronounced towards the end of
the maneuver, while for the first half they all show remarkably similar behav-
ior, following the measurement well. For the second half, ST-L is off by quite
a margin. Both ST-MF and ST-MF-RL follow the measurement data by sim-
ilar means, although, ST-MF-RL seems to be able to capture the most rapid
characteristics slightly more accurate. ST-Roll-MF, on the other hand, shows
quite erroneous behavior for the last half second of the maneuver, where the rear
slip-angle encounters a large overshoot at t = 3.5 s, subsequently affecting other
variables. This overshoot-tendency can also be seen at t = 2.8 s. The reason for
this behavior, is mainly due to the tire-model parametrization. In Figure 7, Fy,r
for ST-Roll-MF decays fast for αr > 0.07 rad, compared to the other models.
Thus, for rear slip-angles of this magnitude, ST-Roll-MF is unable to produce
large enough Fy,r, resulting in an increasing αr.

Considering the roll angle behavior in Test 1 and 2, as well as the first part of
Test 3, see Figure 11–13, ST-Roll-MF captures the overall roll-angle dynamics
very well. Except around some of the peak values, which might be an indication
of erroneous roll-parameters or nonlinear characteristics in the roll dynamics,
that could contribute to false simulation behavior or tire-model parametrization
(such as the fast decay of Fy,r, discussed above).
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Table 6: Initial velocity and maximum values, for a few selected variables,
corresponding to the measurement data for Test 1–3. Note that δsw refers to
the steering wheel angle.

Variable Test 1 Test 2 Test 3 Unit

vinit 38.3 51.4 62.4 km/h
δsw,max 154 147 157 deg
δ̇sw,max 615 742 1013 deg/s
ψ̇max 0.535 0.586 0.710 rad/s
ay,max 5.78 7.96 9.23 m/s2

αf,max 0.062 0.097 0.124 rad
αr,max 0.034 0.060 0.102 rad
α̇f,max 0.386 0.551 0.814 rad/s
α̇r,max 0.239 0.400 0.690 rad/s

7 Conclusions

A vehicle dynamics testbed has been developed, for the purpose of studying
road-vehicle behavior and characteristics in aggressive and rapid maneuvers. A
parametrization procedure is subsequently presented, determining individual ve-
hicle and tire parameters for different model configurations, from measurement
data gathered with the vehicle testbed. The treated models capture various dy-
namic properties, such as tire-force saturation, tire-force lag, and roll dynamics.
Data for a double lane-change maneuver has then been used for validating and
analyzing the dynamic characteristics of these models with their corresponding
parameter sets.

The study shows that for an evasive maneuver, a simple model—such as the
single-track with a tire model capturing the tire-force saturation—can predict
the lateral dynamics well, even for very quick and rapid maneuvering. Addi-
tional complexity could be added, e.g., by introducing tire-force lag, but the
gain in accuracy is minor. This is promising for further studies on the sub-
ject, indicating that less complex vehicle-models might be accurate enough for
certain critical-maneuvering applications. However, for more convincing con-
clusions to be established, additional thorough investigations will be needed,
e.g., considering combined lateral and longitudinal dynamics.
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Figure 8: Measurement data compared to simulations of ST-L, ST-MF, ST-
MF-RL, and ST-Roll-MF for Test 1, i.e. a double lane-change maneuver with
initial velocity of vinit = 38 km/h.
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Figure 9: Measurement data compared to simulations of ST-L, ST-MF, ST-
MF-RL, and ST-Roll-MF for Test 2, i.e. a double lane-change maneuver with
initial velocity of vinit = 51 km/h.
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Figure 10: Measurement data compared to simulations of ST-L, ST-MF, ST-
MF-RL, and ST-Roll-MF for Test 3, i.e. a double lane-change maneuver with
initial velocity of vinit = 62 km/h.
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Abstract

There is currently a strongly growing interest in obtaining optimal con-
trol solutions for vehicle maneuvers, both in order to understand optimal
vehicle behavior and to devise improved safety systems, either by direct
deployment of the solutions or by including mimicked driving techniques
of professional drivers. However, it is nontrivial to find the right mix
of models, formulations, and optimization tools to get useful results for
the above purposes. Here, a platform is developed based on a state-
of-the-art optimization tool together with adoption of existing vehicle
models, where especially the tire models are in focus. A minimum-time
formulation is chosen to the purpose of gaining insight in at-the-limit
maneuvers, with the overall aim of possibly finding improved principles
for future active safety systems. We present optimal maneuvers for dif-
ferent tire models with a common vehicle motion model, and the results
are analyzed and discussed. Our main result is that a few-state single-
track model combined with different tire models is able to replicate the
behavior of experienced drivers. Further, we show that the different tire
models give quantitatively different behavior in the optimal control of
the vehicle in the maneuver.
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1 Introduction

Optimization of vehicle trajectories can be motivated from different perspec-
tives. One objective is to develop improved active safety systems for standard
customer cars. The Electronic Stability Program (ESP) systems, see Isermann
(2006) and Liebemann et al. (2005), of today are still behind the maneuvering
performance achievable by professional race car drivers in critical situations, but
the vision for improvement is there, see Funke et al. (2012). A recent survey on
optimal control in automotive applications Sharp and Peng (2011) points out:

Most often, the optimal control itself will be interesting mainly in-
sofar as it enables the discovery of the best possible system perfor-
mance. Occasionally, the optimal control will provide a basis for the
design and operation of practical systems.

Further, the survey points out that finding the right balance between mod-
els, correct formulations, and optimization methods is nontrivial, and that the
state-of-the-art today is hampered by long simulation runs. The goal in this pa-
per, regarding methodology, is to develop and investigate a platform for useful
solutions to these problems.

It is a common observation that the criterion of time-optimality in aggressive
vehicle maneuvers, combined with input and state constraints, often results in
control signals using the extremal cases of the input and state regions. It is

Figure 1: An example of a hairpin turn. Photo courtesy of RallySportLive.
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therefore crucial how, e.g., the tires are modeled outside their normal range of
operation.

The interaction between tire and road is complex, and different tires have
different characteristics. Even when only considering the longitudinal stiffness,
the experimental values differ considerably between tires, and the variability
can typically be 20–100 %, see Carlson and Gerdes (2005). Further, in addi-
tion to the differences in stiffness—i.e., the slope of the longitudinal force-slip
curve—there are also differences between the characteristic shape of the curve
at the maximum force, where the peak can be more or less accentuated. This
is illustrated for Pacejka’s Magic Formula and the HSRI model in Carlson and
Gerdes (2005). The complete tire model capturing both longitudinal and lateral
forces can thus be expected to have large variability both in shape, parameters,
and parameter irregularity.

The control oriented goal of this paper is to find a formulation that gives
insight into improved safety systems; e.g., future ESP systems performing closer
to what the most experienced drivers can do. To that end we study a time-
optimal maneuver in a hairpin turn, an interesting situation testing the limits
of maneuverability of a car in a certain situation. In Lundahl et al. (2011)
we reported that simplified vehicle models identified from experimental data
managed to replicate the behavior of real vehicles. However, this was based on
less aggressive driving situations, and not using optimization. Previous work
in the subject of optimal control of vehicles in certain time-critical situations
such as T-bone collisions and cornering can be found in, e.g., Chakraborty et al.
(2011); Velenis and Tsiotras (2005); Velenis (2011). In Anderson et al. (2010,
2012), methods for constraint-based trajectory planning for optimal maneuvers
are presented. Further, the papers Sundström et al. (2010); Andreasson (2009)
discuss optimal control of over-actuated vehicles, where similar optimization
tools as those used in the present paper are utilized.

This paper is outlined as follows: The problem description and overall aim
of the paper are discussed in Sec. 2. Vehicle and tire modeling and the specific
models investigated in this study are presented in Sec. 3, followed by the formu-
lation and solution of the studied time-optimal maneuvering problem in Sec. 4.
Optimization results and a subsequent discussion of the obtained results are
provided in Sec. 5. Finally, conclusions and aspects on future work are given in
Sec. 6.

2 Problem Description

The goal of the work presented in this paper is twofold. The first goal is to
find the time-optimal vehicle trajectory when maneuvering through a hairpin
turn, see Figure 1 for an example, with the vehicle being subject to various
constraints.

Another aim of the study is to explore whether different vehicle models
yield fundamentally different solutions, not only in the cost function but also
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in the internal behavior of the vehicle. Hence, a part of the work is devoted to
investigating how the models differ. We consider differential-algebraic models
of the form

ẋ(t) = G(x(t), y(t), u(t)),

0 = h(x(t), y(t), u(t)),

where G(x(t), y(t), u(t)) and h(x(t), y(t), u(t)) are twice continuously differen-
tiable nonlinear functions of the vehicle differential variables x, algebraic vari-
ables y, and control inputs u. The models used are based on the same vehicle
model, but differ in the tire modeling aspects.

The motivation for the twofold goal is that, to the best of our knowledge,
most model comparisons in literature are based on simulation rather than op-
timization. Since time-optimal optimization problems tend to push the vehicle
more to the extremes than simulations do, it is plausible that different conclu-
sions about model behavior can be made from such an analysis.

3 Modeling

The vehicle dynamics modeling in this section incorporates the vehicle motion
modeling and the tire force modeling, with emphasis on the latter. Further,
calibration of the tire models is discussed and a subsequent investigation of the
qualitative behavior of the models studied is presented.

3.1 Vehicle Modeling

As a basis for the vehicle dynamics model, a two-dimensional single-track model,
with two translational and one rotational degrees-of-freedom, was used, see
Figure 2. The motion equations are expressed by, see Schindler (2007); Ellis
(1994),

v̇x − vyψ̇ =
1

m
(Fx,f cos(δ) + Fx,r − Fy,f sin(δ)), (1)

v̇y + vxψ̇ =
1

m
(Fy,f cos(δ) + Fy,r + Fx,f sin(δ)), (2)

Izψ̈ = lfFy,f cos(δ)− lrFy,r + lfFx,f sin(δ), (3)

where m is the vehicle mass, Iz is the vehicle inertia, ψ̇ is the yaw rate, δ is the
steering wheel angle, vx,y are the longitudinal and lateral velocities, lf,r are the
distances from center-of-gravity to the front and rear wheel base, and Fx,y are
the longitudinal and lateral forces acting on the front and rear wheels. The slip



42 Paper B. Models and Methodology for Optimal Vehicle Maneuvers

δ
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ψ̇αf αr

Figure 2: The single-track model considered in this paper.

angles, αf,r, and slip ratios, κf,r, are described by

αf = δ − arctan

(

vy + lf ψ̇

vx

)

, (4)

αr = − arctan

(

vy − lrψ̇

vx

)

, (5)

κf =
Reωf − vx,f

vx,f
, (6)

κr =
Reωr − vx,r

vx,r
, (7)

vx,f = vx cos(δ) + (vy + lf ψ̇) sin(δ), (8)

vx,r = vx, (9)

where Re is the effective wheel radius and ωf,r are the front and rear wheel
angular velocities. The wheel dynamics, necessary for slip ratio computation,
is given by

Ti − Iwω̇i − Fx,iRw = 0 , i = f, r. (10)

Here, Ti is the driving/braking torque, Iw is the wheel inertia, and Rw is the
loaded wheel radius. The numerical values for the vehicle model parameters
used in this study are provided in Table 1.

3.2 Tire Modeling

When developing a platform for investigation of optimal maneuvers, it is of
interest to be able to handle and compare different tires, and thus to cope with
different tire models. We have considered two different model categories for tire
modeling, whose characteristics are described next.

The nominal tire forces—i.e., the forces under pure slip conditions—are
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Table 1: Vehicle model parameters used in (1)–(10).

Notation Value Unit

lf 1.3 m
lr 1.5 m
m 2100 kg
Iz 3900 kgm2

Re 0.3 m
Rw 0.3 m
Iw 4.0 kgm2

g 9.82 ms−2

computed with the Magic Formula model Pacejka (2006), given by

Fx0,i = µxFz,i sin(Cx,i arctan(Bx,iκi)), (11)

Fy0,i = µyFz,i sin(Cy,i arctan(By,iαi)), (12)

Fz,i = mg(l − li)/l, i = f, r. (13)

In (11)–(13), µx and µy are the friction coefficients, B and C are model param-
eters, l = lf + lr, and g is the constant of gravity .

Under combined slip conditions—i.e., both κ and α are nonzero—the lon-
gitudinal and lateral tire forces will depend on both slip quantities. How this
coupling is described can have immense effect on the vehicle dynamics. In an
optimal maneuver, the solution will use the best combination of longitudinal
and lateral force, and these forces are, of course, coupled via the physics of the
tire. In order to compare different models, plotting of the resulting tire force is
illustrative, c.f. Figures 3–6, to visualize the interaction between longitudinal
and lateral force.

Even though detailed experiments, like the ones in Carlson and Gerdes
(2005) for longitudinal stiffness, are lacking for the complete longitudinal-lateral
tire interaction, there is a vast plethora of characteristics, see Isermann (2006),
Pacejka (2006), Kiencke and Nielsen (2005), and Rajamani (2006). We have
chosen two different tire models for our study, described below.

Friction Ellipse

A common way to model combined slip is to use the friction ellipse, described
by

Fy,i = Fy0,i

√

1−

(

Fx0,i
µxFz,i

)2

, (14)

where Fx is used as an input variable. However, we have opted for using the
driving/braking torques as input, see (10), since this is a quantity that can be
controlled in a physical setup of a vehicle.
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Weighting Functions

Another approach described in Pacejka (2006) is to scale the nominal forces,
(11)–(12), with weighting functions, Gxα,i and Gyκ,i, which depend on α and
κ. The relations in the x-direction are

Bxα,i = Bx1,i cos(arctan(Bx2,iκi)), (15)

Gxα,i = cos(Cxα,i arctan(Bxα,iαi)), (16)

Fx,i = Fx0,iGxα,i. (17)

The corresponding relations in the y-direction are given by

Byκ,i = By1,i cos(arctan(By2,i(αi −By3,i))), (18)

Gyκ,i = cos(Cyκ,i arctan(Byκ,iκi)), (19)

Fy,i = Fy0,iGyκ,i. (20)

3.3 Calibrating Tire Models for Comparison

When comparing an optimal maneuver based on two different tire models, it
is not obvious how to calibrate the models to get comparable solutions. For
example, in Figure 3 and Figure 6 we show two different types of tire models.
In order to equalize these models in comparative studies, one way would be to
have the same average resultant force, whereas another way would be to equalize
the longitudinal stiffness. In this study, the same parameters have been used
for the nominal lateral force; i.e., the lateral force characteristics are the same
for all models when considering pure lateral slip.

3.4 Qualitative Behavior of Tire Models

In Figures 3–6 it is shown how the resulting force, defined by

Fres =
√

F 2
x,i + F 2

y,i, i = f, r,

for the above tire models varies over slip angle and slip ratio with the parameters
presented in Table 2. Studying Figures 3–6 gives a basis for discussion of the
behavior of the tire models in an optimal maneuver.

Figure 3 displays the friction ellipse model, and Figure 4 shows the weighting
functions model for an isotropic parametrization. These are both considered
isotropic in the sense that they have the same properties in the lateral and
longitudinal directions. The most obvious difference in these figures can be
seen for large slip angles, where an increase in the slip ratio will increase the
resulting force for the friction ellipse model and, on the contrary, decrease it for
the model based on weighting functions.

In contrast, considering the nonisotropic models, Figures 5 and 6, different
force characteristics are obtained in the longitudinal and lateral directions. The
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Figure 3: Resultant tire force Fres for a friction ellipse model parametrized to
give isotropic behavior.
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Figure 4: Resultant tire force Fres for a weighting functions model parametrized
to give isotropic behavior.
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Figure 5: Resultant tire force Fres with a friction ellipse model with experimental
parameters from Pacejka (2006) (µx = 1.2, µy = 1.0).
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Table 2: Tire model parameters for friction ellipse with isotropic behavior (FE-
Iso), nonisotropic behavior (FE-Noniso), and weighting functions with isotropic
behavior (WF-Iso), nonisotropic behavior (WF-Noniso).

Parameter FE-Iso FE-Noniso WF-Iso WF-Noniso

µx 1.0 1.2 1.0 1.2
µy 1.0 1.0 1.0 1.0
Cα,f 1.09e5 1.09e5 1.09e5 1.09e5
Cα,r 1.02e5 1.02e5 1.02e5 1.02e5
Cκ,f 1.09e5 2.38e5 1.09e5 2.38e5
Cκ,r 1.02e5 2.06e5 1.02e5 2.06e5
Cx 1.3 1.7 1.3 1.7
Cy 1.3 1.3 1.3 1.3
Bx1,f - - 8.55 11.23
Bx2,f - - 8.33 10.80
Cxα,f - - 1.03 1.14
By1,f - - 8.63 6.37
By2,f - - 8.35 2.64
By3,f - - 0 0
Cyκ,f - - 1.03 1.03
Bx1,r - - 9.28 11.71
Bx2,r - - 9.04 11.61
Cxa,r - - 1.03 1.14
By1,r - - 9.38 5.88
By2,r - - 9.08 2.98
By3,r - - 0 0
Cyκ,r - - 1.02 1.08

model based on the weighting functions is parametrized according to the Pacejka
model in Pacejka (2006), thus representing a realistic tire behavior. The friction
ellipse model also uses the Pacejka parameters in Pacejka (2006) for the nominal
tire forces. Hence, both of the nonisotropic models will exhibit equivalent tire
characteristics for pure slip conditions. Further, the characteristic peaks in
Fres—not visible in the isotropic models—influence the behavior of the tire
force model significantly.

4 Optimization

Based on the dynamics described in the previous section, the time-optimal ma-
neuver for the hairpin turn is to be determined. This is expressed as an opti-
mization problem, and, considering the physical setup of the problem, it is clear
that an optimal solution exists. The resulting optimization problem is more
challenging than thought at first sight, since the time-optimality implies that
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the tire friction model operates on the boundary of its validity. Also, solving
dynamic optimization problems where the final time is free, is more demanding
than a problem with fixed end time. Further, we have found that numerical
issues easily arise and that the optimization does not converge without proper
initialization. In order to make the convergence more robust from a numerical
point of view, scaling of the optimization variables is essential.

4.1 Formulation of Optimization Problem

Consider the time horizon t ∈ [0, tf ], where tf is the free final time to be
determined as part of the solution procedure. Express the vehicle dynamics
(1)–(3) and (10) as ẋ(t) = G(x, y, u), where x are the differential variables and
y are the algebraic variables. The wheel driving/braking torques T =

(

Tf Tr
)

and the steering angle δ are considered as the input variables, u = (T δ)T.
Further, express (4)–(9), (11)–(13), and (14) or (15)–(20), depending on the
friction model considered, as 0 = h(x, y, u). The dynamic optimization problem
to be solved can then be stated as follows:

minimize tf (21)

subject to Ti,min ≤ Ti ≤ Ti,max, i = f, r (22)

|δ| ≤ δmax, |δ̇| ≤ δ̇max (23)

|Fx,i| ≤ Fx,i,max, i = f, r (24)

|Fy,i| ≤ Fy,i,max, i = f, r (25)
(

Xp

Ri1

)6

+

(

Yp
Ri2

)6

≥ 1 (26)

(

Xp

Ro1

)6

+

(

Yp
Ro2

)6

≤ 1 (27)

x(0) = x0, y(0) = y0 (28)

x(tf ) = xtf , y(tf ) = ytf (29)

ẋ(t) = G(x, y, u), 0 = h(x, y, u), (30)

where (x0, y0) are the initial conditions for the differential/algebraic variables,
(xtf , ytf ) are the desired values at the final time t = tf , and (Xp, Yp) is the
position of the center-of-gravity of the vehicle. Note that the path constraint is
formulated using super-ellipses and the shape of the path is determined by the
radii Ri1, R

i
2, R

o
1, and Ro2.

4.2 Solution of Optimization Problem

Because of the complex nature of the nonlinear and nonconvex optimization
problem in (21)–(30), analytical solutions are intractable. Instead, we utilize
numerical methods based on simultaneous collocation Biegler et al. (2002). Di-
rect collocation is used, where all state and input variables, originally described
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in continuous time, are discretized prior to the optimization. This results in a
discrete-time nonlinear program (NLP). The collocation procedure transforms
the original infinite-dimensional problem to a finite-dimensional problem with
a large, however finite, number of optimization variables, on which numerical
optimization methods are applied.

4.3 Implementation and Solution

The vehicle and tire dynamics are implemented using the modeling language
Modelica Modelica Association (2012). Utilizing Optimica Åkesson (2008),
which is an extension of Modelica for high-level description of optimization
problems based on Modelica models, the implementation of the vehicle and tire
dynamics described in Sec. 3 and the optimal control problem is straightforward.

The collocation procedure and solution of the optimization problem are per-
formed using the open-source software platform JModelica.org Åkesson et al.
(2010); JModelica.org (2012). In JModelica.org, orthogonal collocation is im-
plemented, where Lagrange polynomials are used for representation of the state
profiles in each element and the location of the collocation points are chosen as
the corresponding Radau points. The resulting NLP is solved internally using
the numerical solver Ipopt Wächter and Biegler (2006), which is a solver based
on interior-point methods opted for large, but sparse, optimization problems.

4.4 Initialization Procedure

Robust convergence to a solution of the NLP in Ipopt relies on proper initial-
ization. Two approaches are available to this purpose: Simulation of an initial
guess using driver models and division of the problem into smaller subproblems,
respectively. In this paper, the latter approach is utilized. Consequently, the
hairpin turn problem is solved in four steps, see Figure 7. The results from the
solution of each subproblem is used for initialization of the subsequent problem.
Hence, the final optimal maneuver is determined stepwise.

5 Results

For the evaluations we set the maximum allowed wheel angle, δ, and wheel-
angle change rate, δ̇, to 30 deg and 60 deg/s, respectively, which are reasonable
parameters, both seen from physical and driver limitations. Also, constraints
on the driving/braking torques and tire forces were introduced:

Tf ≤ 0, (31)

Tf ≥ −µxFz,fRw, (32)

|Tr| ≤ µxFz,rRw, (33)

|Fx,i| ≤ µxFz,i, i = f, r, (34)

|Fy,i| ≤ µyFz,i, i = f, r. (35)
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Figure 7: Initialization procedure for solving the time-optimal hairpin turn ma-
neuver problem. The whole problem is solved by stepwise solving four successive
problems. The black rectangles in the figure indicate the position and direction
of the vehicle at the initial and final state in each problem.

We let the road be 5 m wide. Further, the start, (X0
p , Y

0
p ), and final vehicle

position, (Xtf
p , Y

tf
p ), were set to be in the middle of the road. The initial veloc-

ity was v0 = 25 km/h. Figures 8–11 show the vehicle trajectory together with
the most relevant states for all four models. Note that the vehicle is rear-wheel
driven. All models have similarities: The vehicle starts with giving full engine
torque while turning to allow for wider curve taking. When entering the curve
the vehicle starts to break with both wheels, which it does approximately until
reaching the half-way point. Furthermore, all models give rise to vehicle slip.
The trajectory plots show that the slip—i.e., the angle between the velocity
vector and the longitudinal direction of the vehicle—is significant, exceeding
30 deg in the most critical parts of the maneuver. The maneuvering achieving
this behavior is very similar to drifting techniques, where the rear wheel driv-
ing/braking torque is used to control the rear lateral tire force. The front wheels
are only controlled with the steering angle, utilizing counter steering if neces-
sary. Also, the qualitative slip behavior is congruent with the driving behavior
often seen when rally drivers perform similar maneuvers, indicating that the
obtained optimization results manage to replicate behavior utilized in reality.
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Furthermore, it also shows that even a few-state single-track model using the
friction ellipse for tire modeling manages to capture fundamental and relevant
behavior, even for minimum-time optimization problems.

For the four parameter sets in Table 2, the final time values are for the
respective column: tf ≈ 8.82, tf ≈ 8.42, tf ≈ 8.80, and tf ≈ 8.44. Hence,
the objective function, tf , deviates approximately 0.4 s when comparing all
four model configurations. Comparing the isotropic and nonisotropic models,
the deviation in final time between the friction ellipse model and the weighting
functions model is less than 0.02 s.

5.1 Comparison of Isotropic Models

Studying the obtained results closer, we see that Figures 8 and 9 only have
minor differences, if any. This should, of course, come as no surprise since
the two models are parametrized to be isotropic, c.f. Figures 3–4. This is a
verification that the optimization tool is able to handle both of these models,
and also that two completely different model categories, parametrized to achieve
equivalent resultant force characteristics, give similar results for the optimal
maneuver. Figures 12 and 13 show the force trajectories as functions of α and
κ, corresponding to Figures 8 and 9. By inspection we note that the α and κ
trajectories, and consequently the resulting tire force trajectory, vary more for
the rear wheels, which is caused by the vehicle being rear-wheel driven. Further,
when comparing the force curves for the rear wheel it is clear that the friction
ellipse model seems to penalize combined slip more throughout the turn. This
can be explained by that the lateral tire force decreases faster with increasing
slip ratio for the friction ellipse than for the weighting functions model. For
example, when the longitudinal force approaches its maximum value, the lateral
force tends to zero. For the corresponding slip ratio, the weighting functions
model predicts a larger lateral force than the friction ellipse model does.

5.2 Comparison of Nonisotropic Models

When investigating Figures 10 and 11 we see that there are fundamental differ-
ences. First, the maximum steering angle, δ, in Figure 11 is twice as large as δ in
Figure 10. Second, the maximum yaw rate is larger for the weighting functions
model, see Figure 11, but the yaw rate when in the turn (between t ≈ 3.5–4.5
s) is smaller. Third, the weighting functions model seldom uses the rear wheel
for braking. Rather, it maximizes the braking force on the front wheel instead
of distributing the braking force to both wheels. We believe that this behavior
stems from that the weighting functions model provide, in addition to the low-
slip solution, a large-slip alternative—i.e., does not penalize combined slip—for
a given resulting force. The force trajectories in Figures 14 and 15 verify this
claim. These observations indicate that this behavior is model dependent rather
than parameter dependent.



52 Paper B. Models and Methodology for Optimal Vehicle Maneuvers

Another interesting behavior can be seen when studying the slip ratios, κ.
For the weighting functions model, a large peak occurs when increasing the yaw
rate at t ≈ 2.3 s. At this stage, when trying to turn quickly, it is desired to have
a small lateral force at the rear, which, in the weighting functions model, can
be achieved by increasing the slip ratio as much as possible. In the isotropic
weighting functions model, this tendency can also be seen. However, since the
force decrease in the longitudinal direction is comparatively small, only a modest
peak in the slip ratio appears. Studying the friction ellipse model instead, no
such peak in slip ratio can be seen. Also, the friction ellipse model as it is
implemented here, will increase the lateral force if the slip ratio exceeds the
maximum longitudinal force.

5.3 Comparing the Isotropic and Nonisotropic Models

When comparing the friction ellipse model for the two different parameter sets—
i.e., Figures 8 and 10—we note a couple of discrepancies. The peak of δ is
more accentuated in Figure 10. Also, the longitudinal force, and thereby the
longitudinal velocity, is larger in magnitude. This is attributed to the larger
longitudinal friction coefficient, µx, see Table 2. This, in turn, is a result of the
fitting procedure used, described in Sec. 3.3. The difference in steering angle
can, most probably, also be deduced to this, since a larger velocity will demand
more aggressive steering to counteract the larger forces. When comparing the
force trajectories for the same models, Figures 12 and 14, we see that they are
very similar.

The weighting functions have more pronounced differences: First, δ in Figure
9 hardly exceeds 0 rad. Moreover, the yaw rate is larger in Figure 11. Third,
the forces differ significantly. Partly, the differences can be attributed to the
difference in longitudinal friction coefficient. We believe that a contributor is
the significant differences between the maxima and minima in Figure 15.

6 Conclusions and Future Work

This paper aimed at using vehicle and tire models frequently encountered in
literature to give insight into improved safety systems. We presented a compar-
ison of vehicle behavior for minimum-time optimization of a hairpin maneuver,
where different tire models were used. We exploited a single-track model for
vehicle modeling. Although the results differed in some respects, the qualitative
behavior was similar for all models. We showed that even a few-state single-
track model using the friction ellipse for tire modeling managed to capture
fundamental and relevant behavior. This implies that for future optimization-
based safety systems rather simple models may suffice. However, the friction
ellipse model and weighting functions model showed some dissimilarities; e.g.,
the braking behavior was different. This might have impact on model choice,
especially considering safety systems such as yaw rate controllers where the
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Figure 8: Optimization result for friction ellipse model with isotropic behavior
with parameters as in column two in Table 2. In the κ, Fx, and Fy plots the
blue curves visualize the front wheel and the red curves the rear wheel. The
black rectangles in the XY -trajectory plot show the sideslip angle each second
of the maneuver.

brakes typically are the actuators.
For the future we plan to do a similar investigation for different tires and

surfaces, which provides insight into optimal control of maneuvers under differ-
ent road conditions. Further, investigating optimal path tracking is a natural
extension of the work presented in this paper; in this context other optimiza-
tion criteria than time-optimality, such as deviation from the specified path or
energy consumption, are of interest.
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Figure 9: Optimization result for weighting functions model with isotropic be-
havior with parameters as in column four in Table 2. Same notation and colors
as in Figure 8.
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Figure 10: Optimization results for friction ellipse model with parameters as in
column three in Table 2. Same notation and colors as in Figure 8.
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Figure 11: Optimization results for weighting functions model with parameters
as in column five in Table 2. Same notation and colors as in Figure 8.
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Figure 12: 3D plot of force curve for friction ellipse model with isotropic behav-
ior corresponding to Figure 8. Blue (front wheel) and red curves (rear wheel)
are the trajectories generated by optimization.
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Figure 13: 3D plot of force curve for weighting functions model with isotropic
parameters corresponding to Figure 9.
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Figure 14: 3D plot of force curve for friction ellipse model with parameters
corresponding to Figure 10.
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Abstract

A comparative analysis shows how vehicle motion models of differ-
ent complexity, capturing various characteristics, influence the solution
when used in time-critical optimal maneuvering problems. Vehicle mod-
els with combinations of roll and pitch dynamics as well as load transfer
are considered, ranging from a single-track model to a double-track
model with roll and pitch dynamics and load transfer. The optimal
maneuvers in a 90◦-turn and a double lane-change scenario are formu-
lated as minimum-time optimization problems, and are solved using
numerical optimization software. The results obtained with the differ-
ent models show that variables potentially important for safety systems,
such as the yaw rate, slip angle, and geometric path, are qualitatively
the same. Moreover, the numeric differences are mostly within a few
percent. The results also indicate that although input torques differ
about 50–100 % for certain parts of the maneuver between the most
and least complex model considered, the resulting vehicle motions ob-
tained are similar, irrespective of the model. Our main conclusion is
that this enables the use of low-order models when designing the on-
board optimization-based safety systems of the future.
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1 Introduction

With recent advancements in optimization technology and software, new ap-
proaches unfold for the development of active vehicle safety systems and driver
assistance technologies, see, e.g., Sharp and Peng (2011). The solution to an
optimal control problem can give valuable insight into the performance capabil-
ities of the system being investigated. Also, it can be used as an inspiration for
new control strategies. The solution to the optimization problem will depend
on the choice of model configurations and optimization objectives, investigated
in Berntorp et al. (2013) and Olofsson et al. (2013). There, we developed an
optimization methodology with special emphasis on tire modeling and uncertain
road-surfaces, and this work continues the development towards more complex
chassis models.

Motivated by the above, this study investigates the similarities and differ-
ences in the solutions obtained when several vehicle chassis models, capturing
different dynamic properties such as roll and pitch dynamics with load transfer,
are employed in optimal maneuvering problems. The aim is to perform a com-
parative study on how different vehicle motion models affect the optimal control
solution in certain critical situations. The long-term goal of this work is real-
time control. Hence, the models investigated are fairly simplistic compared to
models usually employed for vehicle simulation purposes. For example, detailed
suspension kinematics and gear dynamics have been neglected. One motivation
for this is that the models are to be used together with dynamic optimization
algorithms, requiring twice continuously differentiable functions in the model
description. In addition, and perhaps more importantly, we are interested in
investigating what characteristics of a maneuver that can be captured with this
kind of models.

Optimal control of vehicles has been investigated previously in literature, see
Sharp and Peng (2011); Kelly and Sharp (2010); Velenis and Tsiotras (2005);
Chakraborty et al. (2011) for a few examples. Further, in Sundström et al.
(2010); Andreasson (2009) an optimization problem for over-actuated vehicles
is solved using the same software as used in this paper. A majority of the work
in these references focus on a specific vehicle and tire model. Thus, to the best of
our knowledge, no comprehensive approach to perform comparisons of different
chassis models in an optimization scenario has been made, which motivates the
study presented here.

The evaluation of the models is performed on two different maneuvering
problems: A 90◦-turn and a double lane-change situation, where the objective
is to minimize the execution time of the maneuver. This formulation is one
example of how to trigger a critical situation where the vehicle is performing at
its very limit in terms of maneuvering.
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2 Modeling

The emphasis in the vehicle modeling is on the chassis dynamics. Five different
chassis models of various complexity are considered. The wheel dynamics and
tire force modeling are the same in the five cases, where the former is expressed
by a first-order rotational dynamic system. The tire forces are described by
Pacejka’s Magic Formula tire model in combination with weighting functions
Pacejka (2006) for modeling combined longitudinal and lateral slip.

2.1 Chassis Models

The single-track model (ST), illustrated in Figure 1, is used as a basis model for
the vehicle motion modeling. The left and right wheels on each axle are lumped
together, and the model has two translational and one rotational degrees of
freedom Kiencke and Nielsen (2005); Isermann (2006). The model dynamics
are

v̇x − vyψ̇ =
1

m
(Fx,f cos(δ) + Fx,r − Fy,f sin(δ)), (1)

v̇y + vxψ̇ =
1

m
(Fy,f cos(δ) + Fy,r + Fx,f sin(δ)), (2)

Izzψ̈ = lfFy,f cos(δ)− lrFy,r + lfFx,f sin(δ), (3)

where m is the total vehicle mass, Izz is the vehicle inertia about the z-axis,
ψ̇ is the yaw rate, δ is the steer angle, vx, vy are the longitudinal and lateral
velocities at the center of gravity, lf , lr are the distances from the center of
gravity to the front and rear wheel base, and Fx, Fy are the longitudinal and
lateral tire forces acting at the front and rear wheels. The nominal normal force
resting on the respective wheel is given by

Fz0,f = mg
lr
l
, Fz0,r = mg

lf
l
, (4)

where g is the constant of gravity and l = lf + lr.
Four extensions of the ST model are considered in this study:

• Single-track model with roll dynamics (ST-roll), where an additional de-
gree of freedom about the x-axis is included.

• Single-track model with pitch dynamics (ST-pitch)—i.e., an additional
degree of freedom about the y-axis—and longitudinal load transfer.

• Double-track model with roll dynamics (DT-roll) and lateral load transfer.

• Double-track model with roll and pitch dynamics (DT-roll-pitch) and both
longitudinal and lateral load transfer.
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In the double-track models, each of the four wheels are modeled separately. In
Figure 2, the DT-roll-pitch model is illustrated, with the roll angle φ and the
pitch angle θ. The chassis rotational motion in the roll and pitch directions is
characterized by the vehicle chassis inertias Ixx and Iyy, respectively. Further,
in the derivation of the models it was assumed that the suspension system of
the vehicle can be modeled with a spring-damper system. Consequently, the
moment produced by the suspension system in the roll direction is given by

τφ = (Kφ,f +Kφ,r)φ + (Dφ,f +Dφ,r)φ̇, (5)

and correspondingly in the pitch direction according to

τθ = Kθθ +Dθ θ̇, (6)

where K and D are model parameters for the stiffness and damping. For the
derivation and complete dynamic equations for the DT-roll-pitch model, see
Berntorp (2013). The dynamic equations for the longitudinal load transfer are
given by

Fz,f lf − Fz,rlr = Kθθ +Dθθ̇,
∑

i=f,r

Fz,i = mg, (7)

for ST-pitch, where the time-dependent normal forces Fz,f and Fz,r have been
introduced. The relation (7) is also valid for DT-roll-pitch with the substitution
Fz,f = Fz,1+Fz,2 and Fz,r = Fz,3+Fz,4. The lateral load transfer is determined
by the relations

−w(Fz,1 − Fz,2) = Kφ,fφ+Dφ,f φ̇, (8)

−w(Fz,3 − Fz,4) = Kφ,rφ+Dφ,rφ̇, (9)

where w is defined in Figure 2.

2.2 Wheel and Tire Dynamics

The wheel dynamics is formulated as a first-order system with the wheel angular
velocity ω as the state and the driving and braking torques T on the wheels
defined as inputs, according to

Ti − Iwω̇i − Fx,iRw = 0, i = f, r or 1, 2, 3, 4, (10)

where Iw is the wheel inertia and Rw is the wheel radius. The longitudinal slip
κ and the slip angle α are introduced following Pacejka (2006), and are given
by

κi =
Rwωi − vx,i

vx,i
, (11)

α̇i
σ

vx,i
+ αi = − arctan

(

vy,i
vx,i

)

, i = f, r or 1, 2, 3, 4, (12)
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where σ is the relaxation length and vx,i, vy,i are the velocities resolved in the
wheel frames. Note that Figures 1–2 depict the static slip angles, describing a
purely geometric relation, in contrast to the dynamic slip angles in (12). The
vehicle and wheel model parameters in (1)–(12) used in this study are specified
in Table 1.

The tire forces are modeled by Pacejka’s Magic Formula in combination with
weighting functions Pacejka (2006) for modeling the combined longitudinal and
lateral slip. The longitudinal and lateral tire forces, Fx and Fy, read

Fx0,i = µxFz,i sin(Cx,i arctan(Bx,iκi − Ex,i(Bx,iκi − arctanBx,iκi))), (13)

Bxα,i = Bx1,i cos(arctan(Bx2,iκi)), (14)

Gxα,i = cos(Cxα,i arctan(Bxα,iαi)), (15)

Fx,i = Fx0,iGxα,i, (16)

Fy0,i = µyFz,i sin(Cy,i arctan(By,iαi − Ey,i(By,iαi − arctanBy,iαi))), (17)

Byκ,i = By1,i cos(arctan(By2,iαi)), (18)

Gyκ,i = cos(Cyκ,i arctan(Byκ,iκi)), (19)

Fy,i = Fy0,iGyκ,i, i = f, r or 1, 2, 3, 4, (20)

where µx, µy are the longitudinal and lateral friction coefficients and B, C, E
are model parameters. In Table 2 the tire model parameters in (13)–(20) used in
this study are provided. The parameters have been derived from Pacejka (2006)
and correspond to a tire on dry asphalt. Further, in Table 3 the state variables
for the respective vehicle and wheel model configuration are summarized.

3 Optimization

The models presented in the previous section are formulated as differential-
algebraic equation systems according to ẋ(t) = G(x(t), y(t), u(t)), where x is
the state vector, y are the algebraic variables, and u is the input signal vector.
The time-dependency of the variables will be implicit in the rest of the paper.
The wheel driving and braking torques, T =

(

Tf Tr
)

, as well as the steer angle
δ of the front wheels are considered as inputs. For simplicity we assume that the
front wheels have the same steer angle in the double-track models. To allow an
equitable comparison with the single-track models, the double-track models only
have two wheel-torque inputs as well, which are equally distributed between the
wheels at the respective axles, i.e., T1 = T2 = Tf/2 and T3 = T4 = Tr/2, where
T1, T2, T3, and T4 are the corresponding wheel torques for wheel 1–4. Further,
the tire-force model is written as the equation system h(x, y, u) = 0. The chas-
sis and tire dynamics are implemented using the modeling language Modelica
Modelica Association (2012). The optimization problem is formulated over the
time horizon t ∈ [0, tf ]. The objective of the optimization is to minimize the
final time tf of the maneuver. Accordingly, the dynamic optimization problem
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Table 1: Vehicle and wheel parameters
in (1)–(12).

Notation Value Unit

lf 1.3 m
lr 1.5 m
w 0.8 m
m 2 100 kg
Ixx 765 kgm2

Iyy 3 477 kgm2

Izz 3 900 kgm2

Rw 0.3 m
Iw 4.0 kgm2

σ 0.3 m
g 9.82 ms−2

h 0.5 m
Kφ,f ,Kφ,r 89 000 Nm(rad)−1

Dφ,f , Dφ,r 8 000 Nms(rad)−1

Kθ 363 540 Nm(rad)−1

Dθ 30 960 Nms(rad)−1

Table 2: Tire model parameters in
(13)–(20).

Notation Front Rear

µx 1.20 1.20
Bx 11.7 11.1
Cx 1.69 1.69
Ex 0.377 0.362
µy 0.935 0.961
By 8.86 9.30
Cy 1.19 1.19
Ey -1.21 -1.11
Cxα 1.09 1.09
Bx1 12.4 12.4
Bx2 -10.8 -10.8
Cyκ 1.08 1.08
By1 6.46 6.46
By2 4.20 4.20

to be solved can be written as:

minimize tf (21)

subject to Ti,min ≤ Ti ≤ Ti,max, i = f, r, (22)

|δ| ≤ δmax, |δ̇| ≤ δ̇max, (23)

x(0) = x0, y(0) = y0, (24)

x(tf ) = xtf , y(tf ) = ytf , (25)

f(Xp, Yp) ≤ 0, (26)

ẋ = G(x, y, u), h(x, y, u) = 0, (27)

where x0, y0 are the initial conditions for the differential states and algebraic
variables, xtf , ytf are the desired values at the final time t = tf , and (Xp, Yp) is
the position of the center-of-gravity of the vehicle. In practice, the initial and
final conditions are only applied to a subset of the model variables. Further,
f(Xp, Yp) is a mathematical description of the road constraint for the center-
of-gravity of the vehicle for the respective maneuver. These constraints are
formulated as super-ellipses with different radii and degrees in the XY -plane.

The continuous-time optimal control problem (21)–(27) for each model con-
figuration and maneuver is solved utilizing the open-source software JModel-
ica.org Åkesson et al. (2010), according to the method presented in Berntorp
et al. (2013). In particular, the continuous-time optimization problem is dis-
cretized using direct collocation methods Biegler et al. (2002), and the resulting
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Table 3: State variables for the different vehicle chassis model configurations,
including wheel dynamics.

Model Notation States

Single-track ST vx, vy, ψ̇, ωf , ωr, αf , αr
Single-track + roll dynamics ST-roll vx, vy, ψ̇, φ̇, ωf , ωr, αf , αr
Single-track + pitch dynamics ST-pitch vx, vy, ψ̇, θ̇, ωf , ωr, αf , αr
Double-track + roll dynamics DT-roll vx, vy, ψ̇, φ̇, ω1–ω4, α1–α4

Double-track + roll and pitch DT-roll-pitch vx, vy, ψ̇, φ̇, θ̇, ω1–ω4, α1–α4

discrete-time nonlinear optimization problem (NLP) is solved numerically using
the interior-point solver Ipopt Wächter and Biegler (2006). The Jacobian and
the Hessian related to the problem are required in the iterative numerical op-
timization procedure. Considering the complexity of the employed chassis and
tire models, exact calculation of these quantities with automatic differentiation
Griewank (2000) significantly reduces convergence times and increases numeri-
cal stability compared to the case with numerical approximations. For further
details on the solution methodology, see Berntorp et al. (2013).

4 Results

The minimum-time optimization problem (21)–(27) was solved for the 90◦-turn
and the double lane-change maneuver. The solution of the problem was deter-
mined for each of the vehicle models presented in Section 2 The steer angle and
steer rate-of-change were limited to δmax = 30 deg and δ̇max = 60 deg/s, respec-
tively, corresponding to reasonable driver limitations. The lower wheel torque
limitations were set to Tf,min = Tr,min = −µx,fmg. The upper wheel torque
limits were set to Tf,max = 0 and Tr,max = µx,rFz0,r , which implies a rear-wheel
driven vehicle. The choice of torque limitations originates from the fact that
the maximum braking torque that can be applied on the wheels is significantly
larger than the corresponding acceleration torque. Further, the driving torque
limit was set to prevent excessive wheel spin equivalent to large slip ratios. This
is motivated since the employed empirical tire models are based on tire force
measurements that for experimental reasons are only possible to obtain for a
limited area in the α-κ plane. In addition, the wheel velocities were limited to
be nonnegative, since solutions with wheel backspin are not desired.

4.1 Optimal Maneuver in the 90◦-Turn

In the turn maneuver, the vehicle start position was set to (Xp,0, Yp,0) =
(37.5, 0) m, i.e., in the lower right corner in Figure 3. The initial velocity was
v0 = 70 km/h and the vehicle was aligned with the road direction, ψ0 = π/2.
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The target vehicle position was set to (Xp,tf , Yp,tf ) = (0, 37.5) m, where the
vehicle heading was in the road direction, ψtf = π. The computed optimal
maneuvers for the different vehicle chassis models in the 90◦-turn are presented
in Figure 3. The variable v represents the absolute vehicle velocity and β is the
body-slip angle, defined as

β = arctan

(

vy
vx

)

.

Figure 4 shows the sum of the longitudinal and lateral tire-forces resolved in
the road-surface plane. Also visualized is the nominal yaw moment MZ gen-
erated from the tire forces, i.e., the moment about an axis orthogonal to the
road. These quantities are visualized as function of the driven distance s for
reasons of comparability. Figures 5–6 show the Force-Slip (FS)-diagrams—as
first introduced in Berntorp et al. (2013)—for ST and DT-roll-pitch. Here the
normalized resultant tire-force, defined as

Fi,res =

√

F 2
x,i + F 2

y,i

Fz,i
, i = f, r or 1, 2, 3, 4,

is visualized as a surface, varying over α and κ. On this surface the correspond-
ing time-optimal solution is drawn, as well as projected underneath in the α-κ
plane. In Table 4, the execution times for the maneuver for the respective model
are specified. The execution times vary 4 % at most, which occurs between the
ST-pitch and DT-roll models. However, no significant differences between the
five chassis models considered in this study are observed.

Similarities Between the Solutions

The first observation when investigating the results in Figure 3 is that the
solutions practically coincide for several variables, being φ, θ, ψ̇, and β. This
implies that variables often utilized in safety systems to indicate maneuvering
instability are invariant to model complexity, at least for the models considered

Table 4: Time for executing the maneuver for each model configuration in the
90◦-turn.

Model Execution time

ST 4.2662 s
ST-roll 4.2677 s
ST-pitch 4.2041 s
DT-roll 4.3660 s
DT-roll-pitch 4.3371 s
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Figure 3: Time-optimal solutions obtained for the 90◦-turn, for ST, ST-roll,
ST-pitch, DT-roll, and DT-roll-pitch. The black bars in the upper left XY -plot
represent the vehicle heading for the DT-roll-pitch solution every half second.
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veloped by the tires, for the 90◦-turn, illustrated as functions of the driven
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here. The geometric trajectories shown in the upper left plot of Figure 3 are
also similar. The largest deviations of the geometric trajectories, which occur
between ST-pitch and DT-roll during the exit phase, are approximately 15 %
of the road width. However, the differences between ST and DT-roll-pitch are
minor throughout the maneuver.

As seen in Figure 4, FY and MZ are similar, with only minor quantitative
differences between the models. This observation can also be deduced from
the tire force plots in Figure 3 and is important considering that MZ is used
as a high-level input in several safety systems, such as in yaw-rate controllers
and rollover-prevention systems. There are larger numeric discrepancies in FX ,
at least during shorter periods of the maneuver. In a physical setup, however,
model parameters such as the friction coefficients, vehicle mass, and tire param-
eters are uncertain. Thus, conservative bounds on the control variables might,
for safety reasons, be necessary in on-board applications, consequently reducing
the differences for the models even further.

Investigating the results further, Figure 3 shows that the different models
result in characteristics that are similar in several aspects. Prior to turning into
the corner, all solutions exhibit a slight rightward maneuvering while acceler-
ating. This is followed by a braking phase, where both front and rear wheels
are used. In the braking phase, initially a significant braking torque is applied,
gradually reducing as the vehicle approaches the turn, see Tf and Tr in Fig-
ure 3. Unsurprisingly, larger lateral forces are generated in the turn. Half-way
through the turn, at t ≈ 2 s, all solutions generate an increasing driving torque,
which accelerates the vehicle out of the turn. In the final stage, all solutions
apply maximum driving torque.

Differences Between the Solutions

The most prominent differences between the solutions appear for the control
inputs and variables closely coupled to the longitudinal dynamics, such as Tf ,
Tr, and v in Figure 3, and FX in Figure 4. In the initial braking phase, starting
at t ≈ 0.4 s, the chassis for the ST-pitch and DT-roll-pitch models are subjected
to a forward load transfer. This is utilized by applying a larger braking effort
at the front wheels, see Tf in Figure 3. At the rear wheels, for the ST-pitch and
DT-roll-pitch models, a large braking torque is initially applied. This torque is
then rapidly reduced as the longitudinal load transfer results in less load on the
rear wheels, see Tr around t = 0.5 s in Figure 3.

Comparing ST with DT-roll, and ST-pitch with DT-roll-pitch, the double-
track models reduce front-wheel braking earlier. This is a consequence of Tf
being equally distributed between the front wheels for the double-track models.
Thus, when braking while cornering, the inner wheels will have less load and
thus risk to lock up for large braking torques. Similarly, during the exit phase
where lateral load-transfer still is present, a too large driving torque will spin
out the inner rear-wheel. Therefore, a smaller driving torque is applied for the
DT-roll and DT-roll-pitch models compared with ST, ST-roll, and ST-pitch.
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In Figure 3, the steer angle varies between the models. At t ≈ 0.7 s, a
smaller δ is obtained for the ST-pitch and DT-roll-pitch models, since the sought
lateral force Fy,f for the current levels of front load and braking effort requires
a different slip angle αf . Also, for the ST-pitch model a strategy with more
emphasis on braking is obtained, with the lateral force being slightly smaller.
Hence, a lower δ is natural. Shortly after, sharp peaks are seen for the steer angle
with the ST-pitch and DT-roll-pitch model around t = 1.1 s. Given the resulting
forces developed at the front wheels at this time, resolved in the chassis frame,
there exist two different strategies to achieve these: Either by utilizing front
wheel braking together with a moderate steering angle, or by only applying
a large steer angle and achieve the longitudinal contribution from Fy,f sin(δ)
solely. The latter seems to be what, to some extent, is utilized for ST-pitch and
DT-roll-pitch, and the advantage could be a more beneficial contribution to the
yaw moment. Additionally, for DT-roll-pitch, front-wheel braking could conflict
with lock-up for the inner wheel, thus braking might be disfavored. However,
the gain in final time of using either of the strategies seems to be minor.

The FS-diagrams in Figure 5–6 display slightly different slip characteristics
for the two models. For ST, the solver chooses the slip quantities to reside closer
to the coordinate axes, especially for the front wheel. The DT-roll-pitch model,
having dynamically varying normal forces, exhibits different slip trajectories for
the left and right wheels.

4.2 Optimal Maneuver in the Double Lane-Change

The geometric track-boundaries for the double lane-change maneuver are spec-
ified according to the standardized test ISO 3888-2 ISO 3888-2:2011 (2011),
often used for vehicle stability evaluations. The vehicle starts at the left-hand
side of the XY -plot in Figure 7, at (Xp,0, Yp,0) = (0, 1) m, with an initial veloc-
ity of v0 = 80 km/h. Mid-way through, an obstacle forces the vehicle into an
evasive maneuver. Finally, the vehicle rejoins the initial drive lane at the final
position (Xp,tf , Yp,tf ) = (61, 0.6) m. The initial and final vehicle heading angles
are set to ψ0 = ψtf = 0. In Figure 7, the time-optimal solutions for the double
lane-change maneuver are shown. In Figure 8, FX , FY , and MZ are shown as
function of the driven distance s, similarly to Figure 4. In Figures 9 and 10 the
FS-diagrams for the solutions obtained with the ST and DT-roll-pitch models
are shown. The execution times for the different models in the double lane-
change maneuver are specified in Table 5. As for the 90◦-turn, the execution
times are similar and differing at most by 4 %.

Similarities Between the Solutions

The global trajectories, shown in Figure 7, are almost inseparable. This is
partially a consequence of the narrow path formed by the track boundaries.
However, for several other variables strong resemblance is also obtained, as for
example ψ̇, β, Fy,f , and Fy,r in Figure 7. The total lateral force FY , as well as
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Figure 5: Resultant tire forces for ST in the 90◦-turn.
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the yaw moment MZ in Figure 8, show very similar behavior, almost coinciding
for the main parts of the maneuver. Note the similarities in FY and MZ even
for considerable differences in FX , for example around s = 10 m.

Analyzing the solutions more in-depth, all models result in full driving torque
during the initial stage, followed by a short braking phase at the rear wheels,
see Tr in Figure 7. Subsequently, various levels of driving torque are applied
when approaching the obstacle, followed by a braking phase utilizing both front
and rear wheel braking. For the second half of the maneuver, similar strategies
can be seen for all models. A moderate driving torque is applied, interrupted by
a smooth but significant increase at t = 2 s. At this stage the rear lateral force
Fy,r shifts from negative to positive, thus only using a portion of the available
lateral tire-force, µy,rFz,r. Consequently, a longitudinal force can be employed
without adversely affecting the lateral forces.

Differences Between the Solutions

As for the 90◦-turn, differences between the solutions are most visible in the
longitudinal dynamics. This is particularly noticeable for the wheel torques,
Tf and Tr in Figure 7, differing both in magnitude and point of operation.
In the initial braking phase, the braking effort is slowly reduced for ST, ST-
roll, and DT-roll, i.e., the models without pitch dynamics, and eventually a
modest driving torque is applied, see Tr in Figure 7. The models with pitch
dynamics (ST-pitch and DT-roll-pitch) instead result in a maneuvering that
shortly regain a driving torque, which then slowly is reduced. In the pitch-
dynamics models, the rearward load transfer is here utilized, enabling larger
rear-wheel tire-forces because of the increased normal load on the rear wheels.
Approaching the obstacle, the pitch-dynamics models show an earlier initiated
braking phase, presumably because of their larger velocity. For the models
without pitch dynamics, a driving torque at the rear wheels is shortly applied,
followed by a very short rear-wheel braking around t = 0.9 s in Figure 7. The
reason for this behavior is probably linked to the increased yaw rate, where a
reduced rear-wheel lateral tire-force Fy,r is desired. This can here be achieved
by acquiring a large longitudinal slip.

Table 5: Time for executing the maneuver for each model configuration in the
double lane-change situation.

Model Execution time

ST 2.7540 s
ST-roll 2.7869 s
ST-pitch 2.6804 s
DT-roll 2.7939 s
DT-roll-pitch 2.7459 s
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Figure 9: Resultant tire forces for ST in the double lane-change maneuver.
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The steering angle δ in Figure 7 exhibits overall equivalent behavior through-
out the maneuver for the different models, with the steer rate-of-change limit
δ̇max being active during a majority of the maneuver. However, at t = 1.3 s a
distinct peak appear for the DT-roll model solely. This seems—as was discussed
for ST-pitch and DT-roll-pitch in the 90◦-turn—to be a consequence of the ex-
istence of two different strategies resulting in equivalent optimization objective.
Instead of braking the front wheel, for the DT-roll model a large steer angle can
be observed which result in a braking component determined by Fy,f sin(δ). By
this strategy, combined with a double-track model, a large front lateral force can
be realized, while simultaneously reducing the speed without the risk of wheel
lock-up. For the DT-roll-pitch model this strategy is not applied, since reducing
the speed at this point in time seems to be neither necessary nor desired, when
analyzing Tf and Tr. For the single-track models, the risk of wheel lock-up
is in this situation not imminent. Hence, the absence of the large steer-angle
strategy.

Investigating the FS-diagrams for the solutions obtained with the ST and
DT-roll-pitch models, displayed in Figures 9 and 10, the solutions exhibit a
quite narrow area of operation in the α-κ plane. Also, combined slip is not
utilized to the same extent as for the 90◦-turn. Observing the slip trajectories
closer, the rear wheels exhibit larger slip values than the front wheels, especially
for the DT-roll-pitch model. This is coupled to the time-critical nature of the
maneuver, which becomes even more significant for the DT-roll-pitch model
with dynamic normal loads.

5 Conclusions

Five different vehicle motion models were considered, ranging from a single-
track model to a double-track model with roll and pitch dynamics including
load transfer. These models were investigated in a 90◦-turn and a double lane-
change maneuver, and the optimal control problems for finding the minimum-
time solution in each case were solved.

The solution behavior for the different models is similar in several key aspects
for both maneuvers, as observed in Figures 3 and 7. For example, variables often
used in safety systems, such as the yaw rate, the slip angle, and the roll angle,
only exhibit minor discrepancies. The input torques differ significantly during
parts of the maneuver. However, the overall lateral forces and yaw moments
generated by the tires—FY and MZ in Figures 4 and 8—for the different models
have similar characteristics, with only quantitative differences in between. The
largest discrepancies occur in the longitudinal forces; in Figure 8 the largest
difference in absolute value of the longitudinal force between ST and DT-roll-
pitch is approximately 50 %. However, this major difference is only seen for
a few samples and does not have much impact on the other variables. More-
over, considering an online implementation, torque and force bounds have to be
set conservatively because of uncertainty in model parameters and disregarded



5. Conclusions 83

dynamics, which will suppress this difference.
All of these observations are important, since they imply that variables tra-

ditionally considered as high-level inputs in safety systems, such as MZ , may be
generated by optimization using models with low complexity, e.g., the single-
track model. These high-level inputs can then be utilized as inputs to a low-level
optimizer, which benefit more from complex models for distributing the desired
torque to the respective wheel. This fact, together with the increased amount of
sensor data and computational power available in modern road vehicles, opens
up for the use of simplistic models when designing the on-board optimization-
based safety systems of tomorrow.
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Abstract

We investigate optimal maneuvers for road-vehicles on different surfaces
such as asphalt, snow, and ice. The study is motivated by the desire
to find control strategies for improved future vehicle safety and driver
assistance technologies. Based on earlier presented measurements for
tire-force characteristics, we develop tire models corresponding to dif-
ferent road conditions, and determine the time-optimal maneuver in a
hairpin turn for each of these. The obtained results are discussed and
compared for the different road characteristics. Our main findings are
that there are fundamental differences in the control strategies on the
considered surfaces, and that these differences can be captured with the
adopted modeling approach. Moreover, the path of the vehicle center-
of-mass was found to be similar for the different cases. We believe that
these findings imply that there are observed vehicle behaviors in the
results, which can be utilized for developing the vehicle safety systems
of tomorrow.
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1 Introduction

Motivated by the desire to devise improved safety systems for vehicles and driver
assistance technologies, development of mathematical models and model-based
control strategies for optimal vehicle maneuvers in time-critical situations have
emerged as powerful tools during the past years. Even though the solution to
an optimal control problem depends on the particular choice of model and cost
function, the fundamental behavior and control strategies found by optimization
can be used as inspiration for, or be integrated in, future safety-systems.

One step towards this is to study the behavior of a vehicle in a time-critical
maneuver under varying road conditions, e.g., dry asphalt and snow. Therefore,
we investigate a hairpin maneuver, see Figure 1. The objective is to perform the
maneuver in minimum time, while fulfilling certain constraints on the control
inputs and internal states of the vehicle. This means that the vehicle, and
in particular the tires, are performing at their limits. We utilize established
vehicle and tire modeling principles, and present a model-based optimal control
problem with the solution thereof for different road conditions. In addition, we
investigate how to scale the tire models for different surfaces. By this study, it
is plausible that the understanding of vehicle dynamics in extreme situations
under environmental uncertainties is increased.

Optimal control problems for vehicles in time-critical situations have been
studied in the literature previously, see (Velenis and Tsiotras, 2005; Velenis,
2011) for different examples. In (Kelly and Sharp, 2010) the time-optimal race-

Photo courtesy of redlegsrides.blogspot.com

Figure 1: An example of a partly snow-covered hairpin turn.
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car line was investigated, and in (Sharp and Peng, 2011) a survey on existing
vehicle dynamics applications of optimal control theory was presented. Other
examples are (Sundström et al., 2010; Funke et al., 2012). We presented a
method for determining optimal maneuvers and a subsequent comparison us-
ing different methods for tire modeling in (Berntorp et al., 2013). Further, a
comparison of optimal maneuvers with different chassis models was treated in
(Lundahl et al., 2013). Scaling of nominal tire models for different surfaces was
discussed and experimentally verified in (Braghin et al., 2006). Even though
the vehicle and tire models utilized in this paper are similar to those presented
in the mentioned references, previous research approaches focus on a particular
vehicle model on a specific surface. Comparisons of optimal control maneuvers
for different road conditions have been made, see (Chakraborty et al., 2011),
but are limited to varying the friction coefficient, and we show that important
tire-force characteristics might be neglected with that approach. To the best of
our knowledge, no comprehensive approach to perform comparisons of optimal
control maneuvers for different road conditions has been made, which motivates
the study presented here.

2 Modeling

The vehicle dynamics is modeled with an extended single-track model together
with a wheel model and a Magic Formula tire model.

2.1 Vehicle Modeling

The vehicle model considered is a single-track model (Kiencke and Nielsen, 2005;
Isermann, 2006) with lumped right and left wheels. In addition, a rotational
degree of freedom about the x-axis—i.e., the roll—has been added. The coordi-
nate system is located in the ground plane, at the xy-coordinates of the center
of mass for zero roll angle, see Figure 2. The motivation for the single-track
model is twofold; first, we are aiming for models possible to utilize together with

δ

lf lr

x

y

vf
h

vr

F rx
F fx

F ry
F fy

ψ̇φ

z

αf αr

Figure 2: The single-track model including roll motion about the x-axis, result-
ing in a four degrees-of-freedom chassis model.
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dynamic optimization algorithms. Second, we want to investigate what proper-
ties of a vehicle that can be captured with this comparably simple model. The
roll dynamics is of importance, in order to verify that the vehicle is not over-
balancing in the aggressive hairpin maneuver. The model does not incorporate
load transfer, but the effect of this has previously been investigated in (Lundahl
et al., 2013). The model equations are

mv̇x = FX +mvyψ̇ −mhsφψ̈ − 2mhcφφ̇ψ̇, (1)

mv̇y = FY −mvxψ̇ −mhsφψ̇
2 +mhφ̈cφ −mφ̇2hsφ, (2)

ψ̈ =
MZ − FXhsφ
Izzc2φ + Iyys2φ

, (3)

Ixxφ̈ = FY hcφ +mghsφ + ψ̇2∆Iyzsφcφ −Kφφ−Dφφ̇, (4)

FX = F fx cδ + F rx − F fy sδ, (5)

FY = F fy cδ + F ry + F fx sδ, (6)

MZ = lfF
f
y cδ − lrF

r
y + lfF

f
x sδ, (7)

where cφ, sφ are short for cos(φ) and sin(φ), and similarly for cδ, sδ. Further, m
is the vehicle mass, h is the height of the center of mass, Izz is the vehicle inertia
about the z-axis, ∆Iyz = Iyy−Izz, ψ̇ is the yaw rate, φ is the roll angle, δ is the
steering angle measured at the wheels, vx, vy are the longitudinal and lateral
velocities, lf , lr are the distances from the center of mass to the front and rear
wheel base, Fx, Fy are the longitudinal and lateral forces acting on the front
and rear wheels, and FX , FY and MZ are the resulting tire forces and moment.
The roll dynamics is derived by assuming that the suspension system can be
modeled as a spring-damper system—i.e., a dynamic system with stiffness Kφ

and damping Dφ.

2.2 Wheel Modeling

The wheel dynamics is given by

Ti − Iwω̇i − F ixRw = 0 , i = f, r. (8)

Here, ωi are the front and rear wheel angular velocities, Ti are the driving/braking
torques, Iw is the wheel inertia, and Rw is the wheel radius. Slip angles αf , αr
and slip ratios κf , κr are introduced following (Pacejka, 2006), and are described
by

αf = δ − atan

(

vy + lf ψ̇

vx

)

, (9)

αr = −atan

(

vy − lrψ̇

vx

)

, (10)
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κf =
Rwωf − vx,f

vx,f
, (11)

κr =
Rwωr − vx,r

vx,r
, (12)

vx,f = vx cos(δ) + (vy + lf ψ̇) sin(δ), (13)

vx,r = vx. (14)

The vehicle and wheel parameters used in this study are presented in Table 1.
The nominal tire forces—i.e., the forces under pure slip conditions—are

computed with a simplified Magic Formula model (Pacejka, 2006), given by

F ix0 = µxF
i
z sin(C

i
xatan(B

i
xκi − Eix(B

i
xκi − atanBixκi))), (15)

F iy0 = µyF
i
z sin(C

i
yatan(B

i
yαi − Eiy(B

i
yαi − atanBiyαi))), (16)

F iz = mg(l − li)/l, i = f, r, where l = lf + lr. (17)

In (15)–(17), µx and µy are the friction coefficients and B, C, and E are model
parameters. Combined slip is modeled using the weighting functions presented
in (Pacejka, 2006):

Bixα = Bix1 cos(atan(B
i
x2κi)), (18)

Gixα = cos(Cixαatan(B
i
xααi)), (19)

F ix = F ix0G
i
xα, (20)

Biyκ = Biy1 cos(atan(B
i
y2αi)), (21)

Giyκ = cos(Ciyκatan(B
i
yκκi)), (22)

F iy = F iy0G
i
yκ, i = f, r. (23)

In contrast to (15)–(23), a more complete form is presented in (Pacejka, 2006).
However, since a single-track vehicle model is utilized here, the tire models have
been recomputed such that they are symmetric with respect to the slip angle α
and the slip ratio κ.

2.3 Tire-Force Characteristics and Model Calibration

In an optimal maneuver the tires are performing at their limits, thus implying
the need for accurate tire modeling. Given a set of tire parameters for a nomi-
nal surface, (Pacejka, 2006) proposes to use scaling factors, λj , in (15)–(23) to
describe different road conditions. This method was used in (Braghin et al.,
2006), where the scaling factors representing surfaces corresponding to dry as-
phalt, wet asphalt, snow, and smooth ice were estimated based on experimental
data. Since that study included a set of different tire brands and models, the
results presented could be seen as a general indication, or at least be used as
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Table 1: Vehicle parameters used in (1)–(14).

Notation Value Unit

lf 1.3 m
lr 1.5 m
m 2 100 kg
Ixx 765 kgm2

Iyy 3 477 kgm2

Izz 3 900 kgm2

Rw 0.3 m
Iw 4.0 kgm2

g 9.82 ms−2

h 0.5 m
Kφ 178 000 Nm(rad)−1

Dφ 16 000 Nms(rad)−1

guidelines, on how the tire characteristics will vary. We use the scaling factors
from (Braghin et al., 2006) as a basis for calibrating tire models approximately
corresponding to the force characteristics on the different surfaces. However,
since the nominal tire parameters used in that paper are not public domain, we
use the parameters from (Pacejka, 2006) to represent dry asphalt. The relative
scaling factors, with respect to dry asphalt, are introduced according to

λdry = 1, λwet =
λ∗wet

λ∗dry
, λsnow =

λ∗snow
λ∗dry

, λice =
λ∗ice
λ∗dry

, (24)

where λ is the scaling factor used in this paper and λ∗ is the scaling factor
presented in (Braghin et al., 2006). Since a different set of nominal parameters
are used, and since uncertainties in the estimation of the original scaling factors
exist—especially for larger slip values—some inconsistent characteristics appear
for the snow and ice models. The original snow model will produce a longitudinal
force Fx that changes sign for large slip ratios, which is avoided by adjusting
the scaling factor for Cx. For the ice model, multiple sharp and narrow peaks
in the resultant force occur. This is adjusted by recomputing the scaling factor
affecting (21), as well as the parameters Bx2 and By2. In addition, the lateral
curvature factor Ey is adjusted to smoothen the sharp peak originating from the
relations in (15)–(16), which contributes to the inconsistencies in the resultant
force. The complete set of tire model parameters used are provided in Table 2.
Several of these parameters are dependent on the normal force Fz on the wheel.
Hence, the front and rear parameter values differ—e.g., the friction coefficients
µx,f and µx,r.
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Table 2: Tire model parameters used to represent dry asphalt, wet asphalt,
snow, and smooth ice.

Parameter Dry Wet Snow Ice

µx,f 1.20 1.06 0.407 0.172
µx,r 1.20 1.07 0.409 0.173
Bx,f 11.7 12.0 10.2 31.1
Bx,r 11.1 11.5 9.71 29.5

Cx,f , Cx,r 1.69 1.80 1.96 1.77
Ex,f 0.377 0.313 0.651 0.710
Ex,r 0.362 0.300 0.624 0.681
µy,f 0.935 0.885 0.383 0.162
µy,r 0.961 0.911 0.394 0.167
By,f 8.86 10.7 19.1 28.4
By,r 9.30 11.3 20.0 30.0

Cy,f , Cy,r 1.19 1.07 0.550 1.48
Ey,f -1.21 -2.14 -2.10 -1.18
Ey,r -1.11 -1.97 -1.93 -1.08

Cxα,f , Cxα,r 1.09 1.09 1.09 1.02
Bx1,f , Bx1,r 12.4 13.0 15.4 75.4
Bx2,f , Bx2,r -10.8 -10.8 -10.8 -43.1
Cyκ,f , Cyκ,r 1.08 1.08 1.08 0.984
By1,f , By1,r 6.46 6.78 4.19 33.8
By2,f , By2,r 4.20 4.20 4.20 42.0
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3 Optimal Control Problem

The time-optimal hairpin maneuver problem is formulated as an optimization
problem on the time-interval t ∈ [0, tf ]. The vehicle dynamics presented in
the previous section is formulated as a differential-algebraic equation system
(DAE) in the differential variables (states) x, algebraic variables y, and the
inputs u = (T, δ), according to ẋ = G(x, y, u), and similarly for the tire dy-
namics, h(x, y, u) = 0. Introducing the maximum and minimum limits on the
driving/braking torques and the steering angle, the mathematical optimization
problem can be stated as follows:

minimize tf (25)

subject to Ti,min ≤ Ti ≤ Ti,max, i = f, r (26)

|δ| ≤ δmax , |δ̇| ≤ δ̇max (27)
(

Xp

Ri1

)6

+

(

Yp
Ri2

)6

≥ 1 (28)

(

Xp

Ro1

)6

+

(

Yp
Ro2

)6

≤ 1 (29)

x(0) = x0 , x(tf ) = xtf (30)

y(0) = y0 , y(tf ) = ytf (31)

ẋ = G(x, y, u) , h(x, y, u) = 0, (32)

where x0, y0 and xtf , ytf are the initial and final conditions, and (Xp, Yp) is
the position of the center-of-mass of the vehicle. The track constraint for the
hairpin turn is formulated using two super-ellipses. In the implementation, the
initial and final conditions are only applied to a subset of the variables.

The strategy for solving the optimal control problem is to use numerical
methods for dynamic optimization. First, considering the setup of the hair-
pin turn, it can be concluded from a physical argument that existence of a
solution is guaranteed. In this study, we utilize the open-source software JMod-
elica.org (Åkesson et al., 2010), interfaced with the interior-point NLP-solver
Ipopt (Wächter and Biegler, 2006), for solving the optimization problem. A di-
rect collocation method (Biegler et al., 2002) is employed for discretization of the
continuous-time optimal control problem. In order to achieve convergence in the
NLP-solver, the hairpin turn problem is divided into smaller segments and thus
solved in 4–8 steps sequentially, where the previous solution is used as an initial
guess to the subsequent optimization problem. The final optimization solves
the whole problem, thus not implying any suboptimality of the solution. From
a numerical perspective, proper scaling of the optimization variables turned out
to be essential for convergence. For details about the optimization methodology,
the reader is referred to (Berntorp et al., 2013).
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Figure 3: Variables of the vehicle model during the time-optimal hairpin ma-
neuver on the different surfaces, plotted as function of the driven distance s.
The color scheme is as follows: dry asphalt–blue, wet asphalt–red, snow–green,
and smooth ice–black.
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4 Results

The optimization problem (25)–(32) was solved for each of the surface models
presented in Sec. 2. The road was 5 m wide. The bounds on the driving/braking
torques and tire forces were chosen as follows:

Tf,min = −µx,fF
f
z Rw , Tf,max = 0, (33)

Tr,min = −µx,rF
r
zRw , Tr,max = µx,rF

r
zRw, (34)

|F ix| ≤ µx,iF
i
z , (35)

|F iy| ≤ µy,iF
i
z , i = f, r, (36)

assuming that the vehicle is rear-wheel driven. Note that the bounds (35)–(36)
on the forces were set for easier convergence, but are mathematically redundant.
With the choice of the maximum driving/braking torques in (33)–(34), we intro-
duce a dependency on the surface. This is motivated since the surface models
adopted in this paper are only identified, and hence validated, for a certain
region in the κ–α plane. Thus, allowing excess input torques might result in
inconsistent behavior of the tire force model. Further, from a driver limitation
argument the steering angle and steering rate were constrained according to

δmax = 30 deg , δ̇max = 60 deg/s.

In addition, we constrained the wheel angular velocities ωf , ωr to be nonnegative—
i.e., the wheels were not allowed to roll backwards or back-spin.

With an initial velocity of 25 km/h, the results displayed in Figure 3 are
obtained. For comparison of the different surfaces, the model variables are
visualized as function of the driven distance s instead of time. Further, the
geometric trajectories corresponding to these control strategies are presented in
Figure 4. We also use the force–slip tire characteristic surfaces as a basis for
analysis, as introduced in (Berntorp et al., 2013) and hereafter referred to as
Force-Slip (FS)-diagrams. This 3D surface is defined as the resulting force

Fi,res =
√

(F ix)
2 + (F iy)

2, i = f, r,

as function of the longitudinal slip κ and slip angle α. Plotting the optimal
trajectory in this surface for both front and rear wheel, respectively, gives an
effective presentation of the tire utilization in two plots, see Figures 5–8. The
time for execution of the maneuver is 8.48 s, 8.79 s, 13.83 s, and 19.18 s for dry
asphalt, wet asphalt, snow, and smooth ice, respectively.

4.1 Discussion of Characteristics on Different Surfaces

The geometric trajectories of the vehicle center-of-mass, shown in Figure 4, are
close to each other for the different surfaces. This result might be unexpected,
given the different surface characteristics. However, if comparing the paths
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Figure 5: The resulting tire forces for the dry asphalt model. The front tire
force is shown in blue and the rear tire force is shown in red. The rear tire force
exhibits more variation, caused by the vehicle being rear-wheel driven.

−0.4
−0.2

0
0.2

0.4
0.6

−0.5

0

0.5

0

5000

10000

15000

−0.4
−0.2

0
0.2

0.4
0.6

−0.5

0

0.5

0

5000

10000

15000

F
f
,r
e
s

[N
]

F
r
,r
e
s

[N
]

α [rad]α [rad]
κ [1]κ [1]

Figure 6: The resulting tire forces for the wet asphalt model.
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Figure 7: The resulting tire forces for the snow model.
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Figure 8: The resulting tire forces for the smooth ice model.
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for other parts of the vehicle, such as the front or rear wheel, more pronounced
differences are seen as a result of the different slip behavior. Obviously, the time
for completing the maneuver is longer for the snow and ice surfaces than for
asphalt. This is a result of the tire forces that can be realized on these surfaces.
Further, the vehicle exhibits large slip in the critical part of the maneuver on
all surfaces except smooth ice. The reason for this difference becomes evident
when examining the force characteristics of the smooth ice model compared to,
e.g., the dry asphalt model. In Figures 9 and 10 the longitudinal and lateral
tire forces are shown for these surfaces, cf. Figures 5 and 8. The tire forces
for smooth ice exhibit a considerably sharper peak and thus decay faster, with
respect to combined slip, than for dry asphalt. This means that combined
slip yields a significantly smaller resultant force. Thus, to achieve the desired
time-optimality on the ice surface, it is natural to choose a small-slip control
strategy.

Comparison of Control Strategies

The internal variables of the vehicle model during the maneuver, see Figure 3,
are similar for dry and wet asphalt. The similarity is expected, considering the
tire force characteristics in the two cases. As anticipated, the major difference
between the two surfaces is the time for execution of the maneuver, which is
slightly longer for the wet asphalt surface. This is expected since the maximum
tire forces are lower than for dry asphalt.

The differences between asphalt, snow, and ice when considering the control
strategy are fundamental. First, it can be concluded that the optimal maneuver
on snow and ice surfaces are more proactive in the sense that both the steering
angle δ and braking forces are applied considerably earlier when approaching
the hairpin. This is most certainly an effect of the significantly reduced tire
forces that can be realized on these surfaces compared to asphalt. The steering
angle also differs between ice and the other surfaces. The reason for this is that
the vehicle employs counter-steering when it starts to slip on asphalt and snow
as it approaches the hairpin. Further, we see that the roll angle is considerably
smaller for the low-friction surfaces, which is caused by the torque about the
roll axis (produced by the tire forces) being smaller. Moreover, even on dry
asphalt the roll angle is kept below approximately 3.2 deg, verifying that no
unstable modes are excited. The slip ratio κ differs in amplitude between the
road-surfaces. The reason becomes clear when investigating the FS-diagrams
and the corresponding tire utilization, Figures 5–8. The peak of the resultant
force in the κ–α plane occurs at smaller slip values for ice, which implies a
control solution with smaller slip angles for minimum-time.

Discussion on Tire Model Calibration

An integral part of the vehicle model is the tire characteristics. Consequently,
different approaches to model calibration were investigated prior to the study.
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Figure 9: Front tire forces in the longitudinal and lateral wheel directions for
dry asphalt, corresponding to Figure 5.
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One approach would be to only scale the friction coefficients µx and µy, as done
in (Chakraborty et al., 2011). However, the peaks in the tire-force surfaces
occur at different lateral and longitudinal slip combinations, see Figures 5–8.
Also, the sharpness and width of the maxima and minima change for the dif-
ferent models. Thus, only changing the friction coefficients will render different
force characteristics—and thus different optimal solutions—compared to when
changing the complete set of parameters. This is verified by constructing a tire
force model where the dry asphalt parameters are used together with the fric-
tion coefficients corresponding to ice. Performing the optimization gives that
the optimal solution has significant slip, on the contrary to the results obtained
for the empirical smooth-ice model; see Figure 11 for the results obtained by
scaling the friction coefficients only. Another approach to tire model calibration
is to scale the slip stiffness (i.e., the parameters Bx and By in (15)–(17)) in ad-
dition to the friction coefficients. This will change both the inclination and the
slip value where the maximum tire force is attained. However, adjusting these
parameters without considering the parameters corresponding to combined slip
will, in this case, result in multiple sharp and narrow peaks in the resultant
force, which might be unrealistic from a physical point-of-view.

5 Conclusions

Optimal vehicle maneuvers under varying road conditions give valuable insight
into the dynamics when the vehicle performs at the limit. One observation was
that tire-force modeling on different road surfaces using only a scaling of the
friction coefficients is insufficient for the maneuver considered, at least when the
tires perform at their limits. Rather, when combined longitudinal and lateral
slip is present, more careful tire modeling may be required. The minimum-time
hairpin maneuver, using tire models representing different road surfaces, gave
as a first major observation that the path through the turn was almost the
same independent of different road-surface characteristics, such as dry asphalt
or ice. Of course, the total execution time is longer on ice than asphalt, but
there are also other differences which lead to the second major conclusion: The
optimal driving techniques—i.e., the control actions—are fundamentally differ-
ent depending on tire-road characteristics. This is an important finding since
it implies that in order to enjoy the full benefits of improved sensor informa-
tion, future safety systems will need to be more versatile than systems of today.
Further, that the path of the vehicle center-of-mass is almost invariant gives
inspiration to look for strategies based on path formulations when approaching
the goal of developing new model-based vehicle safety systems more robust to
road-surface uncertainties.
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Figure 11: Optimal hairpin maneuver on ice for two tire model parametrizations:
Scaling of friction coefficients (left) and empirical tire model (right). Scaling of
µ only renders an optimal solution with large slip.
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