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Abstract
Closed loop fuel injection has been in use for two decades butit’s not until the recent five years that
the wide band lambda sensor have been utilized. The goal is toexplain wide band and discrete lambda
sensors in a simple but powerful way. Both sensors are modeled by simple mathematics and accounts for
Oxygen, Hydrogen and Carbon monoxide influences. The focus is not just on the output from the sensors,
but also on the underlying function. This means that all explanations are thorough and methodical. The
function of a wide band lambda sensor is more complicated than a discrete type lambda sensor, therefore
it’s harder to get correct readings. The model of the wide band lambda sensor is used to evaluate different
problems in preparation for the development of an observer.Several potential problem sources are tested
and investigated; these include calibration error, pressure error, air leak error, gas sensitivity and fuel errors.
To evaluate the potential problems and their ability to explain differences between actual lambda and sensor
output, two sensors with differing outputs have been used. The final result is implemented in an ECU.
The models indicate that the difference between the two sensors is most likely explained by different sen-
sitivity for CO, O2 and H2. This can in turn have one or severalexplanations. It is suggested that different
ability to pump oxygen, different nernst cells or even different controllers can cause this. The reason is
not investigated further as this would require a very deep research on the two sensors. Because no usable
explanation is found an observer that estimates the offset at stoichiometric conditions, where lambda equals
one, is constructed. The observer uses the fact that the switch point of a discrete lambda sensor is insen-
sitive to disturbances. The offset calculation is performed in real time on an ECU. Tools for calibration of
the observer are also developed. With the observer the errorfor the two sensors is roughly halved over the
whole spectrum and at stoichiometric conditions, which is the normal operation for an engine, the error was
too small to measure.
Although the wide band lambda sensor is a very complex sensorit is shown that it can be understood with
simple mathematics and basic knowledge in chemistry. The developed model agrees well with the real
sensor for steady state conditions. For transient conditions, however, the model needs to be refined further.
The question why the two sensors differ is discussed but the true origin of the cause remains unsolved. The
conclusion is that the error can be drastically reduced withjust an offset. It is also shown that when building
a lambda sensing device the controller is of equal importance as the sensor element itself. This is due to
the sensitivity of surrounding factors that the controllermust be able to handle. These effects are specially
important for engines running at lambda not equal to 1, for example diesel engines.

Keywords: wide band, uego, ego, o2 sensor, oxygen sensor, lambda
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Abstract

Closed loop fuel injection has been in use for two decades butit’s not until the recent five years that the wide
band lambda sensor have been utilized. The goal is to explainwide band and discrete lambda sensors in a simple
but powerful way. Both sensors are modeled by simple mathematics and accounts for Oxygen, Hydrogen and
Carbon monoxide influences. The focus is not just on the output from the sensors, but also on the underlying
function. This means that all explanations are thorough andmethodical. The function of a wide band lambda
sensor is more complicated than a discrete type lambda sensor, therefore it’s harder to get correct readings. The
model of the wide band lambda sensor is used to evaluate different problems in preparation for the development
of an observer. Several potential problem sources are tested and investigated; these include calibration error,
pressure error, air leak error, gas sensitivity and fuel errors. To evaluate the potential problems and their ability to
explain differences between actual lambda and sensor output, two sensors with differing outputs have been used.
The final result is implemented in an ECU.

The models indicate that the difference between the two sensors is most likely explained by different sensi-
tivity for CO, O2 and H2. This can in turn have one or several explanations. It is suggested that different ability
to pump oxygen, different nernst cells or even different controllers can cause this. The reason is not investigated
further as this would require a very deep research on the two sensors. Because no usable explanation is found
an observer that estimates the offset at stoichiometric conditions, where lambda equals one, is constructed. The
observer uses the fact that the switch point of a discrete lambda sensor is insensitive to disturbances. The offset
calculation is performed in real time on an ECU. Tools for calibration of the observer are also developed. With
the observer the error for the two sensors is roughly halved over the whole spectrum and at stoichiometric con-
ditions, which is the normal operation for an engine, the error was too small to measure.

Although the wide band lambda sensor is a very complex sensorit is shown that it can be understood with
simple mathematics and basic knowledge in chemistry. The developed model agrees well with the real sensor for
steady state conditions. For transient conditions, however, the model needs to be refined further. The question
why the two sensors differ is discussed but the true origin ofthe cause remains unsolved. The conclusion is that
the error can be drastically reduced with just an offset. It is also shown that when building a lambda sensing de-
vice the controller is of equal importance as the sensor element itself. This is due to the sensitivity of surrounding
factors that the controller must be able to handle. These effects are specially important for engines running at
lambda not equal to 1, for example diesel engines.
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Notation

Symbols and acronyms used in the report.

Variables and parameters

[XX] Concentration of XX
α, β, γ, δ, ǫ Constants

A Area
c concentration fraction, Taylor coefficients
e electron charge
E Potential, Energy
F Faradays constant
I, i Current
θ Occupancies
ϑ fraction
k Constant
K Equilibrium constant
λ lambda value, mixture strength
L Adsorption capacity
µ Potential
m Mass, Mass transfer
M Mole mass

N,n Number of
ξ Progress, Parameterization
R Resistance, Gas constant
r rate
T Temperature
t Time in seconds
U Output
V Voltage
v Stoichiometric constant, Vacancies
y Constant

Modifiers

0 Standard conditions
′

Modified
x of x
˙ rate of
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Acronyms

A/F Air to Fuel
AC Alternating Current

CNG Compressed Natural Gas
ECU Engine Control Unit
EGO Exhaust Gas Oxygen
RPM Revolutions Per Minute

UEGO Universal Exhaust Gas Oxygen
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Chapter 1

Introduction

Already in 1306 King Edward I banned coal fires in London, the reason were complains from the upper-class
about smog. The law did never get any real impact and was soon removed[7] but today smog is once again
a big problem. Although nowadays it’s hardly coal fires that causes smog in London, the car is. When the
first petrol driven automobile was introduced in USA in the late 1880s there where already much talk about the
environmental influence. Ironically, considering the knowledge of today, the introduction of the automobile was
seen upon as a environmental improvement over horses. The reason was horse manure, in New York City alone
over 10,000 tons of manure had to be removed from the streets daily [17]. At that time no one could hardly have
predicted the automobile’s future, it’s success and the environmental disaster that was soon to follow. Only in
2005 63 million cars and light trucks were delivered around the world and the dramatic increase is expected to
continue for at least the next three decades. Nature is already suffering tremendously and in the end, as always,
human health will suffer. Not only is the car today recognized as the main source for pollution but also for noise
and high cost with todays constantly increasing gasoline prices. Since the 70s, legislation have demanded harder
and harder restrictions for pollutants produced by a car andalso noise and recycling of the car itself. This chapter
will give a short introduction to the work.

1.1 Purpose

The purpose of this thesis is to investigate and explore lambda sensors and find reasons why seemingly correct
sensors can have differing outputs. If an explanation is found, or an equally good idea to improve sensor readings,
an observer for lambda will be constructed.

1.2 Method and Outline

Several models are described and tested against a real sensor output. The result is evaluated to find a suitable
model, this can be found in chapter 4. These models are used toevaluate six kinds of errors in chapter 6. The
knowledge gained is used to construct an observer.

1.3 Emissions from a Gasoline engine

When burning hydrocarbons ideally you get water (H20) and carbon-dioxide(CO2). For example gasoline, which
often is simplified to be octane (C8H18), has the following ideal chemical reaction when burned:

(2)C8H18 + (25)O2 = (16)CO2 + (18)H2O + energy (1.1)

In reality this equation is never satisfied and anincomplete reactionwill occur. This is mainly due to two reasons:

• First of all the fuel is never entirely pure causing an imperfect combustion.

• Secondly, the combustion has a limited set of time in the combustion chamber (i.e cylinder) resulting in an
non-homogeneous mixture. This in turn results in some hydrocarbons never get in contact with air or get
enough heat to participate.

1



1.3. EMISSIONS FROM A GASOLINE ENGINE Introduction

The results from the incomplete reaction is carbon-oxide(CO), hydrogen(H2) and hydrocarbons (CxHy) com-
monly known asHC. When burning hydrocarbons in an engine air is used instead ofpure oxygen, i.e. large
amount of nitrogen is present. Although we never see that nitrogen oxidize in nature there is an equilibrium in-
volving oxygen, nitrogen and it’s oxides. In normal air-temperature the equilibrium is so far shifted towards pure
oxygen and nitrogen so we never observe any nitrogen-oxide.In an engine on the other hand the temperature
is far higher and various types of nitrogen-oxides is created. These gases is never allowed to reach complete
chemical equilibrium again resulting in emissions collected under the nameNOx. Actually the name is a bit
misleading becauseNxO is also included. These gases are however created in extremely low concentrations
suggestion the merge.

1.3.1 Lambda (λ)

To be able to freely discuss emissions lambda must first be defined. Without going into details a gasoline engine
needs air and it needs fuel to run. Ifair-to-fuel ratio(A/F ) is defined as:

(A/F ) =
ma

mf

(1.2)

Wherema andmf is the mass of air respective the fuel entering the engine. Lambda is then defined as:

λ =
(A/F )

(A/F )s

(1.3)

Where(A/F )s is the so calledstoichiometric air-to-fuel ratioand is the air-to-fuel ratio when a complete reaction
(theoretically) occurs. Whenλ > 1 the mixture is called lean and likewise whenλ < 1 the mixture is called rich.
Traditionallyφ has been used by some engineers, whereφ = 1

λ
.

1.3.2 Pollutants

Several of the gases produced by an engine is poisonous for humans. Figure 1.1 shows the resulting concentra-
tion, under equilibrium, for differentφ. The Figure shows the concentrations under three differenttemperatures,
it’s clear that lower temperature means higher variations of concentrations. Observe that the fractionNOx in-
creases rapidly with higher temperature.

Carbon monoxide (CO)

Carbon monoxide or just carbon oxide is a very poisonous gas for humans. The affinity between hemoglobin,
which is a substance in blood responsible for oxygen absorption, and carbon monoxide is greater than between
hemoglobin and oxygen [18]. This prevents hemoglobin to deliver oxygen to the body resulting in shortness of
breathe. In addition it’s an odorless and colorless gas making it almost impossible to discover without suitable
equipment. As seen i Figure 1.2 Carbon monoxide is produced under conditions when the oxygen level is low
and fuel fails to oxidize completely to carbon dioxide. Evenduring combustions when the oxygen concentration
is highCO is always generated to some extent. This is because of incomplete combustions.

Hydrocarbons (HC)

A hydrocarbon is any chemical compound that consists only ofthe element carbon (C) and hydrogen (H). The
simplest hydrocarbon is methane (CH4) and only contains single bonds. Other types of bonds are also present,
for example benzene (C6H6) which contains double bonds. Reduced hydrocarbons, like formaldehyde (HCHO)
is often counted into this group. When exposed to hydrocarbons a normal reaction is usually to cough and choke
but in extreme cases vomiting may occur. Hydrocarbons produces neurologic symptoms like drowsiness, poor
coordination or even coma [18]. As seen in Figure 1.3 hydrocarbons are produced mainly during rich air-to-fuel
mixtures (i.eλ < 1). In addition they are produced when the combustions is hindered by, for example, design
faults in the combustion chamber. The reason for the increase whenλ > 1.15 in the Figure is because the engine
starts to misfire because of the very lean condition.

2



Introduction 1.4. ENVIRONMENTAL LEGISLATION
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Figure 1.1: Species concentrations for varying mixture strengths. The three plots shows the results
for different temperatures. Observe that gas concentrations is for differentφ. (courtesy of
Lars Eriksson [13])

Hydrogen (H2)

Hydrogen is not a toxic gas but still very dangerous because it is very flammable. The gas is colorless, odorless
and tasteless which makes it dangerous in a closed environment. Like carbon monoxide hydrogen is produced
whenλ < 1.

Nitrogen Oxides (NOx)

When humans is exposed to nitrogen oxides it’s believed that it aggravate asthmatic conditions. Furthermore
NOx doesn’t dissolve very easy and it can therefore take time to notice warning signals of exposure. When
NOx is allowed to react with oxygen in the air it will produce ozone, which is an irritant. Ozone will eventually
form nitric acid when dissolved in water. When dissolved in atmospheric moisture the result can be acid rain
which damage both trees and entire forest ecosystems [18]. The concentration ofNOx is mainly dependent on
the gas temperature in the engine, the temperature depends on many things, among othersλ. In Figure 1.4 the
(partially indirect) dependency ofλ can be seen for the concentration ofNOx. The peak is at a slightly lean
mixture.

1.4 Environmental Legislation

Already in the 50s some American towns had smog problems caused by Automobiles, therefore the US has
traditionally been the leader when it comes to stringent limits for pollutants. This is specially true for the state of
California which is know to have very stringent limits. Nowadays also Europe has stringent legislations, called

3



1.5. PROGRESS Introduction

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

1

2

3

4

5

6

7

8

9

λ

C
O

 in
 v

ol
um

e 
%

 

 

Figure 1.2: CO emissions from a gasoline engine.CO is produced when the oxygen level is low but
never reaches a zero concentration even thoughλ > 1 because if incomplete combustion.
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Figure 1.3: HC emissions from a gasoline engine.HC is produced when the oxygen level is low
or when the combustions is hindered. In addition it can be produced whenthe engine is
misfiring, this happens in the Figure atλ > 1.15

EURO X, where X stands for the version. The latest version of today (January 4, 2007) is EURO 4. In Table 1.1
different version and the introduction year is seen. To compare different cars under an emission standard a strict
driving cycle is included into the standard. This scheme tells the tester exactly how to drive as well as ambient
conditions, of course this is an indispensability for a correct and fair comparison. Every EURO emission standard
has a slightly improved (i.e tougher) driving scheme and thelatest ones incorporate cold-start conditions at -7◦ C.
As seen in Table 1.2 the allowed emissions has very rapidly dropped, specially the latest one where it’s roughly
halved. The EURO standards is strictly speaking not just a standard for emissions but also includes demands for
On-board diagnostics and durability of exhaust gas after-treatment systems. In addition limits for evaporative
emissions, which is when gasoline evaporates directly fromthe tank, is included.

1.5 Progress

Today’s cars have come a long way compared to cars manufactured before strict legislations were accepted. In
these days computers are everywhere and a car is no exception, rather the opposite. According to TEEMA (
Taiwan Electrical And Electronic Manufacturers Association) [14] the cost for the electronics in a car is today 20
percent of the total production cost but will in the next 10 years grow up to 50 percent. This computer explosion
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Figure 1.4: NOx emissions from a gasoline engine. TheNOx is mainly dependent on temperature but
also mixture strength influences. This is partially indirect through temperature. Observe
that the peak is slightly displaced.

Emission standard Introduction
EURO I 1992
EURO II 1996
EURO III 2000
EURO IV 2005
EURO V Proposition to 2008

Table 1.1: Introduction years of Europeans emission standards [2]. The latest version today (EURO 4)
has forced the car industry to significantly lower pollutants. EURO 5 (proposed 2008 for
heavy duty vehicles) is believed to further increase the pressure on the industry.

has paved the way for more advanced control system for engines. Two of the major improvements for lowering
emission the last 20 years are fuel injection and Catalytic Converters.

1.5.1 Fuel Injection

Prior to the 80s, nearly all engines usedcarburetorsto mix air with fuel, simply speaking a mechanical device.
After the 80s all cars used fuel-injection, with few words this is a computer powered1 technique used to get
higher accuracy when measuring and mixing the gasoline/air-mixture.

1.5.2 Catalytic Converters

With the introduction of fuel injection new means to controlpollutants produced by an engine became avail-
able. However no matter how the engine is controlled (more gasoline or less gasoline to same amount of air)
you’ll always end up with some undesired pollutant. If the engine is running rich more carbon-monoxide and
hydrocarbons are discharged. On the other hand if the engineis running lean moreNOx discharged. What the
car industry realized what that a device that restores the equilibrium was needed, an afterburner. This is what’s
called a Catalytic converter or a catalyst. Because a catalytic converter should restore equilibrium it works best
at a very narrow band around the stoichiometric air-to-fuelratio and this is where the computer powered fuel
injection comes into place.

1.5.3 Lambda sensor

One of the most important sensor in today’s cars, and the maintopic for this thesis, is the lambda sensor (seen in
Figure 1.5). It’s job is to measure the amount of oxygen in theexhaust, the car’s ECU will then use this infor-

1Although in the beginning it existed fuel injection system powered by analog electronics and even mechanical solutions
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Emission standard HC +NOx g/km HC g/km NOx g/km CO g/km
EURO I 0.97 2.72
EURO II 0.50 2.2
EURO III 0.2 0.15 2.3
EURO IV 0.1 0.08 1.0

Table 1.2: Limits for different emission standards [3]. The latest standard roughly halved the allowed
emissions. The standard also includes on-board diagnostics, evaporative emissions and
durability of exhaust gas after-treatment system.

mation to estimate if the fuel/air-mixture was right. This way the ECU gets a feedback of injected fuel and can
avoid to only use pre-programmed values which doesn’t take aging, ambient conditions etc into consideration.
Without the lambda sensor, today’s strict pollution regulations would be impossible to meet.

Figure 1.5: The Figure shows one of the most important sensor in a modern car, thelambda sensor.
It was designed to sense the(A/F )-ratio so an effective feedback loop could be imple-
mented in todays fuel injections. (courtesy of David Long [12])

1.6 Engine setup

All the tests will be performed on one of the department’s engines, the L850. This motor is almost a standard
engine from Saab except for the continuously dual independent variable cam timings. It’s also connected to a PC
running RTAI. This computer can take over parts of the engine-controller’s work.

1.7 Reading Instructions

The thesis has a rather large prerequisites, this is for the convenience of readers with little or no knowledge
on engines or Chemistry/Thermodynamics and could easily beskipped. Every section ends with aconclusion,
this can easily be read alone if just interested in the results. Note that the last chapter summarize all important
conclusions and makes corollary conclusions.
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Chapter 2

Prerequisites

This chapter states some prerequisites needed to absorb therest of the thesis. Every section starts with a small
description of what it contains so the section safely can be skipped if the area already is grasped.

2.1 Engine

This section contains a small walk through of what kind of engines that exists today and what kind that will be
used in this thesis. A small description of how an engine works is also given.

There exist many different types of engines today but the twomost common in car industry is based on the
diesel concept respective the Otto concept. The one based onthe diesel concept often uses diesel as fuel and is
therefore often called just a diesel engine. The other one, based on the Otto concept, has traditionally been using
gasoline as fuel but nowadays it isn’t unusual to run it on some other fuel like for example ethanol. The Otto
concept was invented already in 1876 by the German scientistNikolaus Otto [19]. The engine dealt with through
out this thesis is a four-stroke reciprocating gasoline engine. This is the most common gasoline motor used in
todays car industry. Of course other types is also used but inreality this is so seldom that a description would
just confuse and is therefore not given.

2.1.1 Physical

An engine from a modern car is of course very complicated but the basic concepts can all be recognized from
the prototype built by Nikolaus Otto. In Figure 2.1 the outline of a four-stroke engine can be seen. The piston is
connected, via the rod, to the crankshaft. When the piston moves up and down the crankshaft begins to rotate.
The inlet- and exhaust- valves are also shown. These controls the flow of fresh mixture and exhaust gas through
the engine. The state when the piston is all the way down is called Bottom Dead Centerand likewise the state
when the piston is all the way up is calledTop Dead Center.

2.1.2 Operation

The reason the engine is called a four-stroke engine is that the states (in this context called strokes) which the
motor can be in is four. The strokes can be seen in Figure 2.2 and the flow are:

1. During theinduction stroke(Figure 2.2a) the inlet valve is open and the piston is movingdownwards. The
result is that the engine is filled with fresh mixture throughthe inlet valve.

2. Next up is thecompression stroke, which is seen in Figure 2.2b. The piston has turned direction and is now
moving upwards. Both the valves is closed and the newly inducted fresh mixture is compressed.

3. Thepower strokestarts with a spark from the spark plug (seen in Figure 2.2c) which ignites the mixture.
The piston is therefore forced downwards by the expanding gases. It’s not a regular explosion but rather a
controlled burning of the gases. This stroke is the only stroke that produces power, the other ones consume.

4. The last stroke, seen in Figure 2.2, is theexhaust stroke. The piston has once again turned direction and
is moving upwards and the exhaust valve has opened. The piston therefore forces the newly burned gases
out through the exhaust and a new induction stroke can start.
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Figure 2.1: An overview of a modern engine, all the basic concepts are recognizedfrom the prototype
built by Nikolaus Otto. The piston moves up and down making the crankshaft rotate. This
in turns makes (through the gearbox etc) the wheel turns.

Figure 2.2: The operation of a four-stroke engine. Each picture symbols a stroke.During the Induction
stroke fresh mixture is drawn in, which later is compressed during the compression stroke.
The power stroke ignites the compressed mixture and produces rotation energy. Finally
the burnt gases is exhaled during the exhaust stroke.

In nature nothing happens instantly and this of course also the case in an engine. The result is that the valves
can not open and close at there exact stroke. For example the exhaust valve opens some time before the piston
has reached BDC. Even the spark from the spark plug actually come sometime before the piston is in TDC.

2.1.3 Intake

An engine needs both air (oxygen) and fuel (gasoline) to function properly. A modern car has fuel injection,
see Section 1.5.1, which means that the fuel is injected withone or several injectors. An injector is an electrical
controllable valve which work under high pressure. The amount of fuel injected is controlled by the engines
ECU. The amount of air on the other hand is normally, either direct or indirect through the ECU, controlled by
the driver and the accelerator. In the end another kind of valve called a throttle is used to control the amount of
air actually inducted. The injector and throttle can be seenin Figure 2.3.

2.1.4 Turbo

A modern car often incorporates a turbo to boost efficiency. The turbo can be divided into two parts: The turbine
and the compressor. After the exhaust valve of the engine theturbine part of the turbo is located, this part starts

8



CHAPTER 2. PREREQUISITES 2.2. CHEMISTRY

Figure 2.3: The intake side of an modern engine. The fuel is injected through one or several fuel
injectors, which can be seen in the Figure. The amount of air entering the engine is
controlled through a valve called throttle, this is seen in the top left.

to spin from the movement of the exhaust gas. The turbine is inturn directly connected to the compressor part
which compresses air entering the engine. This way more air can enter the engine resulting in more power.

2.2 Chemistry

The text in this chapter is actually from upper secondary class (in Swedengymnasieskola) and is easily skipped
if already grasped.

2.2.1 Chemical equilibrium

Chemical equilibrium is the state when a reaction and it’s reverse reaction occurs at the same rate. That is, the
concentrations of the participating gases remains constant over time. It should be noted that although that the
concentrations remains, the reaction (and it’s counter reaction) continues. The concentrations of the participants
in a reaction under chemical equilibrium is related to each other by

K =
[Cn][Dp]

[A]k[B]m
(2.1)

where K is the equilibrium constant. An example is the water-gas equilibrium which is the collaboration between
carbon oxide, water, hydrogen and carbon dioxide, these reactions is described byK = [CO][H2O]

[CO]k[H2]m
where K

is the Water gas equilibrium constant. The reaction rate is highly dependent on temperature, if the temperature
drops to low the reaction is sad to be frozen and almost no reactions occurs. For the water gas equilibrium this
happens at approximately 950K. However in presence of a catalytic substance the reactions can occur at much
lower temperatures.

2.3 Thermodynamics

When steam powered engines conquered the world the need for a physics to optimize these engines developed.
The result was thermodynamics, a branch of physics that deals with temperature, pressure and volume. A system
in thermodynamic is viewed at at macroscopic level but the prediction of the system is made through statistical
views at particle level. This chapter states the important thermodynamics [6] for this thesis.

1. Boltzmann factor - The relative probability for a system to be in thermodynamic equilibrium is called the
Boltzmann factor. At temperatureT it’s expressed as:

e
−

E
KbT (2.2)
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WhereKb is the Boltzmann constant andE is the systems energy.

2. Chemical potential µc - Chemical potential is, the name in spite, a thermodynamic term. If you hold
entropy and volume constant the chemical potential of a system is how much the energy will change if new
particles is added.

3. Entropy - A systems temperature, pressure and density can differ over space but over time they all tend
to equalize. For example open and turn off the fridge and soonthe temperature has equalized between the
room and the fridge. Entropy is a measure of how ”equalized” asystem is.

4. Mechanical equilibrium - When the sum of the forces and moments on each particle of a system is zero
the system is said to be in mechanical equilibrium.

5. Thermal equilibrium - For a system to be in thermal equilibrium it’s temperature should be constant in
time and space.

6. Thermodynamic equilibrium - A system is said to be in thermodynamic equilibrium if the system is in
chemical-, mechanical- and thermal-equilibrium. If a system is present in this state all visible observables
is unchanged over time and space.

2.4 Electro chemistry

This chapter describes the electro chemistry needed for this thesis.

1. Galvanic cell - This cell, named after a Italian physicist who lived in the 18th century, consisted of two
metal plates with a electrolyte connection between them.
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Chapter 3

Lambda sensors

So far only the basics about the lambda sensors has been covered (see 1.5.3), this chapter goes into detail of the
design and structure of different kinds of lambda sensors.

Common for all lambda sensors is that they try, in some way or another, measure the amount of oxygen in the
exhaust. This way the engine controller can estimate the actual A/F-ratio and thereby reduce emissions. Often
two sensors are used on a modern engine, the main sensor is located in the exhaust manifold (after the turbo if
one exists) and before the catalytic converter. The second one is located after the converter. The placement is
seen in Figure 3.1. With a second sensor downstream of the catalytic converter, the controller can diagnose the
converter and even give an estimate of the oxygen level. There are basically two types of lambda sensors, the
switch type (also called narrow band, ego or discrete type) and the wide band type (also called uego).

Figure 3.1: On a modern car two lambda sensors is often used, one before the converter and one
after. The sensor located before the converter is the main one, responsible for the mixture
strength measuring. The second one is used for diagnose.

3.1 Switch type

The switch type lambda sensor has been the most common over the years since fuel injection was first utilized.
Recently it has been replaced as the main sensor but is still the most common choice as second sensor (after the
catalyst). This sensor has an highly non-linear output withvery rapid change at the stoichiometric A/F ratio seen
in Figure 3.2. Because of the non-linear output this sensor is not reliable to measure the actual A/F-ratio. Instead
it’s used as a boolean value or an on/off-switch. Everythingbelowλ = 1 is regarded rich and everything over
is lean. Because of the relay characteristic of this sensor together with a time delay a oscillating behavior of the
resulting lambda (see Figure 3.3) is unavoidable. Two different kinds of techniques can be discerned for switch
type sensors, the zirconia sensor and the titania sensor. Ofthe two the zirconia variant is the far most common
among car manufacturers and this is also the one mainly dealtwith throughout this thesis.

3.1.1 Physical structure

Most switch type sensors are today of planar type, meaning that they consist of layers on top of each other [4].
One of the sensor’s outer layer is exposed to the gas to measure. The other outer layer is exposed to a reference
gas. In the case when using a lambda sensor in a car the gas to measure is exhaust fumes and the reference is air.

First of all the sensor is placed in a housing, its main purpose is to protect the sensitive sensor from small
particles in the exhaust. In addition the heat transfer fromthe sensor is reduced. The housing is made of metal
and is usually in shape of a cylinder. To allow the gas to pass inside to the actual sensor the housing has small
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Figure 3.2: Typical output from a switch typeλ-sensor. The highly non-linear output seen makes this
sensor unsuitable for an measure of the exact A/F-ratio. Instead it’s used as a boolean
value or an on/off-switch.

holes. As seen in Figure 3.4 the first layer (leftmost in the Figure) of the actual sensor is the protection layer
which protects the sensor from direct gas exposure. The gas diffuses through the protection layer on to the next
layer. It’s therefore important that the protection layer is porous and allows the exhaust gases to pass through
freely. The layer is always of ceramic, the type may vary. Thenext layer is one of the electrodes, specifically
the cathode. The electrodes are catalytic and mainly made ofplatinum but may have other catalytic additives.
This helps the exhaust gas into chemical equilibrium which is needed for a reliable measure. In the middle of
the sensor is the electrolyte layer, this is where the actualvoltage between the anode and cathode is created. The
electrolyte is Zirconia (ZrO2) with additives to enhance oxygen ions for the Zirconia sensor or TitaniaTiO2 for
the Titania sensor. The reference side is built accordingly, however it often the lacks protection layer because
its environment is not so hostile. Moreover, as the output from the sensor is highly temperature dependent (for
further information see next section) the sensor often incorporate a heater. This way the sensor’s temperature can
be controlled for a better output.

3.1.2 Zirconia sensor

This sensor produces a voltage difference between the anodeand cathode in the electrolyte. As for the function
of the unit it’s forming a galvanic cell, a good way to describe a galvanic cell is through the nernst equation. The
voltage level from the sensor is high when oxygen level is low, so in reality the absence of oxygen is measured.

Function

The exhaust gas diffuses through the protection tube and theprotection layer onto the electrodes where they react
with each other and end up close to chemical equilibrium. Also the protection layer helps to achieve this as it
acts like a diffusion barrier. When oxygen is adsorbed on the electrode a concentration difference arises between
the electrode and the oxygen ions in the electrolyte. The ions in the electrolyte feels a strong attraction from the
electrode and are drawn towards it. The ions donates two electrodes to the electrode and a voltage difference
arises. Of course the other way around is also possible when ions take electrons from the electrode.

Ion donation:O2 + 4e− → 2O2− (3.1)

Ion recieving:O2− → O2 + 4e− (3.2)
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Figure 3.3: The Figure shows the resulting lambda when using a switch typeλ-sensor as feedback to
the ECU. The oscillating behaviour comes from limited information that can beused from
this kind of sensor, the mixture is seen either as rich or as lean and nothing inbetween.

So far only oxygen is taking part in the operation but additionally the oxygen ions react directly with the
reducing species (mainlyH2 andCO because of their high concentration but alsoHC) donating additionally
electrons. The donated electrons and their holes in the ion grid build up an electronic field which obstruct the
electron exchange until the system reaches a chemical equilibrium. Meanwhile the same process is active at the
reference side building up a voltage difference between thecathode and the anode. This is the actual voltage
measured to get a reading from the sensor.

3.1.3 Titania sensor

Unlike the Zirconia sensor this type doesn’t produce its ownvoltage but has a resistive output. Otherwise the
function is the same. The controller feeds the sensor with a low current supply and measures the actual voltage
drop across the sensor. The resistance varies from a couple of kΩ for a rich mixture to ten times more for a
lean mixture. This sensor is much faster then the zirconia sensor but on the other hand it’s more expensive. Car
industry has come to favor the slower but cheaper variant. The reason is that the titania sensor is in the same
price range as the much better wide band sensor.

3.1.4 Evaluation of sensor

To evaluate the functions of the discrete lambda types the nernst cell equation is here given without proof. For
more details see Section 4.2.1.

E = E0 +
kT

e
∗ ln

[Ox]

[Red]
(3.3)

WhereE0 = Potential of the cell at standard conditions and[Ox]
[Red] = The ration between oxidizing and reducing

molecules. The unit has a linear temperature dependence as seen in the equation, this is why a heater is always
included in new sensors. Without the heater the sensor wouldhave to rely on exhaust temperature to get warm
during a startup. In addition the temperature is more stablewith a heater, which is a good thing for example during
an overtake. When the accelerator is pressed the engine deliverers more power and thereby increasing the exhaust
temperature. Although the heater nowadays is mandatory thegain error doesn’t completely disappear. This is
because the temperature in the nernst equation isn’t the surrounding temperature alone but rather a function of
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Figure 3.4: The physical structure of a planar switch typeλ-sensor. This is the structure used by all
modernλ-sensors.

all participating molecules, which includes the gas temperature, i.e. even though the unit itself always has the
same temperature the reacting gases doesn’t and thus creates a gain error. However, the gain error isn’t important
for normal operation with this kind of sensor. This is because the sensor will produce a switch characteristic
voltage output with a large difference between the ’low’ and’high’ value. So when a gain error do occur the
actual switch characteristic doesn’t change much as seen inFigure 3.5. It’s easy to use the information to find
out if the engine is running rich or lean but all other information is uncertain.

3.2 Wide band

One of the latest big innovations for reducing emissions is the wide band lambda sensor. Although it has existed
for several years it’s not until recent years that it has beenused in production by the car industry. Unlike the
switch type this sensor misses the relay characteristics, this is seen in Figure 3.6. The output is not fully linear
but it’s possible to estimate the degree of a lean or a rich mixture with high accuracy. For example a Bosch sensor
has a measurableλ-range of around0.7 − 4 [4]. With a wide band sensor a whole new set of control strategies
can be utilized. In addition the oscillating control behavior found with the switch type sensor can be avoided.

3.2.1 Physical structure

The structure is much like two switch type zirconia sensors connected in series with a cavity in between. The
structure is shown in Figure 3.7.

3.2.2 Function

The inner switch type sensor is functioning like normal and measures the oxygen level in the cavity. The outer
sensor is working in the opposite direction and, instead of giving a voltage, a current is applied and the sensor
pumps oxygen in or out from the cavity. Gas enters the cavity through diffusion, two sorts of diffusion can be
sorted out in this case: Molecular and Knudsen. The rate of transport in molecular diffusion is governed by the
diffusivity and the concentration gradient. Where as Knudsen diffusion also is governed by temperature [5]. This
type of sensor is always bundled with a controller, the goal of the controller is to create equilibrium in the cavity.
To do so the controller looks at the output from the nernst cell and pumps in (or out) just enough oxygen to give
equilibrium. The amount of current used in the oxygen pump isproportional to the mixture strength. As the
sensor is highly temperature dependent and it misses the redundancy in the output from the switch type sensor

14



CHAPTER 3. LAMBDA SENSORS 3.2. WIDE BAND

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ (−)

S
en

so
r 

ou
tp

ut
 (

V
)

 

 
temperature T
temperature T*1.2

Figure 3.5: The principle output from the same discreteλ-sensor but with different temperatures. As
seen the useful information (rich or lean) isn’t ruined when changing temperature.

(see Section 3.1.4) the controller needs to incorporate a much better temperature controller. To be able to control
the temperature carefully a feedback is needed, this is cleverly done by measuring the resistance in the Nernst
cell. Many solutuons are possible but perhaps the smartest (no analog switches is needed and no need for turning
off the pump circuit) is to apply a high-frequency signal to the nernst cell. By doing so the resistance can be
measured (by AC-coupling the high-frequency signal) and this can be done in real time without turning of the
rest of the sensor.

3.2.3 Evaluation of sensor

Unlike the switch type sensor, this sensor needs a external controller. Also, as with all controllers, there are
hundreds of different control strategies to choose from. This means that although two system share the same
sensor type, two different controllers (or just two different control strategies) may be used, differentiating the
systems completely. The sensor is also more sensitive for surrounding factors, those must either be controlled or
at least be compensated for by the controller. The wide band sensor enable linear closed loop control, not just to
λ = 1 but also for otherλ. Diesel engines, heavy-duty trucks, compressed natural gas (CNG) and other engines
not running at stoichiometric mixture can gain much in implementing a wide band sensor into the ECU [16].
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Figure 3.6: Typical output from a wide bandλ-sensor. The output is almost (piecewise) linear.

Figure 3.7: Physical structure of a wide band sensor. The structure is in fact two switch type zirconia
sensors connected in series with a cavity in between.
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Figure 3.8: Electrical structure of a wide bandλ-sensor. The circuit is divided into four parts. The
pump- and nernst-cell are the actual sensor where as the controller- and the temperature
sensing-block is in the controller.
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Chapter 4

UEGO Model

Common for all the types of lambda sensors is that they try to measure A/F ratio through measuring the amount
of oxygen in the exhaust. Although this seems like a simple idea at first it’s not that easy. First of all the way from
measured oxygen level to A/F ratio isn’t straightforward. The mixture may not be in complete equilibrium, for
example the water-gas shift reaction may be unbalanced. Secondly the uego sensor is very sensitive to changes
in surrounding parameters.

To do calculations of, for example, temperature sensitivity a model in Matlab/Simulink is developed. In this
chapter an evaluation of models is given, the next chapter holds the actual results using the final model. The
model is divided in to three parts,switch type, diffusionand theoxygen pump. In addition the use of a controller
is needed for getting an output from the UEGO. In reality processing of the signals is needed between the parts.
All model parameters calculated in this chapter can be foundin Appendix B.

Figure 4.1: Wide band model overview. The model is divided into three parts plus the controller part.
In reality signal processing between them is also needed.

4.1 Data

The data available to test models and conclusions have been sparse. The only available data was from [15]. More
about the data in Appendix A.

4.1.1 Exhaust model

Since the supply of data has been inadequate a model for exhaust components has been developed from [3] [5],
the result is very similar to Heywood [8]. The real data is of course irreplaceable but an exhaust model is a
perfect complement as test cases can easily be created.

The balance equation (4.1) describes the reaction between air and a general one-substance fuel. Air is as-
sumed to consist of oxygen and non-participating substances, where the non-participating substances all are
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assumed to be nitrogen. Thereforexo + xn = 1 applies wherexo is the fraction oxygen andxn is the fraction of
nitrogen.

ε[CαHβOγNδ] + xoO2 + xnN2 → y1CO2 + y2H2O + y3N2 (4.1)

Consequently the constraint equations becomes:

Carbon : εα = y1 (4.2)

Hydrogen : εβ = 2y2 (4.3)

Nitrogen : εδ + 2xn = 2y3 (4.4)

Oxygen : εγ + 2xo = 2y1 + y2 (4.5)

This is a normal linear equation system, withxn = 0.79 andxo = 0.21 the solution becomes:

y1 =
0.21α

α + 0.25β − 0.5γ
(4.6)

y2 =
0.105α

α + 0.25β − 0.5γ
(4.7)

y3 =
0.79 + 0.105δ

α + 0.25β − 0.5γ
(4.8)

ε =
0.21

α + 0.25β − 0.5γ
(4.9)

This equation is only valid for complete combustion, which in reality never happens. For the lambda sensor
model the lack ofH2 andCO is the biggest drawback. To extend the modelCO andH2 is added in the equation.
In addition the ability to run lean or rich is added by introducingλ into the equation, this also requiresO2 in the
exhaust gas when the engine is running lean, see equation (4.10).

ε
1

λ
[CαHβOγNδ] + [xoO2 + xnN2] → y1CO2 + y2H2O + y3N2 + y4O2 + y5CO + y6H2 (4.10)

For simplicity CO and H2 are regarded zero when running lean, likewise isO2 when running rich. When
running rich the water-gas shift reaction is assumed to be correct, see equation (2.2.1). The constraint equations
is different dependent on the mixture strength:Lean

Carbon : ε
1

λ
α = y1 (4.11)

Hydrogen : ε
1

λ
β = 2y2 (4.12)

Nitrogen : ε
1

λ
δ + 0.79 ∗ 2 = y3 (4.13)

Oxygen : ε
1

λ
γ + 0.21 ∗ 2 = 2y1 + y2 + 2y4 (4.14)

Rich
Carbon : ε

1

λ
α = y1 + y5 (4.15)

Hydrogen : ε
1

λ
β = 2y2 + 2y6 (4.16)

Nitrogen : ε
1

λ
δ + 0.79 ∗ 2 = y3 (4.17)

Oxygen : ε
1

λ
γ + 0.21 ∗ 2 = 2y1 + y2 + y5 (4.18)

The solution is seen in Table 4.1. This yields a complexer solution than before but still manageable. As seen the
equations result in a non-differentiable function atλ = 1, this could mean problems with discontinues in some
cases.
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Specie λ > 1 λ < 1
CO2 α 1

λ
ε α 1

λ
ε − y5

H2O β 1
2λ

ε 0.42 − 1
2λ

ε(2α − γ) + y5

N2 0.79 + 0.5δ 1
λ
ε 0.79 + 0.5δ 1

λ
ε

O2 0.21(1 − 1
λ
) 0

CO 0 y5

H2 0 0.42( 1
λ
− 1) − y5

Table 4.1: The resulting gas concentration under equilibrium using linear equations. The equations is
continues atλ = 1 but not differentiable, this could produce discontinues later on.

y5 =
−b +

√
b2 − 4ac

2a
a = 1.0 − Kp

b = 0.42 − 1

λ
ε(2α − γ) + Kp(0.42(

1

λ
− 1) + α

1

λ
ε)

c = −0.42α
1

λ
ε(

1

λ
− 1)Kp

The model could be extended toNOX andHC but this is not necessary as the implemented lambda sensor
model does not use these concentrations.
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Figure 4.2: Output from exhaust gas model. The functions are clearly linear and non-differentiable at
λ = 1.

4.2 Switch type model

One of the parts building up a wide band sensor is, as stated inSection 3.2, a switch type sensor. Therefore a
good model for a switch type sensor has to be developed. The pump model will use this model to know which
way to pump oxygen, the most important part to get right is therefore the switch characteristics. The previous
chapter also states that the switch type lambda sensors can be described with the nernst equation.
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4.2.1 Nernst equation

In 1920 Walther H. Nernst received the Nobel prize for “in recognition of his work in thermo chemistry”, his
work led to the Nernst equation which correlates the chemical energy and the electric potential of a galvanic cell.
The equation can be written as:

E = E0 +
kT

e
∗ ln

[Ox]

[Red]
(4.19)

E0 = Potential of the cell at standard conditions and[Ox]
[Red] = The ration between oxidizing and reducing molecules.

The equation is most easily derived from chemical potentialand the Boltzmann factor. As the Boltzmann factor
is a relative probability the ratio between the oxidized andreduced molecules is good starting-point. This ratio
is elementary the probability for a molecule to be oxidized over to be reduced. So the Boltzmann’s factor gives:

[Ox]

[Red]
=

e
−

Eox
KbT

e
−

Ered
KbT

= e
Ered−Eox

KbT (4.20)

WhereEred andEox are the energy barriers needed to be overcome for a electron to switch owner. The chemical
potentialµc has for this system the solution ofEred −Eox when considering that the entropy and volume should
be constant. The natural logarithm on both sides becomes:

ln
[Ox]

[Red]
=

µc

KbT
⇒ µc = KBT ln

[Ox]

[Red]
(4.21)

To get electrical potentials instead of chemical, the equation is divided withe (as it is electrons that changes
owner).

E =
KBT

e
ln

[Ox]

[Red]
(4.22)

Even though[Ox]
[Red] = 1 there can be a voltage over the electrodes, therefore an offset E0 is added, and equation

(4.19) is finally received.

4.2.2 Linear Regression models

As starting point for all linear approximations of the switch cell, equation (4.19) is used. These models try to
linearize the equation so they can be solved by a least squaremethod.

Oxygen based model 1

A switch type sensor is often called an oxygen sensor, although not the whole truth (compare to equation (4.19))
there is an oxygen dependency. As seen in Figure 4.3 the sensor follows the oxygen concentration quite well,
at least on the lean side. In this case, the switch characteristics is the most important part. This causes the
oxygen based model where only the oxygen concentration is used. The equation (4.19) is used and a least square
method is applied to get a reasonable value on[Ox]

[Red] . Although in reality the equation involve fractions of the
electrode occupied with substances, it seems reasonable tosimplify this with the gas concentration level. At
least the occupancies of the electrode clearly must be highly dependent of the concentration level. As the oxygen
concentration is inverted compared to the voltage from the sensor the formula1 − E is fitted.

1 − E = 1 − E0 +
kT

e
∗ log

[Ox]

[Red]

≈ k0 +
kT

e
∗ log k1 ∗ [O2]

≈ /taylor around the midpointm/

≈ k0 +
kT

e
∗ (log (k1 ∗ m) + [

d

dx
ln(k1 ∗ x)]x=m ∗ ([O2] − m) + ..)

≈ k2 + k3 ∗ [O2] + k4 ∗ [O2]
2

For somek2, k3 andk4. The result can be seen in Figure 4.4. The model has rather poor resemblance, specially
on the rich side. The saturated behavior on this side is probably a consequence of the very low concentration of
oxygen. The lean side is rather noisy, most certainly a consequence from using both the rich and the lean side
for the least square. This results in a very high sensitivityfor oxygen.
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Figure 4.3: Gas concentrations for first set of test data. For more data see Appendix A. For the model
only CO,H2 andO2 is used but in reality all the gases has more or less an effect on the
sensor.

Oxygen based model 2

The second oxygen based model is based on the fact that on the lean side the sensor must be oxygen driven as
no other gases are present. This model uses the same approximation of the nernst equation as the first oxygen
based model but differ on the approximation interval. Instead of looking at the whole interval when using the
least square algorithm only the lean part is used. Figure 4.5displays the result. As expected the model shows
great resemblance on the lean side but poor on the rich. As only the lean side is used for the least square the
high sensitivity from Oxygen based model 1 is gone. This makes the noisy behavior disappear but also causes
the model to have too low swing at the rich side.

Extended gas model

This model uses the same approach as the two preceding but instead of doing an approximation using only
oxygen the model is extended with more gases. Carbon oxide and hydrogen are two strongly reducing gases and
the concentrations of these two are fairly agreeable with the sensor output on the rich side.

E = E0 +
kT

e
∗ log

[Ox]

[Red]
≈ k0 +

kT

e
∗ log

k1 ∗ [O2] + k2

k3[CO] + k4[H2] + k5

⇒ e
E∗e
kT = e

k0e

kT ∗ (
k1 ∗ [O2] + k2

k3[CO] + k4[H2] + k5
) =

k1′ [O2] + k2′

k3[CO] ∗ k4[H2] + k5
)

⇒ e
E∗e
kT ∗ k5 = k1′ [O2] + k2′ − e

E∗e
kT ∗ (k3[CO] + k4[H2])

⇒ e
E∗e
kT = k1′′ [O2] + k2′′ − e

E∗e
kT ∗ (k3′ [CO] + k4′ [H2])
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Figure 4.4: The Figure shows the first Oxygen based model versus the measure.The model has rather
poor resemblance, saturated on the rich side and noisy on the lean.

For somek1′′ , k2′′ , k3′ andk4′ . This looks like an ordinary least square but unfortunatelythis generates a badly
conditioned matrix. So instead a Taylor expansion like in the previous section is used.

E = 1 − E0 +
kT

e
∗ log

[Ox]

[Red]

≈ k0 +
kT

e
∗ log

k1 ∗ [O2]

k2[H2][CO]

≈ /taylor around midpoints/

≈ k0′ − k1′ ∗ [O2] + k2′ ∗ [CO] + k3′ [H2]

For somek0′ , k1′ , k2′ andk3′ . The result is displayed in Figure 4.6. As seen the model has the same deficiency
as the Oxygen based method 1. As both the lean and the rich areas of the information are used for the least square
the sensitivity forO2 gets too high on the lean side and likewise forCO andH2 on the rich side.

4.2.3 Full Auckenthaler

In [3] by Auckenthaler a model for a switch-type sensor is described, the model is divided in to three parts;
diffusion, electrode and electrolyte. The model is briefly described here for convenience.

Protection Layer

This part accounts for all the diffusion phenomenas. The concentrationscelectrode
i are calculated mainly from

cexhaust
i and the mass transfer ratėmi between the electrode and the gas phase due to sorption1. This part was

never implemented due to the decision not to use this model, more on this in Section 4.2.5.

Electrode

Here the occupancies on the electrode,θi, is calculated from the concentrations after the protection layer. This is
done by using Langmuir-Hinshelwood and Eley-Rideal mechanisms, this results in the following model equation:

∂θi

∂t
= radsorption − rdesorption + Σ(vi,j ∗ rreaction,j) (4.23)

whererx is different rates andvi,j is a stoichiometric coefficient. The stoichiometric coefficient represents the
degree to which a chemical species participates in a reaction.

vi =
dNi

dξ
(4.24)

1Sorption refers to the total action of both absorption (chemistry) and adsorption
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Figure 4.5: The Figure shows the second Oxygen based model versus the measure. The model is
sufficient in the lean side but poor on the rich.

WhereNi is the number of molecules, andξ is the parameterizing variable (the progress). It can be safe to assume
that the adsorption rateradsorption depends on the temperature, the molecular mass of the specific substance
and the concentration of the same. For a substance to be absorbed there must me vacancies on the electrode,
consequently making this a variable also. In addition theremust be differences between electrodes in their
adsorption capacity and a correction factor for this. The formula ends up as (4.25).

radsorption = s

√

RTexh

2πMi

1

Lelectrode

ciθV (4.25)

Wheres is the sticking probability, which mainly is a correction factor andLelectrode is the adsorption capacity
of the electrode. The desorption rate is obtained from Arrhenius which is a surprisingly easy formula but has
proven very accurate for the temperature dependency of a chemical reaction rate.

rdesorption = Adesorptione
−

Edesorption
RTsurface θi (4.26)

Adesorption, Edesorption is two factors that need to be determined by experiments. Although in reality there
exists lists of many reactions. Note that in the above equation it’s not the exhaust temperature, but the surface
temperature of the surface. The reaction raterreaction is modelled with the Arrhenius equation. The reaction
rate is dependent on two different concentrations hence theequation becomes:

rreaction = Areactione
−

Ereaction
RTsurface θiθj (4.27)

The reactions taken account for in the model used are the following:

O2(g) + 2∗ ↔ 2O∗ (4.28)

CO(g) + ∗ ↔ CO∗ (4.29)

H2(g) + 2∗ ↔ 2H∗ (4.30)

NO(g) + ∗ ↔ NO∗ (4.31)

H2O(g) + ∗ ↔ H2O
∗ (4.32)

2CO∗ → C∗ + CO2(g) (4.33)

C∗ + O∗ → CO∗ + ∗ (4.34)

CO∗ + O∗ → CO2(g) + 2∗ (4.35)
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Figure 4.6: The Figure shows the extended gas model versus the measured. The resemblance is quite
low, both for the rich and the lean side. The model suffers from the sameshortcomings as
the first oxygen based model, to high sensitivity caused by using the sameleast square on
both the rich and lean side

Figure 4.7: Structure of full Auckenthaler model. The model is from [3] by Auckenthaler and describes
a switch typeλ-sensor in detail.

O∗ + H∗ ↔ OH∗ + ∗ (4.36)

OH∗ + O∗ ↔ H2O
∗ + ∗ (4.37)

2OH∗ → H2O
∗ + O∗ (4.38)

Where∗ stands for adsorbed specie and∗ stands for a vacant site on the electrode. In the original model there
where also reactions involving Nitrogen but as the test values lacked this gas concentration this was not accounted
for in the first draft. As the model was abandoned later on thiswas never fixed.

Electrolyte

To model the electrolyte not only adsorbed oxygen is accounted for but also all the reducing species. It’s assumed
that oxygen migrates between the electron and the electrolyte and that the reducing species react directly on the
surface with oxygen.

Oo ↔ O∗ + v2+
O + 2e− (4.39)

CO∗ + Oo → CO2(g) + v2+
O + 2e− (4.40)

H∗ + Oo ↔ OH∗ + v2+
O + 2e− (4.41)

Oo stands for a oxygen ion in the electrolyte,v2+
O is a positive vacancy in the electrolyte grid ande− stands

finally for an electron. The electron current can than be expressed as:

ṅe = kfθV − kaϑVo
θO + kf,COθCO + kf,HθH − ka,HθOHθV (4.42)

WhereϑVo
stands for the fraction of vacant sites. Assuming steady-state:

ṅe = kfθV − kaϑVo
θO + kf,COθCO + kf,HθH − ka,HθOHϑVo

= 0 ⇒

ϑVo
=

kfθV + kf,COθCO + kf,HθH

kaθO + ka,HθOH
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The same reaction and consequently the same formula for the electron current is of course also valid for the
reference side:

ϑref
Vo

=
kfθref

V

kaθref
O

(4.43)

Although naturally only oxygen is accounted for on this side. These two equations can now be inserted in the
nernst equation (4.19):

E =
kT

e
∗ ln

θref
O (θV +

kf,CO

kf
θCO +

kf,H

kf
θH)

θref
V (θO +

ka,H

ka
θOH)

(4.44)

In Figure 4.8 the result from the model is seen. The resemblance is rather poor, specially the signal seems very
noisy or instable. Also worth noticing is that the model suffers from bad behavior during transients. The step
from lean to rich is much too fast.
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Figure 4.8: The results from the Full Auckenthaler model. Although the model seems promising it
leads to poor performance in this test. Worth noticing is the problem with transients, the
step from lean to rich is much too fast.

4.2.4 Simplified Auckenthaler

In [3] Auckenthaler also describes a simplified variant of the above stated model. This model is mainly derived
for using in a control system. This model is based on the aboveFull Auckenthalermodel but has been refined
and optimized regarding complexity and speed. The model is implemented in [9] as a runnable Simulink model.
The result can be seen in Figure 4.9 and shows good resemblance. The only problem is the step from lean to rich
which is too fast.

4.2.5 Simplified Auckenthaler with diffusion

This model is a refinement of the above. To relieve the problemwith the lean to rich step, a diffusion model is
introduced. The diffusion is modeled using a simple first order system. To get a higher accuracy the system can be
modified with a time constant dependent on temperature and pressure. Furthermore to get different substances to
diffuse at different speed the time constant can be dependent on mole mass. The simplified Auckenthaler model
assumes that theHC andNOx concentrations are present. This is not the case for all testvalues available and
the model is therefore modified.O2,CO andH2 are the most important gases for this thesis so this is acceptable.
HC andNOx is approximated with a linear dependency ofCO andO2. Figure 4.10 shows the resulting model
and the measured values. Both of the models shows great resemblance, although the model with a time constant
dependent on the mole mass is slightly better. This model is also tuned slightly resulting in a better midpoint.
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Figure 4.9: The Figure shows the results from the Simplified Auckenthaler model. Noticethe too fast
step from lean to rich.

Conclusion

The linear regression models are all very simple and easy to deal with but they all has an overall low resemblance
with the real world. This is because of tremendous simplifications made. Theoxygen based models(and specially
oxygen based model 2) has very good resemblance as long as the mixture is lean. Theconclusion drawn is that
the sensor is mainly driven by oxygen on the lean side and likewise as the resemblance is quite low on the rich
side that oxygen hardly affects the output at all on the rich side. Not only has theoxygen based models low
resemblance but also theextended gas modelhas the same appearance. The conclusion drawn from this is that
although the most important gases are present in the linear approximation, it’s not enough. One suggestion for a
model is to only useO2 on the lean side where it is proven to be good and then using thereducing speciesH2 and
CO on the rich side. This is of course cheating, because theλ-value must then already be known. The result can
be seen in Figure 4.11. The Figure shows much greater resemblance but is still far from perfect. This means that
a simple linear approximation isn’t good enough and anotherapproach is justified. Although the simple linear
regression models failed there is no use to expand these withhigher grade polynomials. The advantage with these
are their simplicity which then would be lost. Instead it’s better to try to base the model on physics. With this
approach the model also gets more portable. One conclusion drawn from the linear regression models is that on
the lean side the sensor is mainly Oxygen driven and on the rich side the sensor is mostly sensitive for Hydrogen
and Carbon Oxide. Also no single gas is enough to describe thesensor accurately. This retires the term oxygen
sensor.

The full Auckenthalermodel is very promising in [3] but the results wasn’t to satisfaction in this thesis. This
is because the complexity of the model, which also is it’s biggest flaw. In a quality point of view this is probably
the best model tested, but with 50 different variables in themodel the job to tune them gets to big for this thesis.
In addition the diffusion step was never implemented because of limited time, this probably affected the model
very badly.

The real strength with thesimplified Auckenthalermodel is it’s simplicity, there are no complex math oper-
ations but still it has a good congruence. The resemblance atfast rich to lean step is low, this is really bad for
the wide band model. One of the reason for the unstable outputat some parts are the discontinuities that the
model introduces. This is always the risk when using two different models for different interval of the model.
In this case one for the rich side and one for the lean side. Thesimplified Auckenthaler with diffusionmodel
introduces a diffusion step to calm the discontinuities in thesimplified Auckenthalermodel. The too steep rich
to low switch seen both insimplified Auckenthalerand in thefull Auckenthalermodel (where no diffusion step
was implemented) was fixed with the diffusion. Thesimplified Auckenthaler with diffusionmodel has more than
enough accuracy for the wide band model and is therefore used.
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Figure 4.10: The left Figure is the simplified Auckenthaler with a first order system with a non-variable
time constant. The right Figure shows the system with a time constant dependent on mole
mass. In this Figure the middle point has also been adjusted resulting in a better midpoint.

4.3 Diffusion

To model the diffusion for the wide band sensor the same algorithm as the switch-type diffusion is chosen. This
involves a simple first order linear system with a time constant dependent on the square root of the mole mass.
The effect of the system can be seen in Figure 4.12 where the absolute difference between the input and the
output is displayed. As expected the model function like a low-pass filter.

∂ci

∂t
= (ci,in − ci,out) ∗

1√
Mi

∗ Kdiff (4.45)

4.3.1 Results

This algorithm works very well in the switch type sensor, however in the wide band model it isn’t optimal as the
diffusion is much more complex [3], especially the dependency on the mole mass and the temperature (which
in this model is assumed to be constant). Because of limited time this model is chosen anyway. A much better
alternative would be to implement the diffusion described in [3].

4.4 Oxygen Pump

In a real wide band sensor the oxygen pump is actually just a nernst cell with an external applied current. The
most important formula for this block is (4.46) [5] [11], with this mole quantity is easily calculated from the
pump current.

n(O2) =
i ∗ t

4F
(4.46)

Wherei is the pump current andF is Faraday’s constant. The reason for pumping out oxygen is to achieve
equilibrium in the cavity. For a lean mixture there’s nothing more to it, the sensor controller will pump out just
enough oxygen. For a rich mixture it’s a little more complicated, more oxygen is needed in the cavity but the
oxygen level in the exhaust is extremely low. Fortunately when applying a negative current to the pump, water
and carbon dioxide in the exhaust gas is reduced to hydrogen and carbon oxide.

H2O → H2 +
1

2
O2 (4.47)

CO2 → CO +
1

2
O2 (4.48)
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Figure 4.11: The Figure shows a modified Linear regression model. Theλ-value is assumed to already
be known and used to decide what equation to use for different parts ofthe graph. When
the output is lean the model only usesO2 as input and corresponding when the output is
rich the model usesCO andH2.

In the cavity the opposite reactions occur and equilibrium is achieved. The equilibrium is also driven by the
water-gas shift reaction. In Figure 4.13 the difference between two test runs is shown. Especially notice the
λ-value and it’s correlation with theCO andH2 concentrations. It’s easily noticed that theCO andH2 effect
on λ is not equal [10]. Therefore two constants must be introduced, see equation (4.49). Note the minus sign,
oxygen is pumped into the cavity.

Ipump|λ<1
= −kCO[CO] − kH2

[H2] (4.49)

Concentration is not allowed to be negative, if the controller tries to pump out too much oxygen the level saturates
at zero. It’s assumed that equation (4.47)-(4.48) is valid so instead theCO andH2 concentration goes up.

4.4.1 Results

The change in partial pressure for different pump current can be seen in Figure 4.14. The different slopes of the
gases reflect their respective sensitivity.

4.5 Regulator

As a regulator a simple PI-regulator is used, also a first order linear system is used to simulate the speed of the
controller. The system is considered to be too slow to need a derivative part, in addition the system gets a smaller
overshoot.

4.5.1 Results

The regulator could have been implemented in a much more sophisticated way, perhaps with a kalman-filter. The
regulator is using a PI-regulator for two reasons: First this thesis concentrates on static errors, not dynamic, and
second it’s impossible to know how the real controller regulates therefore a simple algorithm is chosen.

4.6 Lambda generation

From the pump current the lambda value must be calculated. A normal output from a wide bandλ-sensor is seen
in Figure 3.6, this must be translated toλ.
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Figure 4.12: The diffusion’s effect on CO concentration. As the diffusion is modeledby a first order
system the result is a low pass filter.

4.6.1 Brettschneider

To be real accurate the Brettschneider equation (4.50) can be utilized [1]. This function relates concentrations of
gases withλ.

λ =

[CO2] + [CO
2 ] + [O2] + [NO

2 ] + ((HCV

4 ∗ 3.5

3.5+
[CO]
[CO2]

) − OCV

2 ) ∗ ([CO2] + [CO])

(1 + HCV

4 − OCV

2 ) ∗ ([CO2] + [CO] + (Cfactor ∗ [HC]))
(4.50)

Where[XX] is the gas concentration in volume percent,HCV is the atomic ratio of hydrogen to carbon in fuel
used,OCV is the atomic ratio of oxygen to carbon in fuel used andCfactor is the number of carbon atoms in
each of theHC molecules. Equation (4.50) can not be used directly as most of the gases are unknown, however
with theλ-value from the sensor together with injected fuel and air all the concentrations can be guessed with
high accuracy.

4.6.2 Lookup table

The easiest variant is to use a lookup table with interpolation in between, creating a piecewise linear function.
Figure 4.15 shows an example when fitting the actual curve produced of the model with a piecewise linear
function. The points used when fitting is easily spotted. Figure 4.16 shows the error introduced when using a
piecewise linear function. As expected the error is zero at the points used when fitting. The maximum error seen
in the Figure is around0.0035. The model will be used when evaluating errors in the range from0.005 − 0.015,
this makes the0.0035 to much. However as the model will be used to compare two test runs the resulting error
will be less. If

λ = i ∗ f(i) + e(i) (4.51)

wherei is the pump current,f(x) is the function relatingi to λ ande(x) is the error introduced with a lookup
table. Then the difference between two test runs is consequently λ1 − λ2 = i1 ∗ f(i1) − i2 ∗ f(i2) − e(i1, i2).

|e| = |e(i1, i2)| = |e(i1) − e(i2)| ≤ |e(ii) − e(i2)|max = |e(ii) − e(i1 + x)|max ≈ 0.002 (4.52)

Wherex is the error range0.005-0.015. The maximum error introduced with the lookup table is therefore0.002.
In reality most cases will produce a much smaller error. Alsoas the error range is under0.015 the resulting
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Figure 4.13: The Figure shows the gas concentrations for test run 1 and run 3. Especially notice the
λ-value and it’s correlation with theCO andH2 concentrations. As the sensitivity for
CO andH2 appear to be different the pump circuit must be modified to reflect this.

distortion will in most cases be increased or decreased swing for the error, i.e the shape of the error will not be
distorted.

4.6.3 Conclusion

The Brettschneider equation gives certainly the best result but is very complex. The best approach is therefore
the table approach. It has problems with introduced errors but in this case it’s acceptable. Besides the behavior
of the real controller is unknown so an easy approach can as well be used.
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Figure 4.14: The Figure shows how the partial pressure inside the cavity changes fora ramp in pump
current. Note that a negative current has different effect onCO:s andH2:s partial pres-
sure.
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Figure 4.15: The Figure shows an example when fitting the actual curve produced of the model with a
piecewise linear function. The points used when fitting is easily spotted.
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Figure 4.16: The Figure shows the error introduced when using a piecewise linear function. The points
used when fitting is easily spotted as the error is zero at their locations.
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Chapter 5

Validation of wide band model

This chapter describes the results from the model developedin the preceding chapter.

5.1 Test setup

Unfortunately there is no simple way to run exactly the same test on the model as in the real engine setup, the lack
of a gas analyzer prevents this. Without an apparatus of thiskind it’s impossible to know the gas composition
during the test runs, which is needed by the model. Thereforethe tests concentrate on the general principle of
the results, rather than comparing exact values. In some cases the developed exhaust model has been used to
estimate the gas composition. Another fact that complicates the tests is that no data includes exhaust pressure or
temperature.

5.2 Testing of the model

First of all the models accuracy itself needs to be tested. The model is tested with all of the data available, namely
the developed exhaust model and the two real test runs available [15].

5.2.1 Calibration

As no data include pressure or temperature, these must first be set with reasonable values. Where it has been
needed in this chapter the pressure is assumed to be100kPa and the temperature700K. After this the sensitivity
for H2 andCO must be decided or at least the size of their fraction as the actual size is compensated for by the
PI-controller. Then the pump current to lambda lookup function must be calibrated. This is most easily done by
simulating the system once and then comparing the pump current from the model to the measure lambda output.
It should be noted that the calibrations done on the model is in no way optimal. The aim wasn’t a model with
exactly correct values but one with correct behavior, therefore little time has been spent on this.

5.2.2 Exhaust gas Model

The first test compares the output of the model with outputs from the exhaust model. Figure 5.1 shows the result
for differentλ-values. As the wide band model is calibrated against the output of the exhaust model it’s always
possible to get a good result if enough points is used when fitting the lookup table. However during this test only
5 values is used.

5.2.3 Real Test Data

This test uses the the test data from [15] (see Appendix A). The data contains two usable test runs, these and
their corresponding output from the wide band model can be seen in Figure 5.2. The model is calibrated for the
left Figure using only 4 values.

34



CHAPTER 5. VALIDATION OF WIDE BAND MODEL 5.3. PRESSURE

0 20 40 60 80 100 120
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

time (s)

λ 
(−

)

 

 
model
measurement

Figure 5.1: The Figure displays the output from the wide band model against the output from the
exhaust model. 5 values is used in the lookup table.

5.2.4 Results

The model shows great resemblance with the input, thereforeit’s concluded that the model works for a static
temperature and pressure input. The model does however takes some time to settle first, this could be improved.
In addition the real test values are fromafter the catalytic converter, this is harder to model because before the
catalytic converter the concentration ofCO correlates toH2 for a specific lambda. After the catalytic converter
there is no such reliable relation making it harder to get a unified model. The model could be suspected to have
problems with fast switches between lean and rich (see rightFigure in 5.2). The diffusion step might introduce
this error but it could just as easily be calibration related.

5.3 Pressure

In [5] it’s suggested that the uego sensor output is dependent on pressure. Unfortunately no test data include
pressure input, instead a normal pressure of100kPa is assumed for all test values. In Figure 5.3 the difference in
output for different pressures can be seen. The top two Figures show the output from the model when changing
the pressure. The left one shows the output when feeding the model with higher pressure and the right shows
lower pressure. 10 and 20 percent over- respective under- pressure is used. The lower Figure shows the difference
in lambda from an output with normal pressure against one with higher/lower pressure. The Figure is resorted
to be overλ instead of time. A test run on a real engine was also made, in this test the exhaust pressure is held
high by choking the exhaust pipe. The injection time as well as air flow is held constant over time. When enough
samples are recorded the choking is released and the new equilibrium is given time to settle before finishing the
test. The resultingλ-value and exhaust pressure can be seen in Figure 5.4.

5.3.1 Results

The implication from the model is clear: The higher pressurethe sensor is exposed to, the more swing is out-
putted. At roughlyλ = 1 the output is unaffected. However in reality the relation seems not that easy, theλ-value
seems to get richer when lowering the pressure, irrespective of a lean or a rich mixture. As both the steps (Figure
5.4) looks similar the nearest conclusion is that the difference seen is actually something else. If this is true the
conclusion drawn is that the diffusion into the sensor is notpressure driven. This means that the pump model
need to change to reflect this.
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Figure 5.2: The Figure displays the output from the wide band model against the measure. The model
is calibrated for the left Figure.

5.4 Temperature

No temperature effect was considered due to the too simple diffusion model in the wide band model. Normally
the diffusion is highly dependent on temperature but this isnot considered at all in this model, therefore is seems
meaningless to do any calculations (although the switch model is actually dependent on temperature). Neither
sensor temperature or exhaust gas temperature has been considered to a fully extent.

5.5 Improvement of UEGO model

As always improvements can be made. This section lists suggested improvements for the future, they are divided
into three subsections.

5.5.1 Diffusion

The model’s weakest link is the diffusion step. For now the diffusion only works as a low pass filter but with
different cut-off frequencies for different substances. In reality the diffusion is dependent on both temperature
and pressure. A good approach would be [3].

5.5.2 More data

The model should also be tested with a sufficient amount of data, this has been a problem during the whole
thesis. Without more data the risk is that the model only works for a specific test. This however is not likely with
this model as it passes test fromafter the catalytic converter with different aging. Thereby having different gas
compositions.

5.5.3 More gases

The model design only lets oxygen,hydrogen and carbon monoxide influence the output, it has been shown [3]
that at least hydrocarbons and nitrogen oxides also has effects on the sensor.

5.5.4 Better pressure tests

The model needs to be further tested against the real world for pressure sensitivity. If, the results from Section
5.3 are true, the model need to change to reflect this.
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Figure 5.3: The top two Figures shows the output from the model when changing the pressure. The
lower Figure shows the difference in lambda from an output with normal pressure against
one with higher/lower pressure.
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Figure 5.4: The Figure shows the results from a test run looking for changes inλ when pressure was
changed. The injection time and air flow is held constant over time where as the pressure
is changed.
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Chapter 6

Observer

This chapter deals with the development and the implementation of the observer.

6.1 Problem

The function of a wide bandλ-sensor is much more complicated than a discrete type, therefore it’s much harder
to get correct readings. The goal is to develop an observer tominimize the error when using this kind of sensor.
The model of the wide bandλ-sensor is used to evaluate different problems in preparation for the observer. To
evaluate the problems and their ability to explain differences between real life lambda and a sensor output, two
sensors with differing output have been used as an example. Several potential problem sources are tested and
investigated, these include calibration error, pressure error, air leak error, gas sensitivity and fuel errors. The
upper left picture in Figure 6.1 shows the output from the twodifferent sensors during a test, the upper right
shows the difference. It’s assumed that the error is time invariant so therefore the error is modified to be overλ
instead. This can be seen in the lower left picture in the Figure. The lower right picture shows the same but all
extreme values removed and a straight line fitted.

6.1.1 Exhaust gas model tests

To test what kind of difference in output that arises from different errors, the gas model developed in Section
4.1.1 is used. First the output from one of the lambda sensorsis fed through the exhaust model and the resulting
gas output is used for testing. This way the test from 6.1 getsavailable with the gas composition approximated.
This test are calledexhaust gas model testthrough out of his chapter.

6.1.2 Rcal error

One possible error for a wide band sensor is the calibration resistorRcal. The resistor is used in car industry
for calibration purposes, however for high quality measures this calibration can be insufficient. In addition the
resistor is included in the wiring harness and is exposed to both high temperatures and moisture, this will age
the resistor and ruin the calibration. The extra wires for the resistor might also introduce common-mode noise
to the channel, although the controller will likely use a differential amplifier to measure the current this will still
introduce a small error. This kind of error can also be related to a bad or faulty electrical connection. Figure
6.2 shows how the resistor is connected. The controller expects a value ofRin\\Rcal as input resistance for the
differential amplifier, if instead theRcal has an error and has the valueRcal ∗ Re the total error becomes:

error = (Rcal ∗ Re)\\Rin ∗ 1

Rcal\\Rin

(6.1)

=
Rcal + Rin

Rcal ∗ Re + Rin

(6.2)

For this test it’s safe to assume that theRin ≈ Rcal which ends up in:

Rcal + Rin

Rcal ∗ Re + Rin

=
2

Re + 1
(6.3)
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Figure 6.1: The Figures display the difference between twoλ-sensors during a test. The upper left
Figure shows the output from the sensors where as the upper right shows the difference.
The lower left and right Figures shows the difference overλ instead. In the lower right
Figure all extreme values are removed and a straight line fitted.

This error is introduced just before the lambda lookup function causing it to have an offset error. A ramp with
differentλ-values is run through the exhaust gas model and fed to the wide band model. This is done four times
with different resistances (0.8*Rorginal, 0.9*Rorginal, 1.1*Rorginal and 1.2*Rorginal), the difference against a
test run withRorginal is shown in the left Figure 6.3. The right Figure shows the difference between an exhaust
model test withRorginal as resistance and 0.9*Rorginal respectiveRorginal and 1.1*Rorginal.

6.1.3 Pressure error

Although the results from the last chapter states that the models pressure dependency isn’t correct, to be on the
safe side the second suggested error is a pressure error. Since the two sensors are placed next to each other the
pressure should be the same for the both, although some spikes might occur. However in the test, Section 6.1, the
engine runs at the same injection time too long for the problem to be spikes. The idea is therefore that the two
sensors have different sensitivity for pressure. For this idea to work there must be a pressure difference during
the original test, which can be seen in Figure 6.4. The left Figure shows the pressure difference over time, note
that the difference is quite big. The right Figure shows the pressure difference resorted to be overλ instead.
The conclusion drawn is that the pressure difference has something to do with mixture strength, for example
observe the sudden reaction in the left picture att ≈ 310, this sudden spike can be derived from the sudden
spike in injection time observed in Figure 6.1 (the upper left Figure). However the major part of the difference
is something completely different, the reason is left to findout. Two exhaust gas model tests are used: The first
with an exhaust pressure of 100k Pa simulating the least sensitive and the second with the real pressure difference
normalized to 100k Pa. The difference between the two can be seen in Figure 6.5, also seen is the same difference
but overλ instead. This assumes that the error is time invariant whichis not obvious when looking at Figure 6.4.
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Figure 6.2: Most wide band sensors comes with a calibration resistor connected like in the Figure.
Over time the resistor will age an ruin the calibration.
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Figure 6.3: The difference in output from the wide band model with different valuesfor the calibration
resistance against the original resistance is shown in the left Figure. Theright shows the
same but during a test when the exhaust model is used.

6.1.4 Temperature error

The temperature effects has been left out as the non-existing temperature effects in the diffusion step see Section
4.3 and the degraded temperature effects on pump current.

6.1.5 Air leaks error

The fourth error tested are air leaks (or faulty air injection) [1]. This is modeled by a static oxygen fraction
increase of0.005. A exhaust gas model test is performed and the results is shown in Figure 6.6.

6.1.6 Different gas sensitivity error

The two sensors could of course experience different sensitivity for every gas but onlyCO,H2 andO2 have been
explored here. This is because they are the only three gases accounted for in the model.

CO and H2 sensitivity

These two gases are reducing and are almost zero whenλ > 1, therefore they are not probable causes for any
differences between the sensors for this inequality. The error is assumed to be on the formerror = k1∗[XX]+k2

so a least square is fitted to the output from a synthetic test.Both the real difference and the least square is shown
in Figure 6.7. The error could also be on the formerror = k1 ∗ [CO] + k2 ∗ [H2] + k3 and hence be dependent
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Figure 6.4: During the test from Section 6.1 the wide band sensor experienced variations in the pres-
sure. The left Figure shows this variation over time and the right shows thesame over
λ.

on both carbon oxide and hydrogen. Figure 6.8 displays the result from a mean square assuming this form.

O2 sensitivity

O2 is almost zero whenλ < 1, therefore it’s not likely to cause any difference between the sensors for this
inequality. The error is assumed to be on the formerror = k1 ∗ [O2] + k2

The test is performed as in the previous section. Two tests are performed, one where the entire rangeλ > 1 is
used as input to the least square and one where onlyλ > 1.05 is used. The later is tested due to the inaccurate
behavior of the exhaust gas model whenλ approaches 1 and at misfire. Both are seen in Figure 6.9.

6.1.7 Fuel difference error

If the fuel type change, the output from the lambda sensor will also change (different fuel combustions give
different equilibrium equations). To test if the problem might be fuel related a test with 20% ethanol is added to
the normal fuel, assumed to be octaneC8H18. A test using the exhaust model is performed for each fuel andthe
difference between them is shown in Figure 6.10.

6.1.8 Conclusion

Rcal error can be ruled out as the major source, this error doesn’thas any offset atλ = 1. Of course this doesn’t
mean that it couldn’t account for secondary effects. The Pressure error can also be ruled out with the same
argument as theRcal error, no offset atλ = 1. In addition the error looks definitively wrong overλ. The Air
leak error does have a reasonable offset error atλ = 1 but the error on the lean side is wrong. The real error
has a slope that this error misses. This concludes that this cannot be the only error anyway. The Different gas
sensitivity error shows some interesting results. On the lean sideλ > 1.05 the error is roughly explained by a
function likek1 ∗ [O2]. The reason for the bad congruence at1 < λ < 1.05 could be explained by the exhaust
model. It should be noted that the exhaust model which is usedhere is not at all suited for this kind of use. The
model only approximate the real gas concentrations with a rough linear method. Especially for extreme values
and aroundλ ≈ 1 the model is ill-suited. Atλ = 1 the model changes gas concentration very abruptly where as
a real engine is more complex as both the reducing speciesCO andH2 is present as well asO2. The rich side
error on the other looks like it’s explained with a function of k1 ∗ [CO] + k2 ∗ [H2] + k3. The reason for why
the fuel difference error cannot be the only error is the amplitude, this error only shows a tenth of the amplitude
from the real error.

All in all the best suggestion with the available tools and tested error is that the error is a gas sensitivity error.
If the sensors have different sensitivity for different gases, the explanation for this could be one or more of several
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Figure 6.5: The Figure shows the difference between two outputs from the wide band model, which
differs in their sensitivity for pressure. The left is in the time domain and theright is in
theλ-domain.

aspects: The nernst cell could be different, the pump cell could be differently good to pump out different gases
between the two sensors or even the diffusion step could be responsible. This is not investigated any further.

6.2 Solution

It’s very hard to examine the error deeper without a gas analyzer present. This leads the solution onto an other
path. As the engine’s running atλ ≈ 1 most of the time this is the most important part to get right. The error
increases as theλ diverge longer and longer fromλ = 1 but if an offset is added to makeλ = 1 right the error
would be almost zero around 1.

When using a static offset it need to be calibrated once in a while to to rely on it. The best thing would be
to have this automated, for this a second sensor is needed. A switch type sensor is perfect for this job, it is very
reliable to measure lean or rich and can therefore be used to find out exactly where the switch is.

6.3 Matlab/Simulink Model

Before implementing the observer in the ECU it’s meticulously tested in a model written in Matlab and Simulink.

6.3.1 Observer Model

The observer should only take information from the wide bandsensor when the switch type sensor has its switch.
This can be done with a sensitivity vector, however to prepare to the next step (next section) this is done by an
”enable port” in Simulink. This enables the observer only when the input is greater than zero. This port has its
input connected to a switch detection circuit. When the valueof the switch type sensor is on the other side of the
switch than the last one, this circuit gives a pulse out. In addition an one-shot block is used to avoid the pulse to
last over several iterations. The overview is seen in Figure6.11.

In Figure 6.12 the output can be seen from the observer duringa test. The switch type input is during the entire
test fed with a continuously switching signal. This makes the observer’s output approachλ = 1 irrespectively of
what the value really is.

6.3.2 Running Average Model

An observer is not suitable for ECU programming, therefore arunning average model was developed. The
scheme for the model is shown in Table below.
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Figure 6.6: The Figure shows the difference between two outputs from the wide band model, which
differs in that one has an modeled air leak. The left displays the difference in the time
domain and the right theλ-domain

1. When a switch occur save the value from the wide band lambda sensor

2. Assumeλ = 1 when switch occurs and calculate offset

3. Check if offset is sensible

4. Don’t use the offset directly but instead let it influence,together with the old offset, the new offset

The switch detection is simple and works like in the observermodel. To check if the offset is sensible the least
deviant, compared with the running offset, from a number of offsets is used. This offset is then shifted into a
shift register. In Figure 6.13 the output can be seen from theRunning Average Model during a test. The switch
type input is during the entire test fed with a continuously switching signal. This makes the observer’s output
approachesλ = 1 irrespective of what the value really is. This model was alsotested in the real engine test setup.
Parts of the engine was controlled using RTAI and Simulink with this model. The tests were successfully and the
ECU model could be implemented1.

6.3.3 Results

Both the models seems to give reasonable outputs, the difference is easily spotted with the discrete step of the
running average model. The benefit of the this mode is that it uses only operation easily transformed into memory
and if-cases when ported to the ECU code.

6.4 Implemented model

The final implementation follows the running average model with the exception of the sensible offset step (see
Table 4). In the ECU an additional step was introduced, when detecting a switch the values before and after the
switch can not be too far away from each other. This to furtheravoid erroneous offset values. In addition an
algorithm to force the switch sensor to switch was added, this is calledforced switch mode. It works by, when
the switch sensor indicates lean, enrich the mixture until the switch is found. When the switch sensor indicates
rich the opposite procedure is taken. This gets the result that the engine is actually run from the switch sensor,
creating a oscillating behavior. This speeds up the offset calculation considerable. The practical details is that a
new control mode was added in the ECU. The ability to adapt thesensitivity was also added, when starting the
offset calculations the algorithm uses more loose restrictions of what offset values to use. This speeds up the
calculation in the beginning, when the offset has started tosettle more strict rules are then adapted again. The
offset is added before the ECU reads the value making it totally transparent for the ECU.

1these results are not published any further.
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Figure 6.7: The Figures shows the real difference and a fitted curve to the assumption error =
k1 ∗ [XX] + k2. The left Figure isCO and the right isH2. Note that the results have
been filtered for a better view.
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Figure 6.8: The difference error assumed to be on the formerror = k1 ∗ [CO] + k2 ∗ [H2] + k3.
Note that the results have been filtered for a better view.
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Figure 6.9: The difference error assumed to be on the formerror = k1 ∗ [O2] + k2. The left Figure
is using the entire rangeλ > 1 as input to the least square where as the right only uses
λ > 1.05. Note that the results have been filtered for a better view.
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Figure 6.10: The Figure shows the difference between two outputs from the wide band model, which
differs on what fuel is injected. One runs on octane and the other runs on octane with
20% ethanol. The left Figure shows the difference in the time domain and theright the
difference in theλ-domain
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Figure 6.11: The Figure shows an overview of the observer model.
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Figure 6.12: Output from the observer together with the wide band input. The switch signal is not seen
in the Figure but it is switching constantly, making the observer’s output approachλ = 1.
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Figure 6.13: Output from the Running Average Model together with the wide band input. The switch
signal is not seen in the Figure but it is switching constantly, making the model’s output
approachλ = 1.
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Chapter 7

Validation of UEGO observer

This chapter describes test results from using the UEGO observer implemented into the ECU. Unfortunately the
tests are not performed with the same two lambda sensors as the preceding chapter describes (see Section 6.1).
Although the two sensors used in this chapter have a similar difference.

7.1 Adaption

To test the observer the engine is held at an approximately constant RPM and the throttle is adjusted slightly up
and down to create variations in lambda. This is demanded to get the switch type sensor to switch. The output
from the test can be seen in Figure 7.1. One interesting thingis to see the relation between the two lambda sensors
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Figure 7.1: A test is performed to validate the adaption, the engine is held at a approximately constant
RPM and the throttle is adjusted slightly up and down to create variations in lambda. The
right Figure shows the output from theλ-sensors. The left Figure is the resulting offset.

on the engine and the observer’s lambda. In Figure 7.2 this can be seen. The one called ETA is an expensive
aftermarket sensor and the one called ECU is the engine’s orginal sensor.

7.2 Force lambda swing

To avoid the manual throttle movement, the force lambda swing mode is implemented (see Section 6.4). The
result of this mode is that the engine uses the switch type lambda sensor to run the engine, therefore it switches
constantly. A simple test, seen in Figure 7.3, is performed letting the RPM be constant and letting the forced
lambda swing mode be active in the range35s− 150s. A complete start of the engine was also tested, see Figure
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Figure 7.2: The Figure shows the two lambda sensors along with the observer. ETA is an expensive
aftermarket sensor and ECU is the orginal sensor that came with the engine. If the swicth
type sensor is to be trusted (and thereby the observer) the ETA:s looks most right.

7.4. The forced lambda swing was turned on after approximately 150 seconds.

7.3 Conclusions

All tests showed an calculated offset of around 0.015, whichequals the difference between the two sensors. This
concludes that one of the wide band sensor must be correct atλ = 1, presupposed that the switch sensor is right.
As the error is much more complicated than an offset a good question is if any improvements were made. A
quick test is to take the two lambda sensors from Section 6.1.The mean error before the observer is−0.0121.
If one of the sensors is assumed to be right, the new mean is−0.071. Although the observer only uses an offset
error the result is surprisingly good, almost half the errorover the entire spectrum and zero error atλ = 1.

Another conclusion made is that if the offset is saved when shutting down the engine, the force lambda swing
might not be needed. When the engine starts the switch sensor switches a few times, this is enough to get a
reasonable value of the offset rather quick.
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Figure 7.3: A test is performed to validate the forced lambda swing mode, the engine is held at ap-
proximately constant RPM and the mode is active during35s − 150s.
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Figure 7.4: This Figure shows the result when adapting from engine start. The forced lambda swing
was turned on after approximately 150 seconds.
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Chapter 8

Final thoughts and Conclusions

Although the wide band lambda sensor is a very complex sensorit is shown that it can be understood with simple
mathematics and basic knowledge in chemistry. One conclusion drawn from the development of the model is that
sensor is, on the lean side, mainly Oxygen driven and on the rich side the sensor is mostly sensitive for Carbon
Oxide and especially Hydrogen. Furthermore no gas alone candescribe the sensor accurately, this retires the
term oxygen sensor.

8.1 Correctness of UEGO model

The developed model agrees well with the real sensor for steady state conditions. For transient conditions the
model needs to be refined further. A great thing with the modelis that it only contains very simple equations, this
means that it can be utilized in systems with very low processing power. In addition the test values used are from
after the catalytic converter, this is harder to model because before the catalytic converter the concentration of
CO correlates toH2 for a specific lambda. After the catalytic converter there isno such reliable relation making
it harder to get an unified model. The pressure effect on the sensors is indistinct, the model states more pressure
more swing but in reality it doesn’t seem that simple. The conclusion drawn is that the diffusion into the sensor
is mainly not pressure driven.

8.2 Guidelines for a optimal UEGO

When building a lambda sensing device the controller is of equal importance as the sensor element itself. This
is due to the sensitivity of surrounding factors that the controller must be able to handle. For coping with
temperature sensitivity a good temperature controller should be used, furthermore a temperature compensation
should be implemented. This for when the temperature controller cannot guarantee a correct temperature, for
example during an overtake. The pressure effect must also beconsidered, at least if the controller is suppose
to be used atλ 6= 1. Best of all is to have a pressure sensor incorporated into the lambda sensor. If a pressure
sensor is used smart calculations can be utilized with the Brettschneider equation to calculate lambda. With this
the sensor gets easily portable to other systems/places.

8.3 Guidelines for an optimal use

When using a UEGO, care should be taken not to employ the sensorin an environment which it wasn’t designed
for, at least not without a re-calibration. Pressure effects and gas sensitivity can destroy the output. To be exact,
also the same type of fuel must be used as when the calibrationis made. Care should also be taken with the
calibration resistor.

8.4 Differing lambda

As for the differing wide bandλ-sensors tested, gas sensitivity is the reason that comes closest to explain the
difference. A better gas model is needed to investigate further. The explanation for the different sensitivities could
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be one or more of the following aspects: The nernst cell couldbe different, the pump cell could be differently
good to pump out different gases between the two sensors or even the diffusion step could be responsible. This
cannot be explained without going into details of the different sensors.

8.5 Observer

As the true origin of the differing lambda sensors remains unsolved a simple offset is assumed for the observer.
As the error is much more complicated in real life a good question is if any improvements was made. A quick
test is to take the two lambda sensors from Section 6.1. The mean error before the observer is−0.0121. If one
of the sensors is assumed to be right and the developed observer is used, the new mean is−0.071. Although the
observer only uses an offset error the result is surprisingly good, almost half the error over the entire spectrum
and zero error atλ = 1.
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Appendix A

Data

This appendix describes the test available for the thesis.

A.1 Problems with test data

Unfortately no data perfectly suited could be founded for this thesis. The data found in [15] is not a perfect
match, this is not very surprising as the intention with the data was completly different than what it has been used
for in this thesis. Two main problems can be discern:

• The model devolped in this thesis was ment to be for a uego in front of the catalytic converter but the data
collected is after the converter.

• The second problem is that it seems that the data has quite lowresolution, this is a major problem because
the models that we are going to develop is quite sensitive forsome components. As always interference a
problem but as the exact test setup is unknown no compensation can be made. This makes it really hard to
filter out real data.

A.2 Structure and data

Figure A.1,A.2 and A.3 shows the gas concentrations for their respective test run. Also seen is the output from
theλ-sensors.
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Figure A.1: Gas concentrations for first set of data
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Figure A.2: Gas concentrations for second set of data
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Figure A.3: Gas concentrations for third set of data
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Appendix B

Calculated values

Here all calculated values can be found.

Oxygen based model

k2 = 0.23359
k3 = 3.54639e + 02
k4 = 9.99579e + 03

Oxygen based model2

k2 = 0.82641
k3 = 5.161471e + 01
k4 = −5.60595e + 03

Extended gas model

k0′ = 0.5561
k1′ = 102.1526
k2′ = 78.0325
k3′ = 12.6688

Simplified Auckenthaler with diffusion 1

diffK = 1.8477

Simplified Auckenthaler with diffusion 2

diffO2
= 1.1226

diffCO = 1.2454
diffH2

= 3.1752

Linear model with cheating

k0 = 0.1701
kO2

= −22.8556
k1 = 0.7146
kH2

= 43.2916
kCO = 3.2747

62



APPENDIX B. CALCULATED VALUES

Oxygen Pump

kCO = 2/2
kH2 = 11/60

Regulator

kP = 0.5
kI = 1

Lambda generation

real test values:[−0.0900.0180.037] ⇒ [0.9861.0221.051.058]
synthetic gas model:[−0.8168−0.6059−0.25791.14e−30.13320.2099] ⇒ [0.83390.86780.935611.10511.1729]
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