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Abstract
Accurate measurements from sensors measuring the vehicle’s lateral behavior are vital in todays vehicle dynamic
control systems such as the Electronic Stability Program (ESP). This thesis concerns accurate plausibilisation of
two of these sensors, namely the yaw rate sensor and the lateral acceleration sensor. The estimation is based on
Kalman filtering and culminates in the use of a 2 degree-of-freedom nonlinear two-track model describing the
vehicle lateral dynamics. The unknown and time-varying cornering stiffnesses are adapted and other unknown
quantities such as yaw moment of inertia is estimated. The Kalman filter transforms the measured signals into
a sequence of residuals that are then investigated with the aid of various change detection methods such as the
CuSum algorithm. An investigation into the area of adaptive thresholding has also been made.

The change detection methods investigated successfully detects faults in both the yaw rate and the lateral
acceleration sensor. It it also shown that adaptive thresholding can be used to improve the diagnosis system. All
of the results have been evaluated on-line in a prototype vehicle with real-time fault injection.

Keywords: Yaw rate, Lateral acceleration, Diagnosis, Change detection, Bicycle model
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Chapter 2 - Vehicle modeling Concerns the derivation of the vehicle models investigated. This chapter also
contains the estimation and adaptation of the involved parameters.

Chapter 3 - Observer theory Contains the necessary observer theory and observer design issues.

Chapter 4 - Kinematic relations Contains the derivation of different kinematic relations.

Chapter 5 - Change detection This chapter investigates different methods of change detection and their possi-
bility to improve the performance of the diagnosis system.

Chapter 6 - Results The results achieved are presented in this chapter.

Chapter 7 - Conclusions and future work Contains the conclusions drawn from this thesis and suggestions for
future work.
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Notation

Variables and parameters

Symbol Description Unit

AFS System

δG Pinion angle rad
δS Steering wheel angle rad
δM Motor angle rad
iM Motor angle to pinion angle ratio -
iD Steering wheel angle to pinion angle ratio -
FSG Pinion angle to rack displacement static nonlinearity -

Vehicle model

δF , δF,mid Road wheel angle rad
δF,d Delayed Road wheel angle rad
m Vehicle mass kg
lr Distance from CoG to rear axle m
lf Distance from CoG to front axle m
l Distance from rear axle to front axle m
Sf Front track width m
Sr Rear track width m
Sav Average track width m
Iz Yaw moment of inertia kgm2

Cα,r Rear cornering stiffness N/rad
Cα,f Front cornering stiffness N/rad
vx Longitudinal velocity m/s
vy Lateral velocity m/s
v Vehicle velocity m/s
vij Velocity on wheel ij m/s
ax Longitudinal acceleration m/s2

ay Lateral acceleration m/s2

β Sideslip angle rad
Ψ̇ Yaw rate rad/s
αi Slip angle on wheel i rad
Fy,ij Lateral wheel force on tire ij N
Fz,ij Vertical wheel force on tire ij N
Mz Torque around the z-axis Nm
g Universal gravitational constant m/s2

hcog Center of gravity height m
aij , bij , cij Lateral force parameters -
S Quality function -

v



Symbol Description

Kalman filter

w Process noise
v Measurement noise
K Kalman gain
Q Process noise covariance
R Measurement noise covariance
P Error covariance

Change detection

rt Residual
st Distance measure
gt Test statistic
W Model uncertainty measure
J Threshold
Jadp Adaptive threshold
pθ Probability density
ν CuSum drift parameter
h CuSum threshold parameter

Acronyms
AFS Active Front Steering
CoG Center of Gravity
CuSum Cumulative Sum
ECU Electronic Control Unit
EKF Extended Kalman Filter
ESP Electronic Steering Program
ISO International Organization for Standardization
VDC Vehicle Dynamics Control
YRS Yaw Rate Sensor
ZF Zahnrad Fabrik (Cogwheel Factory)
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Chapter 1

Introduction

1.1 Background

During the last decade, Vehicle Dynamics Control (VDC) systems, such as the Electronic Stability Program
(ESP), have been introduced and are now standard in most modern vehicles. These systems are created to help
drivers in various driving situations where they otherwise would have lost control of the vehicle. For instance,
ESP can help braking on individual wheels if the vehicle becomes uncontrollable for the driver and thus help the
driver regain control of the vehicle. The VDC systems rely heavily on accurate measurements from the associated
vehicle sensors and the monitoring of these sensors has been, and still is, an area of extensive research. The
activation of lateral dynamics control of ESP relies on the yaw rate sensor signal and the lateral accelerometer
sensor signal and accurate on-line monitoring and fault detection of these two sensors are the aim of this thesis.

1.2 Objective

The objective of this thesis can be divided into two parts. The first part is to design a monitoring function that
detects failures in the yaw rate sensor. The second part is to design a monitoring function that detects failures
in the lateral accelerometer sensor. Both functions are to be implemented as Simulink models and tested and
validated on-line in a prototype vehicle at a proving ground and with real-time fault injection.

1.3 Active Front Steering

The German company ZF Lenksysteme GmbH has developed and patented a concept for Active Front Steering
(AFS) which is a recently developed technology that superimposes an electronically controlled angle to the, by
the driver prescribed, steering wheel angle. This is done while maintaining the mechanical coupling between
steering wheel and front axle. The AFS-system basically consists of a rack and pinion hydraulic steering gear, an
electric motor, some sensors and an Electronic Control Unit (ECU). The ingoing parts can be seen in Figure 1.1.
The purpose of the AFS-system is to increase the comfort, ease of handling, and active safety for the driver.
Depending on the driving situation, the effective angle between the road and the wheels will be either smaller
or larger than that adjusted at the steering wheel by the driver. The ratio depends on vehicle velocity as well as
pinion and steering wheel angle. At low velocities, the electric motor will add an angle to the steering wheel
angle and thus making the steering more direct, which in turn increases the agility of the vehicle when performing
maneuvers such as parking or driving in city traffic. Similarly, at high speeds, the electric motor intervenes and
deducts an angle from the steering wheel angle, making the steering less direct. This reduces the risk for the
driver losing control of the vehicle since, during normal driving conditions, large sudden steering wheel angles
are not desirable when driving in high velocities.

The principle by which the AFS-system operates as well as all three angles of interest can be seen in Fig-
ure 1.2. The angle δS represents the steering wheel angle controlled by the driver, δM represents the electronically
controlled motor angle that superimposed together with δS results in the pinion angle δG down at the steering
rack. The relation between these angles is

1



2 Chapter 1. Introduction

Figure 1.1: Overview of the AFS motor mechanism.

Figure 1.2: The AFS principle. An electronically controlled angle δM is superimposed to the steering wheel
angle δS resulting in the pinion angle δG.

δG(t) =
1

iM
δM (t) +

1
iD

δS(t) (1.1)

where iD and iM account for the respective ratios. The resulting average road wheel angle δF can be calculated
via

δG(t) = FSG(δF (t)) (1.2)

where FSG(·) accounts for the relation between pinion angle and rack displacement as well as for the steering
geometry (1.2).

1.4 Measurements
A large amount of measured data has been gathered and investigated during the writing of this thesis. The
measurements have been performed partly at ZF Lenksysteme in Schwäbisch Gmünd, Germany, and partly in
the proving grounds located in Arjeplog, Sweden. In the later stage of the thesis period, measurements were also
collected from Boschs proving ground in Boxberg, Germany. A measurement schedule has been established and
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therein, driving maneuvers were defined. The measurement vehicle used is a BMW-545i, equipped with the same
sensors that appear in the commercial vehicle. Of particular interest is the Yaw Rate Sensor, YRS-MM1.1, that
has been developed by Bosch GmbH. The sensor consists of two different measuring elements, one for measuring
the yaw rate and one for measuring the lateral acceleration of the vehicle.

For the purpose of parameter estimation and validation, measured data from another BMW-545i equipped
with extra sensors has been used. These extra sensors realizes measurements of the forces acting on each tyre in
three dimensions as well as measurements of the vehicle’s lateral velocity.

1.5 Contributions
When developing the vehicle models inspiration has been taken from other works that involves studies of simpler,
both linear and nonlinear, vehicle models. However in order to get the most out of the diagnosis system a more
accurate model of the vehicle’s lateral dynamics was required and this resulted in the nonlinear model presented
in this thesis. A well-balanced model that is accurate enough for the purpose of fault detection and at the same
time not too complex.

This thesis also shows the successful application of various change detection methods in order to detect faults
in the lateral acceleration and yaw rate sensors. Especially the use of adaptive thresholding in vehicle diagnosis
systems is an area that is still fairly undeveloped. This thesis successfully shows how the diagnosis system can
be improved by using adaptive thresholds.

While many works are purely theoretical, all work presented in this thesis has also been validated on-line in
a prototype vehicle.

1.6 Related work
The areas of vehicle modeling and change detection are fairly well investigated. Numerous vehicle models of
varying complexity have been developed and used in applications such as signal estimation. ”Sensor Fusion for
Accurate Computation of Yaw Rate and Absolute Velocity” by F. Gustafsson is one work that shows that sensor
fusion can be used in order to accurately estimate the yaw rate and absolute velocity of a vehicle. Another related
work is ”Observation of Lateral Vehicle Dynamics” by U. Kiencke and A. Daiss that presents a comparison of
a linear and a nonlinear observer for vehicle and tyre side-slip angles. The Ph.D thesis ”Model Based Detection
and Reconstruction of Road Traffic Accidents” by M. Hiemer presents a model based system for detection of
road traffic accidents. The cornering stiffness adaptation procedure presented in this thesis is largely the same as
in Hiemers work. Even though the applications are different in the end both works rely on an accurate and at the
same time not too complex vehicle model.

Change detection or fault detection is also a very active field and this work has taken inspiration from
”AFS Change Detection Using Signal Estimation” by Samuel Malinen which is a master thesis performed at
ZF Lenksysteme that investigates the use of change detection in an Active Front Steering vehicle.



Chapter 2

Vehicle modeling

To accurately describe the vehicle dynamics an appropriate vehicle model must be derived. Since the purpose of
this thesis is to monitor yaw rate and lateral acceleration the modeling of the vehicle lateral dynamics has been
emphasized. First the well-known single-track model, also denoted bicycle model, is derived and the important
tyre parameter called cornering stiffness is estimated. Next an extension of this model is made and the final
nonlinear two-track model is derived. The two-track model furthermore includes the effects of load transfer as
well as a more realistic nonlinear tyre model. Both models have been implemented in Simulink and evaluated
on-line in a prototype vehicle with real-time fault injection.

2.1 Linear single-track model

A first approach involves the study of the linear single track model also denoted bicycle model. It is so called
since the right and left wheel on both axis have been lumped together and the result can be seen in Figure 2.1.
In Figure 2.1, Fy,f and Fy,r represent the lateral forces acting on the front and rear tyres respectively. Here and
throughout this thesis, index f and r refer to the front and rear axis. The angles αf and αr are the slip angles
on the front and rear wheel respectively and are defined as the difference between a wheel’s direction of heading
and its direction of travel. The variables vx and vy represent the vehicle’s longitudinal and lateral velocities at
the center of gravity (CoG). The angle δF is the road wheel angle for the front wheel and β represent the vehicle
body side slip angle. Finally Ψ̇ represents the yaw rate around the vehicle’s CoG.

Figure 2.1: The linear bicycle model.

Since this model lumps the wheels on each axis together, equal slip angles and road wheel angles are assumed
on the left and right wheels on both axis. The tyres are assumed to generate lateral forces that are directly
proportional to the tyre slip angle [6],[9]. Hence the lateral forces are modeled as

4



2.1. Linear single-track model 5

Fy,f = Cα,fαf (2.1)
Fy,r = Cα,rαr (2.2)

where Cαi, for i ∈ {f, r}, represent the cornering stiffnesses on each axis, which here equals two times the
cornering stiffness on each wheel, and is defined as the slope of the curve seen in Figure 2.5 at αi = 0. The
linear behavior of (2.1)-(2.2) is only valid in the linear approximation area as defined by the dashed line in
Figure 2.5. To accurately model the vehicles behavior for larger slip angles a nonlinear tyre model is required
and this is one of the issues the nonlinear model in section 2.2 deals with.

The bicycle model consists of two degrees of freedom, namely the side slip angle, β, and the vehicle yaw
rate, Ψ̇. The governing equations of motions can be derived from Newton’s second law yielding

m(vxΨ̇ + v̇y) =
∑

Fy = Fy,f cos δF + Fy,r (2.3)

Mz = IzΨ̈ = lfFy,f cos δF − lrFy,r (2.4)

where m represents the vehicle mass, Iz the vehicle moment of inertia around the z-axis and lf and lr the
distances between the vehicle CoG and the front and rear axis respectively. From Figure 2.1 the relationship
tan β = vy

vx
can be found and by assuming small angles (tan β ≈ β), v̇y can be written as v̇y = d

dt (βvx) =
vxβ̇ + v̇xβ. Inserting this relationship together with the expressions for the lateral forces (2.1) - (2.2) into (2.3) -
(2.4) yields

m(vxΨ̇ + vxβ̇ + v̇xβ) = Cαfαf cos δF + Cαrαr (2.5)

IzΨ̈ = lfCαfαf cos δF − lrCαrαr. (2.6)

The slip angles can be defined in terms of the vehicle motion variables, Ψ̇ and β. The expression for the front
wheel side slip angle can be formulated by considering the velocity of the center point of the front wheel being
(vx, vy + lf Ψ̇),

tan (δF − αf ) =
vy + lf Ψ̇

vx
(2.7)

and similarly for the rear wheel,

tan αr =
−vy + lrΨ̇

vx
. (2.8)

Assuming small angles and again recognizing vy

vx
≈ β yields the final slip angle expressions used by the bicycle

model,

αf = δF − β − lf Ψ̇
vx

(2.9)

αr = −β +
lrΨ̇
vx

. (2.10)

Inserting these expressions into (2.5) - (2.6) together with assuming small steering angles yields the following
equations of lateral and yaw motion,

mvxΨ̇ + mvxβ̇ + mv̇xβ = Cαf (δF − β − lf Ψ̇
vx

) + Cαr(−β +
lrΨ̇
vx

) (2.11)

IzΨ̈ = lfCαf (δF − β − lf Ψ̇
vx

)− lrCαr(−β +
lrΨ̇
vx

). (2.12)

which can be rewritten into
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mvxβ̇ = −β(Cαf + Cαr + mv̇x)− Ψ̇(mvx +
Cαf lf

vx
− Cαrlr

vx
) + δF Cαf (2.13)

IzΨ̈ = −β(Cαf lf − Cαrlr)− Ψ̇(
Cαf l2f + Cαrl

2
r

vx
) + δF Cαf lf . (2.14)

Or, on state space form,

(
β̇

Ψ̈

)
=

(−Cαf−Cαr−mv̇x

mvx

−lf Cαf +lrCαr

mvx
2 − 1

−lf Cαf +lrCαr

Iz

−lf
2Cαf−lr

2Cαr

Izvx

)(
β

Ψ̇

)
+

(
Cαf

mvx
lf Cαf

Iz

)
δF .

Since not only the yaw rate is of interest here but also the lateral acceleration, the aim when constructing
our sensor equation is to incorporate the lateral acceleration into the model. This can be done by utilizing the
relationship ay = v(β̇+Ψ̇) = vx

cos β (β̇+Ψ̇) [5]. By again assuming a small vehicle side slip angle, this expression

becomes ay = vx(β̇ + Ψ̇) where β̇ can be found in (2.13). The lateral acceleration can now be represented by

ay = vx(β̇ + Ψ̇) = vx(β
−Cαf − Cαr −mv̇x

mvx
+ Ψ̇(

−Cαf lf + Cαrlr
mv2

x

− 1) +
Cαf

mvx
δF + Ψ̇) (2.15)

which can be rewritten into

ay = β
−Cαf − Cαr −mv̇x

m
+ Ψ̇(

−Cαf lf + Cαrlr
mvx

) +
Cαf

m
δF . (2.16)

On state space form the measurement equations become

(
ay

Ψ̇

)
=

(−Cαf−Cαr−mv̇x

m
−lf Cαf +lrCαr

mvx

0 1

)(
β

Ψ̇

)
+

(
Cαf

m
0

)
δF

and the final state space model for the linear bicycle model with x = [β, Ψ̇]T , y = [ay, Ψ̇]T and u = δF results
in

ẋ = Ax + Bu (2.17)
y = Cx + Du (2.18)

where

A =

( −Cαf−Cαr−mv̇x

mvx

−lf Cαf +lrCαr

mvx
2 − 1

−lf Cαf +lrCαr

Iz

−lf
2Cαf−lr

2Cαr

Izvx

)
,B =

(
Cαf

mvx
lf Cαf

Iz

)

C =
( −Cαf−Cαr−mv̇x

m
−lf Cαf +lrCαr

mvx

0 1

)
,D =

(
Cαf

m
0

)
.

The resulting model (2.17)-(2.18) is time-varying and linear if and only if the signals vx and v̇x are considered
known.

For the online implementation the model (2.17)-(2.18) has been discretized using zero-order hold on the
inputs and a sample time of 10 ms. The resulting discrete model becomes

x[k + 1] = Ax[k] + Bu[k] (2.19)
y[k] = Cx[k] + Du[k]. (2.20)
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2.1.1 Steering rack nonlinearity
In the state space model (2.17)-(2.18) the road wheel angle, δF , is considered an input, however no sensor is
available for directly measuring this angle. Instead the AFS system supplies a sensor measuring the pinion angle,
δG (see Figure 1.2), which has been utilized. The relationship between pinion angle and road wheel angle is
however nonlinear in its nature. Figure 2.2 shows the pinion angle, δG, plotted against the average road wheel
angle, δF,mid, and as can be seen the ratio between them is not linear.
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Figure 2.2: Average road wheel angle, δF,mid for the front wheels plotted against pinion angle, δG.

Since this information was already available for the studied vehicle the problem with the nonlinearity has been
solved by using a lookup table, i.e. an approximation based on measured data.

2.1.2 Estimation of bicycle model parameters
The parameters included in the bicycle model are listed in Table 2.1. The vehicles total mass along with vehicle
specific measures have been obtained by simple measurements. The location of the vehicle CoG in the plane
has been calculated based on simultaneous measurements of the weight on all four tyres. These parameters have
therefore been commented as measured in Table 2.1.

Bicycle model parameters
Parameter Notation Unit Comment
Distance between rear axis and CoG lr m measured
Distance between front axis and CoG lf m measured
Vehicle mass m kg measured
Yaw moment of inertia Iz kgm2 estimated
Front cornering stiffness Cαf N/rad estimated
Rear cornering stiffness Cαr N/rad estimated

Table 2.1: Bicycle model parameters.

The yaw moment of inertia together with the cornering stiffnesses for both the front and rear axis have been
estimated and the Matlab Optimization Toolbox and the least squares method has been used for this purpose. A
residual is first created as the difference between measured yaw rate and the estimate provided from the bicycle
model as seen in Figure 2.3.
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Figure 2.3: Parameter estimation procedure for the linear bicycle model.

Next, a quality function, S, is set up as the summed square of the residuals

S(p) =
N∑

n=1

r2
n =

N∑
n=1

(Ψ̇S,n − ˆ̇ΨM,n)2 (2.21)

where index n represents the current sample and N the total amount of samples in the data set. The quality func-
tion depends on the parameter vector, p, that contains the parameters to optimize, i.e. p = [Iz, Cα,f , Cα,r]T . The
goal is now to minimize (2.21) with respect to this parameter vector. Figure 2.4 shows the resulting discrepancy
between measured and estimated yaw rate for a handling course maneuver with optimized parameters.
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Figure 2.4: Measured vs. estimated yaw rate plotted together with the discrepancy for a handling course maneu-
ver on asphalt. The estimate is given by the linear bicycle model with optimized parameters.

An important factor that highly influences the estimation of the cornering stiffnesses is the current surface
adhesion. Figure 2.5 shows the typical relationship between slip angle and lateral force for a rear tyre. As
previously mentioned, the cornering stiffness is the slope of this curve at α = 0 and it can be seen that the slope
varies between different surfaces. This surface dependency is however not addressed in this thesis, instead the
current coefficient of friction is assumed to be known at all times. This requires estimation of the cornering
stiffnesses on various surfaces since this parameter is surface dependent. For more information about friction
estimation see [1] which is a master thesis that was performed in parallel to this thesis. Also noticeable in
Figure 2.5 is that the linear relationship between lateral force and slip angle that the bicycle model uses is only
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valid for slip angles up to around 4-6 degrees, or to the left of the dashed line in Figure 2.5. For larger slip angles
the linear relationship will no longer provide a good approximation.

Figure 2.5: Typical nonlinear characteristic for the lateral wheel force. Here plotted against the slip angle for a
rear tyre. The linear approximation area can be seen to the left of the dashed line.

2.1.3 Validity of the bicycle model
The linear bicycle model provides a good estimate of both the yaw rate and the lateral acceleration signals during
steady driving maneuvers. I.e. when driving on dry and non-slippery surfaces and for moderate lateral forces.
However for large slip angles when the slip angles become so large that the vehicle leaves the linear area seen in
Figure 2.5 the estimates will start to deviate from the measurements. The driving maneuver seen in Figure 2.6
comes from taking sharp turns when driving straight forward at a constant speed causing high lateral acceleration
peaks. This maneuver exemplifies the problems originating from large slip angles and it can be seen that the
model overestimates both the yaw rate and the lateral acceleration for this maneuver. Furthermore the bicycle
model lumps the two tyres on each axis together and is therefore unable to account for the effects of lateral load
transfer which also will effect the model accuracy especially in sharp cornering maneuvers. In order to overcome
these limitations and provide better estimates for these driving situation there is need for a more elaborate model.
These are the reasons for the construction of the nonlinear two-track model that follows in the next Section.
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Figure 2.6: Bicycle model estimates for a maneuver that provokes high lateral acceleration.
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2.2 Nonlinear two-track model
To include the effects of load transfer the bicycle model has been extended into a two-track model. The two-track
model also incorporates a more sophisticated tyre model in order to accurately represent the tyre forces also in
the nonlinear region. This section regards the derivation of this nonlinear two-track model.

Figure 2.7: Nonlinear two-track model.

In Figure 2.7 the ingoing parameters and variables can be seen. Sr and Sf represents the rear and front track
widths respectively while the rest of the parameters are the same as for the linear model seen in Figure 2.1. Just
as for the linear model the longitudinal forces are neglected and Newton’s second law is applied on the vehicle
seen in Figure 2.7. The resulting equations of motion become

may = Fy,rl + Fy,rr + (Fy,fl + Fy,fr) cos δF (2.22)

IzΨ̈ = −lr(Fy,rl + Fy,rr) + lf (Fy,fl + Fy,fr) cos δF − Sf

2
((Fy,fr − Fy,fl) sin δF . (2.23)

The expression for the lateral acceleration is, just as for the linear model, ay = v̇y + vxΨ̇. vy can be rewritten
as vy = vx tan β (see Figure 2.7) and thus v̇y = v̇x tan β + vx

β̇
cos2 β . By defining the road wheel angle, δF , as

zero when facing straight forward and as increasing when the tyres are turned counter-clockwise, the resulting
equations of motion for the vehicle lateral dynamics become

β̇ = (
Fy,rl + Fy,rr + (Fy,fl + Fy,fr) cos δF

mvx
− Ψ̇− v̇x tan β

vx
) cos2 β (2.24)

Ψ̈ =
−lr(Fy,rl + Fy,rr) + lf (Fy,fr + Fy,fl) cos δF − Sf

2 (Fy,fr − Fy,fl) sin δF

Iz
. (2.25)

In order to keep the complexity of the model down, the linear relationship between slip angle and lateral force, i.e.
Fy,ij = Cαijαi, is kept. However in order to account for load transfer effects and nonlinear tyre characteristics
the cornering stiffness is now allowed to be time-varying and is also individually adapted for each tyre. The
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adaptation procedure is further explained in section 2.2.1. Inserting the expression for lateral forces along with
the expressions for the side slip angles (2.9)-(2.10) yields the following equations

β̇ = cos2 β
{ 1

mvx
(Cα,rl + Cα,rr)(−β +

lrΨ̇
vx

) + (Cα,fl + Cα,fr)(δF − β − lf Ψ̇
vx

) cos δF−

Ψ̇− v̇x tan β

vx
)
} (2.26)

Ψ̈ =
1
Iz

{
− lr(Cα,rl + Cα,rr)(−β +

lrΨ̇
vx

) + lf (Cα,fl + Cα,fr)(δF − β − lf Ψ̇
vx

) cos δF−

Sf

2
(Cα,fr − Cα,fl)(δF − β − lf Ψ̇

vx
) sin δF

}
.

(2.27)

Finally, rearranging the equations with respect to β and Ψ̇ yields the final nonlinear equations,

β̇ = cos2 β
{

β(
−(Cα,rl + Cα,rr)− (Cα,fl + Cα,fr) cos δF

mvx
)− v̇x tanβ

vx
+

Ψ̇(
lr(Cα,rl + Cα,rr)− lf (Cα,fl + Cα,fr) cos δF

mv2
x

− 1)+

δF (
Cα,fl + Cα,fr

mvx
cos δF )

}
(2.28)

Ψ̈ =
1
Iz

{
β(lr(Cα,rl + Cα,rr)− lf (Cα,fl + Cα,fr) cos δF +

Sf

2
(Cα,fr − Cα,fl) sin δF )+

Ψ̇(− l2r
vx

(Cα,rl + Cα,rr)−
l2f
vx

(Cα,fl + Cα,fr) cos δF +
Sf lf
2vx

(Cα,fr − Cα,fl) sin δF )+

δF (lf (Cα,fl + Cα,fr) cos δF − Sf

2
(Cα,fr − Cα,fl) sin δF )

}
.

(2.29)

The measurement equation can be derived by utilizing the relationship ay = v(β̇ + Ψ̇) = vx

cos β (β̇ + Ψ̇) where β̇
is given by (2.28).

ay =
vx

cos β
(β̇ + Ψ̇) = cos β

{
β(
−(Cα,rl + Cα,rr)− (Cα,fl + Cα,fr) cos δF

m
)− v̇x tan β+

Ψ̇(
lr(Cα,rl + Cα,rr)− lf (Cα,fl + Cα,fr) cos δF

mvx
− vx)+

δF (
Cα,fl + Cα,fr

m
cos δF )

}
+

vxΨ̇
cos β

.

(2.30)

The final state space equations for the nonlinear two-track model with x = [β, Ψ̇]T , y = [ay, Ψ̇]T and the vector
functions, f(x, u) and h(x, u), are described by (2.28)-(2.29) and (2.30) respectively as

ẋ = f(x, u) (2.31)
y = h(x, u). (2.32)

For the online implementation the nonlinear model has been discretized using zero-order hold on the inputs
and a sample time of 10 ms. The resulting discrete model becomes

xk+1 = f(xk, uk) (2.33)
yk = h(xk, uk). (2.34)
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2.2.1 Model adaptation
The bicycle model derived in section 2.1 utilized a linear tyre model according to (2.1)-(2.2) but as mentioned in
section 2.1.2 this approximation is only valid for small slip angles. Furthermore the effects of load transfer was
not taken into account. In order to improve the accuracy of the two-track model even further these shortcomings
need to be addressed which is done in this section by incorporating these effects into the cornering stiffnesses
and thus making them time-varying variables. A block overview of the adaptation procedure can be seen in
Figure 2.8. The sensor data input are the vehicle velocity, vx, the road wheel angle, δF , and either the yaw rate,
Ψ̇, or the lateral acceleration, ay . The yaw rate signal is used when estimating the lateral acceleration and vice
versa. In the figure it can be seen how the vehicle side slip angle, β, that is available as a state variable from the
last time step, is fed back into a block that calculates the slip angles, α for each individual tyre. These slip angles
are then, together with the vertical forces, Fz , for each tyre, fed into a block that calculates the lateral forces, Fy ,
acting on each tyre. The block that calculates the vertical forces incorporates the effects of load transfer while
the block that calculates the lateral forces incorporates the nonlinear tyre behavior. Instead of directly inserting
the expressions for the lateral forces into the final nonlinear state space model (2.28)-(2.30), the expressions for
the lateral forces have been divided by the slip angles to calculate new adapted cornering stiffnesses for each
time instance, i.e. Cα,ij = Fy,ij

αi
, where index ij represents each of the individual tyres, fl=front left and so on.

This has been done mainly in order to avoid complex mathematical expressions that would otherwise be time
consuming to implement in a Simulink environment. The adaptation procedure as a whole is similar to the one
used in [4].
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Figure 2.8: Block overview of the cornering stiffness adaptation procedure.

Vertical forces

Load transfer effects arise from cornering and vehicle roll, i.e. lateral load transfer, or similarly, braking or
accelerating and vehicle pitch, i.e. longitudinal load transfer. In order to account for these effects the vertical
forces for each individual wheel has to be incorporated into the model. However, as mentioned earlier the pitch
motion has not been modeled in this thesis and furthermore the effects of camber angle has been neglected.
In Figure 2.9, the vertical forces, Fz , acting on each side of the vehicle along with the average track width, Sav ,
the CoG height, hcog , and the forces acting at the vehicle CoG can be seen. These forces are the centripetal force,
Fcp = may , and the gravitational force, Fg = mg. By calculating the torque balances around the contact points
between tyre and road, P1 and P2, the resulting vertical loads can be determined as

P1 : −mayhcog + mg
Sav

2
− Fz,rSav = 0 (2.35)

P2 : −mayhcog −mg
Sav

2
+ Fz,lSav = 0. (2.36)
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Figure 2.9: Forces acting on a vehicle seen from behind resulting in lateral load transfer. The vehicle is here
driving through a right curve resulting in a lateral acceleration to the left.

Solving for the vertical forces yields the expressions used in this thesis

Fz,l = m(
g

2
+

aym

Sav
) (2.37)

Fz,r = m(
g

2
− aym

Sav
). (2.38)

Here the lateral acceleration is used as an input and in order to create an estimate that is independent of the sensor
signal the estimate is used here rather than the actual sensor signal.

Lateral forces

The lateral forces are now calculated by using the vertical forces along with the slip angles as input. The de-
pendency of the vertical forces makes it possible to account for the effects of load transfer. By realizing that the
relationship between lateral force and slip angle is not linear except for in a narrow region for small slip angles,
see Figure 2.5, a more suitable nonlinear function should improve the model performance for larger slip angles.
But first the effects of load transfer has to be incorporated and to do this each tyre has to be modeled separately.
By representing the cornering stiffness on each tyre by a second (or higher) order polynomial the lateral force
developed by each tyre is given by [2]

Fy,ij = Cαijαi = (aijFz,ij − bijF
2
z,ij)αi = (aij − bijFz,ij)Fz,ijαi (2.39)

where aij and bij represent the coefficients in the cornering stiffness polynomial for each tyre while Fz,ij rep-
resent the vertical load on each tyre. In addition to this modification the nonlinear relationship between lateral
force and slip angle has to be addressed. In this thesis this has been done by adapting an arctan-function to the
curve seen in Figure 2.5. Other works have investigated several other elementary functions but concluded that
the arctan-function provides the best fit for the lateral force curve [4]. The final expression for the lateral forces
thus become

Fy,ij = (aij − bijFz,ij)Fz,ij arctan (cijαi) (2.40)

where αij represent the slip angles on each tyre and cij is another coefficient. The three parameters, aij , bij and
cij need to be estimated for each individual tyre and the estimation procedure follows in the next section.
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2.3 Estimation of two-track model parameters

When extending the model several new parameters are introduced. Vehicle specific parameters such as track
width can be obtained by simple measurements. Other parameters such as those introduced to accurately model
the lateral forces have to be estimated. All of the ingoing parameters in the nonlinear two-track model can be
seen in Table 2.2.

Two-track model parameters
Parameter Notation Unit Comment
Distance between rear axis and CoG lr m measured
Distance between front axis and CoG lf m measured
Average track width Sav m measured
Vehicle mass m kg measured
Height of CoG hcog m approximated
Yaw moment of inertia Iz kgm2 estimated
Front cornering stiffness Cα,f N/rad adapted
Rear cornering stiffness Cα,r N/rad adapted
Lateral force coefficient aij - estimated
Lateral force coefficient bij - estimated
Lateral force coefficient cij - estimated

Table 2.2: Two-track model parameters.

The CoG-height has been approximated as 40% of the vehicles roof height since no data or measuring method
has been available for this. Remaining to be estimated are the three parameters for each wheel, aij , bij and cij

from (2.40) and the yaw moment of inertia, Iz . The yaw moment of inertia is estimated in the same way as for the
linear model but first the parameters aij , bij and cij are estimated and since 2.40 is nonlinear in the parameters,
a nonlinear estimation method is required. The Matlab Optimization toolbox provides a nonlinear least squares
solver that has been used in the estimation procedure. The Matlab code realizes the optimization algorithm and
allows it to work in conjunction with the Simulink interface. I.e. the optimization algorithm minimizes the
output from the Simulink model with respect to the chosen control parameters. The control parameters as well
as the output are chosen by the user. Here the output is represented by the differences between the modeled and
the measured lateral forces while the control parameters to be optimized are aij , bij and cij . A residual is thus
created as the difference between the measured lateral force and the estimated one as

rn = Fy,n − F̂y,n (2.41)

where index n represents the current sample. Then a quality function is created as the summed square of residuals

S =
N∑

n=1

r2
n =

N∑

i=1

(Fy,n − F̂y,n)2 (2.42)

where N is the total amount of samples in the data set. Inserting (2.40) in (2.42) yields

Sij =
N∑

n=1

(Fy,n − (aij − bijFz,n)Fz,n arctan (cijαn))2 (2.43)

The optimization algorithm now minimizes (2.43) with respect to the parameters aij , bij and cij . The Levenberg-
Marquardt method of optimization has been used in order to achieve guaranteed convergence in the long run. For
a more detailed description of the Levenberg-Marquardt method the Matlab help section can be consulted. The
measured forces have been obtained from a BMW-545i equipped with sensors measuring the tyre forces in the x-
y- and z-directions as well as sensors measuring the vehicles lateral velocity. The measured lateral and vertical
forces along with the slip angles calculated by means of (2.9) - (2.10) have been utilized in order to find the best
parameter set that minimizes (2.42).
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2.3.1 Validity of the two-track model

Figure 2.10 shows the measured versus the resulting modeled lateral force with optimized parameters for the
front left tyre during a handling course maneuver. The resulting parameter values for each tyre can be seen in
Appendix A.
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Figure 2.10: Measured vs. estimated lateral force for the front left tyre plotted together with the discrepancy for
a handling course maneuver on asphalt. The estimate is given by the nonlinear two-track model with optimized
parameters.

The resulting cornering stiffnesses for a circular drive at constant velocity can be seen in Figure 2.11. In the
figure the cornering stiffnesses on the inner (in this case left) wheel pair are much smaller than those for the outer
wheel pair. This is since the cornering stiffness can be interpreted as a measure of how well the tyre transmits
forces in the lateral direction. Due to roll of the vehicle this ability will be larger for the outer wheels.
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16 Chapter 2. Vehicle modeling

Further validation of the nonlinear two-track model can be found by investigating the driving maneuver from
Figure 2.6. This high lateral acceleration maneuver proved to be difficult for the bicycle model. However by
studying Figure 2.12 it is clear that the nonlinear model provides a much better estimate.
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Figure 2.12: Nonlinear model estimates for a high lateral acceleration maneuver.



Chapter 3

Observer theory

For both the linear and the nonlinear vehicle models derived in Chapter 2, the Kalman filtering technique has
been utilized when generating residuals for the sensor signals. The following chapter gives a general introduction
to the underlying theory behind the Kalman filter and the Extended Kalman Filter as well as a brief overview
of using observers in the context of residual generation. For a more thorough explanation of the Kalman filters
than what is given here, see for instance [3] or [8]. Furthermore this chapter also deals with the derivation of the
covariance matrices as well as the important issues of observability and stability.

3.1 Linear time-varying Kalman filter

The underlying idea is to use the Kalman filter as a residual generator for the linear model. This is done by feeding
the input signals and the measured signals to the Kalman filter which will, under certain model assumptions,
transform these into a sequence of residuals that resemble white noise. The model is thus run in parallel with the
process and the residuals are calculated as the difference. Since the state matrices, A-D, include parameters that
vary in time, such as the vehicle longitudinal velocity and acceleration they must be considered as time-varying
and we thus need to implement the time-varying version of the Kalman filter. The process to be estimated can
then be specified on the following general, time-varying, state space form

xk+1 = Akxk + Bkuk + wk wk ∼ N(0, Q)
yk = Ckxk + Dkuk + vk vk ∼ N(0, R)

where yk is a vector containing the measured signals, Ak −Dk are known (time-varying) matrices and xk is the
state vector. The inputs are the observable uk, the non-observable process noise, wk, and the measurement noise,
vk. The intensities of the noises are described by the covariance matrices, Q and R. The Kalman filter is then
given by

x̂k+1 = Akx̂k + Bkuk + Kkrk (3.1)
rk = yk − ŷk = yk − (Ckx̂−k + Dkuk). (3.2)

Here rk represents the vector of residuals and is created as the difference between the measured signal and the
modeled one. The Kalman gain, Kk, is computed by the Kalman filter equations. The Kalman filter can be seen
as a process estimator that uses feedback control, i.e. the filter estimates the states at a certain time and then
receives feedback in the form of noisy measurements. The filter equations are therefore normally divided into
time and measurement updates where the time update projects the current state estimate ahead in time while the
measurement update adjust the projected estimate by an actual measurement at that time.

17



18 Chapter 3. Observer theory

Discrete Kalman Filter

Time update equations: x̂−k+1 = Ax̂k + Buk

P−k+1 = AkPkAT
k + Q

Measurement update equations: Kk = P−k CT
k (CkP−k CT

k + R)−1

x̂k = x̂−k + Kk(yk − (Ckx̂−k + Dkuk))
Pk = (I −KkCk)P−k

In the above equations, Pk represents the error covariance at step k and the superscript minus (as in for example
x̂−k ) represent the a priori estimate, i.e. the estimate at step k given knowledge of the process before step k.
When the superscript minus is left out the estimate is called a posteriori and also includes the knowledge of
the measurement at that time. To sum up, the Kalman filter first projects the state estimate and the covariance
estimate forward one step in time during the time update. Then the Kalman gain is calculated, the process is
measured and an a posteriori state estimate is obtained. Finally the a posteriori error covariance matrix, Pk, is
calculated.

3.2 Extended Kalman filter

Since the two-track model derived in section 2.2 is nonlinear, the Kalman filter theory from the last section can
not be applied. Instead an extension of the ordinary Kalman filter that covers nonlinear problems as well has
been used. The idea behind the EKF theory consist in linearizing the model around the previous state estimate in
every time step. The EKF is based on (2.28)-(2.30). The observed nonlinear system can be described by

xk+1 = f(xk, uk) + wk wk ∼ N(0, Q) (3.3)
yk = h(xk, uk) + vk vk ∼ N(0, R) (3.4)

where f(xk, uk) represents the state equation and h(xk, uk) the measurement equation. As earlier, wk and vk

represent the process noise and measurement noise respectively. The Extended Kalman filter is now given by

x̂k+1 = f(x̂k, uk) + Kkrk (3.5)
rk = yk − ŷk = yk − h(x̂−k , uk). (3.6)

The EKF time and measurement update equations are now constructed in the same manner as for the linear
Kalman filter.

Extended Kalman Filter

Time update equations: x̂−k+1 = f(x̂k, uk)
P−k+1 = FkPkFT

k + Qk

Measurement update equations: Kk = P−k HT
k (HkP−k HT

k + Rk)−1

x̂k = x̂−k + Kk(yk − h(x̂−k , uk))
Pk = (I −KkHk)P−k

Fk and Hk represent the linearized versions of the matrices Ak and Ck. The best linear approximation to a
difference function near a given point is given by the Jacobian matrix. The Jacobian matrix consists of a certain
(vector-valued) function’s all first order partial derivatives. The Jacobian matrices corresponding to matrices
Ak −Dk are defined as
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Fi,j =
∂fi

∂xj
(x̂k−1, uk−1) (3.7)

Bi,j =
∂fi

∂uj
(x̂k−1, uk−1) (3.8)

Hi,j =
∂hi

∂xj
(x̂k−1, uk−1) (3.9)

Di,j =
∂hi

∂uj
(x̂k−1, uk−1) (3.10)

The Jacobian matrices for the nonlinear two-track model with their ingoing partial derivatives can be found in
Appendix B.

3.3 Determining Covariance matrices
In order to reduce the complexity of the problem, both the measurement covariance matrix and the process
covariance matrix are assumed diagonal. That means that both the measurement noise and the process noise are
assumed to be uncorrelated.

The measurement covariance matrix, R, is used to define the error on the sensor measurement. The sensor
noise levels are known from the sensor manufacturers data sheets and the measurement covariance matrix is
therefore comprised of the square of the corresponding sensor noise levels. The measurement noise does however
also depend on surface since non-smooth surfaces add to the sensor vibrations. Especially the lateral acceleration
sensor shows large measurement noise when driving on low-µ surfaces. An approximation can be achieved by
high pass filtering the the lateral acceleration signal and assuming that the remaining signal is comprised of
sensor noise. Figure 3.1 shows a histogram of the high pass filtered lateral acceleration signal for a handling
course drive on ice. It can be seen that the distribution seems to approximate a normal distribution, something
that further motivates the use of a Kalman filter.
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Figure 3.1: The distribution of the measurement noise on the lateral acceleration sensor.

The process noise is mainly caused by model inaccuracies and uncertainties in parameter estimates. An
estimate for the process noise is achieved in a similar way as for the measurement noise. By assuming that the
process noise is of low frequency character it can introduced as
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w = f(x̂, u)− ˙̄x (3.11)

where ˙̄x is the low pass filtered and differentiated measured state and f(x̂, u) is the differentiated estimated state.
The calculations of R and Q can now be performed in Matlab.



Chapter 4

Kinematic relations

Apart from the residuals generated from the two Kalman filters a number of residuals have also been created
based on kinematic relations. This chapter describes the origin of these residuals and also addresses the issues
accompanying each relation.

Models 1-2

One way to reconstruct the yaw rate sensor is by using the wheel speed signals. This approach assumes rolling
tyres and neglects the body roll angle. By studying the wheel speeds on each of the four wheels, the following
relations can be set up

vfl = (vx − Ψ̇
Sf

2
) cos δF + (vy + Ψ̇lf ) sin δF (4.1)

vfr = (vx + Ψ̇
Sf

2
) cos δF + (vy + Ψ̇lf ) sin δF (4.2)

vrl = vx − Ψ̇
Sr

2
(4.3)

vrr = vx + Ψ̇
Sr

2
(4.4)

where Sf and Sr represent the front and rear track width respectively. Calculating the difference in wheel speed
between the two tyres on each axis yields

vfr − vfl = Ψ̇Sf cos δF (4.5)

vrr − vrl = Ψ̇Sr (4.6)

or, for the yaw rate

Ψ̇M1 =
vfr − vfl

Sf cos δF
(4.7)

Ψ̇M2 =
vrr − vrl

Sr
. (4.8)

Since the tyres don’t always roll but sometimes spin or lock, the assumption of rolling tyres is not always fulfilled.
Especially, since the vehicle studied in this thesis is rear wheel driven, the residual that is based on the rear wheel
speed signals will suffer from this and therefore the residual corresponding to the front wheels should be the more
accurate of the two. This can be confirmed in Figure 4.1 where the yaw rate estimate from the first two kinematic
models are compared to the sensor signal. The model based on the rear wheel speed signals deviates strongly
from the measured value after around 52 seconds and between 90 and 94 seconds. In this case the inaccuracy
comes from the fact that the rear left tyre spins slightly during these time instants.

21
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Figure 4.1: Yaw rate estimates from kinematic models using the wheel speed sensors plotted together with the
measured yaw rate.

Model 3

Another estimate of the yaw rate can be derived from the vehicle longitudinal velocity, vx and the road wheel
angle, δF , by assuming zero side slip on all four tyres. The slip equations (2.7)-(2.8) with αf = αr = 0 thus
become

tan δF = β +
lf Ψ̇
vx

(4.9)

0 = −β +
lrΨ̇
vx

. (4.10)

Combining the two slip angle equations yields

δF = arctan (β +
lf Ψ̇
vx

) = arctan (
lrΨ̇
vx

+
lf Ψ̇
vx

) = arctan (
lΨ̇
vx

) (4.11)

or, for the yaw rate,

Ψ̇M3 = vx
tan δF

l
. (4.12)

By assuming zero slip angles this model will lose accuracy in situations where the slip angles are non-neglectable.
Figure 4.2 shows the yaw rate estimate against the measured yaw rate. As can be seen in the figure the amplitude
is slightly larger for the estimate and it also slightly delayed. The error in amplitude comes from inherited
nonlinearities in tyres, steering, power train and suspension and by slightly reducing the road wheel angle, this
can be compensated for. Experiments show that a reduction of around 5% yields the best agreement for this
model. Furthermore, it can also be seen that the measured yaw rate seems slightly delayed in comparison to
the estimate. This is a result of differences in the filtering techniques used for the various signals and has been
compensated for by delaying the measured signal with 0.1 seconds, a number also obtained through experiments.
The modified residual becomes

Ψ̇M3 = vx
tan 0.95δF,d

l
(4.13)

where δF,d is the delayed road wheel angle. The result can be seen in Figure 4.3.
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Figure 4.2: Yaw rate estimate from the kinematic relation using the pinion angle sensor plotted together with the
measured yaw rate.
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Figure 4.3: Yaw rate estimate from the modified kinematic relation using the pinion angle sensor plotted together
with the measured yaw rate.

Model 4

Finally a relationship between yaw rate and lateral acceleration is set up by assuming steady state driving condi-
tions and thus neglecting the vehicle side slip angle as

Ψ̇M4 =
ay

vx
. (4.14)

Figure 4.4 shows the yaw rate estimate based on the lateral acceleration sensor. One problem with this model is
that the estimate becomes very noisy since it is based on the noisy lateral acceleration sensor signal. This can be
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addressed by filtering the signal but this introduces an unwanted time delay.
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Figure 4.4: Yaw rate estimate from the kinematic relation using the lateral acceleration sensor plotted together
with the measured yaw rate.

The above estimates are all for the yaw rate sensor but they can easily be adjusted to monitor the lateral acceler-
ation by utilizing (4.14), i.e. ay = Ψ̇M3vx. All the kinematic relations are summarized in Table 4.1.

Kinematic relations
Yaw rate [rad/s] Lateral acceleration [m/s2]

Model 1 Ψ̇M1 = vfr−vfl

Sf cos δF
ay,M1 = vfr−vfl

Sf cos δF
vx

Model 2 Ψ̇M2 = vrr−vrl

Sr
ay,M2 = vrr−vrl

Sr
vx

Model 3 Ψ̇M3 = vx
tan 0.95δF,d

l ay,M3 = v2
x

tan 0.95δF,d

l

Model 4 Ψ̇M4 = ay

vx
ay,M4 = Ψ̇vx

Table 4.1: Summary of kinematic relations used.



Chapter 5

Change detection

Ideally the residuals created in the earlier chapters (or any residual for that matter) would equal zero in the fault
free case and only deviate from this value when a fault occurs. However in reality neither effects from dis-
turbances such as noise nor uncertainties in modeling or parameter estimates can be neglected. Even the most
rigorous attempts to model the dynamic behavior of complex processes such as ”car driving” will suffer from
modeling shortcomings in one way or another.

 

Kalman 
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Stopping 
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Sensor 
Data Alarm

  
rt

 
st

 

Figure 5.1: Change detection based on the kalman filter.

A block structure of a diagnosis system can be seen in Figure 5.1. The first block contains the observer that
based on various sensor signals provides the residual, rt, which here is the difference between the measured and
the modeled values. This residual is then fed into a distance measure block. This block transforms the residual
to a distance measure that measures the deviation from the no-change assumption. The distance measure, st, is
then fed into a stopping rule block and that applies a decision function on the distance measure yielding a test
statistic, gt, as gt = g(st). This test statistic is then compared to a threshold in order to determine whether or not
to raise an alarm.

5.1 Distance measures
As mentioned the distance measure transforms the residual to a distance measure that measures the deviation
from the no-change assumption. There are several different types of faults that might occur and depending on
which type we want to be able to detect there are different distance measures that can be applied. Sudden faults
are faults that abruptly occurs and then stays that way. Drifting faults is another type of fault that gradually
increases in time and there are also variance faults which effect the signal variance. A common approach when
looking for sudden or drifting faults is to use the residual itself as distance measure. Another common approach
is to use the squared residual which is advantageous especially when trying to detect variance faults.
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5.2 Stopping rules
The change detection problem can be reformulated by using two hypothesis as

H0 : E(st) = 0
H1 : E(st) > 0.

A stopping rule is basically a low pass filter that is applied onto the distance measure and the result is then
compared to a threshold in order to detect whether or not a fault has occurred. Examples of stopping rules
often used are the Cumulative Sum (CuSum) and Geometric Moving Average (GMA) tests. The CuSum test is
investigated further in section 5.2.4.

5.2.1 Direct thresholding
The simplest way to implement a stopping rule is to apply a direct threshold on the distance measure. By doing
this an alarm can be raised when the distance measure exceeds the threshold, J.

Alarm if st ≥ J (5.1)

The threshold is normally chosen in advance based on noise levels, disturbances and modeling uncertainties.
Since the aim of this thesis is to detect sensor faults the focus lies on fast detection while at the same time keeping
the false alarm rate small. To set accurate threshold levels in an application such as this vast amounts of test data
from different driving situations have to be gathered and investigated. Here the thresholds have been chosen so
that no false alarms were detected for any of the data sets available during the writing of this thesis. To increase
the robustness of the diagnosis system a common approach is to keep track of how many times the test statistic
exceeds the threshold during a fixed time interval and not alarm until the threshold has been exceeded for a
certain number of samples.

5.2.2 Adaptive thresholding
One of the problems with the direct thresholding approach is that model uncertainties force the threshold level
to be set high, which in turn increases the detection times. Instead of trying to optimize the vehicle model and
thus reduce model uncertainties overall, more advanced thresholding methods such as adaptive thresholding can
be used. The basic idea with adaptive thresholding is to utilize information about how model uncertainties and
disturbances vary in time and let the threshold vary accordingly. A general description of how the adaptive
threshold, Jadp is computed is given by [7] as

Jadp = c1W (u, y) + c2 (5.2)

where W(u,y) is a measure of the model uncertainty while c1 and c2 are constants. The difficulty with using an
adaptive threshold lies in finding a good model uncertainty measure.

This thesis concentrates on distinguishing between two different driving modes, steady driving and unsteady
driving. When the vehicle is in the unsteady driving mode model uncertainties are effecting the residuals and
the thresholds are therefore raised in order to avoid false alarms. Figure 5.2 shows how the adaptive thresholds
are calculated. The first block compares the velocity, vx, the wheel speeds, ωi for i ∈ {1..4} and the kinematic
relations derived in Chapter 4 (except those that include the observed signals) to a set of critical values and can
in that way determine what driving mode the vehicle is in. The set threshold block then determines the threshold
depending on the current driving mode.

The vehicle is considered being in the steady driving mode when |Ψ̇M1|&|Ψ̇M2|&|Ψ̇M3| < Ψ̇c, |vx| < vx,c

and |δ̇G| < δ̇G,c where index c represents critical levels. That is, when the yaw rate estimates from the kinematic
relations are close to the measured yaw rate and neither the vehicle velocity nor the pinion angle velocity are too
great, the vehicle is in steady driving. The critical levels have been determined by investigating the test drives
performed.
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Figure 5.2: Block overview of the generation of adaptive thresholds.

Similarly the vehicle is considered being in the unsteady driving mode when either of the critical levels are ex-
ceeded. That is when |Ψ̇M1| | |Ψ̇M2| | |Ψ̇M3| > Ψ̇c or |vx| > vx,c or |δ̇G| > δ̇G,c.

5.2.3 Residual Filtering
One approach for handling modeling errors is to high pass filter the test statistic and then apply a direct thresh-
olding technique in order to detect faults. The idea behind residual filtering is to choose a cutoff frequency such
that it distinguishes between the driver input via the steering wheel and the occurrence of sudden faults.

The input in vehicle dynamics applications is the driver command and it generally don’t exceed the frequency
range of 2 Hertz and by high pass filtering the residuals using a high pass filter with a crossover frequency of 2
Hertz model uncertainties can be easier distinguished. This will however result in that if the driver is steering with
a frequency larger than 2 Hertz, when trying to avoid a collision for example, this could be mistaken for a sensor
fault unless it is dealt with. In order to avoid this the algorithm observes the pinion angle and the pinion angle
derivative and disables the algorithm if these become too great. There are some drawbacks with this method as
well. The most obvious one being that after a sensor fault occurs the residuals will only shortly deviate from
their prescribed value and then return even if the fault remains. Furthermore this method is only applicable for
detecting sudden faults. Drifting faults that slowly increase in time will not be detected.

5.2.4 CuSum
For more information about the nature of log-likelihood ratios and a deeper understanding of the algorithm than
is presented here, see for example [3]. CuSum is short for Cumulative Sum and is a common technique used
in change detection applications. The algorithm calculates the cumulative sum of variances by using the sign
change that is inherited in the log-likelihood ratio

si = ln
pθ1(yi)
pθ2(yi)

. (5.3)

In (5.3) θ1 and θ2 represent two hypothesis with the probabilities pθ1(yi) and pθ2(yi) respectively. The probability
pθ1(yi) corresponds to the statistical distribution before a change and pθ1(yi) corresponds to that after a change.
When a change presents itself in the parameter θ, this reflects on the log-likelihood ratio (5.3) as a sign change.
This property is used by the CuSum algorithm in the detection. The log-likelihood ratios are summed up as

Sn =
n∑

i=0

si (5.4)

where si represents the distance measure. Given a gaussian signal with a change injected as in Figure 5.3(a), Sn

will show a negative drift before the change and positive after as seen in Figure 5.3(b). A test statistic, gt, is then
created by summing up the distance measure recursively as

gt = gt−1 + st (5.5)
g0 = 0. (5.6)
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Figure 5.3: A Gaussian sequence with a bias fault injected after 10 seconds.

The CuSum algorithm now compares the current value of the test statistic with the minimum value and if this
difference is larger than a preset threshold an alarm is signaled. For the sake of convenience, the test statistic
is normally reset to zero every time it is drifting negatively, otherwise it would drift negatively forever in the
fault-free case. Furthermore a drift parameter, ν, is introduced in order to avoid an unwanted positive drift that
might occur when Sk is positive for several time instants in a row. The drift parameter is a design parameter
chosen by the user. The final CuSum algorithm is represented by

gt = max(gt−1 + st − υ, 0) (5.7)
g0 = 0 (5.8)

If gt > h : gt = 0 and alarm. (5.9)

Figure 5.4 shows a typical behavior for the CuSum algorithm. In the figure it can be seen how the test statistic is
affected after the fault is injected. The test statistic is reset to zero every time it reaches above the threshold that
in this case is set to 5. It should also be noted that this is based on a perfectly Gaussian signal.

The design parameters available for the user are the threshold, h, and the drift parameter, ν. The input to
the CuSum algorithm controls the choice of these parameters and the larger the variance is the larger ν should
be chosen. A good rule of thumb when choosing design parameters is to start with a very large threshold h and
then choose the drift parameter ν so that gt=0 more than 50% of the time [3]. Now set the threshold so that the
required number of false alarms is obtained. The design parameters can then be tuned in order to achieve the
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Figure 5.4: The CuSum test statistic behavior for the signal seen in Figure 5.3(a). The threshold is set at 5 and
the drift parameter is set to 0.25.

desired performance. Also note that a change smaller than ν will not be detectable. The threshold depends on
both the input signal and the drift parameter. If ν is chosen big, the random positive will be small making it
possible to choose h small in order to achive faster fault detection. In this thesis the parameters have been chosen
based on these rules of thumb.



Chapter 6

Results

In this chapter some results achieved from using the various kinematic relations from Chapter 4 together with the
change detection methods described in Chapter 5 are presented. Apart from the results achieved from using the
kinematic relations all of the residuals shown in this chapter are based on the nonlinear two-track model derived
in section 2.2. The plotted residuals are created as the difference between measured and estimated signal, i.e.
r = ŷi − yi where index i represents the two different sensors that are to be plausibilisated and when the
occurrence of faults have been simulated it has been done in a Simulink environment. The figures presented in
this chapter are often displayed two and two and when this is the case the left figure represent the yaw rate while
the right one represents the lateral acceleration. Furthermore, all figures in this chapter are results of simulations
based on test data sequences acquired from various test drives made with the prototype vehicle at hand, namely
a BMW-545i.

6.1 Kinematic relations
The different kinematic relations derived in Chapter 4 are here investigated and compared against each other.
The second kinematic model (4.8) has been left out since it is similar to the first model (4.7) but not as accurate
since the vehicle investigated was rear wheel driven.

Figures 6.1(a)-6.1(b) represent the yaw rate and lateral acceleration estimates for the three kinematic models
when performing an ISO (International Organization for Standardization) lane change maneuver on asphalt.
Figures 6.1(c)-6.1(d) show the respective residuals and it can be noted that the residuals are quite small and it is
concluded that the kinematic relations work well in these, rather kind, circumstances. Especially the model based
on the steering wheel angle (4.13) provides a good estimate for both the yaw rate and the lateral acceleration for
this maneuver.

A handling course maneuver performed on ice has also been evaluated and the results are shown in Figure 6.2.
The first observation that can be made is how noisy all the signals are. This is because vibrations increase the
measurement noise on ice. In Figures 6.2(c)-6.2(d) the same estimates are plotted but here the sensor signals have
been low pass filtered using a butterworth filter of grade 2 and thus filtering away a lot of the noise. Figures 6.2(e)-
6.2(f) show the residuals and very large peaks can be seen in mainly the model 1 and model 4 residuals. These
come from large variations in the sensor signals coming from the wheel speed sensors and the vehicle velocity
respectively.
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Figure 6.1: Yaw rate and lateral acceleration estimates based on the kinematic models for an ISO lane change
maneuver performed on asphalt.
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Figure 6.2: Yaw rate and lateral acceleration estimates based on the kinematic models for a handling course
maneuver performed on ice.
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6.2 Residual filtering
In Figure 6.3(a) the measured and estimated yaw rate are plotted in the same figure. This simulation comes from
a test sequence from a handling course maneuver on ice performed in Arjeplog. Figure 6.3(b) is based on the
same maneuver but instead depicts the lateral acceleration estimate. In Figures 6.3(c)-6.3(d) the raw residuals
are shown and it can be seen that because of model uncertainties they tend to follow the driver input, through
steering wheel and gas and brake pedals, to some extent instead of being white noise which would be preferable.
In Figures 6.3(e)-6.3(f) these residuals have been high pass filtered according to the method explained in section
5.2.3 and the effects from model uncertainties are no longer detectable.

For the yaw rate, i.e. the leftmost plot, a bias fault of 5◦/s (≈ 0.087 rad/s) has been injected after 50 seconds
and the resulting filtered residual can be seen in Figure 6.4(a). Figure 6.4(c) also show the filtered yaw rate
residual but here the area around 50 seconds has been magnified and it can be seen that the injected fault gives
rise to a large peak in the residual almost instantly and it is thus concluded that this method can be used in order
to detect fault in the yaw rate sensor. The short detection time is one of the main advantages with this method. In
a similar way Figure 6.4(b) shows the high pass filtered lateral acceleration residual when a bias of 0.5 m/s2 has
been injected after 50 seconds. Also here the fault gives rise to a peak in the residual but it can also be seen that
the peak is not as easily distinguishable as was the case for the yaw rate and it is thus harder to detect. This is
mainly a result of the high sensor noise levels on the lateral acceleration sensor and this is especially true when
driving on ice.
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(f) High pass filtered lateral acceleration residual.

Figure 6.3: Yaw rate and lateral acceleration residuals for a handling course maneuver performed on ice.
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(c) Magnification of the faulted yaw rate residual from Figure 6.4(a).

Figure 6.4: Filtered yaw rate and lateral acceleration residuals for a handling course maneuver performed on ice.
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6.3 CuSum
The CuSum algorithm is based on the theory presented in section 5.2.4 and this section will present results from
using this method. Two different driving maneuvers are presented and the first is from a slalom maneuver with
high lateral acceleration peaks that reach around 9 m/s2 and where a bias fault has been injected. The second
measurement is from an ISO lane change maneuver where a drifting fault has been injected.

For the slalom maneuver, Figures 6.5(a)-6.5(b) show the measured against the estimate of the yaw rate and
lateral acceleration respectively while Figures 6.5(c)-6.5(d) show the corresponding, fault-free, residuals. This
is a very dynamic driving maneuver and it can be seen that the model is increasingly deteriorating as the lateral
acceleration grows. The residuals can be related to the driver input due to model uncertainties rather than having
the preferable characteristic Gaussian look. Figure 6.5(e) shows the CuSum test statistic for the yaw rate residual
when a bias fault of 5◦/s has been injected after 9 seconds. Similarly Figure 6.5(f) shows the test statistic for the
lateral acceleration when a fault of 0.5 m/s2 has been injected after 9 seconds. By studying both test statistics it
seems like the fault is not static but rather recurring with a certain frequency. This effect can however be related
to the residuals appearances and in this case is related to the turning frequency of the vehicle when performing
the slalom maneuver. This is an unwanted effect that arises from model uncertainties.

The following plots are results from performing an ISO lane change maneuver and the CuSum design param-
eters, h and ν have been chosen to 1 and 0.09 respectively. Figures 6.6(a)-6.6(b) show the measured against the
estimate of the yaw rate and lateral acceleration respectively and Figures 6.6(c)-6.6(d) show the corresponding,
fault-free, residuals. Here a drift fault has been injected after 9 seconds in both signals. For the yaw rate the drift
is 2.5 5◦/s and for the lateral acceleration 0.25 m/s2.
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(e) CuSum yaw rate test statistic with a 5◦/s bias fault injected after 9
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(f) CuSum lateral acceleration test statistic with a 0.5 m/s2 bias fault
injected after 9 seconds.

Figure 6.5: CuSum algorithm behavior for a slalom maneuver performed on asphalt.
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(e) CuSum yaw rate test statistic with a 2.5◦/s bias fault injected after 9
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(f) CuSum lateral acceleration test statistic with a 0.25 m/s2 drift fault
injected after 9 seconds.

Figure 6.6: CuSum algorithm behavior for a for an ISO lane change maneuver performed on asphalt.
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6.4 Adaptive thresholding
The idea behind adaptive thresholding was explained in section 5.2.2 and in this section the results are presented.
This thesis only briefly addresses the area of adaptive thresholding by distinguishing between two different
driving modes. In order to display the use of even this simple algorithm Figure 6.7 can be studied. In this figure
the yaw rate and the lateral acceleration estimates are shown Figures 6.7(a)-6.7(b) and the respective residuals
can be seen in Figures 6.7(c)-6.7(d). The two latter also show the adaptive thresholds. For the yaw rate the
lower threshold has been set to 0.12 rad/s and the higher to 0.3 rad/s. The upper level has been determined by
not allowing any false alarms for the maneuvers investigated while the lower level has been set by allowing a
false alarm rate of 10%. The same goes for the lateral acceleration where the thresholds have been set to 2 and
4 m/s2 respectively. Figures 6.7(e)-6.7(f) also show the thresholded residuals but here a bias fault of 5◦/s has
been injected into the yaw rate signal and a bias fault of 1 m/s2 has been injected into the lateral acceleratin
signal, both after 20 seconds. An important observation is that without the adaptive threshold these faults would
not have been detected since the residuals never exceed the upper threshold level.



40 Chapter 6. Results

0 20 40 60 80 100
time [s]

ya
w

 r
at

e 
[r

ad
/s

]
Measured

Estimated

(a) Measured vs. estimated yaw rate.

0 20 40 60 80 100
time [s]

a y [m
/s

2 ]

Measured

Estimated

(b) Measured vs. estimated lateral acceleration.

10 20 30 40 50 60 70 80 90
time [s]

re
si

du
al

 [r
ad

/s
]

(c) Yaw rate residual together with the adaptive threshold.

10 20 30 40 50 60 70 80 90
time [s]

re
si

du
al

 [m
/s

2 ]

(d) Lateral acceleration residual together with the adaptive threshold.

10 20 30 40 50 60 70 80 90
time [s]

re
si

du
al

 [r
ad

/s
]

(e) Yaw rate residual together with the adaptive threshold with a 5◦/s
bias fault injected after 20 seconds.
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(f) Lateral acceleration residual together with the adaptive threshold with
a 1 m/s2 bias fault injected after 20 seconds.

Figure 6.7: Adaptive thresholding for a handling course maneuver performed on asphalt.



Chapter 7

Conclusions and future work

7.1 Conclusions

The goal with this thesis has been to detect faults in the yaw rate sensor and in the lateral acceleration sensor.
First a vehicle model was created and the first approach involved investigating the well known bicycle model. To
overcome its main flaws an expansion into a nonlinear two-track model was developed. Important to consider is
that no matter how detailed the model is, there will always be model uncertainties arising from uncertainties in
parameter estimates, sensor noise and so on. A more accurate vehicle model is of course preferable but it might
not improve the performance of the diagnostic system very much. Based on the developed nonlinear model two
observers have been designed and used to form residuals as r = ŷi − yi in order to observe the yaw rate and
lateral acceleration signals. The use of observers renders noise reduction possible and it means that a certain
degree of design freedom is possible.

A number of different change detection methods has been investigated in order to detect sensor faults. A
fundamental limitation for fault detection schemes is the trade-off between fault detection time and false alarm
rate. In vehicular applications it is important to keep the false alarm rate low for safety reasons but at the same
time the detection time can not be too large. To find an acceptable balance is one of the biggest challenges in this
field. In this thesis a number of common change detection algorithms and methods such as cumulative sum and
residual filtering have been investigated. Different methods are investigated to cover the detection of all kind of
sensor faults that might occur.

One of the biggest challenges in this thesis lies in the modeling of the vehicle’s lateral dynamics. The model
derived here provides accurate estimates of both the yaw rate and lateral acceleration as long as the vehicle is
not in a ”‘critical”’ driving situation. This introduces different problems, namely to determine what a critical
driving situation is and how to determine whether or not the vehicle currently is in this situation or not. A brief
investigation into the possibilities of using adaptive thresholding to overcome these problems have been made in
order to further optimize the fault detection scheme.

From the results presented in Chapter 6 it can be concluded that the change detection methods investigated
can successfully detect faults in both sensors. Residual filtering has been successfully used in order to detect
sudden faults in both sensors. The method can however not detect drifting faults and is also very sensitive to
measurement noise. The CuSum algorithm provides a more complete method of fault detection that is able to
detect all the investigated types of faults. It is also shown how adaptive thresholding renders detection of faults,
that otherwise would not have been detectable, possible.

7.2 Future work
Further investigation is possible in several of the fields studied in this thesis. First, improving the vehicle model
is one possible way to go. The inclusion of longitudinal forces in the modeling is one way to improve the
model accuracy which in this case mainly improves the model behavior during heavy braking and acceleration.
It is however important to first evaluate whether or not the diagnosis system will benefit sufficiently from the
derivation of a more advanced model or if the time and effort should be spent elsewhere. Furthermore the model
can be extended by incorporating the current coefficient of friction to account for various surfaces on-line. A basic
framework for inclusion of friction into the model is provided in this thesis but there is room for improvement in

41



42 Chapter 7. Conclusions and future work

this area mainly by thorough investigation of the tyre forces behavior when driving on various surfaces. Another
extension that is possible to make to the model is to include the effects of banked roads. The influence from
banked roads has not been investigated in this thesis mainly due to lack of data for driving on banked roads.

Apart from improving the vehicle model, model uncertainties can be handled by more advanced diagnosis
schemes and on approach involves the use of adaptive thresholds. The main difficulties here lie within determin-
ing what driving situation the vehicle is currently in and the discrete method used in this thesis can be expanded
or replaced with more complex methods.



References

[1] A. Andersson. Friction estimation for afs vehicle control. Master’s thesis, Lunds Universitet, Lund, Sweden,
Juni 2006.

[2] T.D. Gillespie. Fundamentals of vehicle dynamics. Society of Automotive Engineers, Inc., 400 Common-
wealth Drive, Warrendale PA 15096-0001, 1993.

[3] F. Gustafsson. Adaptive Filtering and Change Detection. John Wiley and Sons Ltd, West Sussex, PO19
1UD, England, 2000.

[4] M. Hiemer. Model Based Detection and Reconstruction of Road Traffic Accidents. Phd thesis 261, Fakultät
für Elektrotechnic und Informationstechnic, Universität Karlsruhe, Universität Karlsruhe, November 2004.

[5] M. Mitschke. Dynamik der Kraftfahrzeuge, Band C. Springer Verlag, 1990.

[6] L. Nielsen and L. Eriksson. Course material Vehicular Systems. Bokakademin, Linköping, Linköping,
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Appendix A

Estimated parameters

Bicycle model parameters
Parameter Notation Value (asphalt) Value (ice) Unit Comment
Distance between rear axis and CoG lr 1.448 m measured
Distance between front axis and CoG lf 1.440 m measured
Vehicle mass m 1905 kg measured

Table A.1: Bicycle model parameters.
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Appendix B

Jacobian matrices

The Jacobian matrices consists of all first-order partial derivatives of the nonlinear measurement and differential
equations seen in Equation 2.31. The four following Jacobian matrices are therefore required:

F1,1 =
∂f1

∂β
= (B.1)

−2 sin β cosβ
{

β(
−(Cα,rl + Cα,rr)− (Cα,fl + Cα,fr) cos δF

mvx
)− v̇x tanβ

vx
+

Ψ̇(
lr(Cα,rl + Cα,rr)− lf (Cα,fl + Cα,fr) cos δF

mv2
x

− 1) +

δF (
Cα,fl + Cα,fr

mvx
cos δF )

}

+cos2 β(
−(Cαrl + Cαrr)− (Cαfl + Cαfr) cos δF

mvx
)− v̇x

vx

F1,2 =
∂f1

∂Ψ̇
= (B.2)

cos2 β(
lr(Cαrl + Cαrr)− lf (Cαfl + Cαfr) cos δF

mv2
x

− 1)

F2,1 =
∂f2

∂β
= (B.3)

1
Iz

(lr(Cαrl + Cαrr)− lf (Cαfl + Cαfr) cos δF +
Sf

2
(Cαfr − Cαfl) sin δF )

F2,2 =
∂f2

∂Ψ̇
= (B.4)

1
Iz

(
−l2r(Cαrl + Cαrr)− l2f (Cαfl + Cαfr) cos δF

vx
+

Sf lf
2vx

(Cαfr − Cαfl) sin δF )
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H1,1 =
∂h1

∂β
= (B.5)

− sin β
{

β(
−(Cα,rl + Cα,rr)− (Cα,fl + Cα,fr) cos δF

mvx
)− v̇x tanβ

vx
+

Ψ̇(
lr(Cα,rl + Cα,rr)− lf (Cα,fl + Cα,fr) cos δF

mv2
x

− 1) + δF (
Cα,fl + Cα,fr

mvx
cos δF )

}

+cos β(
−(Cαrl + Cαrr)− (Cαfl + Cαfr) cos δF

m
)− v̇x

cos β
+

vxΨ̇ tan β

cosβ

H1,2 =
∂h1

∂Ψ̇
= (B.6)

cosβ(
lr(Cαrl + Cαrr)− lf (Cαfl + Cαfr) cos δF

mvx
− vx) +

vx

cosβ

H2,1 =
∂h2

∂β
= 0 (B.7)

H2,2 =
∂h2

∂Ψ̇
= 1 (B.8)
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