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Abstract
To fulfill todays requirements on emissions from engines, SCANIA has de-
veloped an engine with EGR (Exhaust Gas Recirculation) and VGT (Variable
Geometry Turbine). This gives two extra control signals to take into con-
sideration. Open loop optimal control is used to investigate how these two
actuators should be controlled to minimize emissions and fuel consumption.
A cost function, consisting of the errors between the most important variables
and their set points, has been used in the minimization. The variables are the
torque, the EGR mass fraction, the oxygen/fuel ratio and the pumping losses.
From studies of the two control signals in different transients in the engine,
information of how to control the VGT and EGR in the optimal way is found.
The result from the optimal control has been compared with a PID simulation
and has showed a better way to control the signals. The mayor reason why
the optimal control is better than a PID controller is the ability to use future
values from the transients.
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Chapter 1

Introduction

1.1 Background

1.1.1 EGR
Higher and higher environmental requirements are demanded from todays en-
gines which means that the industry constantly have to develop new methods
to reduce emissions. One method the engine industry have come up with to
lower the emissions is called EGR (Exhaust Gas Recirculation), which means
that some of the exhaust gas is recycled back into the engine to cool down the
combustion temperature which leads to reduced NOx emissions.

1.1.2 VGT
VGT (Variable Geometry Turbine) is a variable restriction which controls
how much exhaust gas that is lead in to the turbo. The VGT has a set of
vanes which can be used to control the turbine inlet pressure. The closing of
the VGT vanes leads to an increase in the turbine inlet pressure which makes
the turbine to spin faster and generate more boost in the engine. The VGT is
also used to build up the needed pressure in the exhaust manifold in order to
recirculate the exhaust gases back to the engine.

1.1.3 Objectives
The objective with this master’s thesis is to find the optimal way to control
the VGT and EGR in order to lower the emissions from the engine. Earlier a
PID controller has been used to control the two valves, but since the system
of the engine is non linear and cross correlated it is very difficult to see if a
PID controller gives the best possible control. Since optimal control can not
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2 Introduction

be used in the reality to control the two valves, it is used as a comparison for
other control methods.

1.1.4 Earlier Work
Johan Wahlsröm has built up a mean value model of a diesel engine, using
EGR and VGT, in MATLAB/SIMULINK [1] . He has also used a PID con-
troller to control the VGT and EGR valves [7]. The simulation of the PID
controller will be used as a comparison to the optimal control. Tomas Johans-
son has in a master’s thesis [5] confirmed that the model describes the engine
and its behaviour successfully.



Chapter 2

Engine Model

In this chapter the dynamic of the engine and it’s functions will be explained.
The equations of the states, control signals and some of the most important
control parameters will be described.

2.1 The model

The engine used in this master’s thesis is a diesel engine with EGR and VGT.
A mean value model of this engine has been created in
MATLAB/SIMULINK, by Ph.D. student Johan Wahlström at Linköpings
University. The model has in earlier studies [5] been compared with a real
engine and has been proofed to be reliable.
The model can according to [1] be written as:

ẋ = f(x, u) (2.1)

where the states are:

x = (pim, pem, XOim, XOem, ωt, ũδ, ũegr, ũvgt)T (2.2)

3



4 Chapter 2. Engine Model

states description unit
pim Intake manifold pressure Pascal
pem Exhaust manifold pressure Pascal
XOim Fraction oxygen in intake manifold %
XOem Fraction oxygen in exhaust manifold %
ωt turbine speed rad/s
ũδ dynamic of the fuel injection actuator %
ũegr dynamic of the EGR actuator %
ũvgt dynamic of the VGT actuator %

and the control signals are:

u = (uegr, uvgt)T

Control signals description unit
uegr egr actuator %
uvgt vgt actuator %

Other inputs used in the model are the engine speed,ne, and the fuel injec-
tion actuator,uδ .

Inputs description unit
ne engine speed rad/min
uδ fuel injection actuator mg/cycle
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Figure 2.1: The structure of the diesel engine model.

2.2 Engine dynamics

2.2.1 Manifolds

The intake and exhaust manifolds are modeled as a dynamic control volume.
The differential equations for the manifold pressures are based on the isother-
mal consumption,[4].

d

dt
pim(t) =

RaTim

Vim
(We + Wegr −Wei) (2.3)
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d

dt
pem(t) =

ReTem

Vem
(Weo + Wt −Wegr) (2.4)

The EGR fraction in the intake manifold is based on the inflow.

xegr =
Wegr

Wc + Wegr
(2.5)

The dynamic of XOim(oxygen concentration in intake manifold) and XOem

(Oxygen fraction in exhaust manifold) can be derived as [6]:

d

dt
XOim(t) =

RaTim

pimVim
(Wegr(XOem −XOim) + Wc(XOc −XOim)) (2.6)

d

dt
XOem(t) =

ReTem

pemVem
(Weo(XOe −XOem)) (2.7)

where XOc is the oxygen concentration of the gas flow past the compres-
sor i.e. the same as in air, and XOe the oxygen concentration in the exhaust
gases out from the engine cylinders.

Symbol Description unit
W Flow g/s
T Temperature K
Ra Gas constant for air J/(kg ·K)
Re Gas constant for exhaust gas J/(kg ·K)
V Volume m3
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2.2.2 Turbo
The turbo speed is modeled using a dynamic system with an inertia Jt

d

dt
ωt(t) =

Mt −Mc

Jt
(2.8)

Mt is the driving torque from the turbine and Mc is the braking torque from
the compressor.

2.2.3 Stoichiometry combustion
In a diesel engine it is very important to keep control on the air/fuel ratio
(A/F ) = ma

mf
in order to decrease the smoke emission. A stoichiometric

combustion reaction between a general hydrocarbon fuel and air, where the
rest product only consists of water and carbon monoxide looks like

CaHb + (a + b
4 )(O2 + 3.773N2) → aCO2 + b

2H2O + 3.773(a + b
4 )N2

(2.9)

Where a and b represent the number of carbon and hydrogen atoms in one
molecule in the fuel that are used in the engine. What is interesting in this
equation is the relation between a and b, y = a

b which shows the relative
amount carbon in the fuel. It is now possible, using the molecular weights for
carbon, hydrogen, oxygen and nitrogen, to write an expression for the stoi-
chiometric mixture.

(A/F )s = ma

mf s
= (1+y/4)(32+3.773·28.16)

12.011+1.1008y = 34.56(4+y)
12.011+1.008y

(2.10)

(A/F )s has usually a value around 14.3.

We can now define λ , the air/fuel equivalence ratio, as:
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λ =
(A/F )
(A/F )s

(2.11)

If λ > 1 it is indicate a surplus of air and if λ < 1 it’s indicate a surplus of
fuel. In a diesel engine λ must be larger than a minimum limit, e.g to avoid
to much smoke emission.

Since it’s the oxygen fraction and not the air fraction that is used in the model,
λ is modeled as:

λ =
WeiXOim

WfOc(A/F )s
(2.12)

Symbol Description unit
Wei Air flow in intake manifold g/s
Wf Fuel flow g/s
Oc Fraction oxygen in air %

2.2.4 Mass fraction in EGR, xegr

Introducing exhaust gases in the air-fuel mixture will reduce the combustion
temperature and thereby reduce NOx gases. Both emissions and fuel con-
sumption will decrease with raised EGR ratio. xegr is the mass fraction of
exhaust gases in the air-fuel mixture. If xegr is to low there will be to much
NOx emissions and if it is to high there will be to much smoke. The EGR
fraction also displaces fresh oxygen, making it less available for combustion
and thus reducing the probability of interaction between nitrogen and oxygen
atoms even under lean conditions.

Emission limits are formulated as set-points in EGR fraction. It is therefore
desirable to minimize the error between the xegr mass fraction and it is set
point, in a optimization point of view.

Opening the EGR valve will reduce the exhaust manifold pressure and thereby
reduce the turbine speed. Opening the VGT valve will reduce exhaust mani-
fold pressure and also decrease EGR fraction.
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2.3 Actuator dynamics

2.3.1 The EGR valve state
ũegr describes the EGR actuator dynamic and can be derived as:

d

dt
ũegr =

1
τegr

(uegr − ũegr) (2.13)

The EGR throttle is open when uegr=100% and closed when uegr=0%

2.3.2 The VGT position state
ũvgt describes the VGT actuator dynamic and can be derived as:

d

dt
ũvgt =

1
τvgt

(uvgt − ũvgt) (2.14)

The VGT position is open when uvgt=100% and closed when uvgt=0%

2.3.3 Fuel injection
The amount of fuel injected ũdelta can be derived as

d

dt
ũdelta =

1
τdelta

(udelta − ũdelta) (2.15)

which describes the actuator dynamic.

2.4 Summary
All the necessary equations and constants that are needed to describe the dy-
namic of the engine are available. The states and control signals are also
successfully described.



Chapter 3

Optimization and
PID-regulation

This chapter describes the optimization parameters, the control objectives and
the cost function. The ETC cycle and the PID structure will also be described.

3.1 Control objectives
To fulfill all necessary requirements, the engine has to have a number of con-
trol goals. When values are received from the ETC-cycle it is important to
know which parameters to control. In this case the control goals are:

1. Follow the set-point engine torque from the ETC-cycle.

2. Minimize the error between the xegr fraction and its set point. If xegr

is to low there will be to much NOx emissions and if it is to high there
will be to much smoke.

3. In order to decrease the smoke, λ is not allowed to go below a certain
limit.

4. The turbine speed, ωt, can not be allowed to exceed a maximum limit,
otherwise the turbo charger can be damaged.

5. Minimize pump losses in order to decrease the fuel consumption.

3.1.1 Cost function
The cost function is designed to take into consideration a number of different
physical functions in the engine. It is also gives the possibility to weight dif-

10



3.1. Control objectives 11

ferent functions more than others.

The cost function used in this master’s thesis is

min

n∑

j=1

C1(uδsetp(j)− uδ(j))2 + C2(xegr(j)− xegrSetp(j))2+ (3.1)

C3(pem(j)− pim(j)) + C4(max(λSetp(j)− λ(j), 0))2+

C5(uegr(j)− uegr(j − 1))2 + C6(uvgt(j)− uvgt(j − 1))2

The first term minimizes the quadratic error between the real fuel injection
(uδ) and the desired fuel injection (uδsetp), which is calculated from the ETC
cycle by the following equation.

uδsetp = k1ne(t)2 + k2ne(t) + k3MeSetp(t) + k4(Pem − Pim) + k5 (3.2)

where MeSetp(t) is the torque, ne is the engine speed and k1, k2, k3, k4, k5

are constants.

The second term is the quadratic error between EGR fraction (xegr) and the
reference value xegrSetp. In this case xegrSetp has been set to 0.15, that is a
value which was obtained from stationary measurements with emissions just
below the legislated requirements(see [7]). This term helps control objective
2 in section 3.1 to be fulfilled.

The third term is the pump loses, which is the difference between the intake
and exhaust manifold pressures. The reason to not minimize the quadratic
error in the pumping loses is that a negative value is possible to attain, which
is an advantage when minimizing the fuel consumption but a disadvantage
when minimizing the xegr. This term helps to fulfill control objective 5 in
section 3.1.

The fourth term minimizes the difference between λ and λSetp. λSetp has
been obtained in the same way as xegrSetp. In this case xegrSetp is 1.8. Since
there is no negative with a high λ, the whole term is set to zero if λ is higher
than 1.8. This helps control objective 3 in section 3.1 to be fulfilled.
The fifth and sixth term is a way to avoid to much ripple in the control sig-
nals. The control signal is compared with an earlier signal and the difference
between them is minimized.
C1, C2, C3,C4,C5 and C6 are parameters chosen depending on how much the
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different terms are weight to each other. These are set depending on which
term in the cost function that is desired to have the most influence. How the
different terms effects the result will be described in section 5.

3.1.2 Constraints
In order to reach todays requirement on emissions, some limitations have to
be set. It is also necessary to limit some physical values. The constraints in
the optimization are

• λ ≥ 1.3 to prevent to much smoke emissions.

• nt ≤ 1.1 ∗ 105 rpm to make sure that the engine do not get damaged.
nt is the turbine speed

• uδ ≥ 0 ,the fuel injection can not be negative.

• 0% ≤ uegr ≤ 100%

• 10% ≤ uvgt ≤ 100%

The states and control signals are also constrained in order to make the simu-
lation time as short as possible. A higher number of constraints means fewer
number of possible solutions which means a shorter simulation time. The
constraints have been chosen after what is realistic for an diesel engine of this
kind. There are also a number of constraints that have been set on physical
parameters to make sure that the model will work in a realistic way (for ex-
ample temperature T can not be below 0 K), those constraints are the same as
in the original simulink model.

3.2 ETC-Cycle
As a reference for the following optimization the ETC-cycle (European Tran-
sient Cycle) has been used. This cycle is used for emission certification of
heavy-duty diesel engines in Europe, starting in the year 2000. Different
driving conditions are represented by three parts of the ETC cycle.

• Part 1 (0-600 s) represents city driving with a maximum speed of 50
km/h, frequent starts, stops and idling.
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• Part 2 (600-1200 s) represents rural driving, starting with a steep accel-
eration segment. The average speed is about 72 km/h.

• Part 3 (1200-1800 s) is motorway driving with average speed of about
88 km/h.

Values from the ETC cycle comes in three parts. Vehicle Speed, Engine speed
and Engine Torque as function of time. Where the sample time is one sec-
ond. In this case the engine speed and torque has been used. In this case the
engine speed from the ETC-cycle is the control signal ne. The signal is taken
directly from the cycle and is implemented in TOMOC as a simple bound.
By setting the upper bound (UB) equal to the lower bound (LB) ne will be
treated as a fixed value in the optimization. But since the sample time from
the ETC-cycle is 1 sec this signal have to be interpolated to get a higher reso-
lution. This is solved by using the interpolation command in MATLAB. The
result is a vector from t1 to t2 with the desired sample time as length. The
desired fuel injection is calculated with values from torque and engine speed
from the ETC-cycle.

u = C1n
2
e + C2ne + C3Me + C4(Pem − Pim) + C5 (3.3)

This value is then a part of the cost function where the goal is to get the real
fuel injection to follow the calculated one.

3.3 PID-regulation
In the original simulink model of the engine, a PID controller is used to reg-
ulate the control signals. The design objective for the PID controller is to
coordinate uδ , uegr and uvgt in order to achieve the control objectives. In
figure 3.1 a simulink schematic of the control structure is shown. The signals
needed for the controller are shown as signals in figure 3.1. The set points
and limits for the controllers are obtained from stationary measurements with
emissions just below the legislated requirements and represented as look up
tables as a function of operation condition. In tuning these set points are held
constant. The engine torque is controlled to it’s set point MeSetp with the
control signal udelta using feed forward. The block Delta feed forward in
figure 3.1 calculates the set point value for udelta.

uδsetp = c1ne(t)2 + c2ne(t) + c3MeSetp(t) + c4(Pem − Pim) + c5

The parameters C1 to C4 are estimated from stationary measurements. λ
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3
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Figure 3.1: Simulink model of the PID structure

is controlled to a set point λSetp with the control signal uegr. This causes
a closing of the EGR valve during a load transient in order to speed up the
turbocharger and increase the air mass flow into the engine. The intake man-
ifold EGR-fraction xegr is controlled to it’s set point xegrSetp with the con-
trol signal uvgt. The smoke limiter and turbocharger speed limiter are safety
functions to prevent to much smoke and overshoots in speed. The two PID
controllers are set up so that xegr can be controlled both by uvgt and uegr.

The control objectives have been the same and the same engine dynamics
have been used.

3.4 Summary
In this chapter optimization and control of the system have been introduced.
Eq 3.1 is the cost function and is central in the optimization section and the
control objectives in 3.1 are central in the control section. It has been de-
scribed how a PID controller was used in the original model to fulfill the
control objectives.



Chapter 4

TOMOC

In this chapter the engine model and the optimization is put together and a
optimal control problem is formulated. The optimization algorithm TOMOC
is described and explained.

4.1 Introduction

4.1.1 Background

TOMOC is an optimization algorithm developed by Adam Lagerberg at the
School of Engineering Jönköpings University, in his PhD thesis. TOMOC is
described in [2]. TOMOC is used for solving optimal control problems. There
exists many different methods to solve optimization problems and there are
many different software tools to use. But the usual optimization problem do
not consider the dynamics, that are used in optimal control problems. TO-
MOC reforms the optimal control problem into a numerical minimization
problem which can be solved in MATLAB. TOMOC was originally designed
to use the general NLP-solvers implemented in TOMLAB, but since TOM-
LAB is not available in this thesis, a special version of TOMOC which uses
the MATLAB function fmincon which follows with the optimization tool-
box has been used.

4.1.2 Function

A general optimal control problem can be formulated as followes [3].

Find the control function u(t), t ∈ [tI , tF ] that minimize the cost function.

15



16 Chapter 4. TOMOC

J = Φ(x(tI), x(tF ), tI , tF ) +
∫ tF

tI

L(x(t), u(t), t)dt (4.1)

The first part of the function defines cost related to the final and initial
states. x(t) is a vector containing all the states and u(t) is a vector containing
the control signals.
The state equations that defines the dynamic are:

ẋ = f(x(t), u(t), t) (4.2)

u(t) ∈ U, 0 ≤ t ≤ tF (4.3)

x(0) = x0, Φ(x(tF )) = 0 (4.4)

Simple boundary conditions are:

x(tI) = xI (4.5)

x(tF ) = xF (4.6)

Complex boundary conditions are:

gI(x(tI), u(tI)) = 0 (4.7)

gF (x(tF ), uF ) = 0 (4.8)

Simple constraints on state and control variables are:

xmin ≤ x(t) ≤ xmax, t ∈ [tI , tF ] (4.9)

umin ≤ u(t) ≤ umax, t ∈ [tI , tF ] (4.10)

Complex path constraints are:

gL ≤ g(x(t), u(t), t) ≤ gU , t ∈ [tI , tF ] (4.11)

The final time, tF can be fixed or allowed to vary and be a part of the opti-
mization problem.

The central idea in TOMOC is to implement a transcription formulation of the
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dynamics equation.The transcription is based on a direct collocation formula
which discretizise the differential equations tons to solve the optimal control
problem. The basis of this approach is a finite dimensional approximation
of control and state variables i.e. a discretization. From this discretization, a
constrained optimal control problem is transformed into a finite dimensional
nonlinear program which can be solved by a standard NPL solvers. TOMOC
transforms the differential equation to a non linear problem, with methods
such as Euler or Runge-kutta. The non linear problem can be written as:

J = Φ(x(tI), x(tF ), tI , tF ) +
N∑

j=0

L(xj , uj) (4.12)

The non linear problem can be solved in MATLAB by fmincon.

4.1.3 fmincon
fmincon is a MATLAB function which solves non linear optimization prob-
lems. fmincon uses a method called SQP (Sequential Quadratic Program-
ming) to find a constrained minimum of a scalar function of several variables
starting at an initial estimate. fmincon starts at X0 and attempts to find a
minimum X to the function described in cost function subject to the linear in-
equalities. In this case X0 is a vector. The function to be minimized, the cost
function, is a function that accepts a vector x and returns a scalar f. There is
no way to know if the found minimum is local or global, because fmincon
always searches locally for decreasing solutions.

4.2 Implementation
To make fmincon work we need the following in data.

[X] =fmincon(FUN,X0,Aieq,Bieq,Aeq,Beq,LB,
UB,NONLCON,OPTIONS,P)

(4.13)

where

• FUN is the cost function.

• X0 are the initial values.
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• Aeq and Beq are inequality constraints.

• Aeq and Beq are equality constraints.

• LB and UB are lower and upper bounds for the states and control sig-
nals.

• NONLCON are the linear and nonlinear constraints.

• OPTIONS are parameters for the simulation.

P is a struct in MATLAB that contains user defined options.

With these values fmincon gives a vector X that contains values of the
states and control signals that minimize the cost function for a specific time
interval.

In the original TOMOC, A and B are matrices that describes the dynamic
on the form ẋ = Ax + Bu. However, it is only possible to have the dynamic
on this form if it is linear. In the diesel engine dynamic, that is not the case.
Therefore it is necessary to get the dynamic from a separate file. The file
Statesmaker uses the engine dynamic and creates the wanted states, and
return them on correct form to the start file and fmincon.

4.2.1 Implementation of the engine model in TOMOC
The only way to implement the model in TOMOC is to write down the dy-
namics in MATLAB code.
To confirm the accuracy of the model a small simulink model was built, which
can be seen in figure 4.2. If the model is correct, the resulting step response
from a transient, should correspond with the step response in the reference
model. The engine model is collected from workspace and has the derivate
states as output. The input consists of control signals from the reference
model and feedback states. The states was then plotted and compared with
plots from the reference model. The plots in figure 4.1 show that the system
gives the same solution, after an initial transient.

The figure shows what happens when the VGT valve goes from 90% open
to 70% open and then back to 90% again. The reason why the two models
not are exactly the same, which would be the case if everything was correct,
is that some rounds off have been made and that different initial values have
been used, but that difference can be neglected.

The block called MATLAB fcn, in figure 4.2 contains the engine dynamic.
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The inputs to the block are the current states x and control signals u. The
outputs are the derived states ẋ.
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Figure 4.1: Step response in Pim and Pem for the original simulink model
and the model implemented in TOMOC
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Figure 4.2: Simulink model used for validation of the model implemented in
TOMOC

4.3 Summary
The optimization algorithm TOMOC can, with some modifications, be used
to solve the wanted optimal control problem for the engine. For more in-
formation about TOMOC, see [2] and appendix A. It has been shown that
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the model implemented in TOMOC is correct since it gives the same step
response as the original simulink model.



Chapter 5

Results

In this chapter the results from all simulations will be presented. It will also
be described how the different simulations have been implemented. The re-
sults will be commentated and analyzed.
To find the optimal control signals of the VGT and EGR, several different
simulations with a number of different settings have been done. Not only
have the parameters of the model been changed but also the specific method
to simulate the model. The simulations have also been compared with earlier
simulations, made with a PID controller instead of optimal control with TO-
MOC. In this way it is possible to see if TOMOC gives a better result than a
normal PID. The result has finally been tested in the original simulink model
to make sure that they are correct. The simulations have been done with tran-
sients from a 20 s long time interval in the ETC-cycle. The transients can be
seen in figure 5.1 and 5.2

5.1 Simulations
The simulation consists of five 4 s simulations that has been put together to
one 20 sec long simulation. That’s because TOMOC has a difficulty with
long simulations with a short sample time. To solve that the simulation has
been divided up in five 4 sec interval with a 16 segment, i.e. a sample time
of 0.25 sec. It would be desirable to have a faster sample time, but the long
simulation time makes that impossible.

5.1.1 Initial values

TOMOC is very sensitive for different initial values. It is important to have as
correct values as possible or else no solution will be found. To solve this prob-

21
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Figure 5.1: The engine speed from the ETC cycle.

lem values from earlier simulations, with a PID regulator, have been used.
This can only be done with the assumption that the PID regulator gives a re-
sult that is rather close to the optimal result. This means that the result will
have the same principal appearance as the PID simulation, but since the reg-
ulation objectives are the same, it is quite natural.

5.1.2 ETC cycle

In the simulation, the time interval 390-410 s of the 1800 s long cycle has
been used. The engine speed and the torque from the ETC cycle can be seen
in figure 5.1 and 5.2.

5.1.3 EGR and VGT

The EGR and VGT optimal way to control the engine can be seen in figure
5.3 and 5.4, and the states ũegr and ũvgt can be seen in figure 5.5.

5.1.4 Mass fraction in EGR

The mass fraction in the EGR, xegr, can be seen in figure 5.6. The xegr has
much ripple the first seconds but after 6 sec it converges to its set point on
0.15. The reason that xegr is below 0.15 in the beginning is because the EGR
damper is closing in that time interval.That leads to a lower xegr fraction. It
shows in figure 5.6 , that this simulation gives a better result on the xegr than
a PID regulator.
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5.1.5 Turbine speed

The turbine speed is higher than the PID simulation the first 8 s, this means
that it will be a faster response in the transients. The rest of the time, except
the two last seconds, the optimal turbine speed is lower than the PID simula-
tion. That means lower fuel consumption and lower wear on the turbine. The
reason is because the pressure in the exhaust manifold is not as high here.
It can be seen in figure 5.11 that after 6 s the pump losses from our simula-
tion and the PID simulation starts to differ, which leads to a difference in the
turbine speed at the same time.
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5.1.6 Oxygen fraction in intake and exhaust manifold

XOim lays around 0.2 which is the oxygen fraction in the air. XOem has the
same principal appearance as λ in figure 5.9.
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Figure 5.8: XOim and XOem from the optimal control signals.

5.1.7 Oxygen to fuel ratio, λ

Figure 5.9 shows that λ, most of the time, is lower than λPID. A high lambda
is to prefer but since λ follows the given restrictions, λ > 1.3, the require-
ments are fulfilled.

5.1.8 Torque

To get an understanding of how good uδ follows its set point compared to
other simulations, the torque Me is the most appropriate parameter to use.
Since uδSetp is a function of ne,Me and the pump losses, it will change for
every simulation and not be a constant parameter. MeSetp, on the other hand,
is taken directly from the ETC cycle and is the same under all circumstances
and it is also the dominating factor in the function for uδSetp. Thereby uδ and
Me will have the same principal appearance. This means that it will be easier
to see how the set point is followed when it does not change. Figure 5.10
shows that the optimal torque has a faster response than the PID simulation.
The reason for this is the higher turbine speed in section 5.1.5.
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5.1.9 Intake- and exhaust manifold pressure
Figure 5.11 shows that the difference between pim and pem, the pump loses,
are smaller than it is with the PID regulator. The reason why the pumping
losses is lower than in the PID simulation can be seen in figure 5.3. We can
see that the EGR valve is more open in our simulation compared to the PID
simulation. The EGR valve also has a faster opening than the PID simulation.
If the EGR valve is open, the pressure can not be built up which leads to lower
pumping losses.
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Figure 5.11: Pump losses from the optimal control signals and from the PID
controller.

5.1.10 Time mean value
It is interesting to see how much better optimal control is than a PID-controller.
The time mean value of the different signals can be calculated by solving the
integral in equation(5.1), where y is the value of the signals for each time
point. This gives the results that are presented in the following tabular.

y =
1
T

∫ t0+T

t0

ydt (5.1)

Description Signal Change from PID to optimal %
EGR error |xegrSetp − xegr| -68%
Positive λ error max(λSetp − λ,0) -14%
Torque error |MeSetp −Me| -9%
Pumping losses pem − pim -14%
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All signals that the cost function contains decreases,i.e. follows the set point
better, with the optimal control signals. Most obvious is it on the xegr signal
which improves with 68% compared to the PID-simulation. The reason why
the optimal control is better than the PID controller is because it is closing
the EGR and VGT valve before the transient is coming, to build up a pressure
before the transient to get a quick response and thereby be able to control
the xegr in a better way. This is possible because the optimal control have
information about future values which it gets from the X vector in section
4.2.

5.2 Result with different weight parameters

The four terms that are minimized in the cost function can be weighted with
the constants C1 to C4 depending on which control objective or objectives in
3.1 that is/are considered to be the most important. When different objectives
are prioritized , the results will also be different. It also gives an idea of how
each term effects the result of the whole cost function.

5.2.1 Low weight on xegr

If the constant C2 in equation 3.1 is set to zero, the quadratic error between
the EGR mass fraction and its set point won’t be a part of the cost function.
Figure 5.16 shows that xegr doesn’t follow the set point as good as before. A
low EGR mass fraction means a higher oxygen fraction in the air and results
in that more fuel is injected which can be seen on the torque in figure 5.15.
This also means that the pump losses can be reduced by closing the EGR and
open the VGT. This can be seen in figure 5.14.

The numerical change compared to the normal simulation are:

Description Signal Change from normal to C2 = 0 %
EGR error |xegrSetp − xegr| 96%
Positive λ error max(λSetp − λ,0) 76%
Torque error |MeSetp −Me| 28%
Pumping losses pem − pim -112%

All values except the pump losses are worse than the normal simulation. The
reason why the pump losses are so much better is because they are negative.
That’s because the VGT valve is opening up so much.
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Figure 5.12: EGR when C2=0, i.e. low weight on xegr compared with the
normal weight.
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Figure 5.14: Pump losses when C2=0, i.e. low weight on xegr compared with
the normal weight.
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Figure 5.16: xegr when C2=0, i.e. low weight on xegr compared with the
normal weight.
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5.2.2 Low weight on λ

Low weight on the quadratic error between λ and its set point means lower
requirements on the air/fuel ratio and gives the possibility to inject more fuel.
This results in that uδ follows its set point better and slightly better pump
losses, which can be seen in figure 5.20 and 5.21.

Description Signal Change from normal to C4 = 0 %
EGR error |xegrSetp − xegr| 68%
Positive λ error max(λSetp − λ,0) 13%
Torque error |MeSetp −Me| 9%
Pumping losses pem − pim 14.5%

Low weight on λ don’t effect the result so much. The values are almost the
same as in section 5.1.10.
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Figure 5.18: EGR when C4=0, i.e. low weight on λ compared with the nor-
mal weight.

5.2.3 Low weight on uδ

Low weight on the quadratic error between uδ and its set point results in lower
fuel injection, which can bee seen in figure 5.27. This results in that xegr

follows its set point better, figure 5.26 since not as much oxygen is needed as
before. The pump losses are also lower, figure 5.25.The reason why there is
a peak in pem − pim after 4 sec is because the VGT is closing quickly right
before, see figure 5.24.
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Figure 5.19: VGT when C4=0, i.e. low weight on λ compared with the nor-
mal weight.
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Figure 5.20: Pump losses when C4=0, i.e. low weight on λ compared with
the normal weight.
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Figure 5.21: Torque when C4=0, i.e. low weight on λ compared with the
normal weight.
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Figure 5.23: EGR when C1=0, i.e. low weight on uδ compared with the
normal weight.
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Figure 5.24: VGT when C1=0, i.e. low weight on uδ compared with the
normal weight.
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Figure 5.25: Pump losses C1=0, i.e. low weight on uδ compared with the
normal weight.
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Figure 5.26: xegr when C1=0, i.e. low weight on uδ compared with the
normal weight.
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Figure 5.27: Torque when C1=0, i.e. low weight on uδ compared with the
normal weight.

390 392 394 396 398 400 402 404 406 408 410
1

1.5

2

2.5

3

3.5

4
Lambda

Time (s)

 

 
λ  Normal
λ  Setpoint
λ  Min
λ  C

1
 = 0

Figure 5.28: λ when C1=0, i.e. low weight on uδ compared with the normal
weight.
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Description Signal Change from normal to C1 = 0 %
EGR error |xegrSetp − xegr| -88%
Positive λ error max(λSetp − λ,0) -72%
Torque error |MeSetp −Me| 256%
Pumping losses pem − pim -43%

Low weight on uδ gives good results for xegr, λ and pump losses, but re-
ally bad result for Me.
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5.3 Turbine efficiency
The total turbine efficiency, ηtm consists of the turbine efficiency and me-
chanical efficiency. Measurements show that ηtm is dependent of BSR (Blade
Speed Ratio) and the turbine speed ωt according to [1].

ηtm = ηtmmax − cm(BSR−BSRopt)2 (5.2)

BSR =
Rtωt√

2cpeTem(1−Π1/γe

t )
(5.3)

cm = cm1(ωt − cm2)cm3 (5.4)

Where ηtmmax is the maximal turbine efficiency, BSRopt is the optimal BSR
value for maximal turbine efficiency and cm1,cm2,cm3 are parameters for the
model for cm.
To get a view of how important the turbine efficiency is for the optimization,
the parameter cm1, which variates the mechanical losses in equation 5.4 can
be changed. A high cm1 gives a deterioration of the conditions because the
losses is assumed to be higher. It is now possible to get an opinion of how
important this parameter is for the system. If the efficiency is important for
the optimization , the difference between a large and small cm1 should be
large, i.e. the sensitivity of this parameter is significant.
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Figure 5.29: BSR for normal and cm1 · 1.2 compared to BSR for the PID
controller.

In figure 5.29, we can see that the difference between the curves is small
which implicates that the optimization is not sensitive to a deterioration of the
turbine efficiency. But a comparison of the time mean values show a rather
big difference.

Description Signal Change from normal to cm1 · 1.2
EGR error |xegrSetp − xegr| 103%
Positive λ error max(λSetp − λ,0) 147%
Torque error |MeSetp −Me| 229%
Pumping losses pem − pim 76%

It is clear that it is more difficult for the signals to follow their set point,
which can be seen in figure 5.30, 5.31, 5.32 and 5.33.
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Figure 5.30: λ with cm1 · 1.2 compared to normal λ and λ for the PID con-
troller.
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Figure 5.31: Me with cm1 · 1.2 compared to normal Me.
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Figure 5.32: Pump losses with cm1 ·1.2 compared to normal pump losses and
pump losses for the PID controller.
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Figure 5.33: xegr with cm1 · 1.2 compared to normal xegr and xegr for the
PID controller.
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5.4 Compressor efficiency
In the same way that it is possible to make worse conditions by changing
the parameter cm1 in the turbine, it is possible to make better conditions by
changing the maximal efficiency in the compressor and see if the transient
improves. The compressor efficiency,ηc can, according to [1], be described
as:

ηc = ηcmax − χT Qcχ (5.5)

χ is a vector that contains the inputs

χ = [Wc −Wopt, πc − πcopt]
T (5.6)

and Qc is a matrix which consists of three parameters.
The transients with a higher maximal efficiency can be seen in figure 5.34,
5.35, 5.36 and 5.37
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Figure 5.34: Pump losses with a higher maximal efficiency on the compressor
compared to the normal efficiency.

And the change in % is

Description Signal Change from normal to ηcmax · 1.1
EGR error |xegrSetp − xegr| -60%
Positive λ error max(λSetp − λ,0) -80%
Torque error |MeSetp −Me| -26%
Pumping losses pem − pim -24%
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Figure 5.35: Me with a higher maximal efficiency on the compressor com-
pared to the normal efficiency.
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Figure 5.36: λ with a higher maximal efficiency on the compressor compared
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Figure 5.37: xegr with a higher maximal efficiency on the compressor com-
pared to the normal efficiency.

It is obvious that a higher maximal efficiency in the compressor makes it
possible for the different signals to follow the set points better.

5.5 Summary
Even if the simulations not where made in the most satisfactory way it is
clear that the solution from TOMOC gives a better result,i.e. follows the set
points and have lower pump losses, than the PID simulation. The time mean
value for the different signals has been calculated and compared to the PID
simulation. The most significant improvement can be seen in the xegr which
improves with 68% when using the new control signals. This is possible when
TOMOC is controlling by closing the VGT and EGR before the transient, in
order to build up the pressure. The optimal control signals are plotted in figure
5.3 and 5.4. The time mean values between the different signals and their set
point has been calculated and compared to each other. Interesting is also that
a rather small change in the efficiency of the compressor and turbine gives a
significant change in the result.



Chapter 6

Conclusions

In this chapter an analysis of the results of the different signals and simula-
tions is made.

6.1 Cost function
The assignment has been to find the optimal control signals by minimizing the
cost function 3.1. The different parameters have been weighted in different
ways and several simulations has been made. The most important parameters
in the cost function that have been weighted are:

• The quadratic error between the fuel injection and its set point. When
analyzing the results it is better to analyze the error between the torque
and its set point instead, see section 5.1.8.

• The quadratic error between the mass fraction in the EGR valve, xegr,
and its set point.

• The quadratic error between λ and its set point. Consideration to that it
is nothing negative with a large λ has been taken.

6.2 Results
If we study the results in chapter 5, we can come to the conclusion that op-
timal control with TOMOC gives a better results from than a PID regulator,
even though the results are quite similar. The improvement for the time mean
values of the different signals can be seen in the tabulars in chapter 5. It is
also interesting to see that a rather small change of the parameters cm1 and
ηcmax in section 5.3 and 5.4 gives a significant change in the result. The most
significant improvement is that the xegr follows its set point 68% better than
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the PID simulation, this is because TOMOC can prepare the system for the
different transients.

6.3 Control signals

6.3.1 Is this the optimal control?
The optimal control signals that have been calculated in TOMOC can be seen
in figure 5.3 and 5.4. But can we be sure that this really are the optimal con-
trol way to control the two signals? The answer to that question is no. Since
we do not have any possibility to control if the solution is a global or local
optimum, we can not exclude that there could be a better way to control the
signals. It is also unclear how the use of the initial values have effected the
results. We can also see that the big difference between our simulation and
the PID simulation is the control of the EGR valve. The VGT signal is almost
the same in the two simulations but the EGR shows some interesting differ-
ences. It seems to be desirable to open up the EGR valve more and faster in
order to lower the exhaust manifold pressure. That leads to a lower turbine
speed and a smaller amount of air can be pressed into the engine by the turbo,
which leads to a lower pressure in the intake manifold. In that way the pump
losses are reduced.

6.4 Simulations
Since there have been problems with long simulation times, and that the sim-
ulations crashes if the sample time is to high, the 20 sec long simulations have
been divided into five 4 sec long simulations. This should not give so much
different result than one 20 sec long simulation. However, in some intervals
the control signals have some tops and dips that is a direct result of this.
Why the simulations crash when the sample time is to high, we don’t know.
Normally a simulation with high sample time would be more accurate than a
simulation with low sample time. Probably the simulations do not converge
because of some kind of numerical difficulties.



Chapter 7

Future Work

In this chapter further work to this master’s thesis is discussed.

7.1 Optimization
The mayor problem in this work has been the long simulation time and it is
desirable to short down this time. It would also be desirable to simulate with
a better sample time, i.e. simulate with more segments. The accuracy would
then be better and the result more precise.
Something that would be interesting is to compare fmincon with an other
kind of solver. That it is a very important part of the optimization but still
difficult to say if fmincon is a good choice or not. An other solver may give
a different result.
Try to use other methods instead of trapeze method, like Euler which already
is implemented in TOMOC, to make the optimization problem discrete.
TOMOC is very sensitive for different initial values. If an observer which
could calculate future values was made, these values could then be used as
initial values. This would mean that the simulation didn’t have to follow the
PID simulation at all. There would be a better chance that a global optimum
was found.
If TOMLAB is available, it would of course be interesting to see the result
when using that.
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Notation

Symbols used in the report.

Variables and parameters
states description unit
pim Intake manifold pressure Pa
pem Exhaust manifold pressure Pa
XOim Fraction oxygen in intake manifold %
XOem Fraction oxygen in exhaust manifold %
ωt turbine speed rpm
ũδ dynamic of the fuel injection actuator %
ũegr dynamic of the egr actuator %
ũvgt dynamic of the vgt actuator %
ne engine speed rad/min
uδ fuel injection actuator mg/cycle
uegr egr actuator %
uvgt vgt actuator %
W Flow kg/s
T Temperature K
Ra Gas constant for air J/(kg ·K)
Re Gas constant for exhaust gas J/(kg ·K)
V Volume m3

Wei Total gas flow into the cylinder kg/s
Wf Fuel flow kg/s
Oc Fraction oxygen in air %
η Efficiency -
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Appendix A

TOMOC Manual

A.1 Introduction

This is a introduction to the TOMOC version that was made, by Adam Lager-
berg, special for Linköpings university. It is written mainly to give future
users a help to get started with the program. We have described how we
solved different problems without saying that our method is the only way or
the best way to solve the problem.

TOMOC consists of several different m-files which are used together with
fmincon to solve the optimal control problem.
There are both problem specific and not problem specific files. The problem
specific functions,i.e. the functions that must be changed to match the spe-
cific problem, are describes in the following sections.

A.2 Tomlkpg1start

The TOMOC template used here is originally made to solve a specific prob-
lem so many things have to be changed to make it work for other problems.
For the problem in this thesis is not possible to make a setup on matrix form
so it has a different setup than the original. This introduction is an effort to
explain the changes necessary to get a more complex model to work within
the template. Tomlkpg1start which is the main script in TOMOC is built
around fmincon and calls on the other functions. It defines time interval,
sample time, simple bounds etc..
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A.2.1 Phases
The number of phases is described by (P.user.nph) in TOMOC. If the
dynamic trajectory of the system differs over time it is possible to divide it
into different parts. Each phase will correspond with the specific dynamics
and will be treated as a separate systems which are linked together. Also dif-
ferent boundary conditions and constraints can be given for each phase. The
advantage with this setup is that it makes it easy to handle different dynamics
within the same area problem.

A.2.2 States
The number of states is in TOMOC defined by (P.user.phph.ny). This
value is used to decide the size of the vector X and X0.

A.2.3 Control signals
The number of control signals is defined by (P.user.phph.nu).This
value is used to decide the size of the vector X and X0. Segments on phase
(P.user.phph.ns). This parameter decides how many segments to be
calculated with on each phase. Indirectly this will also decide the sample time
for the run if the goal is to minimize over a timespan. If the goal is to mini-
mize time this will indicate the accuracy. It is convenient to start with a small
value and then iteratively increase it to improve the accuracy of the solution.

A.2.4 Initial values
The initial values are in TOMOC defined by(P.user.phph.(xi , ui))
and (P.user.phph.(xf , uf)). It is important that this value is a
good guess if a correct solution will be achieved since the program searches
for a minimum around this point. It is not possible to know if this is a global
or local minimum. This value is a constraint and will be the fixed value for
states and control signal in the first and/or last point of the calculation. It is
possible to set (xi , ui) for one or more whole segments in the X vector or pick
out specific values in one or more segments. If no points are going to be used
set to infinity. This value is used to calculate the X0 vector how are inter-
polate from start to final, if no final exists the X0 vector will be interpolated
from final to final. If nothing is provided zeros are assumed. Initial values are
to be set as a transposed vector or matrix.

A.2.5 Time constraints
The time interval for the calculation is set in P.user.phph.Dtconstr.
The time is a part of the X vector and is a constraint value. Set to infinity if
a minimal time calculation is wanted, in this case time will not be used as a
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constraint. The sample time will be time divided with number of segments.
P.user.Dttotconstr is total time for all phases.

A.2.6 Initial guesses
A guess of the initial and final values can be set in P.user.phph.(xig
, uig) and P.user.phph.(xfg , ufg). It is favorable to use this
function if a good guess exists for the whole vector or a part of it. If these
values are set they will act as start points for the X vector and they will not
be set as constraints. This will reduce the convergence speed since the NPL
solution is dependent on a good initial value. If a good guess exists for the
whole vector it would be possible to directly replace it with X0 without us-
ing TomocInitguess, a constraint initial guess for the first point in the vector
would still be necessary since it is used on other places than TomocInitguess.
Simple bounds LB and UB restrains the values between two points for each
state and control signal. If LB = UB a fixed value is obtained. Bounds can be
vectors or scalers, and can be set for every segment. It is e g possible to get
the bounds to follow a trajectory by defining a vector and letting LB = UB

X vector

The vector used by the solver is called X and contains time, dynamic states
and control signals. The initial X vector is created in Tomocinitguess
from the initial values defined in tomlkpgstart. The values are interpo-
lated from initial to final to fit the number of segments on the phase. The X
vector is structured in the following way

X = [X(1), X(2), ..., X(nph)]

where X(p) is the vector for phase p, p = 1, 2..., nph

X(p) = [∆t, x1, u1, x2,u2, ..., xns+1, uns+1]

where

∆t is the time on phase p, xkis the state variable and uk is the control signal
vector in each segment node k,k = 1, 2, .., ns + 1

xk = [xk
1 , xk

2 , ..., xk
ny

]
uk = [uk

1 , uk
2 , ..., uk

nu
]

For example assume:
number of segments = 3
number of phases = 1
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number of states = 2
number of control signals = 2

the created vector is linearly interpolated from (xi, ui) to (xf , uf ) so that

X0 = [∆t, x1
1, x

1
2, u

1
1, u

1
2, x

2
1, x

2
2, u

2
1, x

3
1, x

3
2, u

3
1, u

3
2, x

4
1, x

4
2, u

4
1, u

4
2]

And if a prior X exists in workspace Tomocinitguess will use this as
a new starting guess. If the number of segments have been changed since last
run a new X0 whit the right length will be interpolated from the prior grid
points. This is of importance since the convergence speed of the solution is
dependent of a good initial value. It is even possible that no solution at all is
found if the initial values are to bad. It also possible to set only a few individ-
ual initial values and let the rest be zeros. This is possible by using guessed
values. If the (xi, xf) vector is set to infinite, and guessed values provided in
(xig, xfg) are used, all values not used in (xig, xfg) will be set to zeros and
only the guessed values are used.

Upper-and lower bounds

The states and control signals can be restricted to not exceed or be below
a certain value. This will be done for every state and control signal for all
segments by controlling the correct element in the X vector.With these bounds
it is possible to give a state a specific value during the whole simulation by
setting UB=LB.

Structs

The struct P contains data from user defined functions and statemaker.

Optimset

The function optimset creates a structure that pass on a input argument to the
fmincon function. This gives the user a possibility to change the conditions
for the simulation. For example number of iterations, termination conditions,
display options can be set. Also gives the opportunity to choose which nu-
merical method the solver should use.

A.3 tomlkpg1fun
Contains the cost function and all the dynamics that is required to calculate
the cost function. The function picks out indexes of control signals and states
at each time point. The index correspond to the place in the vector X where
the signal is located. This makes it possible to sort out the right signal from
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vector X needed to calculate the cost function. The result is a vector corre-
sponding to chosen signal whit length equal to number of segments. If other
variables is needed to calculate the cost function it is necessary to estimate
them here by using the generated vectors.
Example:
The needed signal is control signal 1 (u1) then index u1 is
iu1=iDt+P.user.ph(ph).ny+1+P.user.ph(ph).nyu

*(0:P.user.ph(ph).ns)
where iDt is time which is placed first in the vector for each phase.

P.user.ph(ph).ny is number of states on each phase. (1)
P.user.ph(ph).nyu is total number of signals on each phase. (2)
P.user.ph(ph).ns is number of segments on each phase. (3)
if (1) = 4 , (2) = 2 , (3) = 2 then the result is a vector which contains index for
u1 iu1 = [6 12 18] then it is straight forward to pick out the signal from the X
vector.

A.4 tomlkpg1dynfun
tomlkpg1dynfun contains the dynamics to be used in optimization. If the
system is linear and written on the form ẋ = Ax + Bu it is possible to imple-
ment it on matrix form (see [2]). If it is a non linear problem , which can’t
be written on matrix form, a separate function which contains the dynamics
can be written to solve the problem. In this case dynfun should work as a link
between Tomoc and the dynamics. Every time Tomoc calls upon dynfun the
information should be passed on to the dynamics function and the answer re-
turn the same way. This is very straightforward to implement, just exchange
the existing dynamics in template with the new dynamics function so that in-
stead of f = Ax+Bu you get f = dynamicsfunction(x,u).

It can be a good idea to weight the dynamics so that the values outside the dy-
namics function are approximately the same size. This is done to prevent that
big units has more influence than small units in the handling of constraints.
The benefits is a greater convergence speed. The easiest way to do this is to
multiply the ingoing values to the dynamics function whit a diagonal matrix
containing numbers in the same range as states and control signals. Then
multiply outgoing values with the inverse of the same matrix.

Example
The values that are going in and coming out from the function should be ap-
proximately the same size, but the values used by the dynamics should have
the proper value. Hence the values of inputs to the dynamics should be multi-
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plied with a vector (x0, u0) and values of the outputs from the dynamics must
be divided with x0. An easy way to do this is as following

s = diag(x0)
s−1 = s-1
v = u0 · u
ẋ = s−1· dynamics(s · x, v)

Since the dynamics function are called upon many times during a simula-
tion it is computably necessary to set the used constants as global, so that
they are available for calculations at all times without the need to load them
at each call to the function. One way to do this is to run a initialization file
were the needed constants are assigned a global value. Any assignment to that
variable, in any function, then is available to all the other functions declaring
it as global.

A.5 tomlkpg1initpar

Initialization of problem specific parameter values. Since this file uses the
states on matrix form, it should be replaced/changed if the problem is non
linear.

A.6 tomlkpg1constraints

The file Tomlkpg1constraintsmakes it possible to set problem specific
(non)linear constraints.

The problem independent functions are described in the following sections.

A.7 tomocinitguess

The file Tomocinitguess constructs an initial guess by linear interpola-
tion between parameters set in start (see X). Even thou the file is said to be
problem independent it has to be changed to fit the problem specifics. The
template is made to work with two states and one control signal, if this differs
it has to be changed. Guesses for u should be rewritten in the same form as
for states and the linear interpolation part has to be expanded to fit the new
problem.
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A.8 tomocconph
Multi-phase constraint definition. This function calls tomoccon (see A.9)
once for each phase, and then assembles all constraints into one vector. The
state and control variables on each phase are assumed to be the same, and to
be continuous over the phase boundaries. TOMLAB uses one vector both for
equality and inequality constraints. Special constrains equations are used for
this.

A.9 tomoccon
This function is called by tomocconph once for each phase and calculates
constraints for the boundary values, initial and final time. The function cal-
culate the constraints vector ceq. It is calculated in different parts, some in
loops and some in sequence after each other. Every calculation part uses the
temporary variable ceqk. After that the vector is put together gradually with
tomocconph.

A.10 tomocpostproc
This function handles the result vector X and reshapes it to a matrix , xr, con-
taining states, control signals and time. This makes it easy to pick out the
wanted variables for use in plot functions. The result is also used as initial
guess if the workspace is not cleared for a second run.
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