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at Linköpings universitet

by Magnus Nilsson

Reg nr: LiTH-ISY-EX-3584-2004

Supervisor: Mats Järgenstedt
Scania

Associate Professor Lars Eriksson
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Abstract

Combustion supervision by evaluating flywheel speed variations is a
common approach in the automotive industry. This often involves pre-
liminary measurements. An adequate model for simulating flywheel
speed can assist to avoid some of these preliminary measurements.

A physical nonlinear model for simulating flywheel speed based on
cylinder pressure information is investigated in this work. Measure-
ments were conducted at Scania in a test bed and on a chassis dy-
namometer. The model was implemented in Matlab/Simulink and
simulations are compared to measured data. The first model can not
explain all dynamics for the measurements in the test bed so extended
models are examined. A model using a dynamically equivalent model of
the crank-slider mechanism shows no difference from the simple model,
whereas a model including a driveline can explain more from the test-
bed measurements. When simulating the setups used at the chassis
dynamometer, the simplest model works best. Yet, it is not very ac-
curate and it is proposed that optimization of parameter values might
improve the model further. A sensitivity analysis shows that the model
is fairly robust to parameter changes.

A continuation of this work might include optimization to estimate
parameter values in the model. Investigating methods for combustion
supervision may also be a future issue.

Keywords: combustion supervision, cylinder balancing, physical mo-
del, cylinder pressure, flywheel speed, crankshaft
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Chapter 1

Introduction

1.1 Combustion Supervision

The electronic control system which covers at least the functioning of
the fuel injection and ignition is called the Engine Management Sys-
tem. One objective for the system is to supervise cylinder combustion
in order to avoid undesirable vibrations in parts of the engine. Undesir-
able vibrations in the crankshaft can arise from defective fuel injectors.
There have been many articles and books written on how to discover
control this phenomenon [5, 6, 9, 15].

A common approach on combustion supervision and cylinder bal-
ancing demands properties of the transfer function from cylinder pres-
sures to flywheel speed. Thus, the method involves preliminary mea-
surements on the engine.

A general physical model that can simulate flywheel speed using
cylinder pressure as input can facilitate to gain more information on
the transfer function. The focus of this thesis has been to implement
and examine the properties of one such physical model.

1



2 INTRODUCTION

1.2 Objectives

The general objectives were to

• Implement a basic mathematical model in Simulink that can sim-
ulate flywheel speed, given cylinder pressures.

• Carry out measurements that hold enough data to test and verify
the mathematical model.

If those objectives were met, the next step would be to

• Compare the basic mathematical model with some extended mod-
els with a focus on examining torque contributions from drive-
lines.

or

• Investigate algorithms for cylinder pressure supervision.

The first two objectives were reached, although it was hard to judge
the validity of the model. Then, comparisons with other models were
made with an emphasis on driveline models. No time was spent on
investigating cylinder pressure supervision.

Much work was spent on programming and a “toolbox” evolved as
a corollary of working with the models in Matlab. See [12] for more
details.



Chapter 2

The Model

This chapter summarizes the model developed by Schagerberg and
McKelvey [14], and it follows their presentation to a high degree. The
chapter may be skipped if familiar to the reader.

The model is a physical nonlinear lumped mass model which com-
prises the damper, the crankshaft, the cylinders and the flywheel. Given
pressures as a function of crank angle, an equation for the equivalent
torque on the crankshaft may be set up, based on cylinder and crank-
slider information. Together with a model of the crankshaft, a torque
balance equation is used to obtain a differential equation that may be
implemented in e.g. Simulink.

2.1 Torque due to Cylinder Pressure

We define the differential gas pressure, pg(θ), as the difference between
the absolute pressure inside the combustion chamber and the counter-
acting pressure on the back side of the piston. When the gas pressure
is multiplied by the piston area, Ap, we get the force that acts on the
piston along the cylinder axis. The gas pressure is further transformed
into the gas torque, Tg(θ), on the crankshaft by the crank-slider mech-
anism,

Tg(θ) = pg(θ)Ap
ds

dθ
(2.1)

where θ denotes the crank angle and s denotes the piston displacement—
see figure 2.1. The derivation of ds

dθ may be found in e.g. [9].

3



4 THE MODEL

s

l

A

B
r

r + l

θ

Figure 2.1: The crank-slider mechanism.

2.2 Torque due to Motion of Crank-Slider

Mechanism Masses

The moment of inertia is a function of both mass and position. In
the case of a crank-slider mechanism where the geometry changes, the
moment of inertia will also vary. The term varying inertia will be used
for this effect. The piston motion is assumed to be purely translational
along the cylinder axis, why it dynamically can be described by a single
point mass along this axis. Describing the motion of the crank-slider
mechanism is more complex since it undertakes both translational and
rotational motion. For a dynamically equivalent model of the connecting
rod, three requirements must be satisfied:

1. The total mass of the model must be equal to that of the original
body.

2. The center of gravity must be the same as for the original body.

3. The moment of inertia must be equal to that of the original body.

A common approximation is to consider a statically equivalent model in
which the last requirement is not fulfilled. A statically equivalent model
is used in most of this work. Thus, the piston and connecting rod are
approximated by two point masses—one reciprocating, mA, and one
rotating, mB—placed at the centers of the piston pin and crank pin
respectively as in figure 2.1. A dynamically equivalent model is briefly
examined in section 4.2.

The mass torque may be derived in different ways. In [9] it is done
considering the kinetic energy of the two point masses, mA and mB.
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The resulting equation may be expressed as

Tm(θ, θ̇, θ̈) = −(JA(θ) +mBr
2)θ̈ − 1

2
dJA(θ)
dθ

θ̇2, (2.2)

where the varying inertia of mA with respect to the crankshaft axis,
JA(θ), and its derivative with respect to θ are

JA(θ) = mA

(ds
dθ

)2

(2.3)

dJA(θ)
dθ

= 2mA
d2s

dθ2
ds

dθ
. (2.4)

The expressions for the piston displacement may be found in [9].

2.3 The Torque-Balancing Equation

Summing up the torque contribution from a single cylinder gives a
scalar differential equation, often referred to as the torque-balancing
equation

Jθ̈ = Tg(θ) + Tm(θ, θ̇, θ̈) + Tf (θ) + Tl(θ), (2.5)

where J is the crankshaft inertia, Tf (θ) the friction torque and Tl(θ)
the load torque. The mass torque, Tm(θ, θ̇, θ̈) is given in equation (2.2).

The instantaneous friction torque, Tf (θ), is modeled as viscous
dampers. Other torques that contribute to the crankshaft torque, such
as the driving of auxiliary systems of the engine, are neglected in the
model.

2.4 Crankshaft Dynamics

The main reason for using a lumped mass model of the crankshaft as
the physical model in this work, is because such models are developed
as standard procedure in the design phase of the crankshafts. The
objective is then however to calculate the maximum torsional stresses
in the shaft to mitigate crankshaft failure and for Noise Vibration and
Harshness issues.

A multi-body extension of the torque-balancing equation (2.5) may
be expressed as

Jθ̈ + Cθ̇ + Kθ = T g(θ) + T m(θ) + T f (θ) + T l(θ), (2.6)

where θ is now a vector. In equation (2.6), J , K and C are symmetric
matrices and referred to as the inertia-, stiffness- and damping matrices
respectively. These matrices are all of size N×N , where N is the num-
ber of lumped masses. The damping elements are modeled as viscous



6 THE MODEL

damping. Stiffness and damping elements interconnected between ad-
jacent lumped masses are here referred to as relative, and if connected
between an inertia lump and a non-rotating reference absolute. For
modeling of an engine crankshaft, typically both absolute and relative
damping elements are used but only relative stiffness elements since the
crankshaft is free to rotate about its axis.

In figure 2.2, such a model for the engine is outlined. Each relative
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J9

c1,2 c2,3 c3,4 c4,5 c5,6 c6,7 c7,8 c8,9

k1,2 k2,3 k3,4 k4,5 k5,6 k6,7 k7,8 k8,9

c3 c4 c5 c6 c7 c8

Damper
Free end

Cyl 1 Cyl 2 Cyl 3 Cyl 4 Cyl 5 Cyl 6

Flywheel

Figure 2.2: The lumped mass model with interconnected stiffnesses
and damping. Also absolute damping is included.

stiffness- or damping element adds a 2×2 block matrix in the diagonal
of K and C respectively. The block has the stiffness- or damping coef-
ficient on the diagonal and the negative stiffness- of damping coefficient
on the anti-diagonal. The load torque is assumed to be constant with
respect to the time scale considered in this work. It is also assumed to
be applied on the last mass in the crankshaft model. This simplifies
the load torque into the constant vector,

T l = (0 0 . . . 0 Tl)T . (2.7)

Friction torque is only modeled as viscous absolute damping elements.
It is incorporated in the damping matrix C and consequently T f (θ) =
0.

To describe the cylinder positions in the model, define the selection
matrix S of size N × Nc, where N is the number of masses in the
crankshaft model and Nc is the number of cylinders in the engine. The
matrix S has ones in positions (nmass, ncyl), for ncyl = 1, . . . , Nc. For a
six-cylinder engine with cylinders in positions 3–8 in a nine-mass model,
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S becomes

S = (s1 . . . sNc) =




0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0




, (2.8)

where si denotes the i:th column of S. To simplify notation, the expres-
sions for the gas and mass torques of a single cylinder (equations (2.1)
and (2.2)) are used to define the following three geometrical functions,

g1(θ) = Ap
ds

dθ
(2.9)

g2(θ) =
1
2
J ′

a(θ) = mA
d2s

dθ2
ds

dθ
(2.10)

g3(θ) = JA(θ) = mA

(ds
dθ

)2

. (2.11)

In a multicylinder engine the cylinder events are phased by the dif-
ference in firing angle between the cylinders. For instance, in the six-
cylinder engines examined in this work the firing sequence is 1–5–3–6–
2–4 and the crankshaft turns 120◦ between each firing. Thus define the
phasing vector as

Ψ = (ψ1 . . . ψNc)
T . (2.12)

The angles of the cranks reflect this phasing. For the multicylinder
case, the geometrical functions gi(θ), i = 1, 2, 3 in (2.9–2.11) may be
used to define diagonal matrix functions,

Gi(ST θ − Ψ) = diag
(
gi(sT

1 θ − ψ1), . . . , gi(sT
Nc

θ − ψNc)
)
. (2.13)

The gas torque in the multi-body model may now be written

T g(θ) = SG1(ST θ − Ψ)pg(S
T θ). (2.14)

Here, pg(·) is an Nc × 1 vector function of the individual gas pressures.
See equation (2.1) for the definition of gas torque in the single cylin-
der case. The multi-body extension of the single-cylinder mass torque
defined in equation (2.2) becomes

T m(θ, θ̇, θ̈) = −(
SG3(ST θ − Ψ)ST +mBr

2SST
)
θ̈

−SG2(ST θ − Ψ)ST θ̇ � θ̇, (2.15)

where the symbol � means elementwise multiplication.
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2.5 A Time-Domain State-Space Model

The system of N second-order differential equations in equation (2.6)
may be transformed into a system of 2N first-order differential equa-
tions e.g. by defining the state vector consisting of angles and rotational
speeds,

x = (xT
1 xT

2 )T =
(
θT θ̇

T )T
. (2.16)

For convenience, the state vector is partitioned in position states x1

and speed states x2.
Now, to get to the state-space description of the model, we split

the mass torque T m(θ, θ̇, θ̈)—see equation (2.15)—in the two parts
multiplying angular acceleration and speed squared respectively, and
define

T m,1(θ, θ̈) = −(
SG3(ST θ − Ψ)ST +mBr

2SST
)
θ̈ (2.17)

T m,2(θ, θ̇) = −SG2(ST θ − Ψ)ST θ̇ � θ̇. (2.18)

We also define the varying inertia by collecting parts multiplying an-
gular acceleration in equation (2.6), which give

J(θ) = J +mBr
2SST + SG3(ST θ − Ψ)ST . (2.19)

The torque-balancing equation may now be reformulated as

J(θ)θ̈ = −Kθ − Cθ̇ + T m,2(θ, θ̇) + T g(θ) + T l. (2.20)

Stacking the identity equation θ̇ = Iθ̇ together with equation (2.20)
premultiplied by

(
J(θ)

)−1, the dynamics equation of the state-space
model becomes

ẋ =
(

0 I

−(
J(x1)

)−1
K −(

J(x1)
)−1

C

) (
x1

x2

)

+
(

0
−(

J(x1)
)−1

SG2(ST x1 − Ψ)ST x2 � x2

)

+
(

0
−(

J(x1)
)−1(

SG1(ST x1 − Ψ)pg(S
T x1) + T l

) )
. (2.21)

Equation (2.21) is divided in three terms to visualize the different con-
tributions. The first term represents the crankshaft dynamics, the sec-
ond term the piston-crank inertia effects, and the last term the input
signals. Equation (2.21) and variations of it are used for simulations in
this work. See section A.1 for more details about variations of equa-
tion (2.21).



Chapter 3

Measurements

We want to examine if a driveline has to be included to correctly sim-
ulate flywheel speed. In order to investigate this, measurements were
made on heavy trucks mounted on a chassis dynamometer. However,
another series of measurements was first conducted in a test bed to
acquire pressure curves with synchronized speed signals.

3.1 Planning the Measurements—
Things to Consider

3.1.1 Measuring Cylinder Pressure

We want to use measured or simulated cylinder pressure curves as input
data to our model. This assumes that cycle-to-cycle variations are
small, which should hold well for diesel engines, or that the model is
robust with respect to input data. This should be verified to as a large
extent as possible.

3.1.2 Measuring Flywheel Speed

There are two ways to measure flywheel speed in the test-bed environ-
ment:

1. The flywheels in Scania’s heavy trucks have 60 bores1 equidis-
tantly drilled in the rim. A built-in hardware is used to measure
time differences between the holes as they pass a sensor. An array
of time differences may be extracted, where the first element cor-
responds to the time difference between top dead center (TDC)
for cylinder 1 and the hole 6◦ thereafter. From this time-stamp

1One hole is “virtual” to allow for TDC localization.

9



10 MEASUREMENTS

array, flywheel speed as a function of flywheel position may be
calculated. The built-in hardware is called S6 and samples at a
rate of 5 MHz.

2. There is a circular disc attached to the flywheel in the test bed.
This circular disc, which is depicted in figure 3.1, holds 720 mark-
ers, or “teeth” as we will call them. The test beds are setup such
that a transistor-transistor-logic (TTL) pulse-train signal may be
extracted where each pulse correspond to a passed tooth.2 The
disc also holds a trigger tooth that (when passed) can be used
as a reference to keep track of what angle we are on.3 In the
same way as S6 does, we may create an array of time differences
between adjacent teeth and thereafter calculate flywheel speed as
a function of flywheel position.

In the test bed, speed from both the flywheel and the circular disc
are measured. One thing that should be investigated is if there are
dynamics to be considered between the two rotating wheels.

Driveline

Circular disc
Flywheel

Crankshaft

Bore

Figure 3.1: A schematic view of the circular disc and flywheel in the
test beds. Flywheel speed may be extracted from the built-in hardware
(S6) and/or by measuring on the circular disc.

3.1.3 The Importance of a High Sample Rate

We want to measure in-cycle speed variations which require a high sam-
ple rate on the TTL pulse-train signal extracted from the circular disc.
How high can be roughly estimated using some simple calculations.

2This is not the whole truth. There is equipment in the test bed that extrapolates
pulses to the TTL signal. This is discussed in section 3.3.4.

3Note that we can not be sure which phase in the cycle we are in when we pass
the trigger tooth by only looking at the speed signal. The phase in the cycle is
found out by also looking at a synchronized pressure curve.
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Assume that we are running the engine at the true speed

θ̇ =
∆θ
∆t

, (3.1)

that our circular disc has teeth with adjacent spacing ∆θ, and that we
use the sample time Ts. Since the time samples may differ at most by Ts

from the actual time that the sensor passes a tooth in the circular disc,
the calculated speed of the circular disc based on two consecutive time
stamps may be as high as ∆θ/(∆t − Ts) or as low as ∆θ/(∆t + Ts),
depending on where the samples hit. We will denote the difference
between these two values by the speed uncertainty, ∆θ̇. The formula for
speed uncertainty at speed θ̇ and angle resolution ∆θ can be expressed
as

∆θ̇ =
∆θ

∆t− Ts
− ∆θ

∆t+ Ts
=

2 ∆θ Tsθ̇
2

(∆θ)2 − T 2
s θ̇

2
. (3.2)

We want to keep ∆θ̇ small, which requires a small value of Ts.

3.2 Test-Bed Measurements Using Indis-

cope

FlywheelCylinders
Circular disc

Dynamometer
Damper

Engine block

Figure 3.2: Schematic engine setup in test beds.

A D12 engine was mounted in a test bed. A schematic view of
how the engines are mounted in test beds is shown in figure 3.2. The
standard test bed equipment (Indiscope) was used to extract cylinder
pressure and speed from the circular disc. Flywheel speed from S6
was not extracted. A map corresponding to table 3.1 was used for the
measurements.

The importance of a high sample rate discussed in section 3.1.3 was
overlooked. Indiscope samples at 500 kHz which gives a speed uncer-
tainty ∆θ̇ = 54 rpm at 1500 rpm and ∆θ = 1◦ using formula (3.2)—see
also figure 3.3. Even a resampled signal with ∆θ = 10◦ would still have
a speed uncertainty of 5.4 rpm. This is not feasible for analysis or
verification.
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Load 1000 rpm 1500 rpm 1900 rpm
25% B B B
50% B B,+1,±6 B
100% B B B

Table 3.1: Map of operating points used in the first series of measure-
ments. A B means that the engine was kept balanced. A ‘+’ followed
by a number j, means that cylinder j was programmed to give a higher
peak pressure than the rest of the cylinders. A ‘−’ means that lower
pressure was given by the cylinder compared to the others. The pres-
sure was measured in cylinder 6.
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Figure 3.3: The time stamps from Indiscope give a speed signal with
low speed uncertainty. It can be seen in the figure that the speed
resolution is approximately 54 rpm.
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3.3 Test-Bed Measurements Using Rotec

Frequency scaler?

TTL (720 pulses/rev)

TTL (1800 pulses/rev)

To S6

Pressure sensor

1 GHz50 kHz

Voltage, u

Rotec Data Acquisitor

Charge Amplifier

Charge signal, q

u=kq+m

Figure 3.4: Signals measured with Rotec in the second series of mea-
surements.

Rotec RAS 5.0 is a data aquisition tool that can sample at a rate of
up to 1 GHz for digital signals4 (such as the speed signal) and 50 kHz
for analogue signals (such as the pressure signal). It gives a speed
uncertainty ∆θ̇ = 0.027 rpm at 1500 rpm and ∆θ = 1◦.

Software was created for extracting flywheel speed data from S6.
Using formula (3.2) we see that S6 with its six-degree spacing has a
speed uncertainty ∆θ̇ = 0.9 rpm at 1500 rpm. Table 3.2 shows the
map of operating points used in the second series of measurements.

4Rotec only saves time samples when it passes teeth (for digital signals) which
means it uses small memory space as well.
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Load 1000 rpm 1250 rpm 1500 rpm 1700 rpm 1900 rpm
100% B B B,-5 B B
50% B B B,±5,±1,(+3-1) B B
25% B B B B B
8% B B B B B

Table 3.2: Operating points used in the second series of measurements.
The same notation as in table 3.1 is used. The parentheses indicate that
more than one cylinder’s pressure was altered in the same measurement.
The pressure was measured in cylinder 5.

3.3.1 Measuring Cylinder Pressure With Rotec

Signals with fast dynamics (apart from S6 data) were collected by Rotec
to be able to synchronize pressure and speed signals.5 The pressure
sensor (from Kiestler) mounted on the cylinder is precise, and its signal
value, q = ap + b, is approximately linear to cylinder pressure p. The
signal q from the sensor is a charge which is transformed into a voltage,
u = kq + m, through a linear charge amplifier—see figure 3.4. Thus,
we have

u = kap+ kb+m,

where the values of k and m are chosen such that the voltage ranges
within the capability of Rotec’s A/D converter. The linear constant k
remains fixed once the charge amplifier is calibrated, while the constant
m drifts slowly with time.

It was not feasible to recalibrate the charge amplifier once the mea-
surements had started so it is assumed that the lowest pressure in the
cylinder within a measurement is close to the exhaust pressure which is
one of the measured mean-value signals. Using this signal, it is possible
to offset the pressure curve to its (assumed) right position as shown in
figure 3.5. Section 4.6 shows that the model output should not be sig-
nificantly affected even if this would differ from the right lowest pressure
by a few bars.

3.3.2 Transforming Domains for Measured Signals

All signals are measured in the time domain while the model uses the
angular domain as a base for all signals. We therefore transform the
measured signals onto the angular domain.

The only feasible way to get raw data from Rotec RAS 5.0 is to
create DIAdem data sets and export them,6 so a Matlab function

5Additional interesting signals, such as torque load and exhaust pressure were
mean value signals that could be collected from the measurement report, [3].

6The structure of DIAdem files can be found in e.g. [2].
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Corrected pressure curve

Measured pressure curve

Exhaust pressure

Figure 3.5: Adjusting the measured pressure curve by offsetting it
with the help of measured exhaust pressure.

was created to parse simple DIAdem data files. Rotec hands over raw
data in floating-point format. This results in cancellation when larger
time-stamp values are used for calculating flywheel speed,7 shown in
figure 3.6. The interesting exported raw data are the time array t =
(t0 . . . tN )T from the speed signal, the pressure array p = (p0 . . . pM )T

and its corresponding time array τ = (τ0 . . . τM )T .
Figure 3.7 depicts our method of transforming time- and pressure

samples onto the angular domain. Assume that the first sample from
the speed signal occurs at time t0 and angle θ0. If different spacing
distances between teeth in the disc are neglected and Rotec’s sample
rate is considered as high, we can approximate a bijective discrete time
function

t = t(θ) ⇐⇒ θ = θ(t), (3.3)

where θ = (θ0 + n∆θ)N
n=1. The measured discrete pressure signal

p = p(τ ) (3.4)

is also a function of time where every time stamp from the pressure
signal is wedged in between two time stamps from the speed signal.
Consider an arbitrary time stamp τk from the pressure signal that is
wedged in between two time stamps tj = t(θj), and tj+1 = t(θj+1) from
the speed signal such that

τk = (1 − α)tj + αtj+1, α ∈ [0 1]. (3.5)

The distance ∆θ between θj and θj+1 is small so we use linear interpo-
lation to define the bijective function

ϑ = ϑ(τ ) ⇐⇒ τ = τ (ϑ) (3.6)
7This is because the resolution of the floating point number becomes lower as

the exponent gets larger.
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Early cycle, flywheel speed based on floating point time stamps
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Early cycle, flywheel speed from DIAdem channel
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Later cycle, flywheel speed based on floating point time stamps
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Figure 3.6: Cancellation phenomenon due to floating-point-number
approximation. The two figures on top are flywheel speed based on
floating point time stamps. The two bottom figures are from a speed
channel in the DIAdem data set—it is not known how it was created.
The two left figures show two cycles at the start of the measurement.
The two right figures show cycles later in the measurement.
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where ϑ = (ϑ0 . . . ϑM )T and ϑk = (1 − α)θj + αθj+1—see figure 3.7.
To transform the pressure signal onto the angular domain we write

p = p(τ ) = p
(
τ (ϑ)

)
. (3.7)

θ p(t) p

pk

θ(t)

θj

ϑk

θj+1

tj
τk
tj+1

t

Figure 3.7: Mapping pressure samples from the time domain onto the
angular domain. Linear interpolation is used between θj and θj+1 to
define ϑk.

The speed signal is constructed using central approximations of the
derivative,

gi(t) =
1

∆ti

(
θ(t+ ∆ti/2)− θ(t− ∆ti/2)

)

⇒ Gi(s) =
1

s∆ti/2
es∆ti/2 − e−s∆ti/2

2
Lθ̇(s)

⇒ Gi(jω) =
sin(ω∆ti/2)
ω∆ti/2

Lθ̇(jω), (3.8)

i.e. no frequency is phase shifted compared to the exact derivative, and
the magnitude is not significantly changed for lower frequencies. When
transforming the constructed speed signal

θ̇(t) =
(
g0(t0 + ∆t0/2), . . . , gn−1(tn−1 + ∆tn−1/2)

)T (3.9)

onto the angular domain,8 it is assumed that

θ(ti + ∆ti/2) ≈ θ(ti) + ∆θ/2 (3.10)

is a good approximation.
8The array is one sample shorter than the time array t since we do not have the

value of ∆tn.
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3.3.3 A Short Analysis of the Constructed Signals

The results in figure 3.8 show that cycle-to-cycle pressure variations are
small. However, different cylinders or engines have not been examined.
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Figure 3.8: Cycle-to-cycle variations of cylinder pressure near TDC
at various operating points. The data shown is from the second series
of measurements in a test bed, and 10 consecutive cycles are displayed
in each plot, even if they are hard to discern. The pressure curves from
the first series of measurements give similar plots.

The speed signal that is extracted from Rotec is not smooth which
can be seen in figure 3.9. This also occur after compensating for non-
equidistant spacing in the circular disc. The noisy signal may be due
to imperfections in measurement equipment used.

3.3.4 Reason for the Noisy Speed Signal

There are only 720 markers in the disc, but the TTL signal gives 1800
pulses per revolution—see figure 3.4. The equipment in the measure
chain that scales the frequency must extrapolate time stamps in order
to enhance resolution in real time. We can use formula (3.2) to roughly
estimate that the equipment needs a sample rate of at least 10 MHz
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Figure 3.9: Non-smooth speed signal from Rotec. The figure shows
the spike in flywheel speed that the first cylinder gives rise to at
1500 rpm and 100% load.

to avoid losing information. It should be investigated if the equipment
has any positive effects.

3.3.5 A Comparison Between the Speed Signal from
S6 and the Speed Signal from Rotec

The main reason for comparing the signal from S6 with the signal from
Rotec is to examine if any dynamical differences can be noted.9 If no
major differences are seen, data from Rotec may be used as verification
data for the model. The noisy speed signal is not a major problem since
the purpose of the model is to correctly model lower order frequencies.10

Results from speed comparisons show that the signals are not much
different in their dynamical properties at 1500 rpm. The signal from
Rotec has a slightly larger magnitude for the third-order frequency,
as seen in figure 3.10. Measurements from S6 was only extracted at
1500 rpm.11 Greater differences at higher speeds are expected. How-
ever, this may not be necessary to examine in the future since the
signals are cycle-periodic and it is possible to use speed data from S6
and pressure data from Indiscope in the model.

9Remember from figure 3.1 that Rotec gets its signal from the circular disc
attached to the flywheel, whereas S6 measures directly on the flywheel.

10It is common practice in automotive engineering to speak about frequency or-
ders. The engine-speed frequency is defined as the first order frequency, the second
order frequency is twice as high as the engine frequency, and so on.

11This was due to problems with the software used for extracting signals from S6.
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Figure 3.10: A comparison between signals from S6 and Rotec in the
test bed environment at 1500 rpm and 100% load. A difference in the
third-order magnitude is seen.
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3.4 Measurements on the Chassis Dynamo-
meter

To examine if different truck drivelines can give rise to different speed
responses on the flywheel, speed measurements were carried out on the
chassis dynamometer on two different trucks, Mike and Moa. Fig-
ure 3.11 depicts the measurement setup. The trucks have the same en-

Truck

Rollers

Figure 3.11: A schematic view of how the chassis dynamometer works.
The rollers are connected to dynamometers to provide load torque on
the driveline.

gine type, D12, but different drivelines.12 Test-bed pressure curves for
an engine with a similar configuration as the trucks’ were found. Hope
was that the same injection time, α, and injection angle, δ, would recre-
ate the pressure curves with good accuracy. This would allow to simu-
late the trucks’ flywheel speeds later, if driveline models were available.
Table 3.3 shows the map used in the measurements for both trucks.

Load 1000 rpm 1500 rpm 1900 rpm
100% B B B
75% B B,+1,-1 B
50% B B B
25% B B B

Table 3.3: Operating points used in the third series of measurements,
using the same notation as in table 3.1.

12One difference is the length of the propeller shafts.
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3.4.1 A Comparison Between the Speeds for the
Two Trucks

Speed comparisons show that there is no significant difference in fly-
wheel speed between the two trucks at most operating points, repre-
sented by figure 3.12. The only operating point where the trucks show
a difference in flywheel speed dynamics is at 1000 rpm and 100% load
where Moa has a half-order contribution—see figure 3.13. One reason
for this difference could be that a near resonance frequency for Moa’s
driveline is excited, which then gives a significant torque response back
to the flywheel.
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Figure 3.12: A comparison between speeds from the two trucks Mike
(gear 10) and Moa at 1500 rpm and 75% load with a positive offset
of 50 mg injected fuel in cylinder 1. This example represents how the
speeds differ at most operating points.

3.4.2 A Comparison Between Speeds for the Trucks
and Speeds in the Test Bed

Slight differences are seen for most measurements when speed signals
from measurements in the test bed and speed signals from measure-
ments at the chassis dynamometer are compared. The difference at
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Figure 3.13: A comparison between speeds from Mike and Moa at
1000 rpm and 100% load. A significant difference of the half order
magnitude can be seen.
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half the engine order at 1500 rpm shown in figure 3.14 probably derives
from an excited resonance frequency for the driveline used in the test
bed—see chapter 4. However, the higher order differences seen in fig-
ure 3.15 at 1900 rpm are probably not only due to driveline differences.
It is possible that they result from dynamics between the flywheel and
the circular disc in the test bed.
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Figure 3.14: A comparison between speeds from Mike and Rotec at
1500 rpm and 100% load. The half-order magnitude in the test-bed
signal probably derives from a resonance in the test-bed driveline.
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Figure 3.15: A comparison between speeds from Moa and Rotec at
1900 rpm and 100% load. The speeds differ somewhat at higher orders
which indicate dynamics between the flywheel and the circular disc in
the test bed.





Chapter 4

Simulations

Some variations of the model described in chapter 2 were implemented
in Matlab/Simulink using S-functions written in C. A Matlab class
and a number of M-files were constructed to facilitate when running
different setups, and when analyzing the simulations—see [12] for more
details. The following model variations are discussed in this chapter:

The simple model The model described in chapter 2.

The dynamically equivalent model This model uses a dynamical-
ly equivalent model of the connecting rod.

The test-bed driveline model The simple model extended with a
simple test-bed driveline.

The truck-driveline model The simple model extended with a sim-
ple truck driveline.

Trial-and-error models The simple model with adjusted parame-
ters.

Parameters for the models were fetched from [7, 8, 10] and [1].
There are some uncertainties in the engines’ configurations,1 and the
values of many parameters differ slightly between the reports (a relative
difference of about 0.15).

Parameter values were fed into the models and simulations were
made for all operating points. To estimate the initial state, x0, a
preliminary simulation was run to the beginning of a cycle where it
was assumed that the transient response had died out. The friction
torque (modeled as absolute-damping elements) is unknown and es-
timated from an energy-balance equation at steady-state conditions.

1For instance, it is unknown whether Holset- or Hasse & Wrede dampers were
used.

27



28 SIMULATIONS

The absolute-damping elements in the model are set thereafter. The
absolute-damping elements ranges between 0.06 and 0.8 [Nms/rad] for
the 65 possible measurement setups used in this work.

4.1 The Simple Model

The model with nine inertias described in chapter 2 will be referred
to as the simple model. A simulation at 1000 rpm and 100% load is
compared with actual measured data in figure 4.1.2 It can be seen that
the simple model follows the measured data well. Interesting to note
are the depths of the dips between the firing of cylinders. The firing
sequence of the engine is 1–5–3–6–2–4, where cylinder 1 is the furthest
from the flywheel—see figure 2.2. The trend is that the dips are deeper
where cylinders that are far from the flywheel fire.
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Figure 4.1: Simulation with the simple model at 1000 rpm and
100% load. The model works well at this operating point.

The simple model has trouble to follow some dynamics when sim-
ulating at 1500 rpm and 100% load as seen in figure 4.2. The largest

2The time-discrete flywheel speed signal that Simulink returns is not equidistant
in angle. Thus, before transforming the signal onto the frequency domain equidis-
tant interpolation is done in the angular domain.
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differences occur for lower-order frequencies where the measured speed
has a significant contribution. Section 4.3 indicates that the model
needs a driveline to explain the lower-order contributions at this oper-
ating point.
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Figure 4.2: Simulation with the simple model at 1500 rpm and
100% load. The measured speed has lower-order contributions that
the model can not explain.

Finally, a simulation is made at higher engine speed. It can be
seen in figure 4.3 that the model has trouble to follow the measured
data here too. However, note that the simulated speed correspond
somewhat better to the flywheel speed from Mike seen in figure 3.15.
Again, one reason for the differences can be that there are dynamics to
be considered in the test bed between the circular disc and flywheel at
higher speeds.

The results from the simulations show that the simple model does
not cover all important phenomena that give rise to different vibrations
on the flywheel in the test bed.
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Figure 4.3: Simulation with the simple model at 1900 rpm and
100% load. The simulation differ from measured data. Remember
that the measured data is from the circular disc in the test bed.
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4.2 A Dynamically Equivalent Model
of the Crank-Slider Mechanism

The simple model uses a statically equivalent model of the crank-
slider mechanism. Schagerberg and McKelvey [14] refer to papers by
Hafner and Shiao respectively where error analysis between statically-
and dynamically equivalent models are performed. Still, a dynami-
cally equivalent model was implemented and compared to the simple
model. The equations for a dynamically equivalent model are derived
in appendix A.1.

An approximate value of the connecting rod was used. A com-
parison between models at 1900 rpm is seen in figure 4.4. No major
differences are seen between simulations with the simple model and the
dynamically equivalent model, and it is from here on assumed that there
is no need for a dynamically equivalent model of the crank-slider mech-
anism, even though an approximate value for the moment of inertia of
the connecting rod was used.
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Figure 4.4: A comparison between statically- and dynamically equiv-
alent models at 1900 rpm shows that a statically equivalent model of
the connecting rod is sufficient for simulation.
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4.3 Including a Model of the Driveline

The simple model was not accurate at operating points other than at
low engine speeds (1000 rpm and 1250 rpm), and there were no improve-
ments when using a dynamically equivalent model for the crank-slider
mechanism. The half-order frequency at 1500 rpm may be due to re-
sponses from the driveline in the test bed environment, so the next step
will be to include a simple driveline in the model.

The major thing that changes in the model when a driveline is
included is the number of elements included in the lumped-mass model,
see figure 4.5. Conversion ratios for the transmission and final drive are
included by manipulating the damping- and stiffness matrix, C and K,
as described in section A.2.

Parameters for a simple test-bed driveline can be found in [7]. It
takes many cycles for the transient to die out when we include this
driveline model as can be seen in figure 4.6. In all simulations in this
section, 30 cycles were simulated before an initial state was estimated.

������������ ������������ ������������ Driveline

Figure 4.5: The lumped mass model including a simple driveline.

Simulations with the driveline model show no major differences from
the simple model at 1000 rpm and 1900 rpm. This is probably because
the driveline is not forced near a resonance frequency at these oper-
ating points. On the other hand, at 1500 rpm the driveline model
differs significantly from the simple model. In figure 4.7, a simulation
at 1500 rpm is compared with actual measured data. This is an operat-
ing point where the simple model had trouble following the lower-order
frequencies. It can be seen that the extended model follows the mea-
sured data better which indicates that the test-bed driveline responds
significantly near 1500 rpm. The parameters used also show that the
driveline has a resonance frequency with low damping near 750 rpm,
which is the half order frequency of 1500 rpm.

Another operating point at 1500 rpm is simulated to further inves-
tigate the driveline model. The simulation is compared with actual
measured data where cylinder 5 has a positive injection offset. This
means that we are forcing the driveline at its resonance frequency. It
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Figure 4.6: It takes a number of cycles for the transient response to
die out when including a test-bed driveline. This figure shows the first
30 cycles from a simulation.
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Figure 4.7: Simulation with the driveline model at 1500 rpm and
100 % load. This model can explain the lower-order contribution.
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can be seen in figure 4.8 that the simulated data is nowhere near the
measured data. This may be due to limitations in the driveline model.
It is for instance unlikely that the test-bed engine actually has a tran-
sient response such as in figure 4.6.
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Figure 4.8: Simulation with the driveline model at 1500 rpm and
100 % load with a positive pressure offset present in cylinder 5.
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4.4 A Truck-Driveline Model

Section 3.4 shows no indications of significant torque responses from
truck drivelines. To further investigate this matter, a simple truck
driveline was implemented and simulated at various operating points.
Parameters for the driveline are estimated for the truck Malte by
Berndtsson and Uhlin [4]. The value of the flywheel inertia was adjusted
to get better simulation results.

The lowest resonance frequency in the driveline model is higher
than 1900 rpm, and more damped than the resonance frequency for
the test-bed driveline model. It is hard to estimate if the driveline will
contribute to dynamics at higher orders, but there should not be any
major contributions at lower orders.

4.4.1 Simulations with a Truck Driveline Compared
to Simulations Without a Driveline

Simulations with and without a driveline in the model were performed,
and comparisons are shown in figures 4.9 and 4.10. Differences are most
significant in simulations at the third-order frequency. This can be due
to a wrongly estimated flywheel inertia. The value of a significant
lower-order difference is not known. However, section 4.4.2 shows that
the results should be questioned.

One thing that still should be investigated is the half-order contri-
bution for Moa at 1000 rpm and 100% load—see section 3.4.1. It is
the only measured operating point that indicates a significant torque
contribution from a truck’s driveline.
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Figure 4.9: A simulation at 1000 rpm with a truck-driveline model
for Malte compared to one with no driveline.
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Figure 4.10: A simulation at 1900 rpm with a truck-driveline model
for Malte compared to one with no driveline.



38 SIMULATIONS

4.4.2 Simulations with a Truck Driveline Compared
to Measured Data

Figures 4.11 and 4.12 show comparisons between simulations and mea-
surements carried out at the chassis dynamometer.
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Figure 4.11: A simulation at 1000 rpm with a truck-driveline model
for Malte compared to measured flywheel speed from Moa.

The speeds from the trucks are significantly phase shifted compared
to the simulations. This phenomenon also occur when the simple model
is used for simulating the trucks. One suggested reason is uncertainties
in TDC position when the pressure curves for the measurements was
made, but this is not confirmed when the pressure curves are plotted.3

Another reason could be that the time stamps do not begin exactly at
TDC for cylinder 1, but this should still not result in such a large phase
shift. The discussion in section 4.4.1 should be read critically since the
model can not follow measured speed.

3Remember that the pressure curves for the truck simulations are from stored
data, see section 3.4.
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Figure 4.12: A simulation at 1900 rpm with a truck-driveline model
for Malte compared to measured flywheel speed from Moa.
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4.5 Trial-and-Error Modeling

All recent models have trouble at higher engine speeds. In this section
parameters are altered manually to see if a better model can be found.

4.5.1 An Alternative Damper Model

As seen from figures in previous sections, each power stroke from the
firing of the cylinders creates a torque spike on the crankshaft. These
torque spikes cause the crank journal to twist slight and spring back,
causing torsional vibrations in the crankshaft. A vibration damper is
mounted to the front of the crankshaft to reduce the damaging effect
of these vibrations.

Dampers in Scania’s trucks use viscous fluid to dampen torsional
vibrations. In general, the motion of fluids is complicated which makes
it reasonable to believe that the model of the damper can be improved.

In the simple model, the damper is modeled as two lumped masses
connected with a linear spring and damper. A more general model of
the damper torque is not restricted to linear dependencies only. In one
trial-and-error model of the damper, the function

Td(θ1−2, θ̇1−2) = k1θ1−2 + c1θ̇1−2 + k2

√
θ1−2 + c2θ̇

2
1−2 (4.1)

was used for the damper torque Td, where the parameters were set
by trial and error.4 The arguments θ1−2 and θ̇1−2 are the angular-
and speed difference respectively between the two lumped masses in
the damper model. Simulations were carried out at various parameter
choices and one result is shown in figure 4.13.

It is not known what constitutes a reasonable model of the damper,
but different setups in damper parameters result in slightly different
results in simulations compared to the simple model. Yet, it has not
been shown that the problem at higher speeds derives from limitations
in the damper model, and the trial-and-error model is not significantly
better at any tried parameter setup.

4.5.2 Manipulating Parameters Based on Simula-
tion Experience

In the simulation shown in figure 4.14 the crankshaft stiffness was mul-
tiplied by 1.3 compared to the crankshaft stiffness in previous models.
Simulations follow dynamics at 1900 rpm better in this case.5 Still, the
simulated data is phase shifted compared to measured data. This can

4The aim of the function was to let torque due to difference in position be less
significant at larger angle differences, whereas torque due to speed difference should
be more significant at larger speed differences.

5In fact, the only significant difference between the signals is a phase shift.
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Figure 4.13: The results turn out somewhat different when another
model for the damper is used. The linear parameters k1 and c1 are set
to zero in this particular simulation, while k2 = 5000 [Nmrad−1/2] and
c2 = 100 [Nms2rad−2].
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Figure 4.14: A simulation with modified stiffness parameters. The
only significant difference is a phase shift.
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be corrected to a certain degree by for instance weakening the stiffness
between the last cylinder and the flywheel, but this will at the same
time slow down dynamics. By comparison, this model is in some sense
the closest to measured data. However, it is not known if the parameter
values are reasonable.

Optimization of parameters based on measured data from S6 may
lead to an acceptable model in the future. The drawback with this
method is that it may require repeating the optimization procedure for
new engine configurations.
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4.6 Sensitivity Analysis

Simulated data has not corresponded to measured data at higher speeds.
Could uncertainties in model parameters contribute to the errors? To
examine this, simulations at 1900 rpm for models with perturbed pa-
rameters were made.

First, cylinder pressures that are used as input in the model are
perturbed. This is done in three ways. The pressure curve is first scaled,
then it is offset and last it is translated in θ to see if it makes a big
difference in the model output.6 These perturbations mimic possible
errors when measuring pressure.

After perturbing the pressure curves we alter other parameters in
the model. First we alter the inertias and then we alter the stiffness
parameters. The parameters have been altered by a relative fraction of
0.2. Results are seen in figures 4.15–4.19.

We altered parameters for the damper in section 4.5.1. It is un-
known if those changes are reasonable.
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Figure 4.15: A comparison between simulations where one simulation
has its pressure curve offset by −5 bars.

6The absolute damping are set different in the two models, to compensate for
different work contributions from the pressure curves.
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Figure 4.16: A comparison between simulations where one simulation
has its pressure curve scaled by a relative fraction of 0.1.
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Figure 4.17: A comparison between simulations where one simulation
has its pressure curve translated 1◦ to the left.
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Figure 4.18: A comparison between simulations where one simulation
has its stiffness parameters of the crankshaft and driveline perturbed
by a relative fraction of 0.2.
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Figure 4.19: A comparison between simulations where one simula-
tion has its inertias of the crankshaft and the driveline perturbed by a
relative fraction of 0.2.



4.6. SENSITIVITY ANALYSIS 49

The sensitivity analysis indicates that the model is most sensitive
to scaled pressure and offset stiffness parameters. More experience is
needed to judge if the model is robust enough to find adequate param-
eter values, but nothing yet indicates the opposite.





Chapter 5

Conclusions

5.1 Conclusions from the Measurements

Pressure curves from the measurements do not differ much from cy-
cle to cycle and there does not appear to be significant contributions
of frequencies lower than half order at steady-state conditions. This,
together with the sensitivity analysis in section 4.6 indicate that it is
possible to find a model that can facilitate to gain understanding of the
transfer function discussed in chapter 1.

Measurements in the test-bed environment indicate that the test-
bed driveline has a resonance frequency near 750 rpm that affects fly-
wheel speed variations when excited. The two speed signals from S6
and Rotec are not significantly different at 1500 rpm, but could differ
more at higher speeds.1 Measurements from the chassis dynamometer
support this, if we assume that speeds from trucks are similar to speeds
in the test-bed environment. This may not be necessary to investigate
since the speeds are cycle-periodic and it is possible to use speed from
S6 and pressure curves from Indiscope.

Measurements on Mike and Moa show that both flywheels have
similar speed variations at similar operating points, indicating that a
driveline could be omitted in the model when simulating trucks. Nev-
ertheless, at 1000 rpm and 100% load there is a slight difference.

Flywheel speed fluctuations in the test bed look similar to fluctu-
ations in the chassis dynamometer. Still, they differ more at higher
speeds. This may be due to different engine configurations, but it is
more likely due to dynamics between the flywheel and the circular disc
in the test-bed environment.

More accurate signals may be obtained with Rotec if the frequency

1Remember that we were only able to extract the S6 signal at 1500 rpm in the
test-bed environment.
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scaler is omitted in the measure chain. It should be examined if the
frequency scaler used in test beds have any positive effects. Still, the
signals obtained are accurate enough to test and verify the model.

5.2 Conclusions from the Simulations

The simple model follows the measured speed signal well at low speeds,
while it has trouble at higher speeds. Simulations with a dynamically
equivalent model for the crank-slider mechanism do not differ from sim-
ulations with the simple model, indicating that a statically equivalent
model of the crank-slider mechanism is sufficient for simulation.

An extended model with a simple test-bed driveline supports the
measured indication of a resonance frequency near 750 rpm. However,
the model has limitations as shown in figure 4.8.

Simulations with driveline parameters optimized for Malte differ
somewhat from simulations with the simple model. But since the simple
model follows measured data better than the model for Malte the
results should not be treated seriously.

Other models were investigated using parameters set after experi-
ence. A different model for the vibration damper was used in simula-
tions, giving slightly different results in flywheel-speed variations. Yet,
it was not shown that the problems derive from an inaccurate damper
model. A model with a stiffer crankshaft was also investigated, showing
promise at higher engine speeds, but its speed signals are still phase
shifted compared to measured data.

Auxiliary systems, such as the cam shaft, are not taken into con-
sideration in the model. The model is also limited by the number of
lumped masses included. It may turn out that this is a fundamental
limitation, but it is hard to investigate.



Chapter 6

Future Work

Gathered measurements can be used together with optimization to find
better parameters for the model. If more measurement data is needed,
it is suggested that extracted data from S6 are used together with
pressure curves from Indiscope.1 However, operating near 1500 rpm in
test beds should be avoided, or measurements should be conducted on
trucks. If the model continues to have problems at higher engine speeds
it is suggested that an alternative model for the damper is investigated.
Measuring speed at the damper case could then be of importance.

Another thing to investigate is how much pressure curves differ for
different engine configurations and if this has to be taken into consider-
ation in simulations. Examining effects from Turbo Compound2 is also
a future issue.

The present work can not answer with certainty if drivelines affect
variations in the speed signal for trucks or not. The driveline model for
Malte indicates differences but then the simple model is better than
the model for Malte when simulations are compared with measure-
ments. Finding better parameters in the driveline models may be an
issue for the future.

The code in the S-functions can be updated to improve simulation
speed. A model for this purpose can be found in [14] and general issues
on speeding up S-functions can be found in e.g. S-function templates
in Matlab.

If an adequate model is found in the future, it can be made modular
and incorporated in a larger model that includes auxiliary systems of
the engine. It may also be used to investigate methods of discovering
unbalanced cylinders.

1This is only because it is simpler than using Rotec.
2Turbo Compound uses exhaust gas flow to provide extra torque on the

crankshaft.
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Appendix A

Equations for Extended
Models

A.1 A Dynamically Equivalent Model of
the Connecting Rod

To get to a model with a dynamically equivalent model of the con-
necting rod, we derive its mass-torque contribution on the crankshaft
axis. The crank-slider mechanism has only one degree of freedom, θ.
According to Kiencke and Nielsen [9] we have

d

dt
E =

dE

dθ
· dθ
dt

= T θ̇ (A.1)

where E is the kinetic energy of the connecting rod, and T is its mass-
torque contribution.1 We can use figure A.1 to derive the mass-torque
contribution from the connecting rod. First of all, we see that

ϕ = arctan
( r sin θ
r + l − (s+ r cos θ)︸ ︷︷ ︸

f(θ)

)
.

Denoting the argument to the arctan function by f(θ) and deriving
with respect to time gives

ϕ̇ =
f ′(θ) θ̇

1 + f(θ)2

and

ϕ̈ =
1

1 + f(θ)2

((
f ′′(θ) − 2

f(θ)f ′(θ)
1 + f(θ)2

)
θ̇2 + f ′(θ) θ̈

)
.

1This equation has not been verified rigorously.
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s

l

r

r + l

θ

ϕ

Figure A.1: The crank-slider mechanism

Further, we can now express the torque from the connecting rod by
deriving

E =
1
2
mv2 +

1
2
Jϕ̇2

with respect to time, which gives

d

dt
E = mvv̇ + Jϕ̇ϕ̈

= m

({
(1 − a)2r2 + 2 (1 − a)ar

ds

dθ
sin θ + a2

(ds
dθ

)2}
θ̈ +

{
(1 − a)ar

(d2s

dθ2
sin θ +

ds

dθ
cos θ

)
+ a2 ds

dθ

d2s

dθ2

}
θ̇2

)
θ̇ +

J
f ′(θ)

(1 + f(θ)2)2

(
f ′(θ) θ̈ +

{
f ′′(θ) − 2

f(θ)f ′(θ)2

1 + f(θ)2
}
θ̇2

)
θ̇,

where a is the distance from the big end of the connecting rod to its
center of gravity, in fraction of the length of the connecting rod. The
mass-torque contribution from the connecting rod can now be identi-
fied. For completion, the derivatives of f are

f ′(θ) =
r + l − sr cos θ + ds

dθ r sin θ(
r + l− (s+ r cos θ)

)2

and

f ′′(θ) = r
( d2s

dθ2 + s− l + r) sin θ(
r(cos θ − 1) + s− l

)2

− 2 r

(
(l + r − s) cos θ + sin θ ds

dθ − r
)
( ds

dθ − r sin θ)(
r(cos θ − 1) + s− l

)3 .
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The expressions for the derivatives of the piston displacement s may
be found in [9].

By collecting parts multiplying angular acceleration and angular
velocity squared respectively, it is quite straightforward to get to a
state-space description of the system in the same way as in section 2.5.

A.2 Description of a Simple Truck-Driveline
Model

Engine Clutch

Transmission
Propeller shaft

Final drive
Drive shaft

Wheel

Figure A.2: A driveline of a rear driven vehicle.

θm θc θt

θp

θp

θf θd
θw

Tc
Tt Tp

Tf

Tf

Td Tw Tload

Clutch
Trans-
mission

Prop.
shaft

Final
drive

Drive
shaft Wheel

Figure A.3: Free-body diagrams of parts in the driveline. T stands
for torque while θ stands for crank angle.

A sketch of a driveline is depicted in figure A.2. The equations of
motion are found by constructing free-body diagrams of the different
parts of the driveline, such as in figure A.3. To illustrate the method,
let’s work out the equation for the final drive. In the model for Malte,
the final drive has an inertia, Jf , and is characterized by the conversion
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ratio, if , with relations

ifTf = Td (A.2)
θp = ifθf . (A.3)

The propeller shaft is modeled as an inertia-free spring and damper
with stiffness kp and damping cp. The same applies to the drive shaft
with stiffness kd and damping cd. With use of the free-body diagrams
and the relations above we get the equation

Jf θ̈f = ifTf − Td

= if
(
kp(θt − θp) + cp(θ̇t − θ̇p)

)
+kd(θd − θf ) + cd(θ̇d − θ̇f )

= ifkpθt − i2fkpθf + ifcpθ̇t − i2fcpθ̇f

+kdθd − kdθf + cdθ̇d − cdθ̇f . (A.4)

Equation (A.4) may be written as

Jf θ̈f =
(
ifkp −(i2fkp + kd) kd

) 
 θt

θf

θd




+
(
ifcp −(i2fcp + cd) cd

) 
 θ̇t

θ̇f

θ̇d


 . (A.5)

It is straightforward to set up equations for parts in the driveline model
and eliminate variables to obtain a system of equations in the same form
as in equation (2.6). The difference now is that the block matrices
added to K and C by each stiffness- and damping element no longer
have to be symmetric. This is due to the conversion ratios in the
driveline. See [13] or [11] for a more detailed description of driveline
modeling.
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