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Chapter 1

Introduction

This thesis is about Modelica in general and VehProLib in particular.
This first chapter contains two parts, first an introduction and reading
recommendation to the forthcoming chapters, and a part about the
limitations of this thesis. In general are Modelica keywords written
in bold font, and the name of models from VehProLib are written in
teletype font.

The outline is as follows:

Chapter 2, Modelica This chapter is a brief introduction to Model-
ica, the intended reader is someone without or with little previous
experience of Modelica. The more advanced user should consider
reading the section about inheritance as it’s of great importance.
The chapter is finished by an example, an electrical circuit.

Chapter 3, VehProLib An introduction to the VehProLib is found
here, central part is the section about the connector. The more
interested reader should also read about the partial classes.

Chapter 4, Advanced concepts in Modelica This is the first of
the two major chapters in this thesis. A number of concepts is
introduced, replaceable components, parameter handling and the
construction of a Signal Bus. As this is the central chapter it
should be read by everyone.

Chapter 5, Medium models Here the replaceable gas model is in-
troduced, the purpose is to give the user a number of gas models
to chose from. By doing so the user can chose the level of com-
plexity needed. This chapter should also be read by everyone.

Chapter 6, Concluding comments Personal comments and recom-
mendations for future work.

1



2 Chapter 1. Introduction

The limitations that apply are the following:

Dymola All the models presented in the thesis has been simulated
using Dymola 5.1b++, there might be some unforeseen compati-
bility issues with previous version of Dymola and other simulation
environments.

Source code Most of the code fragments in the thesis has been edited
for readability reasons, this include but is not limited to, all
graphical code has been removed and the declarations statement
has been shortened. The code in the Appendixes remains in their
original form, except for graphical information.

Validation No real effort has been made to validate the models used
in the library. They should instead be seen as an example what
can be achieved using Modelica.



Chapter 2

Modelica

This chapter will give an brief introduction to the multi-domain mod-
elling language Modelica, for further information please refer to [8].

Modelica is a standardized modelling language built around acausal
modelling with mathematical equations. Modelica is a multidomain
language, ie the model can be mix of several different domains, for
example both electrical and mechanical domains are supported. Fur-
thermore it’s an object oriented language, constructs for extending and
reusing models are provided.

2.1 Making models in Modelica

The Modelica language is being constructed by the Modelica Asso-
ciation. The aim is to construct a standard language for describing
physical models. Because the language is not built around assignment,
the equations can be written in their original form, the way they are
usually found in textbooks. Modelica models are built from small mod-
els representing a small part of the bigger model. These models can
then be joined together to form bigger and more advanced models.
This concept can be illustrated by looking in the Electrical library of
the Modelica Standard Library, the models found there are, small and
simple components such as resistor and inductor. These components
can then be joined together to form more complex circuits, note that
this can be done in several layers.

Modelica provides a number of standard libraries, like the one men-
tioned above and for example the mechanical library. The user is free to
construct his own libraries, both parts from the standard libraries and
own models can be used. VehProLib is of course an example of a user
created library. When the libraries and models needed are complete,

3



4 Chapter 2. Modelica

modelling will seem much like looking in a book, picking the compo-
nents and setting the parameters to their appropriate values. One of
the most important tasks in achieving this is the re-usability of the
models. If two similar models is to be made, they should both utilize
a generic model and only differ in there parameter settings.

2.2 The structure of models

A model in Modelica contains three parts, name, declarations and equa-
tions, written in the following way.

class name "comment"
declarations;

equation
equation;

end name;

The following example is taken from [9]. The first program of any
programming language usually prints ”Hello world” on the screen, but
as this would make no sense in a modelling language, we will instead
create a model to solve a simple differential equation.

ẋ = −a ∗ x, x(0) = 2, a = 2 (2.1)

The model is written in Modelica like this:

class solveDiff "Solves a differential equation"
Real x(start=2, fixed = true);
parameter Real a = 2;

equation
der(x)=-a*x;

end solveDiff;

The following things can be noted, first the name of the model is
solveDiff. In the declaration section the variable x is declared and its
initial value is fixed to two. After that the parameter a is declared,
both of them is of the type Real. To learn more about different types
see [8]. In the equation part of the model equation 2.1 can be found,
note that it’s written in same form as above. Observe that there is
no assignment here, one doesn’t need to specify which are input and
output. The causality of the equation is unspecified and only becomes
specified when the equation is solved.

2.3 Restricted classes

In the Modelica language there are several restricted classes, each with
different restrictions added to them. To use a restricted class simply
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replace the keyword class with one of the following keywords: records,
connector, model, block, function, type, and package.

2.3.1 Connectors

The most important of the restricted classes is the connector, because
it is used to connect different models specifying the communication
between the models and will determine much of design and modelling
capabilities. The design of connector is a very important step in the
design process, because all the following models will use the connector
in one way or another. So an error or an overlooked signal, could
lead to large and tiring re-writhing of the code. Transition between
different domains are usually done by adding different connectors in a
model, eg a rotational to transitional gear would include one rotational
connector and one transitional connector, and a equation describing
the conversion. Below is the code for the positive electrical connector
in Modelica Standard Library used to connect electrical models:

connector PositivePin
"Positive pin of an electric component"
SI.Voltage v "Potential at the pin";
flow SI.Current i "Current flowing into the pin";

end PositivePin;

Restriction that apply to the connector is that there can be no equa-
tions or algorithms. A connector can declare two types of variables,
non-flow and flow. Flow variables is declared using the flow prefix as
seen above.

Connections
Connection between models can be created using a connect statement,
the connectors must be of the same type. The connect statement cre-
ates an acausal connection, the direction of the dataflow is not needed
to be known. To create a causal connection, with determined direction
of the data flow, a connect statement between a connector declared as
input and one declared as output can be used.

Two types of equations can be created using the connect statement,
depending on if the variable is declared flow or not.

1. Equality equation, for non flow variables.

2. Sum to zero, for flow variables.

If two electrical pins are declared, as pin a and pin b, the statement
connect(pin a,pin b) would result in the following two equations,

pin a.v = pin b.v

pin a.i+ pin b.i = 0
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Obviously the connect statement creates the equations corresponding
to Kirchhoff’s law at a junction.

2.3.2 Packages and functions

These two classes are nice to know, but not as important as the con-
nector. The packages class is used to create new libraries. All new
libraries must contain a package class.The package class will set the
name of the library and may also include declarations of constants and
other classes.

The function class is a fixed causality block, input-output block.
Each component in the interface must have either an input or output
attribute. Secondly there may be no equation in the equations block,
instead algorithms are used. Algorithms are fixed casuality and not
dependent on time, so in functions the value is assigned to the output
variable, indicated by the use of := instead of the ordinary =. Calling
a function requires that all components specified as input must be pro-
vided by the calling model, because functions are re-initialized every
time a function call is made. A simple example of a function can look
like this:

function mean "Calculates the mean of two numbers"
input Real x;
input Real y;
output Real z;

algorithm
z := (x+y)/2;

end mean;

2.4 Inheritance

One of the more powerful features of Modelica is the possibility to in-
herit and extend the properties of that class. The basic class known as a
superclass is extended to create a more specific class with more detailed
properties, this class is known as a subclass. The subclass will inherit
all properties of the superclass, such as declaration and equations. The
contents of the superclass is reused or in other words inherited by the
subclass. A common approach is to declare the superclass Partial, this
tells the user that the class isn’t complete yet and needs to be extended,
ie given more content. This process will be illustrated using a model of
a resistor from Electrical Library in the Modelica Standard Library.

partial model OnePort
"Component with two electrical pins p
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and n and current i from p to n"

SI.Voltage v
"Voltage drop between the two pins";

SI.Current i
"Current flowing from pin p to pin n";

PositivePin p;
NegativePin n;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end OnePort;

This model is used as a superclass for the resistor model below and
a number of other models. Note that the OnePort is partial, as it is
lacking any relationship between the current and the voltage. This
relationship would in this case be the well known Ohm’s law, U=RI, so
if this relationship is added a resistor can implemented in the following
way,

model Resistor "Ideal linear electrical resistor"
extends Interfaces.OnePort;
parameter SI.Resistance R=1 "Resistance";

equation
R*i = v;

end Resistor;

Note that this model then in turn can be extended, to for example
a Temperature dependent electrical resistor by specifying an equation
for the resistance dependence on the temperature.

2.5 Example

The purpose of this example is to show how modelling is made in Mod-
elica, and to give something to compare with the problem will first be
solved using Simulink. The circuit to be modelled is complex enough to
show the strength of Modelica, but anyone with limited knowledge of
electrical circuits should have no problem understanding the different
steps.

The circuit which is to be modelled contains one voltage source V, a
resistor R, an inductor L and a capacitor C. The inductor and capacitor
is in parallel and the other two is in series with them, figure 2.2 shows
the layout of the circuit.
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To be able to model the circuit in Simulink one must first obtain
the equations describing the circuit. In this example it’s sufficient to
use such well-know relations as Kirchhoff’s and Ohm’s laws. For bigger
and more complex systems one might have to resort to bond-graphs
to get the equations, for more information about bond-graphs see [6].
The following equations describe the circuit in the example,

U − UR − UL = 0
UR = Ri

i = iC + iL

UL = C
diL
dt

iC = L
dUC

dt
UL = UC

(2.2)

Figure 2.1 shows the implementation of the equations in Simulink. As

Figure 2.1: Circuit modelled in Simulink.

can be seen the physical structure of the circuit is not retained, instead
the blocks are arranged in computational order. The block diagram
is equivalent to assign statements for the derivatives of the two state
variables (iL and UC).
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2.5.1 Equation based solution

If one was to write Modelica code for the circuit, following the guidelines
shown in the first code fragment in this chapter, the resulting code may
look something like below. The first thing that should be noted is that
the equations are written in same form as in equation 2.2, there is no
need to manipulate the equations by hand. This might seem like a
feasible approach but a number of difficulties arise, foremost it is still
very difficult to understand what the code is a model of. Secondly it is
very error prone as one needs to write every equation by hand, this is
of course not a big problem in this case, but if a more complex circuit
was to be modelled this would be a very tedious work. Because of these
difficulties another approach must be found.

model Circuit
package SI = Modelica.SIunits;
package Math = Modelica.Math;
constant Real PI=Modelica.Constants.PI;

parameter SI.Resistance R=50;
parameter SI.Capacitance C=0.05;
parameter SI.Inductance L=0.1;
parameter SI.Voltage A=10;

SI.Current i, iL, iC;
SI.Voltage U, UC, UR, UL;

equation
U - UR - UL = 0;
UR = R*i;
i = iC + iL;
UL = L*der(iL);
iC = C*der(UC);
UC = UL;
U = A*Math.sin(2*PI*time);

end Circuit;

2.5.2 Component based solution

This approach requires that a model is made for every component re-
quired. Once these models are complete, the modelling work will be
very easy. Figure 2.2 shows same electrical circuit modelled in Modelica
using components from the Electrical library of the Modelica Standard
Library. As can be seen the physical structure is maintained, there is
no pre-determined directions for the signals. This model tells the pro-
gram what is to be simulated, and the program then in turn decides
how this done. The source code generated for the example is shown
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Figure 2.2: Circuit modelled in Modelica.

below.

model Circuit
Ground ground;
Capacitor capacitor(C=0.05);
Inductor inductor(L=.1);
Resistor resistor(R=50);
SineVoltage sineVoltage(V=10);

equation
connect(sineVoltage.n, resistor.p);
connect(resistor.n, inductor.p);
connect(capacitor.p, resistor.n);
connect(inductor.n, ground.p);
connect(capacitor.n, ground.p);
connect(sineVoltage.p, ground.p);

end Circuit;

The name of the model is Circuit, and it consists of five parts,
ground, resistor, inductor, capacitor and voltage source. The parame-
ters are set in the code directly following the declaration of the com-
ponent, and can be changed directly in the code. In the equation part
of the model, the connections between the different parts is specified.
The connect statement can be written in any order, it is possible to flip
a component and for example instead connect capacitor.p to ground.p.
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A final remark, this code has been edited for readability reasons, the
lines specifying the graphical layout of the circuit has been removed as
they are not important.





Chapter 3

VehProLib

In this chapter the basic models and connectors used in the VehProLib1

library is presented. Some of the topics from the last chapter will
exemplified and some new will be added.

3.1 Introduction to VehProLib

The purpose of the library is to provide the user with an easy to use
and highly replaceable set of models, to be used as a stand alone li-
brary or in cooperation with other Modelica libraries. Currently the
library contains the following packages, see figure 3.1, note that some
of the packages contain packages them self. Please note that this is the
structure as of right now, packages may be added and old ones may be
removed as the development progresses.

The packages contain models of different parts of an engine and driv-
eline, as well as some examples to provide the user with ideas how to use
the library. In the following sections some of the packages will be pre-
sented. The aim of the library is that it should comply to all Modelica
standards, so it can be used with ease with other libraries, foremost the
VehicleDynamics Library and the Powertrain Library. The interfaces
on models in question are implemented using the standard Modelica
Rotational Library, so this should not pose any problem. Another aim
was the replaceability of the component models, one should be able
to start with a simple component model and if further knowledge is
needed, simply exchange the component to an more advanced model of
the same component. These aims were originally stated by Eriksson in
[3].

1VehProLib stands for Vehicle Propulsion Library, and it is being developed by
Division of Vehicular Systems at Linköping University. Point of contact is Associate
Professor Lars Eriksson, larer@isy.liu.se

13



14 Chapter 3. VehProLib

Figure 3.1: Packages included in the VehProLib library.

3.2 The connector, FlowCut

There are several different connectors available in the library. All of
them can be found in the VehProLib.Interfaces package. The most
important one is the flow connector. Other available connectors are
FlowCut liquid, the Geometry connector and finally the SignalBus
connector. The flow connector is an enhanced version of the pWHT-
connector described in [11], the modifications aim to support the use
of gases with multiple components.

connector FlowCut
"Baseclass for standard connector"
package SI = Modelica.SIunits;
parameter Integer n=1 "Number of gascomponents";
SI.Pressure p(nominal=100000, start=100000)
"Pressure sensed by the connector";

SI.Temperature T(nominal=500, start=300)
"Temperature sensed by the connector";

SI.MassFraction x[n](
max=1,
min=0,
nominal=0) "Mass Fraction";

flow SI.HeatFlowRate H
"Enthalpy flowing through the connector";

flow SI.MassFlowRate Wx[n]
"Mass flow of gas components";

flow SI.MassFlowRate W
"Mass flow through the connector";

end FlowCut;
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As can be seen there are three intensity variables, namely pressure,
temperature and mass fraction. The mass fraction variable, x[n], de-
scribes the mass fraction of the ingoing components in the fluid sensed
by the connector. The size of the array x[n] is set by parameter n, n
being the number of components in the fluid. If a single component
fluid is used, x[n] is of course equal to one. The flow variables has
been expanded with Wx[n], mass flow through the connector of each
ingoing component. The W variable is no longer strictly necessary as
the sum of Wx[n] should always equal W , but W is kept because the
total mass flow is often of greater interest than the partial mass flows.
Some limitations apply to the use of this connector. It’s not possible to
connect components completely at random, it is for example not possi-
ble to connect two restrictions in parallel and then followed by another
restriction. The reason for this is that there might be a temperature
difference between the two restriction in parallel. The solution is to
always put a control volume between restrictions.

This connector should not be used directly, instead two connectors,
FlowCut i and FlowCut o are provided, they both inherit the FlowCut
connector and each add a different icon. The reason for this is, that
it should be easy to tell the difference between them in a connection
diagram.

3.3 Partial models

The library is built around fairly large amount of partial models, this
provides the user with a basic structure on which to build more ad-
vanced models. All models with a working fluid originate either from a
model called OnePin or TwoPin. As the names suggests the OnePin
is the superclass for all models with just one pin, for example the
Ambient model and the TwoPin is the superclass for models with two
pins. All models of working fluids originate from the GasPropBase
class. Mechanical models like the connecting rod and such, don’t have
any superclasses in the library. These partial models can all be found in
VehProLib.Partial library, note that there are also some partial mod-
els in other parts of the package, for example partial engine models are
found in VehProLib.Engine.Partial.

Figure 3.2 shows the overall structure of the library, all models
above the dashed line are partial models and must be extended. The
boxes below the line don’t represent actual models found in the library
in all cases, they should instead be seen as an indication of which type
of models that are constructed using that partial class.

The TwoPin is in turn extended to two different partial models, the
TwoPinStatic and the TwoPinDynamic. The TwoPinStatic is super-
class for all restrictions and the TwoPinDynamic is superclass for all
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Figure 3.2: Relationships between models, partial models are dashed.
Boxes below the line don’t represent actual models in all cases, they
should be seen as an indication of which type of models that are con-
structed using that partial class.

control volumes. The TwoPin model contains two connectors and a
model for the working fluid. No equations is provided at this stage.
Some basic equations is added in the next step. The TwoPinStatic
adds equations so the flow variables will sum to zero as there can be
no build up of mass or energy in a restriction. This is not true for
the TwoPinDynamic model. Instead here are all intensity variables set
equal, ie both connectors will sense the same pressure and so forth.

When working with partial models and inheritance it’s always im-
portant to consider, how many steps are required to achieve a working
model. If to many step are used it will become difficult to under-
stand what each step accomplish. Here only two steps is used, and the
partial models are clearly defined, each step adding a distinct ability
to the model. An example of a model that is to finely fragmented is
the MvemCylinder model in VehProLib.Engine library, where another
three partial models are used before a working model is obtained.

3.4 Control volumes and restrictions

Both the control volumes and restrictions must be modified to handle
multi-component working fluids. In the case of restrictions an equation
specifying which mass ratio array to use, the task is simply to pick out
the upstream one. The control volume needs a more advanced balance
equation. To handle the changes in the mass ratio array that might
result if different initial mass ratios are specified.

The control volume implemented in VehProLib library is idealized



3.4. Control volumes and restrictions 17

to model the mixing of inflowing gases as instantaneous. This results
in an uniform pressure and temperature through out the entire volume.
The volume acts like an buffer between restrictions, holding mass and
energy. Depending on the approximations used to model the volume,
the number of states needed are of course different. In the simplest
models, where temperature is considered constant and no mixtures are
implemented, only one state will be needed, the pressure in the volume.
The model used in the library contains at least two states. One state
to model the energy in the fluid and one state for the mass of each
component in the working fluid.

Two equations are modified to be able to handle mixture of fluids,

dmx[n]
dt

=
∑

Wx[n] (3.1)

mx[n] = m ∗ x[n] (3.2)

Equation 3.1 is a mass balance equation for each component in the
mixture, simply stating that derivative of the mass equals the sum
of the different mass flows, flows into the volume taken with a pos-
itive sign. Equation 3.2 states that the array x[n] is the the ratio
between the partial masses and the total mass. The code for the stan-
dard control volume is shown below, as expected it is extended from
the TwoPinDynamic class. In the equation field the two balance equa-
tions are implemented, and three equation for calculating pressure, to-
tal mass and the mass ratio array. Initial values for the masses are
set using ideal gas law, by specifying initial temperature, pressure and
mass ratios. This imposes a restriction on the medium models that can
be used. If non ideal gas models are to be implemented, the equations
must be revised. Currently all medium models are considered ideal
gases, but it can be noted that the partial class GasPropBase which is
the superclass for all medium models, doesn’t assume that the gas is
an ideal gas.

model ControlVolume
"Standard control volume,
mass, mass fraction and energy balance"

extends VehProLib.Partial.TwoPinDynamic;
parameter SI.Volume V=1/1000;
SI.Mass m;
SI.Mass mx[g.n](
start=((pInit*V)/(286*TInit)*g.xInit);

equation
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der(g.u)*m + g.u*(i.W + o.W) =
i.H + o.H;

der(mx) = i.Wx + o.Wx;

m = sum(mx);
mx = m*g.x;
p*V = m*g.R*T;

end ControlVolume;

As the pressure drops over a restriction in engine can be substantial
it is not sufficient to idealize the flow to an incompressible medium.
When modelling flow through a restriction, it must be taken into ac-
count that the flow through can’t reach speeds above the speed of
sound. The point when this happens is when the pressure ratio reach
a certain value, known as the critical pressure ratio. If the pressure is
increased beyond this point, the flow will become choked and the flow
will not increase even if the pressure ratio continues to increase. The
flow through the restriction is modelled using equation 3.3.

ṁ = ψ
pi√
RT

(3.3)
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[(
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γ )
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(3.5)

For pressure ratios smaller than the critical value given by 3.5, the
critical pressure ratio is used instead of the actual pressure ratio in
3.4. A complete deduction of these equations can be found in [5]. In
order to be able to use these equations with a mixture, a number of
modifications must be made. First the correct mass ratio array must
be computed, this is done by comparing the pressures sensed by each
connector, and as the flow will always be from the higher to lower
pressure, the mass fraction array at the highest pressure is chosen.
Equation 3.3 is modified to calculate the partial mass flows instead by
multiplying with the upstream mass ratio array, and the total mass
flow is given by summing Wx[n].

model StandardRestriction
"Standard compressible restriction model"
extends VehProLib.Partial.TwoPinStatic;
parameter Real Cd=0.7;
SI.Area A;
Real pRatio;
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Real pRatioPsi;
Real Psi;

equation

pRatio = if i.p > o.p then o.p/i.p else i.p/o.p;
g.T = if i.p > o.p then i.T else o.T;
g.p = if i.p > o.p then i.p else o.p;
g.x = if i.p > o.p then i.x else o.x;
pRatioPsi =
if pRatio <
(2/(g.gamma + 1))^((g.gamma/(g.gamma - 1)))
then
(2/(g.gamma + 1))^((g.gamma/(g.gamma - 1)))

else pRatio;
Psi = LinRoot((2*g.gamma)/(g.gamma - 1)*
(pRatioPsi^((2/g.gamma)) -
pRatioPsi^(((g.gamma + 1)/g.gamma))), 0.01);

i.Wx = if i.p > o.p then
((i.p/LinRoot(g.R*i.T, 0.01)*Cd)*A)*Psi
else
-((o.p/LinRoot(g.R*o.T, 0.01)*Cd)*A)*Psi*g.x;

i.H = g.h*i.W;
i.W = sum(i.Wx);

end StandardRestriction;

The code for the standard restriction implemented rather straight for-
ward, the first four equation sets the correct values for the medium
model depending on flow direction. The next equation is a check com-
paring the actual pressure ratio against the critical pressure ratio, com-
pare equation 3.5. The equation yielding the mass flow rate has been
modified with two extra variables, one discharge coefficient Cd and
the area of restriction A. The discharge coefficient Cd is a correction
term used to correct the theoretical flow value for the effects of the
Reynolds number. The Reynolds number describes velocity profile of
the medium, the flow is considerably smaller near the boundaries of
the flow field. A reasonable number for the Cd term is about 0.7 for a
standard restriction.

3.5 Included components

Figure 3.1 shows all top libraries included in VehProLib, the libraries
contain both models and full examples. The structure is based on the
physical properties of the model. For example a model of a wheel would
be found in the Chassis library. To be able to maintain an intuitive
structure is very important, the user should be able to foresee where
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a model can be found before the need arises. The different libraries
includes a number of different models which will here be given a brief
introduction.

Chassis The chassis library contains models for wheels, carbody and
so forth. The main uses of the library is to model a complete
vehicle, for example in fuel consumption studies. The chassis
library is a very basic library, the models included are simple. If
a more detailed model is needed one should consider using the
VehicleDynamics library [1] instead, where more detailed models
are provided.

Driveline In this library models of the powertrain can be found, for
example gearbox and differential gear. In the package a model
of a driver is also provided, the model is used to ”drive” the car
according to a predetermined drive cycle. This library is also in
some aspects a rather basic library, and a more advanced library
with about the same capabilities is the Powertrain library [10]
from DLR.

DrivingCycles Here different drivecycles for complete vehicle studies
are provided. As of now only one cycle is implemented, the New
European Drivecycle (NEDC). The cycles are implemented in the
form of a look up tables.

Engine This is the biggest and most important library. There are
a number of different engine components stored. When mod-
elling engines there are basically two different approaches, the
in-cylinder models and the mean value engine models (MVEM).
Both methods has been implemented in the library. The in-
cylinder model implemented is a single zone, zero-dimensional
model, and depending on the working fluid chosen different com-
bustion models are provided. Single zone means that there is
only one zone in the combustion chamber, there is no separa-
tion of burned and unburned gases and so forth. The zero-
dimensional structure follows naturally since there is only one
zone modelled there can be no geometrical interpretation of the
zones. Heattransfer is implemented using both equations devel-
oped by Woschni [5] and Hohenberg [5], the use of heattransfer
is optional so comparing studies can be performed. The combus-
tion is described using the standard Vibe-function. The model of
the complete cylinder, VehProLib.Engine.CylWValves is imple-
mented in true multi-domain configuration. The fluid equations
are separated from the mechanical ones in different subcompo-
nents. In-cylinder models are very detailed but slow to simulate,
so in order to reduce simulation time MVEM models are provided.
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The MVEM models are typically used in complete vehicle simula-
tions or in the design of control systems. Since all cylinder models
share the same interface VehProLib.Interfaces.Cylinder, they
are easily replaceable, so the complexity of the model can be var-
ied by a flip of a switch, simply inserting the right model in its
appropriate place.

Examples A number of examples showing how different components
can be put to together and simulate different engine configura-
tions.

Functions Contains math functions useful to the entire library.

GasProp All medium models available for the library is found here. The
purpose of this package is to have a number of different models
for thermodynamic properties of the fluid available to the user,
each with a different levels of complexity. The fluid models are
easily replaceable, so the level of complexity can be changed with
little effort. This package will be examined in great detail in the
Medium models chapter of this thesis.

HEV This library contains different models used in simulations of Hy-
brid and Electrical vehicles. For further information about this
library please refer to the master thesis written by Wallén [13].

Interfaces This library contains the different interfaces used by Veh-
ProLib. An interface can be both a single connector and a model
containing several different connectors. Interfaces containing sev-
eral connectors are for example the VehProLib.Interfaces.-
Cylinder which contains two FlowCut connectors, one rotational
and one FlowCut liquid, this interface is used for models of a
cylinder both in-cylinder and MVEM.

Partial Almost all partial models in VehProLib can be found here,
this is the very foundation of the entire library.

Tests When a new model is added to the library they should be tested,
reassuring they can function with all other parts of the library.
Such tests should be placed in this library. Unfortunately no
such tests are available right now, so an effort should be put in
to complete and implement some test models.

Types The standard collection of units is extended with some units
specially needed for the VehProLib library. The definitions of
them are found in this section.





Chapter 4

Advanced concepts in
Modelica

In this chapter some of the more advanced concepts I have tried will be
presented. First an introduction to the replaceable concept in Modelica,
and its uses in the VehProLib library. Following that a discussion
about different approaches to handling parameters in Modelica, and the
implementation in VehProLib. After that a section covering, different
ways to implement a Signal Bus. All this will then be exemplified
with a walk through of the MvemTestBench model, where most of the
concepts covered here is implemented.

4.1 Replaceable components

In the previous chapter the concept of inheritance was introduced, and
the uses in VehProLib was shown. In order to maximize the reusability
of the models a number of different partial classes were constructed,
for example the TwoPinStatic from which all restrictions are extended
from.

This concept will be expanded with another powerful feature of the
Modelica language, the possibility to replace an entire model with a
subtype of that model. This section will only give a somewhat brief
introduction to the concept, adequate to understand how it’s used in
VehProLib. For a more extensive discussion please refer to [8]. In
order to understand the limitations and possibilities of this concept,
one must first understand how a subtype is defined in Modelica. At a
first glance one might think that a subtype is classified by inheritance
in Modelica, but this is not the case, they are only a way to create a
subtype relationship. Instead subtypes are defined by that they share
the same public components as the superclass. To clarify, two models
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exists A and B. If A contains at least all public components of B, then
A is said to be a subtype of B. Note, and this is very important, that
A must not have inherited B. The concept is illustrated in a number of
code fragments of an incomplete circuit shown below.

model Circuit
replaceable Resistor component1(R=100);
replaceable Inductor component2(L=0.1)
extends OnePort;

replaceable Resistor component3(R=200)
extends OnePort;

connect(...);
end Circuit;

This code fragment defines an incomplete circuit with three different
components, all of them is declared as replaceable, meaning that they
can be replaced by a subtype of that class. The parameter values spec-
ified in the first circuit are retained, and only the new parameters must
be specified, ie in this case Temp and C. One can of course also change
parameters already specified except if they are declared as final. Then
the parameter can no longer be changed by modification, including
redeclaration.

model AnotherCircuit =
Circuit(redeclare TempResistor component1(

Temp=25),
redeclare Capacitance component3(
C=0.05));

In this circuit two components has been redeclared, component1 and
component3 as illustrated by figure 4.1. Component1 is redeclared
as a TempResistor, which is a subtype of the Resistor model. The
TempResistor shares all the public components of the Resistor, in this
case only the value of the resistance R and the two electrical connectors.
Note that TempResistor has not inherited the Resistor model, because
one need to replace Ohm’s law with some other relationship between
the current and the voltage. In order to redeclare component3 as a
Capacitance one must change the constraining class, in this case it’s
changed to the OnePort model instead of the Resistor model, when
this is done the component can be redeclared as any subtype of the
OnePort model.

The equivalent circuit can of cause modelled not using the replace-
able concept as shown below.

model AnotherCircuit
TempResistor component1(R=100, Temp=25);
Inductor component2(L=0.1);
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Figure 4.1: Original circuit and effects of the redeclarations.

Capacitance component3(C=0.05);
connect(...);

end AnotherCircuit;

When the Resistor model was replaced by the TempResistor model,
this method seemed very appealing, but a number of difficulties arise if
one wishes to replace all the Resistors models with the TempResistor
model. First one must know the total number of components declared
as replaceable, and one must know the name of every single component
one wishes to redeclare. The solution to this problem is to take the
redeclaration to a higher level. Instead of redeclaring every single com-
ponent, one could instead redeclare the model from which the resistors
are declared. In the next example a replaceable model called MyResis-
tor is created, and the model MyResistor is declared to be a model of
a resistor.

model Circuit
replaceable model MyResistor = Resistor;
MyResistor component1;
Inductor component2;
MyResistor component3;
connect(...);

end Circuit;

The two components declared as MyResistor will in this case be de-
clared as resistors, as indicated by the first line of the code fragment.
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If one wishes to redeclare the Resistors as TempResistors this is simply
done by redeclaring the model MyResistor to a model of a TempResis-
tor, see figure 4.2 for an graphical illustration of the process.

model AnotherCircuit =
Circuit(
redeclare model MyResistor = TempResistor);

Figure 4.2: Original circuit and effects of the redeclarations.

The equivalent model of the circuit not using any replaceable compo-
nents is modelled like this.

model AnotherCircuit
TempResistor component1;
Inductor component2;
TempResistor component3;
connect(...);

end AnotherCircuit;

One can even replace entire packages at the time, this is not used
anywhere in VehProLib, so this will not be covered here. The interested
reader can look in the Modelica Media library, when it becomes publicly
available, where this is used extensively.

The main uses of the possibility to replace a component is probably
in creating models for studying specific effects of a certain component.
This is found in a number of models in VehProLib. One example is to
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enable the study of the effects from heattransfer from the cylinder. One
model with an adiabatic (no heattransfer) cylinder model is created,
then one simply replaces that model with a model with heattransfer.
The advantages of this approach is that there is no need to write two
virtually identical models, instead one model is created and only the
parts being redeclared is needed in the second model. Compare the two
code fragments above, the one using replaceable and the one not using
it.

The point of replacing an entire model instead of replacing compo-
nents is not so easily understood. If this method is to be considered, a
component must exist in several places in a model and one must wish
to replace all of them at the same time. The best example of such sit-
uation is the fluid models in the VehProLib, a model of the fluid exist
in almost every component and when one wishes to redeclare the fluid
model it’s convenient to do so at one place instead of being forced to
use the standard redeclare in every model containing a model of the
fluid. How this is done in practice will be shown in the last chapter of
this thesis.

4.2 Handling parameters

In the models shown so far the parameters has been set in the declara-
tion section of the model, but as models get bigger and more complex
this is no longer a satisfactory way of handling the parameters settings.
When a large and complex model is created a need to collect all the
parameters in one place arises. The first reason for this is the need to
quickly be able to view all the parameters at the same time, thus elim-
inating the need to open and view several different submodels of the
larger model. Secondly, in a model a parameter can be used by several
different components and there must be a way to ensure that they are
always set to the same value. This is the most important reason to
collect parameters in one place. Another important reason is to create
a more user friendly environment, if one wishes to change a parameter,
it is much easier just to change it at single place instead of being forced
to remember where the parameter is actually used. Finally it should
be possible to replace the parameters with a different set of parame-
ter, thus enabling a way to create a library of different parameter sets
representing, for example different geometrical layouts of a cylinder.

Two ways of creating such parameter sets will be presented here,
first the approach used by Tiller in [12], and then by using one of the
restricted classes of Modelica, namely record.

The main idea behind Tiller’s way of representing parameters, is to
create two models, one generic model for the physical system to be
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modelled and one model containing the parameters needed. To com-
municate between the models two specially designed connectors are
used. One is input only type connector, meaning it can only receive
information, the other one is naturally an output connector, sending
information to the input connector. The code fragments below show
a straight forward implementation of two connectors needed. In this
case only two parameters can be transmitted, but this can of course be
extended to any number.

connector EngineGeometryRequired
"Connector to receive geometry information"
input SI.Length bore "Engine bore";
input SI.Length stroke "Engine stroke";

end EngineGeometryRequired;

connector EngineGeometryProvided
"Connector to send geometry information"
output SI.Length bore "Engine bore";
output SI.Length stroke "Engine stroke";

end EngineGeometryProvided;

To access the parameters one simply include an input connector, give
it a name, for example geometry. Then parameters can be access using
the dot notation like this, geometry.bore, would return the value of the
component bore on the connector. In the other end, where one wishes
to send parameters to the connector, the method is very similar, simply
replace the input connector with an output connector as shown in the
code fragment below.

model GeometrySource
EngineGeometryProvided geometry;
parameter SI.Length bore = 0.09;
parameter SI.Length stroke = 0.09;

equation
geometry.bore = bore;
geometry.stroke = stroke;

end GeometrySource;

The model GeometrySource should always be declared replaceable when
it’s used, so it can easily be replaced by any other set of parameters.
The advantages of this approach is that since the parameters are stored
in a ordinary model, one can write equations in the equation field. This
can be used to check the values of the parameters before they are ac-
cepted, for example one can set an upper and lower limit of acceptable
values. On the downside, two problems can be identified. The first
problem is that one can’t use the models without providing any pa-
rameters, there can be no default values stored in the models, because
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the parameters are not declared in the model, they are only provided
via the connector. A second problem is the need to write a lot of con-
nect statements, this will in turn reduce that readability of the code,
as connect statements are no longer reserved for actual physical flows.

To address these shortcomings the restricted class record was intro-
duced. The limitations that apply to the use of the restricted class
record is that it may not contain any equations and it can not be used
in connections. When one wishes to use a parameter record it is simply
included in the model, and its components is referred to using the usual
dot notation. The code for the parameter set using a record is very
similar to one used in GeometrySource above, as can be seen below.

record EngineGeometry
parameter SI.Length bore;
parameter SI.Length stroke;

end EngineGeometry;

The common way to implement a library of parameters sets is to de-
clare a empty record, only specifying which parameters it contains. A
new record is then created by extending from the empty record and
providing the values for the parameters.

record SAAB95
extend EngineGeometry(
bore = 0.09,
stroke = 0.09);

end SAAB95;

To change the record in a model is done in the same way as any other
parameters is changed, on the line the model is declared, simply write
which parameter record to use within parenthesis. Compare with for
example the code fragments from the previous section.

model car
Engine.MvemEngine engine(data = SAAB95());
...

end car;

For this to work a record of the correct type must exist in the model.
In this case, in the MvemEngine model one should include the record
EngineGeometry. The advantages of using parameters records are basi-
cally the disadvantages pointed out using Tiller’s method using connec-
tors. Here there is no need to write connect statement, so all connect
statement represent actual flows. The parameters can be given default
values, so testing is simpler as one can test a model without including
additional models. On the downside is that there is no possibility to



30 Chapter 4. Advanced concepts in Modelica

check the parameters before they are accepted as there is not allowed
to be any equations in the record class.

The conclusion of this section is that records is the recommended
way of storing parameters, as they give a clearer view of the model,
not clouding it with extra connect statements. Some Dymola specific
advantages exist also, there is a much better support for handling record
in the user interface than using models with parameters. The method
using records is also recommended by Modelica so this should also be
a strong argument for using it.

4.3 The Signal Bus

Signal connections in technical system can quickly get very complicated
and hard to overview, to remedy this a bus system is often introduced
collecting all signals to a common signal bus system. This procedure
can be mimicked with Modelica in a number of ways. Two different
ways will be presented here, first the implementation used in the Pow-
erTrain library created by Dymola, the second implementation is used
by Ford in their in-house engine modelling libraries.

The signal bus system suggested by Dymola in [4] is based around
a specially designed connector which acts like a bus. To represent this
graphicly the connector has been drawn out to form a oblong rectan-
gle, this is of course of no importance but only a way of providing a
resemblance with an actual bus. If one tries to use a connector as a
bus right away, a problem will quickly be identified, it’s not possible to
connect to a single variable on the connector. Every model that uses
the bus must know the entire bus and the only way of achieving this
is to include a bus connector, which means that none of the standard
models can be used. So for the bus connector to be of any practical use,
a single variable connector must be constructed. To solve this problem
three single variable connectors are provided, one for Real, Integer and
Boolean type of variables.

connector RealPort
replaceable type SignalType = Real;
extends SignalType;

end RealPort;

The use of the replaceable signal type is not strictly necessary. The
purpose of this is to allow a redeclaration of type so the signal will
be given its proper unit. In the code fragment below this is used to
redeclare the type of the signal vehicleSpeed from Real to Velocity, and
by doing so the variable will be displayed with correct unit.
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connector Bus
RealPort vehicleSpeed(redeclare type SignalType
= SI.Velocity);

IntegerPort Gear;
...

end Bus;

For every signal to be transmitted on the bus a connector of the ap-
propriate type is added. Connection can now be achieved both to the
entire bus system using another bus connector or to a single variable
using one of the single variable connectors. One small problem is left
to be tackled, most models have an ordinary OutPort or InPort to
be used in connections. They can not be connected directly to the
bus, so a bus adaptor is needed to send and receive signals from the
bus. All the models used in conjunction with the bus, can be found in
Modelica.Blocks.Interfaces of the Modelica Standard Library.

To summarize, to send a real variable to the bus requires two ad-
ditional components, first a standard OutPort, then a bus adaptor for
the conversion to a RealPort connector. The adaptor is then connected
to the single variable connector on the bus connector. To send real
variable from the bus would require two more components, an InPort
and an separate adaptor. The advantages of using this implementation
is that it’s easy to add signals, one must only add an extra connector on
the bus, and the extension is complete. The negative side, has already
been introduced, it requires a number of extra models to work and all
of them must be connected using connect statements. Remember that
the purpose of introducing the bus was to collect all the signals, reduc-
ing the number connection lines needed. In this only a partial success
is achieved, the signals can be transmitted on the bus between models,
but inside the model the bus must be split up to access the individual
signals. One problem arises when replaceable components are intro-
duced in models. Different components may require a different set of
control signals and thus a different bus configuration. This problem can
not be easily handled using this version of the bus, one must manually
reconfigure the bus, adding or removing signals. Another solution is to
maintain the bus and use a separate model to put out dummy values
on the part of the bus not currently in use.

The implementation presented by Tiller in [7] tries to address this prob-
lem. To avoid the problem, something called the SignalBus idiom is
introduced. In this approach, all signals associated with each subsys-
tem are grouped together on a ”master” bus on the top-level of the
model. The components only need to be aware of the specific signals
they require and not all the signals on the master bus.

connector SignalBus
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(graphics)
end SignalBus;

First one creates an empty connector, and give it a special graphical no-
tation so it can easily be identified in the models. This is not necessary,
only a help to the user.

model LambdaControl
outer ControlBus eng_control_bus;
...

protected
connector ControlBus
extends SignalBus;
Real Lambda;
Real LambdaControl;

end ControlBus;
end LambdaContol;

Inside each component requiring control signals, in this case the lambda
control, a specific bus type for that component is declared. The bus is
declared as protected, clearly showing it’s for internal use only. The bus
definition should include only the signals required by the component.
This bus can be instantiated with the outer qualifier, the name of the
instance should be that of the master bus in the top-level model, where
the signals reside.

model Car;
inner EngineMaster eng_control_bus;
...
EngineControlUnit ECU "Contains Lambdacontrol";

protected
connector EngineMaster
extends SignalBus;
Real Lambda;
Real LambdaControl;
Real IdleControl;
Real EngineSpeed;

end EngineMaster;
end Car;

The top-level model, should contain a master bus type containing the
union of all the subsystems buses and a inner instance must be de-
clared. This implementation has the following advantages over other
bus implementation, it avoids the necessity to place connectors at each
level. This is a big advantage since every time a component is changed
it might require modifications to connectors at every level of the model.
The outer bus must only be a subtype of the matching inner bus, the
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component must only declare the signals it’s interested in. In the code
fragment, this is clearly seen, the lambda control only requires two sig-
nals, but the master bus contains four signals. The signals are accessed
in the same way as in the previous examples, using the standard dot
notation, for example eng control bus.Lambda. One disadvantage us-
ing this implementation is the more complex way of adding new signals,
here one needs to add the signal at two different locations. First in com-
ponent where the new signal is needed, and then in the top-level model.

In VehProLib the latter implementation has been implemented, rea-
sons for this is that it requires no connectors at the sub-levels. This
results in a clearer view of the model. The same reason as the record
was chosen as the primary way of handling parameters. The second
thing that influenced the choice was the need to take care of an under
used bus, which requires a special model in the first implementation
putting out dummy values on not used signals, this is not a problem in
the latter implementation since the components only declare the signals
they are interested in.

Some final remarks about the use of buses in Modelica. It should
be possible to simulate for example an engine without being forced to
use the bus. The models should not require the presence of the control
systems in order to function. On the other hand, the models should
automatically start using a control system if the connection to control
bus is detected.

model MvemCylinder
if cardinality(eng_control_bus) == 0 then
eng_control_bus.LambdaControl = 1;

end if;
...

end MvemCylinder;

The code fragment shows how this can be achieved using the car-
dinality keyword, cardinality(eng control bus) returns the number of
occurrences of eng control bus in connect statements. So if the cardi-
nality statement returns zero, no connections has been made on the
bus, and no control system can be present. The model then mimics the
control system, by setting an appropriate value on the signals effected
by the control system. Unfortunately this method can not detect if the
right control system has been connected, so this is left to the user, to
see to that the control system meets the the demands of the model.
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4.4 The MvemTestBench Model

This example will serve as an illustration of most of the concept covered
in this chapter. The model is MvemTestBench and it’s a model assembly
for testing MVEM engines. The model consists of six different parts, as
can be seen in figure 4.3. The engine will run at a constant speed set by
the dynamometer and the signal source can be used to alter the throttle
setting. The engine control system has two functions implemented,
first it provides lambda control for the engine, secondly there is an
idle running function. The lambda control influences the amount of
injected fuel, always maintaining a lambda value close to one. The idle
running steps in and controls the throttle if the throttle setting is to
low to maintain idle running.

Figure 4.3: The MvemTestBench model.

The engine and the control system communicate on a bus imple-
mented following the lines laid out in the previous section. The bus
can declare a total of four signals. Components in the engine will put
out the current lambda value and the speed of the engine, the con-
trol system will return two control signals, one effecting the throttle
and one the fuel injection. The engine control system can be removed
without any need to modify the engine, as all effected components in
the engine are implemented using cardinality statement as illustrated
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in the previous section.

Figure 4.4: Layout of MvemEngine model. The connector for the signal
bus is visible in top of the figure and the parameter record can be seen
in the bottom.

The layout of the MVEM engine is shown in figure 4.4. All param-
eters used to specify the engine is collected in a record. The record is
declared replaceable so the engine can easily be reconfigured. Two pos-
sible ways exist, first one can use one of the available engine record, or
one can change the individual parameters of the record, and by doing
so creating a new engine. One more choice is available to the user, a
number of different medium models is implemented in VehProLib. The
medium models range from a very simple fluid model with constant cp
to multi-component fluids. The user is free to use any of these models
and the choice is not affected by any other choices made. All choices
are perpendicular to each other.
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Medium models

Different engine simulations require a different level of detail. This
is achieved by providing the user with a number of different models
to choose from, for example in-cylinder and mean value engine mod-
els. This should also be possible when calculating the thermodynamic
properties of the fluid. One should be able to choose from a number of
models describing the fluid. This concept was introduced by Batteh,
et al. in [2].

5.1 The replaceable Medium Model

The purpose of the medium models is to calculate the thermodynamic
properties of the content of for example a control volume. The span
of the complexity can be considerable, in one case one can treat the
medium flowing through the engine as single-component gas with fixed
cp, but in other cases one perhaps wishes to use a multi-component
gas which would require tracking of several chemical species. At first
glance, there would seem like one would be forced to have a different
set of component models for each medium model. This would result in
a totaly unacceptable situation. A deeper look into the problem would
however reveal that the thermodynamic properties of the medium are
orthogonal to the equations of the different processes inside the engine.
So if one formulates the models correctly the choice of medium can be
made independently of the components used in the model.

This is achieved by creating a partial model called GasPropBase
which describes the functionality the different medium models must
possess. The GasPropBase model consists of a number of parameters
and variables each medium model must have, and some basic relations
that are valid for all models. The source code for the model can be
found in Appendix A. It can be noted that the GasPropBase contains
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no assumptions about ideal gases. The different medium models in the
library are then extended from the GasPropBase model.

Because the medium-specific information is wholly contained within
in a replaceable model, the working fluid specification can be changed
at a single place, preferably at the top-level of the model. This function-
ality is achieved by using the possibility to declare replaceable models,
see the second example of how to use replaceable in chapter four. If
one where to use that approach straight away, it would not yield any
good result. In that example the model was changed from within the
component itself, but in this case one would like to be able to change
the model from outside the different components. This requires the
introduction of the inner/outer prefix, inner/outer is used in Modelica
to create global variables. So if one wishes to create a global variable
one uses the inner prefix when declaring the variable at the top-level,
this variable can then be accessed by any component within by simply
declaring a variable with the same name using the outer prefix.

So in every component that requires a fluid component, a model
called Gasmedium is declared, the model is declared using the outer
prefix. The Gasmedium model is then used to declare a fluid component
called g.

outer model Gasmedium = GasPropBase;
Gasmedium g;

Then at the top-level a replaceable model with the same name is de-
clared, this time using the inner prefix instead. The result will be
that the Gasmedium model will be the same through out the entire
model, so if it is changed at the top-level it will also be changed in the
under-lying components.

inner replaceable model Gasmedium =
PerfectGas extends GasPropBase;

The Gasmedium model can be changed into any medium model ex-
tended from the GasPropBasemodel, in this case a model called Perfect-
Gas is chosen. This choice is then reflected down through out the model
hierarchy.

5.2 Implemented medium models

The implemented medium models in VehProLib can be group together
in three distinct groups. First single-component fluids, secondly multi-
component fluids and finally models of real substances, such as hy-
drogen and oxygen. The models of real substances are then used to
build up more advanced multi-component fluids. In this section the
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three groups will be presented in order, starting with simple single-
component fluid. The structure of the different medium models is
illustrated by figure 5.1, please note that this figure is by no means
complete, it only serves as an illustration of the structure. There is a
number of models implemented not present in the figure. On the top of

Figure 5.1: Structure of Medium models, partial models are dashed.

the figure the superclass GasPropbase is found, this class is then used to
create all medium models. The second partial model IdealGasBase is
used to create models of actual substances as shown in the figure. The
other two models shown represent two existing medium models. The
PerfectGas is a simple single-component fluid, whereas the Working-
Fluid is a complex multi-component fluid model.

5.2.1 Single-component fluids

Two single-components are implemented in VehProLib as of now, one
very simple with constant cp and one with a linear temperature depen-
dent cp. The source code for the first model is shown below, a number
of things can be noted.

model PerfectGas
"Very simple gasmodel, cp(T) = cp0"
extends VehProLib.Partial.GasPropBase(
MolarMass=29/1000,
final n=1,
final xInit={1},
final xBurned={1});



40 Chapter 5. Medium models

parameter SI.SpecificHeatCapacityAtConstantPressure
SpecHeat_p=1200
"Specific heat capacity at constant pressure";

equation
c_p = SpecHeat_p;
p*v = R*T;
c_v = c_p - R;
h = c_p*T;

end PerfectGas;

First the model is extended from GasPropBase as expected, and four
parameters is given its values. These four are the molarmass, n, xInit
and xBurned. Molarmass needs no further explanation, n is the num-
ber of components in the fluid, xInit sets the initial values for the mass
fraction array (since n was equal to one in this case, xInit must also
be equal to one), xBurned yields the new mass fraction array after
fluid has been burned when using a MVEM model. In the equation
field four equations are found, first an equation to fix cp to the value
given by SpecHeat p. The second is the ideal gas law, then the rela-
tionship between the specific heats, and last an equation for calculating
the mass specific enthalpy. The things that can be improved with this
implementation is a more advanced method to calculate the value of
cp, instead of using a fix value, one can use some sort of mathematical
relation between temperature and cp as mentioned above.

5.2.2 Multi-component fluids

Two multi-component fluids are available to the user, the source code
for the simpler one of them is found in Appendix B. The code is similar
to the one used for single-component fluids, n, xInit and xBurned are
all found in this model too. The value of n is here greater than one, so
xInit and xBurned are true vectors. Following that are the different
fluid components declared, in the example three components are used,
but this can be expanded to any number. The different components are
single-component fluids implemented following the lines laid out in the
previous section. In the source code it can be noted that the Perfect-
Gas model is used for one of the components. The galine position
parameter is used to point out the position of the gasoline in the mass
fraction array, the parameter is used when fuel is injected to the fluid.
All the components senses the same pressure and temperature, and will
calculate their own thermodynamic properties. The thermodynamic
properties of the composite fluid is then calculated by taking the mean
of the different components weighted by the mass fraction array, see the
equation field of the source code. Multi-component fluids are also able
to calculate their own relative fuel/air ratio, this is used in combustion
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processes. The use of multi-component fluids has a number advantages
over single-component fluids, the combustion process can be more ac-
curately modelled, one component can be modelled to resemble air and
another one to resemble exhaust. A number of phenomenon can be
captured, for example the residual gas fraction in the cylinder.

5.2.3 Substance models

Substance models are used in the more advanced multi-component fluid
models, such as the WorkingFluid model. The WorkingFluid model
has seven different substances included. The substance models are ex-
tended from the IdealGasBase model. All the equations are found in
the IdealGasBase model, the only thing effected by the extension is
from which parameter record the substance specific data is read. The
source code for IdealGasBase can be found in Appendix C. Models of
gasoline in vapor phase require a different set of equations, so those
models don’t use the IdealGasBase as a superclass. The thermody-
namic properties are computed using the formulaes and data found in
[5]. In the library seven different substances are provided, six models
of different gases and one of gasoline vapor.

5.2.4 Comparison between different fluid models

In order to evaluate the differences in performance of the different fluid
models in the library, the model ControlVolumeTest can be used. The
test model will increase the pressure by opening a valve after two sec-
onds. The pressure will then be reduced in two steps at four and eigth
seconds. Things to consider are the time required to complete the simu-
lation and the differences in the variables that can be observed. In figure
5.2, the result from two simulation are shown. The model PerfectGas
is the simplest fluid model in the library. It is a single-component fluid
with cp fixed to a constant value. The other model is called Working-
Fluid, this is the most advanced model implemented. Seven different
components are included in the model (O2,N2,H2O,CO2,CO,H2,CH).
The thermodynamic properties are calculated using data from NASA
tables. The time required to complete the simulation is 0.531 sec-
onds for the WorkingFluid model and 0.061 seconds when using the
PerfectGas model. The more complex fluid is, as can be seen about
ten times slower to simulate. In the top figure of figure 5.2, the pressure
of the fluid inside the control volume is plotted. No visible differences
can be seen in the figure. However some differences can be detected
during the transients. The response for the PerfectGas is a little bit
slower than the WorkingFluid. In the bottom figure, the pressure is
instead plotted. Here is the differences more apparent, the Perfect-
Gas will yield a lower temperature when the temperature is above 293
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Figure 5.2: Comparison between two different fluid models.

K and vice versa. The WorkingFluid model is very accurate and the
other models should try to capture the behavior of this model. The two
figures show that the PerfectGasmodel capture the overall behavior of
the system very well and the simulation time is reduced considerably.
However will the ability for the PerfectGas model to produce good
results decrease as the temperature span increases.

5.3 Limitations on the uses of medium mod-
els

The purpose of implementing a number of different medium models,
was to allow the user to chose the level of complexity in the simula-
tions. One of the goals was to be able to chose the fluid independently
from the components used in the model. Unfortunately this is not com-
pletely true in the current implementation. When MVEM models are
used all the information required by the fluid is completely contained
within the fluid, so the choice of fluid model can be made totally in-
dependent. In in-cylinder models, this is not the case. Problems will
arise in a number of situations, first in the injector model. If single-
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component fluid is used with the injector model, it’s not possible to
inject fuel and simultaneous track the amount of fuel injected. The
reason for this is that the fuel will be added to the only present compo-
nent and it can not be singled out at a later stage. Problems will also
arise in the combustion chamber when using in-cylinder models. The
combustion chamber is basically an enhanced control volume, where
the mass balance equation (3.1), is replaced with an equation that al-
lows for mass flow between different components. If a single-component
fluid is used there can be no flow between components, but if a multi-
component fluid this must be possible. So the mass balance equation
must be changed to fit each of the different possible choices. The model
of the combustion chamber used with single-component fluids is found
in Appendix D. This should be compared with the combustion chamber
model used with the most advanced fluid found in Appendix E. As can
be seen the level complexity regarding the mass balance equation varies
substantially, from a single line to over ten lines in the code. This is
one of the major shortcoming of the library, and an effort should be
made to fix this problem.

5.4 The CylWValves model

This example will show some of the results that can be obtained using
in-cylinder models combined with a multi-component fluid. For this
simulation a model called CylWValves is used. This is an in-cylinder
model, modelled using a true multi-domain configuration. The layout
of the model can be seen in figure 5.3. In the model are three different
domains represented, mechanical, fluid and heat transfer. The tran-
sition between mechanical and fluid domains is located in the piston
model. The pressure of the fluid is converted to a force acting on the
connecting rod. The transition from fluid to heat transfer is located in
the combustion chamber of the model. The heat is transported to a
model of the cylinder wall, which will be heated by the combustions. All
the parameters are collected in a record called cylinderParameters.
Parameters available to the user are, for example geometrical layout of
cylinder. Valve timing for both inlet and exhaust valve can be varied
by changing the appropriate parameters. The result from a simulation
using a fluid with three components is shown in figure 5.4. The three
components of the fluid are air, gasoline vapor and exhaust gas. The
figure shows two consecutive combustions in the chamber, the combus-
tions occur at approximately 0.735 and 0.775 seconds into the simula-
tion. The four variables in the figure are the total and partial masses of
the ingoing components. The total mass will increase during the intake
stroke, remain constant during compression and expansion strokes and
decrease during the exhaust stroke. During the intake stroke gasoline
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Figure 5.3: Complete cylinder model with valves.

and air will be inducted into the cylinder. This can be clearly seen in
the figure at about 0.72 and 0.76 seconds. During the intake stroke the
residual gas can also be seen in the figure. During the combustion the
air and gasoline will be burned and form exhaust. The first combus-
tion is lean, there is not sufficient gasoline to consume all the air in
the cylinder. This will result in that air is still present in the cylinder
after the combustion is complete. This can be seen at 0.74 seconds.
The second combustion is stoichiometric, all the air is consumed in the
combustion.
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Figure 5.4: Gas exchange process inside the cylinder. Two consecutive
cobustions are shown. The first is lean, air is present in the chamber
after the combustion is complete. The second is stoichiometric, all the
air is consumed in the combustion.





Chapter 6

Concluding comments

In this last chapter some of the conclusions drawn in the previous chap-
ter are summarized and some recommendations for future work are
given.

6.1 Summary and Recommendations

In chapter one, the strengths of Modelica were shown, those are the pos-
sibility to write equations in the form they are found and the ability to
collect equations to form models, which can be reused. The example in
the last section of the chapter illustrates these points nicely. Chapter
two continued with the introduction of the VehProLib, and the dis-
cussion about the design of connectors and partial models. These are
the two most important design issues, the connector because its wide
spread use, almost every component in the library uses the connector.
The partial models dictate most of the capabilities in terms of the abil-
ity to use replaceable components. One more consideration should be
pointed out, the level of fragmentation, each partial model should add
an distinct ability. The two following chapters deal with more advanced
issues of VehProLib.

In chapter four an introduction to the replaceable concept was pro-
vided along with a discussion about parameters and signal buses. The
recommended way to handle parameters is to use parameter records.
Reasons for this are, increased readability of the code and no need
to provide extra connectors. One drawback can be noted when using
records, the values of the parameters can not be tested before they are
accepted. The signal bus suggested by Tiller was choosen before the
one provided by Modelica for mainly two reasons. First it is not nec-
essary to use adaptors to access the signals on the bus thus increasing
the readability of the code. Secondly and probably the most important
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reason is the large problems associated with replaceable components
when using the standard bus. Those problems were the need modify
the connector to fit the needs of the new model and to take care of left
over signals on the bus. One negative aspect of the selected bus can be
pointed out, when new signals are to be added modifications must be
made at numerous positions in the code instead of at just one place.

The Medium models chapter deals with the need to be able to choose
from a number of different models describing the thermodynamic prop-
erties of the fluid. The models provided range from very simple single-
component fluids to multi-component fluids. The resons for adding
multi-component fluids to the library were, first the possibility to rep-
resent the fluid using one component for unburned fluid and another for
burned. Both residual gas fraction and lean combustions phenomenons
can be captured as shown in section 5.4. When replacable fluid models
were introduced one problem was identified, it is not possible to choose
the fluid model independently from the component models when work-
ing with in-cylinder models, as pointed out in the last part of chapter
five. The main reason for this is the need to modify the massbalance
equation in the combustion chamber to fit the different fluid models.

It can be concluded that Modelica met the test, it was possible to
implement such advanced concepts as a signal bus in a feasible way.
All goals except one were achieved, the thing left to be tackled is the
problem with the fluid models.

6.2 Future work

The library is still in need of development, some of the areas that needs
to be addressed are:

• Implement and incorporate more engine components, turbo charger
models are for example completely missing. Exhaust gas recycling
could be added with little effort and take great advantage of the
multi-component fluid models.

• Test models, all models to be added to the library should be tested
to ensure that they work with all other parts of the library. Today
no such test models are implemented, this is a very important
issue to be solved

• The fluid models, the problem with the incomplete separation of
fluid and component models must be solved.

• Evaluate the performance of the Modelica Media, and see if it
should replace the current fluid models in the library.
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Appendix A

The GasPropBase model

partial model GasPropBase
"Base class for gas properties"
package SI = Modelica.SIunits;
SI.Pressure p(
nominal=100000,
min=5000,
max=20000000) "Gas pressure";

SI.SpecificVolume v(nominal=0.5, start=1)
"Specific volume";

SI.Temperature T(
start=400,
nominal=500,
min=200,
max=5000) "Gas temperature";

SI.Density rho(nominal=2) "Gas density";
parameter Integer n=1 "Number of gas components";
parameter SI.MassFraction xInit[n]
"Initial mass fractions of gas";

parameter SI.MassFraction xBurned[n]
"Mass fractions after burn complete";

SI.MassFraction x[n](
max=1,
min=0,
nominal=0.5) "Mass Fraction";

SI.SpecificEnthalpy h(
min=-1.0e8,
max=1.e8,
nominal=1.e6) "Mass specific enthalpy";

SI.SpecificEnergy u(
min=-1.0e8,

51



52 Appendix A. The GasPropBase model

max=1.e8,
nominal=1.e6) "Mass specific internal energy";

Real R(final unit="J/(kg.K)", nominal=200)
"Gas constant";

SI.MolarMass MolarMass(nominal=3/100)
"Molar mass";

SI.SpecificHeatCapacityAtConstantPressure c_p(
nominal=1200)
"Specific heat capacity at constant pressure";

SI.SpecificHeatCapacityAtConstantVolume c_v(
nominal=1000)
"Specific heat capacity at constant volume";

SI.RatioOfSpecificHeatCapacities gamma(
nominal=1.35)
"Ratio of specific heats";

equation
R = Modelica.Constants.R/MolarMass;
gamma = c_p/c_v;
h = u + p*v;
rho*v = 1;

end GasPropBase;



Appendix B

The SimpleWorkingFluid
model

model SimpleWorkingFluid
"Gasmodel for working fluid with three
gascomponents"

extends Partial.GasPropBase(
final n=3,
xInit={1,0,0},
xBurned={0,1,0});

PerfectGas air(final x={1});
IdealGas exhaust(final x={1});
GasolineVapor gasolineVapor(final x={1});
final parameter Real gasoline_position[n]={0,0,1}
"Pointer to gasolineVapor fraction";

Real phi;
equation

MolarMass = air.MolarMass*x[1] +
exhaust.MolarMass*x[2] +
gasolineVapor.MolarMass*x[3];
c_p = air.c_p*x[1] + exhaust.c_p*x[2] +
gasolineVapor.c_p*x[3];
c_v = air.c_v*x[1] + exhaust.c_v*x[2] +
gasolineVapor.c_v*x[3];
h = air.h*x[1] + exhaust.h*x[2] +
gasolineVapor.h*x[3];
rho = air.rho*x[1] + exhaust.rho*x[2] +
gasolineVapor.rho*x[3];
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phi = if noEvent(x[1] > Modelica.Constants.small)
then (x[3]*gasolineVapor.AFs)/x[1] else 10;

T = air.T;
p = air.p;

T = exhaust.T;
p = exhaust.p;

T = gasolineVapor.T;
p = gasolineVapor.p;

end SimpleWorkingFluid;



Appendix C

The IdealGasBase model

partial model IdealGasBase
"Basemodel for gasproperties calculations"
extends Partial.GasPropBase(
final n=1,
final xInit={1},
final xBurned={1});

//All parameters from Heywood p.131 table 4.10
protected
parameter Real a_low[:]=gasDataBase.a_low[:];
parameter Real a_high[:]=gasDataBase.a_high[:];
parameter SI.Temperature T_limit=
gasDataBase.T_limit
"Switching temperature between
burned/unburned properties";

public
replaceable parameter GasData.GasDataBase
gasDataBase;

equation
MolarMass = gasDataBase.MolarMass;
p*v = R*T;
c_p = if T < T_limit then R*(a_low[1] +
a_low[2]*T + a_low[3]*T^2 + a_low[4]*T^3 +
a_low[5]*T^4)
else
R*(a_high[1] + a_high[2]*T +a_high[3]*T^2 +
a_high[4]*T^3 + a_high[5]*T^4);

c_v = c_p - R;
h = if T < T_limit then R*T*(a_low[1] +
a_low[2]/2*T + a_low[3]/3*T^2 + a_low[
4]/4*T^3 + a_low[5]/5*T^4 + a_low[6]/T)
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else
R*T*(a_high[1] + a_high[2]/2*T
+ a_high[3]/3*T^2 + a_high[4]/4*T^3 +
a_high[5]/5*T^4 + a_high[6]/T);

end IdealGasBase;



Appendix D

The OpenCylinder
model

partial model OpenCylinder
"Simple engine cylinder model"
extends VehProLib.Partial.TwoPinDynamic;
constant Real PI=Modelica.Constants.PI;
parameter Types.Degree ign=-20
"Spark advance, before TDC";
parameter Types.Degree deltaTheta=60
"Duration of combustion";
parameter Real lambda=1
"Relative air/fuel ratio";

SI.Volume V;
SI.Mass m;
SI.Mass mx[g.n](
start=(pInit*V)/(286*TInit)*g.xInit,
fixed=false,
nominal=1e-6);

SI.Energy U(start=100, fixed=false);
SI.Angle theta;
SI.AngularVelocity omega;
SI.Power dW "Work produced on the piston";
SI.Energy Qin(start=0, fixed=true)
"Chemical energy in fuel";
SI.Energy Qtot(start=0, fixed=true)
"Total heat release";
SI.HeatFlowRate dQch "Chemical heat release";
SI.HeatFlowRate dQht
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"Heat transfer from the
combustion chamber";
Real mfb(start=0, fixed=true)
"Mass fraction burned";
SI.Area A "Cylinder wall area";
SI.Angle thetaOne
"Crank angle connected to the revolution";
Real dxb(start=0, fixed=true)
"Differentiated mass fraction burned";
Interfaces.FlowCut_liquid i_fuel;
Interfaces.FlowCut_o piston(n=g.n);
Modelica.Blocks.Interfaces.InPort inPort_theta;
VehProLib.Interfaces.Geometry geometry;
Modelica.Thermal.HeatTransfer.
Interfaces.HeatPort_b heatPort_b;

algorithm
thetaOne := mod(theta, 4*PI);

equation
piston.p = g.p;
piston.T = g.T;
piston.x = g.x;
piston.Wx = zeros(g.n);
heatPort_b.Q_dot = -dQht;
//Heat flowing out of system
theta = inPort_theta.signal[1];

V = geometry.V;
A = geometry.A;

der(theta) = omega;
der(Qin) = i_fuel.W*i_fuel.q_LHV;
der(mfb) = if noEvent(Qin > 0) then
dQch/Qin else 0;
i_fuel.W = if i.W > 0 then
i.W/(i_fuel.AFs*lambda) else 0;

when thetaOne > PI and mfb > 0.5 then
reinit(Qin, 0);
reinit(mfb, 0);

end when;

//Energybalance
der(U) = i.H + o.H - dW + dQch - dQht;
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// Massfraction balance
der(mx) = i.Wx + o.Wx + i_fuel.W*{1};

m = sum(mx);
g.x*m = mx;
g.u*m = U;
p*V = m*g.R*T;

dW = p*der(V);
dxb = Functions.vibeDer(
theta, ign/180*PI, deltaTheta/180*PI)*omega;
dQch = Qin*dxb;
der(Qtot) = dQch;

end OpenCylinder;





Appendix E

The OpenCylinderAdv
model

model OpenCylinderAdv
"Engine cylinder model, note can only be
used when workingfluid is choosen as medium"
extends VehProLib.Partial.TwoPinDynamic;
constant Real PI=Modelica.Constants.PI;
parameter Types.Degree ign=-20
"Spark advance, before TDC";
parameter Types.Degree deltaTheta=60
"Duration of combustion";
// Heattransfer
constant SI.Temperature Tivc=350
"Temperature at inlet valve closing";
parameter Real C1=0.1 "Tuning constants";
parameter Real C2=1 "Tuning constants";

Real mx_burnstart[g.n](start=zeros(g.n))
"Mass of gascomponents at start of burn";

Real phi "Relative fuel/air ratio";
SI.Volume V;
SI.Mass m;
SI.Mass mx[g.n](
start=(pInit*V)/(286*TInit)*g.xInit,
fixed=false,
nominal=1e-7);

SI.Energy U(start=100, fixed=false);
SI.Energy Qin(start=0, fixed=true)
"Chemical energy in fuel";
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SI.Angle theta;
SI.AngularVelocity omega;
SI.Power dW "Work produced on the piston";
SI.HeatFlowRate dQht
"Heat transfer from the combustion chamber";
SI.HeatFlowRate dQch "Chemical heat release";
Real dxb(start=0, fixed=true)
"Differentiated mass fraction burned";
Real mfb(start=0, fixed=true)
"Mass fraction burned";
SI.Area A "Cylinder wall area";
SI.Angle thetaOne
"Crank angle connected to the revolution";
parameter SI.Temperature deltaT=1
"Delta used in approx. of dc/dT";
Real c(
nominal=0.1,
min=0,
max=1);

Real c_dot;
// Heattransfer
SI.Temperature Twall "Cylinder wall temperature";
SI.Velocity meanSpeed "Mean piston speed";
Real h "Heat transfer coefficient";
Interfaces.FlowCut_o piston(n=g.n);
Modelica.Blocks.Interfaces.InPort inPort_theta;
VehProLib.Interfaces.Geometry geometry;
Modelica.Thermal.HeatTransfer.
Interfaces.HeatPort_b heatPort;

algorithm
thetaOne := mod(theta, 4*PI);
//Fix massratio at start of burn
when dxb < 0.001 and dxb > 0.0005 then
mx_burnstart := mx;

end when;
equation
piston.p = g.p;
piston.T = g.T;
piston.x = g.x;
piston.Wx = zeros(g.n);
heatPort_b.Q_dot = -dQht;
//Heat flowing out of system
Twall = heatPort_b.T;
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meanSpeed = ((omega/2)/PI*geometry.stroke)*2;
theta = inPort_theta.signal[1];
h = Functions.woschniHT(p, meanSpeed, 5*mfb,
((geometry.Vc*geometry.r_c)/geometry.V)^(g.gamma),
Tivc, T, C1, C2, geometry.r_c,geometry.bore);

if cardinality(heatPort_b) == 0 then
dQht = 0;

else
dQht = (h*A)*(T - Twall);

end if;

V = geometry.V;
A = geometry.A;

der(theta) = omega;
phi = g.phi;

c = Functions.Heywood_c(g.T, phi,
g.gasolineVapor.epsilon);

c_dot = (Functions.Heywood_c(g.T + deltaT,
phi, g.gasolineVapor.epsilon) -
Functions.Heywood_c(g.T - deltaT, phi,
g.gasolineVapor.epsilon))/(2*deltaT)*der(T);

//Energybalance
der(U) = i.H + o.H - dW - dQht + dQch;

if phi <= 1 then
der(mx[1]) = i.Wx[1] + o.Wx[1];
der(mx[2]) = i.Wx[2] + o.Wx[2]
- mx_burnstart[2]*phi*dxb;
der(mx[3]) = i.Wx[3] + o.Wx[3]
- mx_burnstart[3]*dxb;
der(mx[4]) = i.Wx[4] + o.Wx[4]
+ 2*(1 - g.gasolineVapor.epsilon)
*phi*mx_burnstart[2]*dxb;
der(mx[5]) = i.Wx[5] + o.Wx[5]
+ g.gasolineVapor.epsilon*phi*
mx_burnstart[2]*dxb;
der(mx[6]) = i.Wx[6] + o.Wx[6];
der(mx[7]) = i.Wx[7] + o.Wx[7];

else
der(mx[1]) = i.Wx[1] + o.Wx[1];
der(mx[2]) = i.Wx[2] + o.Wx[2]
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- mx_burnstart[2]*dxb;
der(mx[3]) = i.Wx[3] + o.Wx[3]
- mx_burnstart[3]*dxb;
der(mx[4]) = i.Wx[4] + o.Wx[4]
+ (2*(1 - g.gasolineVapor.epsilon*phi) + c)
*mx_burnstart[2]*dxb + c_dot*mx_burnstart[2]*mfb;
der(mx[5]) = i.Wx[5] + o.Wx[5]
+ (g.gasolineVapor.epsilon*phi - c)
*mx_burnstart[2]*dxb - c_dot*mx_burnstart[2]*mfb;
der(mx[6]) = i.Wx[6] + o.Wx[6]
+ (2*(phi - 1) - c)*mx_burnstart[2]
*dxb -c_dot*mx_burnstart[2]*mfb;
der(mx[7]) = i.Wx[7] + o.Wx[7]
+ c*mx_burnstart[2]*dxb
+ c_dot*mx_burnstart[2]*mfb;

end if;

m = sum(mx);
g.x*m = mx;
g.u*m = U;
p*V = m*g.R*T;

when thetaOne > PI and mfb > 0.5 then
reinit(Qin, 0);
reinit(mfb, 0);

end when;

dW = p*der(V);
der(Qin) = i.Wx*g.gasoline_position
*g.gasolineVapor.q_LHV;

dQch = Qin*dxb;
dxb = if noEvent(Qin > 1) then
Functions.vibeDer(theta, ign/180*PI,
deltaTheta/180*PI)*omega else 0;

der(mfb) = if noEvent(Qin > 1) then
dQch/Qin else 0;

end OpenCylinderAdv;
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