
A Java Package for Simulation of
Combustion Engines

Master’s thesis
performed in Vehicular Systems

by
Johan Gill

Reg nr: LiTH-ISY-EX-3342-2003

5th February 2003

A Java Package for Simulation of
Combustion Engines

Master’s thesis

performed in Vehicular Systems,
Dept. of Electrical Engineering

at Linköpings universitet

by Johan Gill

Reg nr: LiTH-ISY-EX-3342-2003

Supervisor: Gunnar Cedersund
Linköpings Universitet

Examiner: Assistant professor Lars Eriksson
Linköpings Universitet

Linköping, 5th February 2003

Avdelning, Institution
Division, Department

Datum
Date

Spr̊ak

Language

� Svenska/Swedish

� Engelska/English

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�
URL för elektronisk version

ISBN

ISRN

Serietitel och serienummer
Title of series, numbering

ISSN

Titel

Title

Författare
Author

Sammanfattning
Abstract

Nyckelord
Keywords

A design and implementation in Java of a one-cylinder combustion en-
gine simulation system using a zero dimensional multi-zone in-cylinder
model is described. Simulation results and speed are compared between
this system and a system implemented in Matlab and Simulink using
the same mathematical model, and the functionality of the two systems
is also briefly discussed. Furthermore, the extendibility and maintain-
ability of the Java system are commented and some demonstrations of
the multi-zone functionality are done. Suggestions for future work are
also given.

Vehicular Systems,
Dept. of Electrical Engineering
581 83 Linköping

5th February 2003

—

LITH-ISY-EX-3342-2003

—

http://www.vehicular.isy.liu.se
http://www.ep.liu.se/exjobb/isy/2003/3342/

A Java Package for Simulation of Combustion Engines

Ett javapaket för simulering av förbränningsmotorer

Johan Gill

××

engine, java, model, simulation, zone

Abstract

A design and implementation in Java of a one-cylinder combustion en-
gine simulation system using a zero dimensional multi-zone in-cylinder
model is described. Simulation results and speed are compared between
this system and a system implemented in Matlab and Simulink using
the same mathematical model, and the functionality of the two systems
is also briefly discussed. Furthermore, the extendibility and maintain-
ability of the Java system are commented and some demonstrations of
the multi-zone functionality are done. Suggestions for future work are
also given.

Keywords: engine, java, model, simulation, zone

v

vi

Contents

1 Introduction 1
1.1 Objectives . 1
1.2 Thesis Outline . 1

2 Theory 3
2.1 Purpose of the Model 3
2.2 The Four-stroke Combustion Engine 3
2.3 The Model . 4

3 Design 7
3.1 Java Essentials . 7
3.2 Janet Essentials . 8
3.3 Building Blocks . 8
3.4 Parameters . 10

4 Implementation 11
4.1 Janet Revisited . 11
4.2 Implementation Classes 12
4.3 Format of Parameter Files 16

5 Comparison and Results 17
5.1 Matlab and Simulink . 17
5.2 The PS Implementation 17
5.3 Simulation Setup . 17
5.4 Speed Comparison . 18
5.5 Result Comparison . 18
5.6 Functionality . 19
5.7 Extendibility and Maintainability 19
5.8 Multi-zone simulation 22

6 Future Work 25
6.1 Work Already Planned 25
6.2 Other Suggestions . 26

vii

7 Conclusions 27
7.1 Summary . 27
7.2 Conclusions . 28

References 31

Notation 33

A Package zonal 35
A.1 Controller . 35
A.2 Cylinder . 39
A.3 Fuel . 44
A.4 Geometry . 45
A.5 Zone . 46

B Contents of Parameter Files 53
B.1 Geometry Parameters 53
B.2 Simulation Parameters 54

viii

Chapter 1

Introduction

Pressure simulation of a combustion engine is a powerful tool for engine
researchers worldwide because of its usefulness for analysing new de-
signs before putting a prototype together. This report covers a design
of a system for such simulation, aimed at implementation on the Java
platform, and an implementation of the design. The implementation
relies on a multi-zone model of a cylinder.

There already exists a Matlab implementation using the same model,
but that implementation only supports two zones. This becomes a
problem when more detailed spatial information is wanted, since the
zones are considered homogeneous. Increasing the number of zones in-
creases the spatial resolution of the model, making analyses possible
that otherwise would not be accessible.

1.1 Objectives

The main objective is to design and implement in Java a simulation of
the compression and combustion strokes of a spark-ignited combustion
engine, using a specified multi-zone model. To handle the differential
equation system in the model, the Janet package is to be used.

1.2 Thesis Outline

In chapter 2 the underlying combustion model is covered. Chapter 3
lays out the design of an object-oriented simulation system which uses
that model, and also presents some Janet information useful in un-
derstanding the design. Chapter 4 presents an implementation of the
design. The Matlab system used as reference for comparison is in-
troduced in chapter 5, which also contains the comparison itself. Some

1

2 Introduction

suggestions for future work are given in chapter 6. Chapter 7 concludes
the thesis.

The interfaces presented in chapter 3 are described in more detail
in appendix A. Appendix B lists parameters used in the simulations
presented in this work.

Chapter 2

Theory

In this chapter, the operating cycle of a four-stroke combustion engine is
described, and the mathematical model used for the simulation system
in this thesis is given.

2.1 Purpose of the Model

The model is supposed to facilitate simulation of the operating cycle
of spark-ignited combustion engines. Although the model is usable for
parts of the operating cycle for two-stroke engines, that case will not
be covered here.

2.2 The Four-stroke Combustion Engine

Most cars have a four-stroke combustion engine. It is a reciprocating
engine, meaning it has one or more cylinders with a piston moving back
and forth inside each one of them. In a four-stroke combustion engine,
the piston is connected to a crank with a connecting rod. The basic
geometry of one such cylinder is given in figure 2.1.

The operating cycle of a four-stroke combustion engine has four
strokes, as the name implies. They are as follows.

Intake

The piston moves downwards, making fuel and air flow into the com-
bustion chamber.

3

4 Chapter 2. Theory

BDC

TDC

Figure 2.1: Basic geometry of a four-stroke combustion engine.

Compression

The mixture is compressed as the piston moves upwards. Pressure and
temperature increases.

Combustion

Also called the Power Stroke. A spark plug ignites the mixture. The
combustion makes the pressure rise, and the piston is forced downwards.
Hence, chemical energy is transformed into mechanical energy.

Exhaust

The piston goes up again, forcing the burned gases out of the chamber.

2.3 The Model

A zone is a part of the combustion chamber. Two zones can not overlap.
A zone contains either unburned or burned fuel. Consider a cylinder
with N zones. Let t denote the time passed since the crank angle was
0. The combustion chamber has a certain pressure p(t), volume V (t)
and temperature T (t). It is assumed that the mass flow rate dmij

dt from
zone j to zone i is known, for every pair of zones (i, j). Each zone i
has its own volume Vi(t), as expected, but also a temperature Ti(t).
This is because the zone is assumed to be homogeneous. Using this
assumption, a homogeneous combustion chamber can be modelled by
using a model with one zone.

Thus, the cylinder state can be described by the combination of the
vector

x(t) = (p, V1, T1, V2, T2, . . .).

and the mass flow information.

2.3. The Model 5

In this work, only the compression stroke and the combustion stroke
are simulated. To simulate them, the system of ordinary differential
equations Aẋ(t) = B, with A and B defined below, is solved for the
initial time tivc and with an initial state believed to be a good approx-
imation of x(tivc). No mass flow exists at this point.

A =

0 1 0 . . . 1 0
a1 p b1 . . . 0 0
c1 p d1 . . . 0 0
...

...
...

. . .
...

...
aN 0 0 . . . p bN

cN 0 0 . . . p dN

B =

dV
dt

R1T1

∑
i6=1

dm1i

dt
∂Q1
∂t +

∑
i6=1(h1i − h1 + R1T1)dm1i

dt
...

RNTN

∑
i6=1

dmNi

dt
∂QN

∂t +
∑

i6=N (hN i − hN + RNTN)dmNi

dt

with

ai = Vi(1 − p
Ri

(∂Ri

∂p)Ti
)

bi = −mi(Ri + Ti(∂Ri

∂Ti
)p)

ci = −miTi(Ti

p (∂Ri

∂Ti
)p + (∂Ri

∂p)Ti
)

di = mi(cp − Ri − Ti(∂Ri

∂Ti
)p)

∂Qi

∂t is the heat transfer rate from zone i to the cylinder walls. It is
calculated as Aih(T−Tw), where Ai is the cylinder contact area for zone
i and h can be determined in many ways. Chapter 12 of Heywood’s
classic [5] gives more information on heat transfer, and [6] is a book
fully devoted to heat transfer. A full derivation of the overall model is
given in [3], available from the Vehicular Systems division on Linköping
University.

6

Chapter 3

Design

In this chapter two Java terms are explained and some Janet informa-
tion is given. A design of an object-oriented simulation system using
the theory given in chapter 2 is then presented.

3.1 Java Essentials

Java is an object-oriented programming language developed by Sun
Microsystems. Some concepts related to Java will be explained here
since they are frequently used in this chapter. An in-depth coverage
of Java is beyond the scope of this report, but there are numerous
sources of information available. Sun Microsystems has a web site with
developer information at [8]. [4] is a book on object-oriented analysis
and design.

To implement an interface

A class C implements an interface I if both conditions below hold.

• C has defined all methods and fields contained in I.

• C claims to implement I.

Interface

An interface in Java is a description of methods and fields that have to
be present in every class implementing the interface. It is often used
to ensure certain functionality in a class, or to signal that a class has a
certain property.

7

8 Chapter 3. Design

3.2 Janet Essentials

Janet is a set of Java classes and interfaces developed at the Depart-
ment of Physics at DTU, Denmark. The purpose of Janet is to help
doing analyses of discrete and time continuous dynamical systems. The
interfaces used in the design will be described here. The official web
site of Janet is [7].

NonAutonomous

This interface must be implemented by any class representing a time
dependent dynamical system.

TimeConscious

This interface signals that the implementing class is conscious about
time, and declares methods to get and set time.

TimeContinuous

This interface must be implemented by any class representing a time
continuous dynamical system.

VectorType

This interface gives access to various vector operations. The simulation
system uses it to store state vectors.

3.3 Building Blocks

It was decided to have five modules in the design. Five Java inter-
faces corresponding to the modules were created. The interfaces are
presented below, with their methods listed. For a description of the
methods, see appendix A. Figure 3.1 shows the relations between the
modules.

Controller

This is the interface to the simulation control. It handles things like
running the simulation and obtaining simulation data. Note that sim-
ulation details like the amount of zones and cylinders to use depend on
the implementation. Simulation parameters and geometry parameters
make it easy to change the simulation situation without changing the
actual code. Parameters are explained in section 3.4. Controller in-
herits the interface TimeConscious from Janet, since it is aware of the

3.3. Building Blocks 9

Geometry

Controller

Cylinder

Zone

Fuel

Figure 3.1: The relations implied by the interface definitions. A class
implementing an interface at the tail of an arrow has access to the class
implementing the interface at the head.

current simulation time. The methods in this interface are getCylin-
der, numberOfCylinders, setFuel, setGeometry, getGeometryParame-
ter, setGeometryParameter, getInitialTimestep, plot, run, getSimula-
tionParameter, setSimulationParameter, getState, getStates and get-
TimeVector.

Cylinder

Every Cylinder implementation has means to manage zones and the
mass flows between them. Cylinder also contains the equation sys-
tem to be solved, so changes to the combustion theory will result in
changes to the implementation of this interface. Simulation- and ge-
ometry parameters local to the cylinder are manipulated here as well.
Cylinder extends the Janet interfaces NonAutonomous and TimeCon-
tinuous, since it contains the system to be solved. The methods in this
interface are getController, getFuel, setFuel, getGeometry, setGeome-
try, getGeometryParameter, setGeometryParameter, getId, getMass-
flow, setMassflow, getSimulationParameter, setSimulationParameter,
getVibe, getDVibe, addZone, getZone and getZones.

Fuel

This interface declares methods for retrieval of thermochemical prop-
erties of the fuel being used. The methods in this interface are get-
BurnedProperties and getUnburnedProperties.

Geometry

This interface introduces methods related to the geometry of the cylin-
der. The point in having this separate interface is to make it easy

10 Chapter 3. Design

for an existing system to simulate engines of different geometries. A
change in geometry that goes beyond changing parameters is reflected
by exchanging the class implementing this interface. The methods in
this interface are getArea, getVolume and getDVolume.

Zone

A cylinder can have several zones of different types. This interface con-
tains methods to retrieve the thermochemical properties of a zone, to
manage neighbours of a zone and to divide a zone. Zone should typically
retrieve the thermochemical properties from Fuel. The implementation
covered in chapter 4 can be studied for an example of how this can
be done. The methods in this interface are getCylinder, divide, getId,
setId, addNeighbour, addNeighbours, getNeighbours, getBurnedNeigh-
bours, getUnburnedNeighbours, removeNeighbour, removeNeighbours,
getcp, getcv, getDHdp, geth, getMass, getM, getdQ, getDRdp, get-
DRdT, getR, getPhiBurned, setPhiBurned, getPhiUnburned, setPhi-
Unburned, getResidualFraction and setResidualFraction.

3.4 Parameters

A parameter is a property whose value is not determined when an
implementation of the system is compiled. An implementation can
store a parameter for example on disk or in a database. There are two
primary kinds of parameters supported by the design:

• Geometry parameters
Parameters like crank radius and bore should go here.

• Simulation parameters
Parameters not related to the geometry, angular velocity for in-
stance, should go here.

It is quite common that different cylinders have somewhat different pa-
rameters as long as the geometry is not involved. The design supports
this, by having parameter methods in Cylinder. A Cylinder implemen-
tation not supporting this could just call the corresponding Controller
methods. It is less common to have different geometries among cylin-
ders in one engine, but there are such parameter methods in Cylinder
as well.

Chapter 4

Implementation

This chapter describes an implementation of the system described in
chapter 3. The source code can be obtained from the web page [1].

4.1 Janet Revisited

To understand the implementation better, some more Janet interfaces
and classes are covered.

MatrixType

This interface makes various matrix operations available.

RungeKuttaPairIntegrator

This is a pair of explicit Runge Kutta integrators of order four and five.
The maximum absolute and relative differences between the results of
the two integrators are given by the user and if any difference would ex-
ceed the specified value, the time step is reduced and a new integration
is attempted. The principles of Runge Kutta integrators are covered in
the Numerics book [2], chapter 10.

StandardRungeKutta4Integrator

StandardRungeKutta4Integrator implements the standard fourth order
explicit Runge Kutta integrator. This integrator has a fixed time step,
which introduces the risk that errors get larger than acceptable.

11

12 Chapter 4. Implementation

4.2 Implementation Classes

An implementation of the design from chapter 3 is presented below.
A class diagram of the implementation can be seen in figure 4.1. In-
formation needed to run the program is found in the description of
SimulatorNZoneState.

SimulatorNZoneState

SimpleCylinder

AbstractZone

UnburnedZone

ParameterList

ParameterList
SimpleFuel

SimpleGeometry

BurnedZone

Figure 4.1: An implementation of the design. The class at the tail of
an arrow has access to the class at the head. BurnedZone and Un-
burnedZone extends the abstract class AbstractZone. There can be an
arbitrary amount of BurnedZone instances.

SimpleCylinder

SimpleCylinder implements Cylinder. It has a MatrixType which con-
tains the mass flow between every zone. The matrix has to be reallo-
cated for every zone added to the cylinder. An alternative approach
could be allocating a larger matrix than needed at first and then also al-
locate more than needed when space runs out, or calculating the needed
size directly.

SimpleFuel

This is an implementation of Fuel. On creation it reads the files burned
and unburned, which contain the tables found in the global variables
CHEMPROPB and CHEMPROPU used in the PS implementation
(section 5.2). A sequence of Matlab commands to generate the files
from the initialised PS implementation is

fdunburned = fopen(’unburned’, ’w’);
fwrite(fdunburned, CHEMPROPU.cpu, ’float64’);
fwrite(fdunburned, CHEMPROPU.hu, ’float64’);

4.2. Implementation Classes 13

fwrite(fdunburned, CHEMPROPU.Mu, ’float64’);
fwrite(fdunburned, CHEMPROPU.T, ’float64’);
fwrite(fdunburned, CHEMPROPU.phi, ’float64’);
fclose(fdunburned);
fdburned = fopen(’burned’, ’w’);
fwrite(fdburned, CHEMPROPB.cpb, ’float64’);
fwrite(fdburned, CHEMPROPB.cvb, ’float64’);
fwrite(fdburned, CHEMPROPB.hb, ’float64’);
fwrite(fdburned, CHEMPROPB.Mb, ’float64’);
fwrite(fdburned, CHEMPROPB.dhbdp, ’float64’);
fwrite(fdburned, CHEMPROPB.dRbdp, ’float64’);
fwrite(fdburned, CHEMPROPB.dRbdT, ’float64’);
fwrite(fdburned, CHEMPROPB.T, ’float64’);
fwrite(fdburned, CHEMPROPB.p, ’float64’);
fwrite(fdburned, CHEMPROPB.phi, ’float64’);
fclose(fdburned);

When the properties are requested, they are looked up in the tables.
If the properties for a certain set of variables are not present in the
tables, they are guessed by interpolation.

SimpleGeometry

This is an implementation of Geometry. It contains functions that
depend on the engine geometry. In this implementation there is only
one cylinder, and even with multiple cylinders the geometry would
probably be shared, but it is possible to have different cylinders access
different Geometry implementations.

AbstractZone

This is the base class for all zones in this implementation. It implements
Zone methods for neighbour handling and heat transfer. The heat
transfer is calculated as in the PS implementation, except for the case
of more than two zones. In that case, the cylinder contact area for
a burned zone is calculated as the contact area to burned fuel in the
2-zone case divided by the number of burned zones.

A method devised by Woschni to calculate h is used. This method
is described in Woschni’s article [9].

BurnedZone

This class implements Zone methods that return thermochemical prop-
erties for a burned zone. For each time step, the thermochemical prop-
erties are retrieved from SimpleFuel if they are not already present.
The desired property is then returned.

14 Chapter 4. Implementation

UnburnedZone

This class implements Zone methods that return thermochemical prop-
erties for a burned zone. For each time step, the thermochemical prop-
erties are retrieved from SimpleFuel if they are not already present.
The desired property is then returned.

ParameterList

This class is used to handle parameters. Every instance reads a file
when constructed and puts every name-value pair in a HashMap. If any
value is an expression, an instance of Janet.ExpressionParser parses it
so a numerical value can be put into the HashMap. This implementa-
tion holds two instances of ParameterList.

SimulatorNZoneState

This is an implementation of Controller, and also has a main method
so it can be run. The syntax is java SimulatorNZoneState numZones

integrator .
numZones should be replaced by the number of zones the user wants

to allocate space for. The simulation parameter volumeLimit gives the
volume limit at which a burned zone is divided.

integrator should be 1 to run the simulation with a Standard-
RungeKutta4Integrator, and 2 if a RungeKuttaPairIntegrator should
be used.

The files simulation.txt, engine.txt, burned and unburned must
be present in the current working directory.

Two instances of ParameterList are created. One instance holds
geometry parameters and reads the file engine.txt. The other instance
holds simulation parameters and reads simulation.txt.

The simulation starts at the time given by the simulation parameter
tStart with a single zone, to handle compression. The initial value of
the pressure is 59255.7 Pa, the initial value of the volume is the volume
returned by getVolume(w*tStart), where w is the simulation parame-
ter determining the angular velocity of the crank, and the initial value
of the temperature is 350. getVolume is contained in SimpleGeome-
try, of which one instance is created and passed to the constructor of
SimpleCylinder.

When the getVibe method in SimpleCylinder returns a value greater
than zero, combustion starts. An instance of BurnedZone is created
and a mass flow is established between the two zones. The mass flow is
then changed every time step since it is calculated as getDVibe*angular
velocity*(mass of unburned zone+mass of first burned zone). This

4.2. Implementation Classes 15

is not really right if there is more than one burned zone. Appendix
section A.2 has more information on getVibe and getDVibe.

Let the state vector before the start of combustion be (p0, V0, T0).
The initial state vector (p, V1, T1, V2, T2) of the new system is

(p0, (1 − initFrac) · V0, T0, initFrac · V0, T0 + deltaTad · (1 − 0.109) · 0.995)

where initFrac is the value of the simulation parameter named
initBurnedVolFrac and deltaTad is the value of the simulation param-
eter deltaT ad. Appendix B contains the values of these parameters.

A BurnedZone is divided if its volume after an integration exceeds
the value of the volumeLimit simulation parameter. The division strat-
egy is to keep the original temperature, but give both zones resulting
from the division half the original volume and to let the new zone get all
burned neighbours of the zone getting divided, making the zone getting
divided lose all burned neighbours. Research is needed to determine
whether the strategy is good enough.

When the time reaches the value of the simulation parameter tStop,
the simulation ends and three files are written to the current working
directory. states contains the saved state vectors in a format that
Matlab can read, time contains the saved times in the same format
and states.info is a text file containing some information about the
two other files. states.info can for example look like this:

Number of rows 280
Number of columns 5
Start time 0.051923545246831244
Stop time 0.07356562797156091
Initial timestep 2.0E-5
maxStep 8.0E-5
volumeLimit 0.0020
[U1: Unburned neighbours: Burned neighbours: 2
, C2: Unburned neighbours: 1 Burned neighbours:
]

The following Matlab code opens, reads and closes the data files.

fid1 = fopen(’time’);
fid2 = fopen(’states’);
jtime = fread(fid1, 280, ’float64’);
jstates = fread(fid2, [280,5], ’float64’);
fclose(fid1);
fclose(fid2);

The last three lines in states.info might look a bit cryptic. It is
simply a printout of the zones in the cylinder. U1 means that zone 1 is

16 Chapter 4. Implementation

unburned, C2 means that zone 2 is burned (combusted). The number
2 at the end of one line means that zone 1 has the burned zone with id
2 as neighbour.

After the files are written, the user is asked what he or she wants to
plot. Strings accepted are documented in appendix section A.1, under
the method plot. Pressing Ctrl-C aborts the program.

4.3 Format of Parameter Files

A special file format has been defined for storage of the parameters. It
is as follows.

• A valid file consists of arbitrarily many triplet blocks.

• A triplet block consists of a comment block, a name, a type and
a value, in that order.

• A comment block consists of arbitrarily many comments.

• A comment is a line of text that begins with one of the characters
!”#$%&’()*+,-./:;<=>?@[\]ˆ ‘{—}˜.

• A name is a line of text that begins with a letter and contains
nothing but letters, numbers and the character .

• A type is a line containing only one word. The possible words are
double, string and expression.

• If the type is double, the value must be a string in a format that
matches a Java floating-point literal, followed by a line terminator
and preceded by an optional sign character.

• If the type is string, the value can be any line of text.

• If the type is expression, the value must be an expression that
can be parsed by a Janet ExpressionParser. Appendix B has
plenty of examples.

Chapter 5

Comparison and Results

In this chapter another implementation based on the theory in chapter 2
is introduced. Simulation speed and results from the two systems are
compared, and differences in functionality are briefly discussed. Some
words on the extendibility and maintainability of the Java implemen-
tation are given. In addition, some results from using more than two
zones in the Java implementation are presented.

5.1 Matlab and Simulink

Matlab is a program particularly useful for operations on matrices.
Simulink is an add-on package that makes it possible to define and
simulate dynamic systems easily.

5.2 The PS Implementation

The model presented in chapter 2 has also been implemented as a
Simulink model. From here on it is referred to as the PS implemen-
tation. The Vehicular Systems division of Linköping University has
access to this implementation.

5.3 Simulation Setup

If not stated otherwise, the simulations were run with the Janet inte-
grator RungeKuttaPairIntegrator, which is an integrator with variable
time step. The maximum relative error was set to 10−9. Appendix B
lists the parameters used during all simulations. No simulation has
additional parameters, but parameters may have values different from

17

18 Chapter 5. Comparison and Results

those listed in appendix B. When that is the case, it is noted in its
proper context.

The PS implementation was run using the Dormand-Prince integra-
tor, which uses the same principles as the RungeKuttaPairIntegrator,
and the maximum relative error was set to 10−9.

5.4 Speed Comparison

The PS implementation was hard to time because it simulates the whole
operating cycle. It should however be noted that it needs at least 10
minutes to simulate one full cycle. An older version of the implemen-
tation which only handles compression and combustion finishes the
simulation in 15–20 seconds.

The Java implementation took 14–15 seconds on the same machine
under approximately the same workload, so speed is not a problem so
far.

5.5 Result Comparison

Pressure, volume and temperature graphs from both implementations
are compared below.

Pressure

Figure 5.1 shows pressure obtained from both simulation systems. Ac-
cording to [3], the measured pressure in a real engine using the same
parameters is lower than the pressure given by the PS implementation.
If the PS pressure is used as reference, the end pressure from the Java
implementation has a relative difference of 4–5%.

Volume

The figures show good agreement between the two implementations.
Figure 5.2 shows no visible difference for unburned volume, and fig-
ure 5.3 confirms that the burned volumes agree well.

Temperature

The temperature of the unburned zone is compared in figure 5.4. Ob-
viously there is no significant difference there. However, as can be seen
in figure 5.5, the temperature of the burned zone is significantly higher
in the Java implementation. The relative difference at the end of sim-
ulation is 5%. This is logical since the pressure differs, and the volume
does not. To elaborate, since pVJava > pVPS and pV = mRT for an

5.6. Functionality 19

10 11 12 13 14 15
0

0.5

1

1.5

2

2.5

3
x 10

6

Crank angle (rad)

P
re

ss
ur

e
(P

a)

Java
PS

Figure 5.1: Cylinder pressure using two zones. The Java pressure is
slightly higher.

ideal gas it follows that mRTJava > mRTPS . The agreement between
relative differences for pressure and temperature tells that the mass
does not differ much between implementations.

5.6 Functionality

Two differences are notable regarding functionality offered.

• At the time of writing, the PS implementation can simulate the
whole operating cycle of a four-stroke combustion engine, while
the Java system can only simulate compression and combustion.

• The Java system can have arbitrarily many burned zones in the
simulation.

5.7 Extendibility and Maintainability

Some things can be noted regarding the Java implementation:

• The Java design consists of interfaces representing concrete con-
cepts like Cylinder and Fuel. If properly done, such a design
eases maintenance of the code since the components make it easy
to know where to change a certain detail.

• Some effort has gone into making it possible in the future to
simulate an engine with more than one cylinder, but the support
in place might be insufficient. See also the following point.

20 Chapter 5. Comparison and Results

10 11 12 13 14 15
0

1

2

3

4

5

6
x 10

−4

Crank angle (rad)

V
ol

um
e

(m
3)

Java
PS

Figure 5.2: The volume of the unburned zone is practically the same
in both implementations.

10 11 12 13 14 15
0

2

4

6
x 10

−4

Crank angle (rad)

V
ol

um
e

(m
3)

Java
PS

Figure 5.3: The volume of the burned zone is practically the same in
both implementations.

5.7. Extendibility and Maintainability 21

10 11 12 13 14 15
300

400

500

600

700

800

900

Crank angle (rad)

T
em

pe
ra

tu
re

 (
K

)

Java
PS

Figure 5.4: The temperature of the unburned zone is practically the
same in both implementations.

10 11 12 13 14 15
1400

1600

1800

2000

2200

2400

2600

2800

Crank angle (rad)

T
em

pe
ra

tu
re

 (
K

)

Java
PS

Figure 5.5: The temperature of the burned zone differs significantly.

22 Chapter 5. Comparison and Results

• The design is supposed to encourage implementations that do not
rely on internal details in other components. However, it comes
at the cost of having to modify at least one interface if a need for
more functionality in the design arises.

It should be noted that the PS implementation is also written with
maintainability and extendibility in mind, but without the direct con-
nection between objects in the program and physical objects in the
engine that is made possible with the Java design.

5.8 Multi-zone simulation

To demonstrate the multi-zone capabilities of the Java implementation,
and to show some remaining issues with it, figure 5.6 shows the pressure
graphs for 2 zones, 9 zones and 35 zones. The pressure gets lower with
many zones. This could be due to the way the contact area between
the zone and the cylinder walls is calculated. At the moment it is just
the value valid when using two zones, divided by the number of burned
zones.

Figure 5.7 shows the temperature of 34 burned zones at the end of
the 35 zone simulation previously used, as a function of the unburned
zone distance of every zone.

The unburned zone distance of a burned zone is 1 if it is a neighbour
of the unburned zone and more generally n if there are n-1 neighbours
between the burned zone and the unburned zone.

5.8. Multi-zone simulation 23

10 11 12 13 14 15
0

0.5

1

1.5

2

2.5

3
x 10

6

Crank angle (rad)

P
re

ss
ur

e
(P

a)

No limit (2 zones)
10−4 m3 (9 zones)
2*10−5 m3 (35 zones)

Figure 5.6: Pressures obtained when using different volume limits, re-
sulting in different amounts of zones.

0 2 4 6 8 10 12
1560

1570

1580

1590

1600

1610

1620

1630

Distance from unburned zone

T
em

pe
ra

tu
re

 (
K

)

Figure 5.7: Temperature as a function of the unburned zone distance.

24

Chapter 6

Future Work

In this chapter, some suggestions for future work will be given. This
includes possible development of the implementation and the model, as
well as usage of the data generated from the current implementation
and model.

6.1 Work Already Planned

At the time of writing there are two Master students, just about to start
on their projects, who both will do a more or less direct continuation
of this work. These projects are described below.

• Analysis of the chemical kinetics behind knock detection: Engine
knock is an unwanted state in the running engine. It means that
the flame is not spreading smoothly because the fuel ignites spon-
taneously due to high pressure. This can be highly damaging to
the engine, but unfortunately you usually get the most effect out
of the cycle right before the onset of knock. Therefore it is desir-
able to understand it as fully as possible. Given the data from the
model and implementation done in this thesis it is possible to do
a post-processing of the data (actually another simulation). This
will give the chemical composition in each zone and by compar-
ing different cycles, with and without knock, the critical reactions
can finally be identified.

• Zonal models for Ionisation Currents: In the gap between the two
ends of the place for the ignition there can sometimes flow a cur-
rent. There are some preliminary models for describing this phe-
nomenon where the current is modelled as a function of pressure
and temperature. These models are, however, not spatially ex-
tended and since the current is intrinsically a spatial phenomenon

25

26 Chapter 6. Future Work

(it’s a function of the distance between the two ends), this is a
fundamental lack in these models. The zonal model, and its im-
plementation developed in this thesis could, however, lay a basis
for the development of a zonal ionisation current model. Once
these are developed some of the time delays which create a current
mismatch between the experiments and models of ionisation cur-
rent might disappear. At the time of writing there is a Master’s
thesis just starting up, devoted to this question.

6.2 Other Suggestions

• Setting the mass flow more correctly between the unburned zone
and the first burned zone.

• Extension of the theory to divide in different ways. This requires
that the mass flows between zones currently said to have no mass
flow are studied in more detail.

• Implementation of the above given extension.

• Extension of the implementation to include the full cycle.

• Improved handling of the mass flow matrix in SimpleCylinder.

• Improved user interface.

• Extension of the model to include the full vehicle.

Chapter 7

Conclusions

This chapter consists of a summary of the work together with a restate-
ment of all the conclusions drawn.

7.1 Summary

The purpose of the thesis was to implement a given model for a com-
bustion engine in a Java environment, based on the simulation package
Janet. The theory behind the model can handle an arbitrary amount
of zones and the only existing implementation of it can handle only
two. Therefore, one of the main initial goals of the program was to use
the full capacity of the theory, i.e. to be able to handle an arbitrary
amount of zones. Some other goals were to see whether there were any
fundamental differences, be it problems or possibilities, between doing
an implementation in Java and an implementation in Matlab.

The first part of the thesis rephrased the model in an object oriented
formulation. This meant dividing the various functions needed into
interfaces, or building blocks. The building blocks introduced were
defined in such a way that they correspond to physical objects, this
to make the modelling more intuitive. A more detailed description is
given in section 3.3, but the introduced objects are the following:

• Controller: Handling the actual simulation.

• Cylinder: Handles the various zones and keeps track of the mass
flows between them.

• Fuel: Handles the retrieval of the thermochemical properties of
the fuel to be used.

27

28 Chapter 7. Conclusions

• Geometry: Contains the functions that changes when the geom-
etry changes.

• Zone: Contains all information specific for each zone, such as its
specific thermochemical properties and its neighbours. A zone
also has the ability to divide.

After this reformulation a specific example implementation was pre-
sented. This implementation can, as was one of the main goals, handle
an arbitrary amount of zones. For the special case of two zones it was
also shown that there is a reasonable agreement with the existing im-
plementation in Matlab, but there is a relative difference reaching 5%
when studying pressure and burned temperature. The performance of
the Java implementation was found to be sufficient, and some points
where made regarding future maintenance. Some preliminary plots over
simulations with more than two zones were also given, this mainly to
show that a more deep analysis is possible, and finally some suggestions
for future work was given.

7.2 Conclusions

The most important conclusions drawn from this thesis are:

• It is possible to do an implementation of the given combustion
model in Java.

• The performance of the here presented Java package, in terms of
speed, and the accuracy of the simulations, in terms of simulation
output, are for co-solvable problems in reasonable agreement with
the existing Matlab implementation. Some further investigation
into the differences that exist are however necessary.

• The Java package can handle simulations using more than two
zones, which the Matlab implementation cannot do currently.

• The object-oriented design of the Java package has some concep-
tual advantages. One of these is the possibility to create objects
which are more close to physical objects, and therefore make the
modelling task more direct.

• The object-oriented design of the Java package also has some
maintenance advantages. For instance should the geometry, or
the chemical properties of the fuel, or the requirements for di-
vision of a zone etc., be subject to change, the location for this
change can easily be found by looking at in which physical aspect
the change has been made. It can also be carried out simply,

7.2. Conclusions 29

either as a new implementation of the corresponding interface,
or as a class that inherits from a previous implementation. It
should, however, be noted that the Matlab implementation also
has easily exchangeable modules, since it is also written, as far as
possible, in an object-oriented manner.

• The output of the simulations done with the Java package can
be easily sent to Matlab, should a post-processing of the data
find this advisable. This enables the study of the properties of
multi-zone models, like temperature gradients comparisons with
different number of zones etc. A preliminary plot showing the
possibilities is already given.

• The model, and implementation done here, can be a basis for
future work. Two examples of this, which are already decided to
take place, are the analysis of the chemical background to engine
knock and the analysis of ionisation currents.

30

References

[1] Gunnar Cedersund. Gunnar Cedersund - Information
about my Master Students. Available on the Internet.
http://www.fs.isy.liu.se/˜gunnar/MasterStudents.

[2] Lars Eldén and Linde Wittmeyer-Koch. Numerisk analys - en in-
troduktion. Studentlitteratur, Lund, Sweden, 3rd edition, 1996. In
Swedish.

[3] Lars Eriksson. Thermodynamics of Unsteady Flows and Zero Di-
mensional In-Cylinder Models. 2002.

[4] Johan Fagerström. Objektorienterad analys och design -en andra
generationens metod. Studentlitteratur, Lund, Sweden, 2nd edition,
1999. In Swedish.

[5] John B. Heywood. Internal Combustion Engine Fundamentals.
McGraw-Hill, 1988.

[6] J. P. Holman. Heat Transfer. McGraw-Hill, 2nd edition, 1997.

[7] Carsten Knudsen. Janet Home Page. Available on the Internet.
http://www.fysik.dtu.dk/˜janet.

[8] Sun Microsystems. Developer Services. Available on the Internet.
http://developer.java.sun.com/.

[9] G. Woschni. A universally applicable equation for the instantaneous
heat transfer coefficient in the internal combustion engine. SAE
Technical Paper 670931, 1967.

31

32

Notation

Abbreviations and Acronyms

BDC Bottom Dead Centre, position for piston.
TDC Top Dead Centre, position for piston.

Variables and Parameters

cp Mass-specific heat capacity under constant pressure.
Ri Mass-specific gas constant in zone i. Caution: R can also be

the gas constant fulfilling the equation pV = nRT .
tivc Time at intake valve close.
Tw Temperature of the cylinder walls.

33

34

Appendix A

Package zonal

A.1 Controller

public interface class Controller
implements TimeConscious

zonal.Controller

This interface holds the cylinders together and controls simulation.

Methods

public Object getGeometryParameter(String name)public Object getGeometryParameter(String name)public Object getGeometryParameter(String name)
Looks up a geometry parameter. This method must never call get-

GeometryParameter(String) in Cylinder.

Parameters

java.lang.String name : The name of the parameter.

return java.lang.Object :
The value of the parameter, or null if the parameter is not set.

public Object setGeometryParameter(String name, Object value)public Object setGeometryParameter(String name, Object value)public Object setGeometryParameter(String name, Object value)

Sets a geometry parameter.

Parameters

java.lang.String name : The name of the parameter.

java.lang.Object value : The value of the parameter.

35

36 Appendix A. Package zonal

return java.lang.Object :
The old value of the parameter, or null if the parameter was not

previously set.

public Object getSimulationParameter(String name)public Object getSimulationParameter(String name)public Object getSimulationParameter(String name)
Looks up a simulation parameter. This method must never call

getSimulationParameter(String) in Cylinder.

Parameters

java.lang.String name : The name of the parameter.

return java.lang.Object :
The value of the parameter, or null if the parameter is not set.

public Object setSimulationParameter(String name, Object value)public Object setSimulationParameter(String name, Object value)public Object setSimulationParameter(String name, Object value)

Sets a simulation parameter.

Parameters

java.lang.String name : The name of the parameter.

java.lang.Object value : The value of the parameter.

return java.lang.Object :
The old value of the parameter, or null if the parameter was not

previously set.

public void setFuel(Fuel fuel)public void setFuel(Fuel fuel)public void setFuel(Fuel fuel)
Sets a new fuel for all cylinders.

Parameters

zonal.Fuel fuel : A new fuel.

public void setGeometry(Geometry geometry)public void setGeometry(Geometry geometry)public void setGeometry(Geometry geometry)
Sets a new geometry for all cylinders.

Parameters

zonal.Geometry geometry : A new geometry.

public Cylinder getCylinder(int i)public Cylinder getCylinder(int i)public Cylinder getCylinder(int i)
Returns the specified cylinder.

A.1. Controller 37

Parameters

int i : 1 for the first cylinder, 2 for the second,...

return zonal.Cylinder :
Cylinder i, or null if there is no cylinder i.

public int numberOfCylinders()public int numberOfCylinders()public int numberOfCylinders()
Returns the number of cylinders.

return int :
The number of cylinders present in this simulation.

public VectorType getState(int cylinder)public VectorType getState(int cylinder)public VectorType getState(int cylinder)
Returns the current state of the integration.

Parameters

int cylinder : The number of the cylinder whose state is
wanted.

return Janet.VectorType :
A Janet VectorType representing the current state, with contents

p,V1,T1,V2,T2,..., or null if a non-existent state is requested.

public VectorType [] getStates(int cylinder)public VectorType [] getStates(int cylinder)public VectorType [] getStates(int cylinder)
Returns the matrix containing all the old states of all zones. This is

not a copy, so don’t alter it unless you really know what you are doing!

Parameters

int cylinder : The number of the cylinder whose states
are wanted.

return Janet.VectorType :
An array of VectorType, where each VectorType represents a prop-

erty.

public VectorType getTimeVector(int cylinder)public VectorType getTimeVector(int cylinder)public VectorType getTimeVector(int cylinder)
Returns the time vector corresponding to the saved states.

Parameters

int cylinder :

38 Appendix A. Package zonal

return Janet.VectorType :

public double getInitialTimeStep()public double getInitialTimeStep()public double getInitialTimeStep()
Returns the initial timestep of the integration.

return double :
The initial timestep of the integration.

public void plot(String string, VectorType reference, int length)public void plot(String string, VectorType reference, int length)public void plot(String string, VectorType reference, int length)

Plots a property given by the first parameter.

Parameters

java.lang.String string : ”ip” to plot the pressure in
the ith cylinder, ”iVj” to plot the volume of the jth
zone in the ith cylinder, ”iTj” to plot the temperature
of the jth zone in the ith cylinder.

Janet.VectorType reference : A VectorType to plot against.

int length : The number of relevant entries in reference.

public int run()public int run()public int run()
Runs the simulation.

return int :
the number of data rows on success, -1 on failure.

public int run(int cylinder)public int run(int cylinder)public int run(int cylinder)
Runs the simulation.

Parameters

int cylinder : The number of the cylinder to run.

return int :
the number of data rows on success, -1 on failure.

A.2. Cylinder 39

A.2 Cylinder

public interface class Cylinder
implements NonAutonomous, TimeContinuous

zonal.Cylinder

This interface represents a cylinder with a geometry.

Methods

public Controller getController()public Controller getController()public Controller getController()
Returns the controller of this cylinder.

return zonal.Controller :
The controller of this cylinder.

public Fuel getFuel()public Fuel getFuel()public Fuel getFuel()
Returns the fuel.

return zonal.Fuel :

public Fuel setFuel(Fuel fuel)public Fuel setFuel(Fuel fuel)public Fuel setFuel(Fuel fuel)
Sets a new fuel for this cylinder.

Parameters

zonal.Fuel fuel : A new fuel.

return zonal.Fuel :
The old fuel.

public Geometry getGeometry()public Geometry getGeometry()public Geometry getGeometry()
Returns the geometry of this cylinder.

return zonal.Geometry :
The geometry of this cylinder.

public Geometry setGeometry(Geometry geometry)public Geometry setGeometry(Geometry geometry)public Geometry setGeometry(Geometry geometry)
Sets a new geometry for this cylinder.

Parameters

zonal.Geometry geometry : A new geometry.

40 Appendix A. Package zonal

return zonal.Geometry :
The old geometry.

public Object getGeometryParameter(String name)public Object getGeometryParameter(String name)public Object getGeometryParameter(String name)
Looks up a geometry parameter for this cylinder.

Parameters

java.lang.String name : The name of the parameter.

return java.lang.Object :
The value of the parameter, or null if the parameter is not set.

public Object setGeometryParameter(String name, Object value)public Object setGeometryParameter(String name, Object value)public Object setGeometryParameter(String name, Object value)

Sets a geometry parameter for this cylinder. This method must
never call setGeometryParameter(String, Object) in Controller.

Parameters

java.lang.String name : The name of the parameter.

java.lang.Object value : The value of the parameter.

return java.lang.Object :
The old value of the parameter, or null if the parameter was not

previously set.

public double getMassflow(int to)public double getMassflow(int to)public double getMassflow(int to)
Returns the massflow to the zone with id to.

Parameters

int to : The id of the destination zone.

return double :
The massflow to the specified destination zone.

public double getMassflow(int to, int from)public double getMassflow(int to, int from)public double getMassflow(int to, int from)
Returns the massflow between two specified zones.

Parameters

int to : The id of the destination zone.

int from : The id of the source zone.

A.2. Cylinder 41

return double :
The massflow from source to destination.

public void setMassflow(int to, int from, double flow)public void setMassflow(int to, int from, double flow)public void setMassflow(int to, int from, double flow)
Sets the massflow between two specified zones.

Parameters

int to : The id of the destination zone.

int from : The id of the source zone.

double flow : The massflow from source to destination.

public Object getSimulationParameter(String name)public Object getSimulationParameter(String name)public Object getSimulationParameter(String name)
Looks up a simulation parameter of this cylinder.

Parameters

java.lang.String name : The name of the parameter.

return java.lang.Object :
The value of the parameter, or null if the parameter is not set.

public Object setSimulationParameter(String name, Object value)public Object setSimulationParameter(String name, Object value)public Object setSimulationParameter(String name, Object value)

Sets a simulation parameter of this cylinder. This method must
never call setSimulationParameter(String, Object) in Controller.

Parameters

java.lang.String name : The name of the parameter.

java.lang.Object value : The value of the parameter.

return java.lang.Object :
The old value of the parameter, or null if the parameter was not

previously set.

public double getDVibe(double angle)public double getDVibe(double angle)public double getDVibe(double angle)
Returns the derivative, with respect to angle, of the burned mass

fraction.

Parameters

double angle : The current crank angle.

42 Appendix A. Package zonal

return double :
The derivative, with respect to angle, of the burned mass fraction.

If the combustion has not started, 0 is returned.

public double getVibe(double angle)public double getVibe(double angle)public double getVibe(double angle)
Returns the burned mass fraction.

Parameters

double angle : The current crank angle.

return double :
The burned mass fraction. If the combustion has not started, 0 is

returned.

public List getZones()public List getZones()public List getZones()
Returns all the zones of the cylinder.

return java.util.List :
A list of all zones of the cylinder. The zones are sorted with respect

to ID, starting with the zone with the smallest ID.

public Zone getZone(int id)public Zone getZone(int id)public Zone getZone(int id)
Returns the zone with the given ID.

Parameters

int id : The ID of the zone to retrieve.

return zonal.Zone :
The zone with the given ID, or null if there is no such zone.

public void addZone(Zone zone)public void addZone(Zone zone)public void addZone(Zone zone)
Adds a zone to this cylinder. The zone gets an id greater than zero

at this point.

Parameters

zonal.Zone zone : Zone to add.

public int getId()public int getId()public int getId()
Returns the id of this cylinder.

A.2. Cylinder 43

return int :
An integer id with the property that getCylinder(id) in the Con-

troller implementation returns this cylinder.

44 Appendix A. Package zonal

A.3 Fuel

public interface class Fuel

zonal.Fuel

Methods

public VectorType getBurnedProperties(double T, double p, double phi)public VectorType getBurnedProperties(double T, double p, double phi)public VectorType getBurnedProperties(double T, double p, double phi)

Returns thermochemical properties of burned mixture.

Parameters

double T : The temperature of the mixture.

double p : The pressure in the cylinder.

double phi : The fuel/air ratio of the mixture.

return Janet.VectorType :
A VectorType (cp, cv, h, R, dhdp, dRdp, dRdT).

public VectorType getUnburnedProperties(double T, double phi)public VectorType getUnburnedProperties(double T, double phi)public VectorType getUnburnedProperties(double T, double phi)

Returns thermochemical properties of unburned mixture.

Parameters

double T : The temperature of the mixture.

double phi : The fuel/air ratio of the mixture.

return Janet.VectorType :
A VectorType (cp,h,R).

A.4. Geometry 45

A.4 Geometry

public interface class Geometry

zonal.Geometry

Methods

public double getArea(Cylinder cylinder, double theta)public double getArea(Cylinder cylinder, double theta)public double getArea(Cylinder cylinder, double theta)
Calculates the cylinder and piston area exposed to heat transfer for

the crank angle theta. The cylinder liner area above the position when
the piston is at TDC is neglected.

Parameters

zonal.Cylinder cylinder : The cylinder.

double theta : The crank angle.

return double :
The calculated area.

public double getVolume(Cylinder cylinder, double theta)public double getVolume(Cylinder cylinder, double theta)public double getVolume(Cylinder cylinder, double theta)
Calculates the cylinder volume for the crank angle theta, and adds

the clearance volume.

Parameters

zonal.Cylinder cylinder :

double theta : The crank angle.

return double :
The total cylinder volume. handled.

public double getDVolume(Cylinder cylinder, double theta)public double getDVolume(Cylinder cylinder, double theta)public double getDVolume(Cylinder cylinder, double theta)
Calculates the crank angle derivative of the cylinder volume for the

crank angle theta.

Parameters

zonal.Cylinder cylinder :

double theta : The crank angle.

return double :
dV/dtheta.

46 Appendix A. Package zonal

A.5 Zone

public interface class Zone

zonal.Zone

This is the interface of a zone, ie all features common to burned and
unburned zones. All methods taking the system state as a parameter
expect the order p,V1,T1,V2,T2,...

Methods

public List getNeighbours()public List getNeighbours()public List getNeighbours()
Returns all the neighbours of this zone.

return java.util.List :
A list containing the neighbours.

public List getBurnedNeighbours()public List getBurnedNeighbours()public List getBurnedNeighbours()
Returns all burned neighbours of this zone.

return java.util.List :
A list containing the burned neighbours.

public List getUnburnedNeighbours()public List getUnburnedNeighbours()public List getUnburnedNeighbours()
Returns all unburned neighbours of this zone.

return java.util.List :
A list containing the unburned neighbours.

public void addNeighbour(Zone neighbour)public void addNeighbour(Zone neighbour)public void addNeighbour(Zone neighbour)
Adds a neighbour to this zone. This method does not add this zone

as a neighbour of the other though.

Parameters

zonal.Zone neighbour : The zone that should be added.

public void addNeighbours(List neighbours)public void addNeighbours(List neighbours)public void addNeighbours(List neighbours)
Adds neighbours to this zone. This zone is also added as a neighbour

to all zones in the list.

Parameters

java.util.List neighbours : A list containing the zones
that should be added.

A.5. Zone 47

public Zone divide(List movedNeighbours)public Zone divide(List movedNeighbours)public Zone divide(List movedNeighbours)
Makes the zone divide itself so that the copy gets movedNeighbours

as neighbours and the original gets the remaining neighbours. The
massflow of the original zone is preserved and the new zone is given no
massflow.

Parameters

java.util.List movedNeighbours : The neighbours to
move to the copy.

return zonal.Zone :
The new zone.

public Zone divide(List neighboursForCopy, List neighboursForOriginal,public Zone divide(List neighboursForCopy, List neighboursForOriginal,public Zone divide(List neighboursForCopy, List neighboursForOriginal,
VectorType massflowToCopyNeighbours, VectorType massflowToOriginalNeighbours)VectorType massflowToCopyNeighbours, VectorType massflowToOriginalNeighbours)VectorType massflowToCopyNeighbours, VectorType massflowToOriginalNeighbours)

Makes the zone divide itself.

Parameters

java.util.List neighboursForCopy : Neighbours that
the copy will get.

java.util.List neighboursForOriginal : Neighbours that
the original will get.

Janet.VectorType massflowToCopyNeighbours : Massflow
to neighboursForCopy.

Janet.VectorType massflowToOriginalNeighbours : Mass-
flow to neighboursForOriginal.

return zonal.Zone :
The new zone.

public boolean removeNeighbour(Zone neighbour)public boolean removeNeighbour(Zone neighbour)public boolean removeNeighbour(Zone neighbour)
Removes a neighbour from this zone, but this zone can still be a

neighbour to the specified zone after calling this function.

Parameters

zonal.Zone neighbour : The neighbour to remove.

return boolean :
false if the zone was not a neighbour.

48 Appendix A. Package zonal

public boolean removeNeighbours(List neighbours)public boolean removeNeighbours(List neighbours)public boolean removeNeighbours(List neighbours)
Removes neighbours from this zone. This zone is also removed as

neighbour from all zones in the list.

Parameters

java.util.List neighbours : The neighbours to remove.

return boolean :
false if any zone was not a neighbour.

public double getdQ(VectorType state, double time)public double getdQ(VectorType state, double time)public double getdQ(VectorType state, double time)
Returns the heat transfer from this zone.

Parameters

Janet.VectorType state : A Janet.VectorType holding
the current state of the whole system.

double time : The current simulated time.

return double :
The heat transfer from this zone.

public Cylinder getCylinder()public Cylinder getCylinder()public Cylinder getCylinder()
Returns the cylinder this zone is in.

return zonal.Cylinder :
The cylinder this zone is in.

public double getDHdp(VectorType state)public double getDHdp(VectorType state)public double getDHdp(VectorType state)
Returns the partial derivative of the enthalpy with respect to pres-

sure.

Parameters

Janet.VectorType state : A Janet.VectorType holding
the current state of the whole system.

return double :
The partial derivative of the enthalpy with respect to pressure.

public double getDRdT(VectorType state)public double getDRdT(VectorType state)public double getDRdT(VectorType state)
Returns the partial derivative of R with respect to temperature.

A.5. Zone 49

Parameters

Janet.VectorType state : A Janet.VectorType holding
the current state of the whole system.

return double :
The partial derivative of R with respect to temperature.

public double getDRdp(VectorType state)public double getDRdp(VectorType state)public double getDRdp(VectorType state)
Returns the partial derivative of R with respect to pressure.

Parameters

Janet.VectorType state : A Janet.VectorType holding
the current state of the whole system.

return double :
The partial derivative of R with respect to pressure.

public double getR(VectorType state)public double getR(VectorType state)public double getR(VectorType state)
Returns R, the mass-specific gas constant.

Parameters

Janet.VectorType state : A Janet.VectorType holding
the current state of the whole system.

return double :
R, the mass-specific gas constant.

public double getM(VectorType state)public double getM(VectorType state)public double getM(VectorType state)
Returns the molecular mass of this zone.

Parameters

Janet.VectorType state : A Janet.VectorType holding
the current state of the whole system.

return double :
The molecular mass of this zone.

public double getcp(VectorType state)public double getcp(VectorType state)public double getcp(VectorType state)
Returns the mass-specific heat capacity under constant pressure.

50 Appendix A. Package zonal

Parameters

Janet.VectorType state : A Janet.VectorType holding
the current state of the whole system.

return double :
The mass-specific heat capacity under constant pressure.

public double getcv(VectorType state)public double getcv(VectorType state)public double getcv(VectorType state)
Returns the mass-specific heat capacity with constant volume.

Parameters

Janet.VectorType state : A Janet.VectorType holding
the current state of the whole system.

return double :
The mass-specific heat capacity with constant volume.

public double geth(VectorType state)public double geth(VectorType state)public double geth(VectorType state)
Returns the enthalphy of this zone.

Parameters

Janet.VectorType state : A Janet.VectorType holding
the current state of the whole system.

return double :
The enthalphy of this zone.

public double getu(VectorType state)public double getu(VectorType state)public double getu(VectorType state)
Returns the internal energy of this zone.

Parameters

Janet.VectorType state : A Janet.VectorType holding
the current state of the whole system.

return double :
The internal energy of this zone.

public int getId()public int getId()public int getId()
Returns the id of this zone.

A.5. Zone 51

return int :
An integer identifying this zone.

public void setId(int id)public void setId(int id)public void setId(int id)
Sets the id of this zone.

Parameters

int id : The new id, an integer greater than 0.

public double getMass()public double getMass()public double getMass()
Returns the mass of this zone.

return double :
The mass of this zone.

public double getPhiBurned()public double getPhiBurned()public double getPhiBurned()
Returns fuel/air ratio of the burned fuel.

return double :
Fuel/air ratio of the burned fuel.

public void setPhiBurned(double phiBurned)public void setPhiBurned(double phiBurned)public void setPhiBurned(double phiBurned)
Sets fuel/air ratio of the burned fuel.

Parameters

double phiBurned : The new value.

public double getPhiUnburned()public double getPhiUnburned()public double getPhiUnburned()
Returns fuel/air ratio of the unburned fuel.

return double :
Fuel/air ratio of the unburned fuel.

public void setPhiUnburned(double phiUnburned)public void setPhiUnburned(double phiUnburned)public void setPhiUnburned(double phiUnburned)
Sets fuel/air ratio of the unburned fuel.

Parameters

double phiUnburned : The new value.

public double getResidualFraction()public double getResidualFraction()public double getResidualFraction()
Returns the residual gas mass fraction.

52 Appendix A. Package zonal

return double :
The residual gas mass fraction.

public void setResidualFraction(double resFraction)public void setResidualFraction(double resFraction)public void setResidualFraction(double resFraction)
Sets the residual gas mass fraction.

Parameters

double resFraction : The new value.

Appendix B

Contents of Parameter
Files

Below are the parameters used by the implementation presented in
chapter 4. If a difference exists in any simulation presented in chapter 5,
it is noted there.

B.1 Geometry Parameters

// crank radius
a
double
4.5e-2
// connecting rod
l
double
14.7e-2
// bore
B
expression
2*a
; compression ratio
r_c
double
10.1
. Displacement volume
V_d
expression
3.14159265358979*B^2/4*2*a
. Clearance volume

53

54 Appendix B. Contents of Parameter Files

V_c
expression
V_d/(r_c-1)
. stroke
S
expression
2*a
. String identifying this engine
name
string
SAAB 2.3l naturally aspirated

B.2 Simulation Parameters

. The temperature of the cylinder wall
Twall
double
470
. Pi
pi
double
3.14159265358979
.
. Some heat-transfer stuff
WoschniC1
double
1
WoschniC2
expression
1/2.28
.
. The angular velocity
w
double
200
.
. Start of simulation, Intake Valve Close
tStart
expression
(540+55)/180*pi/w
.
. End of simulation, Exhaust Valve Open
tStop
expression

B.2. Simulation Parameters 55

(4*pi+(180-57)/180*pi)/w
.
. ThetaS for the Vibe function
thetaS
expression
4*pi-20/180*pi
.
. ThetaE for the Vibe function
thetaE
expression
4*pi+40/180*pi
.
. The eta parameter for the Vibe function
eta
double
0.99
.
. The m parameter for the Vibe function
m
double
2
.
. The a parameter for the Vibe function
a
double
6.9
.
. Pressure at intake valve close
pivc
double
50000
.
. Temperature at intake valve close
Tivc
double
350
.
. fuel/air ratio
phi
double
1
. fuel/air ratio of fuel remaining from last cycle
phi_res
double

56 Appendix B. Contents of Parameter Files

1
. Residual gass mass fraction
x_res
double
0.1
kappa
double
1.4
Lst
double
14.7
. The timestep of the simulation
h
double
2e-5
. After each integration it is checked if the timestep has exceeded
. maxStep. If it has, it is set to maxStep.
maxStep
double
8e-5
: Initial volume of the first burned zone.
initBurnedVolFrac
double
1e-4
deltaT_ad
double
1900
. The volume a zone is allowed to reach before dividing. This value
. does not cause any divisions since it is greater than the total
. cylinder volume.
volumeLimit
double
2e-3

	Firstpage
	Introduction
	Objectives
	Thesis Outline

	Theory
	Purpose of the Model
	The Four-stroke Combustion Engine
	The Model

	Design
	Java Essentials
	Janet Essentials
	Building Blocks
	Parameters

	Implementation
	Janet Revisited
	Implementation Classes
	Format of Parameter Files

	Comparison and Results
	Matlab and Simulink
	The PS Implementation
	Simulation Setup
	Speed Comparison
	Result Comparison
	Functionality
	Extendibility and Maintainability
	Multi-zone simulation

	Future Work
	Work Already Planned
	Other Suggestions

	Conclusions
	Summary
	Conclusions

	References
	Notation
	Package zonal
	Controller
	Cylinder
	Fuel
	Geometry
	Zone

	Contents of Parameter Files
	Geometry Parameters
	Simulation Parameters

