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Abstract

Look ahead cruise control deals with the concept of using recorded topographic

road data combined with a GPS to control vehicle speed. The purpose of this

is to save fuel without a change in travel time for a given road. This thesis

explores the sensitivity of different disturbances for look ahead systems. Two

different systems are investigated, one using a simple precalculated speed tra-

jectory without feedback and the second based upon a model predictive control

scheme with dynamic programming as optimizing algorithm.

Defect input data like bad positioning, disturbed angle data, faults in mass

estimation and wrong wheel radius are discussed in this thesis. Also some

investigations of errors in the environmental model for the systems are done.

Simulations over real road profiles with two different types of quantization

of the road slope data are done. Results from quantization of the angle data in

the system are important since quantization will be unavoidable in an imple-

mentation of a topographic road map.

The results from the simulations shows that disturbance of the fictive road

profiles used results in quite large deviations from the optimal case. For the

recorded real road sections however the differences are close to zero. Finally

conclusions of how large deviations from real world data a look ahead system

can tolerate are drawn.

Keywords: Look Ahead, Cruise Controller, MPC, Topographic Road map,

Input data
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Preface

With this thesis I complete my studies for a Master of Science degree in Ap-

plied Physics and Electrical Engineering International German. It has been

an interesting thesis work and a time which I have enjoyed very much. Pre-

vious works have shown that by the use of GPS, a topographic road map and

control theory it is possible to control vehicle speed over the topography to save

fuel. My master thesis focuses on exploring the effects of non optimal input

data to a look ahead system and set requirements on input data to the control

system.

Thesis outline

The purpose of this thesis is to outline the sensitivity of a look ahead system

and put requirements on input data to the system. Also the effects of disturbed

input data are investigated. The purpose and method are closer handled in

the introductory Chapter 1. The vehicle model used is presented in Chapter

2. Chapter 3 is devoted to explain how the optimal speed profiles look like and

the gain of using these. In Chapter 4 results from simulations of the optimal

speed trajectories calculated with flawed input data are presented. Chapter 5

is used to explain how the model predictive control and dynamic programming

in DP-tool works. Results from simulations with DP-tool are presented in

chapter 6. Finally in Chapter 7 conclusions are drawn. Extensions and future

work to this thesis are discussed in Chapter 8.
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Chapter 1

Introduction

The increasing cost of fuel has raised the interest in ways to reduce fuel con-

sumption. In Hellström (2005) and Hellström et al. (2007), it has been shown

that by using GPS with a topographic road map and optimizing the velocity

over the topography it is possible to lower fuel consumption for a given road

without increasing the travel time. For example the fuel injection could be cut

before a downhill slope where it is known that the vehicle then will accelerate

over its reference speed. In steep uphill slopes it can be advantageous to accel-

erate before the slope. There are increasing interests in a system like this but

there are still no solutions available commercially. A basic requirement is a

commercially available topographic road map, today this doesn’t exist either.

This thesis strives toward outlining requirements for such a map and other

input data. It is also in the thesis line to point out effects of disturbed input

data.

1.1 Thesis Objectives

The main objective of this thesis is to line out which requirements that should

be set on input data to a look-ahead system. How bad input data can be ac-

cepted before performance of the system is too degraded? How good does a

topographic road map for a look ahead system have to be? Which are the ef-

fects on performance from speed trajectories calculated with disturbed input

data?

1



2 Introduction

1.2 Method

Two simulation environments are used in this thesis. The first one is a basic

model using precalculated speed trajectories to control the vehicle over sim-

ple road profiles like the one presented in Figure 1.1. These trajectories are

calculated from the results presented in Fröberg et al. (2006) and Fröberg

and Nielsen (2007). The second model uses dynamic programming to opti-

mize vehicle speed over given road profiles making it possible to handle real

world roads. This simulation environment, named DP-tool, is made by Erik

Hellström and described in Hellström (2005) and Hellström et al. (2007). For

this thesis some modifications have been done to DP-tool since it is of inter-

est to optimize over one road profile and then run the vehicle simulation over

another road profile.
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Figure 1.1: A simple downhill road profile with the optimal speed trajectory.



Chapter 2

Vehicle Model

The modeling of the driveline is thoroughly covered in Kiencke and Nielsen

(2005) and Nielsen and Eriksson (2005). Since a lot of the work in this the-

sis is based on Fröberg et al. (2006) and Hellström (2005) the model used is

similar to those used in these two papers. The engine torque is modeled as

an affine torque map dependent on fuel and engine speed. Further the driv-

eline is assumed stiff. Finally the different forces acting on the wheel of the

truck are modeled. Model constants are presented in Appendix B. The model

described in this chapter is used both for the simulation and prediction envi-

ronment utilized in Chapter 3 and 4. It is also used in its complete form in the

DP-tool prediction environment utilized in Chapter 6. However the simulation

environment in DP-tool uses the measured fuel map to model engine torque

instead of the approximation described in Section 2.1.

2.1 Engine

The engine chosen for this thesis work is a 12 liter Scania DT1211 L02 diesel

combustion engine. This engine is a euro IV emission class engine and outputs

420 horsepower and has a maximum output torque of 2100 Nm. For use in this

thesis a linear model of the engine is constructed. The model for the generated

torque minus the internal friction is constructed from a torque map made up

of steady state measurements of the generated torque for a given engine speed

and amount of injected fuel. The engine map is expressed as T̂map(N, δ). From

this map two functions are approximated one for the maximum output torque,

T̂max(N, δ). The second approximation is a function for the engine drag torque,

T̂drag(N) which is the brake torque received from the engine when fueling is

cut off and the driveline is engaged.

The engine map is assumed to be affine and the output torque is therefore

approximated with a linear model as following:

T̂map(N, δ) = aeN + beδ + ce (2.1)

Where N is the engine speed and δ is the amount of injected fuel. This

model provides a good approximation to measured data. The engine constants

are calculated with the least square method.

A model for the drag torque is constructed from the torque map using only

the data where δ = 0, Tdrag(N) = Tmap(N, 0) and the approximation is given

in Equation 2.2, where N is the engine speed. This approximation plotted

against measured data can be seen in Figure 2.1.

3



4 Chapter 2. Vehicle Model

T̂drag(N) = adN + bd (2.2)
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Figure 2.1: Engine drag torque, linear model compared to measured data.

The fueling function is modeled as given in equation 2.3. To control the

fueling function a signal P , representing normalized fueling taking a value

between zero and one is introduced. The signal P is in other words the driver

demand which here is controlled by the cruise controller. Also a signal G,

the gear number, an integer between 1 and 12 representing the current gear,

is introduced. It is assumed that the engine runs on idle control when the

driveline is disengaged, G = 0.

δ(N, P, G) =

{

Pδmax(N) G 6= 0
δidle G = 0

(2.3)

The upper torque bound is approximated by a second order function given

in Equation 2.4 and the upper fueling bounds by the function in Equation 2.5.

T̂max = atN
2 + btN + ct (2.4)

δ̂max = aδN
2 + bδN + cδ (2.5)

The constants of the maximum fueling function are calculated using a least

square approximation on measured data for maximum fueling. The approx-

imated fueling function and the measured maximum fueling are plotted in

normalized form in Figure 2.2. There are some differences between the real

and the approximated max fueling which might have an impact on the result.

Since this thesis is about comparing different simulated driving scenarios to

compare fuel consumption and travel time this model is adequate.
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Figure 2.2: The modeled maximum fueling (solid) and measured data

(dashed).

To simplify matters even more the upper torque bound is approximated

as a function of the maximum fueling bound, see Equation 2.6. In Figure

2.3 this approximation, Equation 2.6, is plotted against the function specified

in Equation 2.4. Figure 2.4 contains a plot of the modeled max torque and

the measured max torque. The model of the max torque using the max fueling

function differs slightly from the least square approximation of the max torque

made directly from the engine map.

T̂max(N) = T̂map(N, δ̂max(N)) (2.6)

T̂map(N, δ̂max(N)) = aeN + beδ̂max(N) + ce (2.7)

Finally by combining the Equations 2.1, 2.2, 2.3 and 2.6 an approximation

for the output torque, produced torque minus internal friction, can be stated,

Equation 2.8.

Te(N, P, G) =







aeN + bePδmax + ce P > 0, G 6= 0
adN + bd P ≤ 0, G 6= 0
0 G = 0

(2.8)



6 Chapter 2. Vehicle Model

600 800 1000 1200 1400 1600 1800 2000 2200 2400
600

800

1000

1200

1400

1600

1800

2000

2200

Engine Speed [RPM]

E
ng

in
e 

T
or

qu
e 

[N
m

]

Engine Max Torque model

 

 
T

max
(N)

T
map

(N,δ
max

)

Figure 2.3: The max torque function approximated directly from the engine

map (dashed) and by using the maximum fueling function (solid).

500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

Engine Speed [RPM]

E
ng

in
e 

T
or

qu
e 

[N
m

]

Engine Max Torque with Fuel Model

 

 
Measured data
Model

Figure 2.4: The maximum engine torque approximated using the maximum

fueling function compared to measured data.
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2.2 Driveline

The driveline in this paper is assumed to be stiff and the gearbox and final

drive are modeled as tables of ratios and efficiency constants. Previous section,

Section 2.1, presents a model of a diesel combustion engine which with its

produced output torque drives the vehicle forward through the driveline. In

Figure 2.5 the driveline configuration can be viewed.

Figure 2.5: The driveline of the vehicle.

The produced torque of the engine minus the internal friction of the engine

is represented by Te, the external load comes from the clutch, Tc. The mass

moment of inertia of the engine is Je and the angle of the flywheel is θe which

gives:

Jeθ̈e = Te − Tc (2.9)

The clutch is assumed to be stiff and therefore:

Tc = Tg (2.10)

θe = θc (2.11)

The gearbox is modeled by ratios and efficiency constants for each gear

giving, with neglected inertia:

Tgigηg = Tp (2.12)

θc = igθg (2.13)

The propeller shaft is also assumed to be stiff and will therefore not influ-

ence the equations, thus:

Tp = Tf (2.14)

θg = θp (2.15)

The final drive is, like the gearbox, modeled as a ratio and an efficiency

constant with neglected inertia:
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Tf ifηf = Td (2.16)

θp = ifθf (2.17)

The drive shaft is presumed stiff which gives:

Tw = Td (2.18)

θf = θd (2.19)

Finally the equation of motion for the wheel is:

Jwθ̈w = Tw − kbB − rwFw (2.20)

θd = θw (2.21)

Where Jw is the wheel inertia, rw the wheel radius and kb the brake con-

stant where B is the brake pedal, taking a value between zero and one. Fw

is the friction force at the wheel in other words the force which will drive the

vehicle forward.

2.3 Gearbox

The gearbox is as stated implemented as gear ratios ig and efficiencies ηg when

modeled in the powertrain. Gear selection is based upon the current engine

speed. Two different engine speed values are stored for each gear, a shift up

point and a shift down point. The gearbox is limited to only shift up or down

one step at a time. Since only a limited part of the operating range, the top

gears, of the gearbox will be utilized in this thesis this limitation should not be

a problem. When the gear is shifted the output torque from the gearbox will

be zero for one second to model the loss of output torque during a gear shift.

Gear shift points are presented in Appendix A.

2.4 Forces

The truck is affected by several different longitudinal forces: aerodynamic

drag, rolling resistance, and gravity due to the road slope angle, see Figure

2.6.

The aerodynamic drag force, Fa, is modeled as:

Fa =
1

2
cwAaρav2 (2.22)

Where cw is the air drag coefficient, Aa the vehicle cross section area, ρa the

air density and v the velocity of the vehicle.

The rolling resistance force, Fr, is modeled as a simple function dependent

only on the road angle, α:

Fr = crFN (2.23)

FN = mg cos(α) (2.24)

Where α is the road angle, m the mass of the truck and g the gravitational

constant and FN the normal force.
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Figure 2.6: The forces acting on the vehicle.

The gravitation force, Fg, is:

Fg = mg sin(α) (2.25)

Where α is the road angle, m the mass of the truck and g the gravitational

constant.

Finally by using Newtons second law:

mv̇ = Fw − Fa − Fr − Fg (2.26)

Where Fw is the resulting friction force at the wheel which drives the vehi-

cle forward.

2.5 Complete Driveline

The equations given earlier in this chapter can be combined together to state

the complete driveline model. The model is implemented in Simulink, a pic-

ture of the system is available in Appendix A. Assume that the gear is another

than the neutral gear, then the velocity of the truck can be expressed as:

v = θ̇wrw =
rw

igif
θ̇e (2.27)

Using this result and combining Equations 2.8, 2.20 and 2.26 earlier in this

chapter the following differential equation is received:

v̇ =
rw

Jw + mr2
w + ηgi2gηf i2fJe

(

ηgigηf ifTe(v, P, G) − kbB −

−
1

2
cwAaρarwv2 − mgrw(crcos α + sin α)

)

(2.28)
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Where Te is the engine torque that is given in Equation 2.8 and the engine

speed N can be rewritten as a function of v according to equation 2.29.

N =
60igif
2πrw

v (2.29)

If the neutral gear is used the output torque of the engine is zero which

leads to the following differential equation:

v̇ =
rw

Jw + mr2
w

(

−kbB −
1

2
cwAaρarwv2 − mgrw(crcos α + sin α)

)

(2.30)

For the model used in Chapter 3 and 4 the implementation in Simulink
is distance based instead of the standard time based one. Meaning that the

Simulink time variable is used as distance instead of time. Therefore Equa-

tion 2.28 and 2.30 have to be rewritten into functions of distance instead of

time. This is done according to Equation 2.31.

dv

dt
=

dv

ds

ds

dt
= v

dv

ds
(2.31)

This results in that Equation 2.28 can be rewritten to Equation 2.32 and

Equation 2.30 into 2.33.

dv

ds
=

1

v

rw

Jw + mr2
w + ηgi2gηf i2fJe

(

ηgigηf ifTe(v, P, G) − kbB −

−
1

2
cwAaρarwv2 − mgrw(crcos α + sin α)

)

(2.32)

dv

ds
=

1

v

rw

Jw + mr2
w

(

−kbB −
1

2
cwAaρarwv2 − mgrw(crcos α + sin α)

)

(2.33)

2.6 Fuel Consumption

The fuel consumption, see Equation 2.36, is calculated by integrating the fuel

mass flow given in Equation 2.37. The fuel mass flow itself, Equation 2.34,

is determined from the fueling function δ described in Equation 2.3 . Where

ṁf is the fuel mass flow [g/s], δ the fueling [mg/stroke], N the engine speed

[RPM] and cf is defined by equation 2.35 where ncyl is the number of cylinders

and nr the number of revolutions of the crankshaft per stroke. It is assumed

that the engine runs on idle fueling during gear shifts since an automatic

manual transmission ramps engine torque up and down during a gear shift

and therefore some fuel will be used.

ṁf = cfNδ (2.34)

cf =
1

60 · 103
·
ncyl

nr

(2.35)

mf (N, P, G) =

∫

ṁf (N, P, G) dt (2.36)

Where

ṁf (N, P, G) =

{

cfNPδmax(N) G 6= 0
cfNidleδidle G = 0

(2.37)
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2.7 Fuel and Time

To be able to compare different simulations over the same road profile a differ-

ence in fuel consumption and travel time has to be measured. These quantities

are called ∆t and ∆f . They are defined according to Equation 2.38 and 2.39,

where tcase and tref are the travel times of the current simulation and a ref-

erence simulation. mfcase and mfref stands for the fuel consumption of the

current simulation and a reference simulation. Most times the standard PI

cruise controller is chosen as the reference simulation.

∆t =
tcase − tref

tref

(2.38)

∆f =
mfcase − mfref

mfref

(2.39)

There is one quite difficult question that will be raised when different speed

profiles for a given road are evaluated, how can difference in travel time be

compared to a difference in fuel consumption. For example if the fuel con-

sumption for a given road decreases with 1 % and the travel time increases

with 1 %, is this system better or worse than the original cruise controller?

The problem here is that there are no direct answers. The struggle for a look

ahead cruise controller is to keep the travel time constant while lowering the

fuel consumption. Due to the optimization problem on real road profiles this

is hard to achieve therefore some type of weight or penalty function has to be

constructed.

2.7.1 One Delta Function

The idea is to construct one single ∆-function from ∆time and ∆fuel or rather

convert the difference in time to a difference in fuel. A test on level road with a

base speed of 85km/h was done, simulation were then made to compare what

happens with the fuel consumption if the road was driven faster or slower.

The results are collected in the diagram presented in figure 2.7. In this figure,

2.7, also a least square estimation of the measured data, see equation 2.40

is presented. The offset in the least square approximation was too small to

have any impact on the results later on in this report and was removed to

simplify the approximation slightly. The result for this case is that a −1%
decrease travel time can be seen as a 0.903% increase in fuel consumption in

other words resulting in c = 0.903. It should be noted that a changed speed

interval or set speed would lead to a changed c as well.

∆tot = ∆f + c ∆t (2.40)

Here: ∆tot = 0 ⇐⇒

c = −
∆f

∆t
c = 0.903 (2.41)
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Figure 2.7: ∆f as a function of ∆t, solid line represents measured data while

the dashed line represents the least square approximation.



Chapter 3

Analytically Derived
Optimal Speed Profiles

It has previously been shown by Fröberg et al. (2006) that optimal speed pro-

files for simple road profiles can be derived analytically. The focus of this thesis

is to analyze which effects disturbed input data has on a look ahead cruise con-

troller given the knowledge of optimal speed profiles for different roads. This

chapter will handle how these optimal speed profiles look like. It should also

be stated since traveling at a lower speed saves fuel so time also has to be

taken into consideration when calculating the optimal speed profiles.

A look ahead system could allow for more than just the velocity to be opti-

mized over a given road. For example if it is known that the vehicle is almost

at the top of a hill a gearshift could be avoided by allowing the vehicle to drag

it self over the top at the current gear. When a gearshift really is necessary it

could instead be done before an up- or downhill slope. For example the vehicle

could shift the gear down one step and enter a steep uphill slope at a slightly

higher engine speed. This could allow the vehicle to finish the slope without

being forced to shift down two steps while in the slope.

The road profiles accounted for in this chapter are of theoretical interest

since it is possible to find analytical solutions to the optimal speed profiles,

this comes with the drawback that they do not reassemble real road profiles.

Effects of real world road profiles will be explored later in this thesis. The

reference speed is set to 85km/h, minimum speed to 80km/h and maximum

velocity to 90km/h. The vehicle mass is set to 40 000kg and the gear number

is 12 if nothing else is stated. In this chapter it is assumed that the control

system has perfect knowledge of the road topography, vehicle parameters and

environmental conditions. Optimizations are done to keep an average speed

of 85km/h over the road sections.

13
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3.1 Optimal Speed Profiles on Level Road and

Small Gradients

First speed profiles on level roads will be handled. By intuition one can argue

that with a given travel time it is optimal to keep a constant velocity. Unnec-

essary accelerations should by intuition be seen as non fuel optimal behaviour.

Also by traveling at a higher speed the aerodynamic drag force, which has a v2

part in it, will quickly increase in size. Fröberg et al. (2006) also shows that it

is optimal to keep the velocity constant on level road when the travel time is

given.

These arguments also applies to small gradients, which are defined as

downhill slopes where the gravity is not enough to accelerate the vehicle and

uphill slopes where the engine is capable to keep the vehicle at reference

speed. There is no reason to accelerate the vehicle in a small downhill slope

if the gravity is not enough to speed up the truck, the same applies for small

uphill gradients if the engine can keep the velocity constant then that is the

optimal solution for a given travel time. This is also shown in Fröberg et al.

(2006).

It should be noted that the solution explained here is true for an affine

engine map. There is no guarantee that a non affine engine map will give

this result in the optimal case. A non affine engine map makes it a lot more

difficult to analytically derive the optimal trajectory and solutions with such

engine maps are not considered in this thesis.

3.2 Optimal Speed Profile for Steep Downhill

Slopes

It has been shown in for example Hellström (2005) and Fröberg et al. (2006)

that controlling the speed of a vehicle in steep gradients give the potential

to save some per cent of fuel. The idea is in a downhill slope to cut the fuel

injection before the slope and then make use of the gravity to accelerate the

vehicle. For a typical speed profile see Figure 3.1. This will if compared to a

standard cruise controller take some extra time since the vehicle will travel

at a lower average speed. To make up for this loss of time the vehicle will be

accelerated before uphill slopes which will be seen later in this chapter. The

500m, 3% slope is steep enough to accelerate the vehicle but still short enough

to point out most effects of disturbances which in longer slopes wont be possi-

ble to notice. It should be noticed that if the vehicle would be allowed to reach

a higher speed than 90km/h in downhill slopes a lot of the gain of using this

optimization would be lost. This is because energy is lost when the vehicle is

forced to brake when 90km/h is reached. However the top velocity should real-

isticly be restricted due to safety reasons and legislation. The cruise controller

parameters are the same for both the optimization and the standard cruise

controller.

In Figure 3.2 a standard PI cruise controller is compared to the optimal

speed profile for the given downhill slope. The result is an increased travel

time by ∆t = +1.02 % and ∆f = −12.65 % less consumed fuel.
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Figure 3.1: The optimal speed profile on the given downhill slope.
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Figure 3.2: The optimal speed profile (solid) and the PI regulated speed profile

(dashed) on the given road profile. ∆t = +1.02% and ∆f = −12.65%.
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3.3 Optimal Speed Profile for Steep Uphill Slopes

Steep uphill slopes are defined as slopes in which the engine isn’t strong

enough to keep the vehicle at reference velocity. The optimal solution is to

accelerate the vehicle before the uphill slope, see Figure 3.3 for a road and

speed profile. This allows the vehicle to enter the slope at a higher speed and

therefore also finish the slope at a higher speed, something which will shorten

the travel time but of course cost more fuel. This is in other words not fuel

optimal but makes it possible to regain some of the time lost because of the

decreased vehicle speed before steep downhill slopes. So when the uphill slope

is combined with the profile of a downhill slope the travel time will be more

or less constant but still a few percent fuel can be saved. The complete idea of

the system is to save fuel by cutting the injection before steep downhill slopes

and regain the lost travel time by accelerating the vehicle before steep uphill

slopes.
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Figure 3.3: The optimal speed profile on the given uphill slope.

In Figure 3.4 a PI regulated cruise controller is compared to the optimal

speed profile. In this case the distance will be driven in ∆t = −1.92% less time

but with the cost of ∆f = +1.18% extra fuel.

3.4 Combining Up- and Downhill Speed Profiles

If the two road profiles explained in section 3.2 and 3.3 are combined and also

the optimal velocities a case like the one in Figure 3.5 is constructed. For this

road profile it is not only possible to save fuel but also to drive the distance

faster than what the standard PI cruise controller is capable of.

Figure 3.6 shows a comparison between the PI regulated cruise controller

and the optimal cruise controller. In this case both the travel time and the

fuel consumption are less for the optimal controller, ∆t = −0.90% and ∆f =
−5.75%.
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Figure 3.4: The optimal speed profile (solid) and the PI regulated speed profile

(dashed) on the given road profile. ∆t = −1.92% and ∆f = +1.18%
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Figure 3.5: The optimal speed profile on the given plateau road profile.
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Figure 3.6: The optimal speed profile (solid) and the PI regulated speed profile

(dashed) on the given road profile. ∆t = −0.90% and ∆f = −5.75%.



Chapter 4

Disturbance of Analytical
Speed Profiles

In Chapter 3 the analytically calculated speed profiles for steep up- and down-

hill slopes were presented. Of great interest is the capability of the system to

handle disturbed input data. How large differences can be tolerated on the in-

put data compared to the real road? There are several reasons why the system

should be able to handle quite big disturbances, higher precision on map data

will be more expensive and require more storage space and some parameters

in the system, like vehicle mass are not possible to estimate perfectly. Due to

the limitations of road profiles for which it are possible to analytically calculate

the speed profiles there will also be limitations to which types of disturbances

it are possible to simulate for this road profiles.

Therefore in this chapter only bias faults of different types will be given

attention. To handle disturbances of types like white noise or quantization of

map data some type of numerical optimization will be necessary. Another no-

tation that should be made is that all faults are implemented in the prediction

since this leaves the simulation conditions untouched for fair comparisons. It

should also be noted that unless anything else is mentioned all simulations are

done with the highest gear, number 12. The reference speed is set to 85km/h,

minimum speed to 80km/h, maximum speed to 90km/h and the vehicle mass

to 40 000 kg. For the simulated scenarios the difference in travel time and fuel

consumption are presented and also the combined delta function defined in

Section 2.7. Both the travel time and the fuel consumption are compared to a

standard PI cruise controller.

4.1 Types of Disturbances

This chapter will handle several types of disturbances, primary bias faults

in position and in the angle data of steep up- and downhill profiles. Effects

of mass and wheel radius errors in the optimization and some environmen-

tal disturbances like badly estimated rolling resistance and aerodynamic drag

will also be handled for these simple road profiles.

19
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4.2 Effects of Disturbed Input Data in Steep Up-

hill Slopes

4.2.1 Position Bias Errors

In Figure 4.1 a plot of the results of a positive or negative bias error in the po-

sition data can be seen. A 50m bias is a quite large error and is approximately

twice the length of a long haulage truck. The difference in travel time and

fuel consumption compared to the standard PI cruise controller can be seen

in Table 4.1. Figure 4.1 clearly shows the effect, if the system believes that

the uphill slope comes early, the case marked as −50m, it will start to acceler-

ate too early and reach maximum speed before the slope begins. The effect is

higher fuel consumption but also slightly shorter travel time.

There is also another problem which is not directly visible. If the vehicle

has already reached its maximum speed it will stop accelerate and reduce

throttle level and therefore lose turbo pressure, something which should be

avoided just before steep uphill slopes. The lost turbo pressure is not modeled

in this thesis work but is very likely to lead to a loss in travel time and possibly

also increased fuel consumption. In the opposite situation when the system

believes that the hill starts further away, the scenario marked as +50m, than

it actually does the vehicle will start to accelerate too late and does therefore

not reach the optimum speed before the slope and therefore also receives a

lower average speed on the distance.
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Figure 4.1: This figure shows simulations with position bias errors compared

to the optimal scenario. The disturbed system will, as can be seen, either react

too early or too late.

4.2.2 Angle Bias Faults

An angular bias fault will result in a similar result as the position bias fault. If

the system receives data that says that the hill is less steep, here 2.4% instead
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Uphill 3% 500m

∆-Function Value

Optimal Scenario
∆fopt +1.17%

∆topt −1.92%

∆fopt + c∆topt −0.56%

Position Bias −50m

∆f
−50 +1.27%

∆t
−50 −2.05%

∆f
−50 + c∆t

−50 −0.58%

Position Bias +50m

∆f+50 +0.87%

∆t+50 −1.45%

∆f+50 + c∆t+50 −0.44%

∆-Function Value

Angle Bias −20%

∆f
−20 +0.61%

∆t
−20 −1.03%

∆f
−20 + c∆t

−20 −0.32%

Angle Bias +20%

∆f+20 +1.27%

∆t+20 −2.05%

∆f+20 + c∆t+20 −0.58%

Table 4.1: Results from a 500m 3% uphill slope with bias faults in the position

data or in the angle data, a standard PI cruise controller is used as reference.

of 3%, it will accelerate to reach an expected optimal top speed which is lower

than the optimal top speed for the real slope. If the situation is the opposite

the control system will accelerate the vehicle to a higher speed before the slope

than what is optimal. In this case optimization is done for a 3.6% slope but the

vehicle is run over a 3% slope. These behaviours are shown in Figure 4.2 and

the result in time and fuel consumption compared to a standard cruise con-

troller are presented in Table 4.1. The reason for the small difference between

the optimal solution and the disturbed solution with an expected 3.6% hill is

because of the hard maximum speed limit of 90km/h for the vehicle. Thus

since the vehicle never accelerates to a velocity over 90km/h a steeper uphill

slope will not affect the result by much compared to the 3% 500m uphill slope

where the top speed is almost reached before the slope.
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Figure 4.2: Simulations with a bias error in the angle forcing the system to

optimize for a too steep or too flat slope. The system reacts too late when

velocity is optimized for a assumed flatter slope but the difference is minor

when the slope is assumed steeper due to the hard speed limit at 90km/h.
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4.3 Effects of Disturbed Input Data in Steep Down-

hill Slopes

4.3.1 Position Bias Errors

The effects of a bias error in the position data in steep downhill slopes are

similar to those in steep uphill slopes. If the system believes that the slope

starts later than it really does it will cut the fuel injection too late and there-

fore waste fuel that could otherwise be saved, see Figure 4.3, the plot marked

as +50m. In the opposite situation fuel injection will be cut too early which

will cause the vehicle to reach minimum speed too early resulting in a slightly

longer travel time but also a slightly lower fuel consumption, see Figure 4.3

and the scenario marked as −50m.
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Figure 4.3: Simulations of a downhill slope with position bias faults in the

optimization compared to the optimal speed trajectory. Again it is obvious

that with a disturbance like these the system reacts either too early or too late

which results in lost time or wasted fuel.

4.3.2 Angle Bias Errors

Scenarios with positive and negative angle bias faults are plotted in Figure

4.4 and the differences in fuel and travel time are presented in Table 4.2. As

can be seen a positive bias fault of 0.6 percentage units, marked as +20% in

Figure 4.4, in the angle of the slope will not affect the outcome since a 500

m 3% slope is enough to accelerate the vehicle to maximum speed, 90km/h,

from minimum speed, 80km/h. A negative bias fault of −0.6 percentage units,

marked as −20% in Figure 4.4, on the other hand will affect the behaviour of

the system and some potential saved fuel will be wasted since fuel injection is

cut too late before the slope.
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Downhill 3% 500m

∆-Function Value

Optimal Scenario
∆fopt −12.65%

∆topt +1.02%

∆fopt + c∆topt −11.73%

Position Bias −50m

∆f
−50 −12.85%

∆t
−50 +1.16%

∆f
−50 + c∆t

−50 −11.80%

Position Bias +50m

∆f+50 −9.81%

∆t+50 +0.07%

∆f+50 + c∆t+50 −9.75%

∆-Function Value

Angle Bias −20%

∆f
−20 −8.33%

∆t
−20 +0.56%

∆f
−20 + c∆t

−20 −7.82%

Angle Bias +20%

∆f+20 −12.65%

∆t+20 +1.02%

∆f+20 + c∆t+20 −11.73%

Table 4.2: Results from a 500m 3% downhill slope with bias faults in the po-

sition data or in the angle data. The standard PI cruise controller is used as

reference.
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Figure 4.4: Plots of simulations with angle bias errors compared to the optimal

scenario. With a assumed flatter slope the system reacts to late and a lot of

the fuel that could be saved is wasted. For the assumed steeper slope there is

no difference since the 3% downhill slope is enough to accellerate the vehicle

from 80 to 90km/h.
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4.4 Effects of Disturbed Input Data on a Plateau

Road Profile

When a steep uphill slope is combined with a steep downhill slope the effects

on the speed profiles are the same as in the single cases for these two slopes,

see Figure 4.5. More interesting is the fact that when the control system acts

too early the fuel consumption and travel time are almost unaffected but in

the opposite situation the losses in both travel time and the amount of fuel

used are facts, see Table 4.3. When the system reacts too early the minor

difference can be explained by the fact that the vehicle will travel at top speed

for some extra time before the uphill slope and at minimum speed for a longer

time before the downhill slope. These two errors will cancel each other and

therefore the small difference. In the case where the control system does not

cut the fuel injection in time some of the potential fuel that could be saved

before the downhill slope is wasted and therefore the degraded performance.
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Figure 4.5: Simulations done over a 3% plateau with position bias errors with

the optimal scenario as reference.
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Figure 4.6: Simulations done over a 3% plateau with angle bias faults com-

pared to the optimal speed trajectory.

Plateau 3% 500m

∆-Function Value

Optimal Scenario

∆fopt −5.75%

∆topt −0.78%

∆fopt + c∆topt −6.45%

Position Bias −50m

∆f
−50 −5.75%

∆t
−50 −0.79%

∆f
−50 + c∆t

−50 −6.46%

Position Bias +50m

∆f+50 −4.50%

∆t+50 −0.65%

∆f+50 + c∆t+50 −4.56%

∆-Function Value

Angle Bias −20%

∆f
−20 −3.96%

∆t
−20 −0.42%

∆f
−20 + c∆t

−20 −4.34%

Angle Bias +20%

∆f+20 −5.65%

∆t+20 −0.90%

∆f+20 + c∆t+20 −6.46%

Table 4.3: Results from simulations on an 500m 3% uphill slope combined

with a 500m 3% downhill slope, the standard PI cruise controller is used as

reference.
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4.5 Mass Error

To accurately calculate how to control the velocity in up and downhill slopes

the mass of the vehicle has to be known. A mass estimation is available to

the trucks control systems. This function will estimate the mass of the vehicle

with an error of approximately ±10%. A disturbance in the mass estimation

of the vehicle could be seen as a disturbance in the road slope angle since

gravitational force can be approximated as in Equation 4.1. If both errors

are large this may result in large prediciton errors for the look ahead cruise

controller. A mass error however will affect other parts of the speed profile

calculation as well and will therefore have a larger impact than a pure angle

fault of the same size, see Equation 2.32. Figure 4.7 shows a plot of the speed

profile when calculated with a +10% and with a −10% error in the vehicle

mass, which initially was 40 000kg. The impacts on fuel consumption and

travel time are presented in Table 4.4.

Fg = mg sin α ≈ mg α For small angles α (4.1)
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Figure 4.7: Plots of the speed trajectories when optimizations are done with a

mass fault of ±10%.

4.6 Wheel Radius Errors

The effects of wheel radius errors might at first seem hard to predict since it

affects several different parts of the complete vehicle model. The force at the

wheel from the engine torque will be wrongly predicted, see Equation 2.8 and

2.29, but also the aerodynamic drag force and the roll resistance force will be

affected, see Equation 2.22 and 2.29. Still more parts of the prediction will

be affected as can be seen in the complete vehicle model given in Equation

2.28. The effects of a wheel radius fault do not get as big as could be expected

initially with all affected parts of the driveline equations. Wheel radius errors
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Plateau 3% 500m

∆-Function Value

Optimal Scenario r = 52cm

∆fopt −5.75%

∆topt −0.78%

∆fopt + c∆topt −6.45%

Mass Error −10%

∆f
−10% −5.77%

∆t
−10% −0.36%

∆f
−10% + c∆t

−10% −6.47%

Mass Error +10%

∆f+10% −4.92%

∆t+10% −0.95%

∆f+10% + c∆t+10% −5.78%

∆-Function Value

Radius −5cm, r = 47cm

∆fr47 −5.86%

∆tr47 −0.42%

∆fr47 + c∆tr47 −6.24%

Radius +5cm, r = 57cm

∆fr57 −4.78%

∆tr57 −0.97%

∆fr57 + c∆tr57 −5.66%

Table 4.4: Results from simulations with wheel radius errors (right column)

and mass errors (left column) on an 500m 3% uphill slope combined with a

500m 3% downhill slope. The standard PI cruise controller is used as reference.

will only have an larger effect in steep uphill slopes where the optimal speed

profile will be falsely predicted. Steep downhill slopes are almost unaffected.

The reason for this can be explained by looking at the equations referred

to earlier in this section. A positive fault in the wheel radius will predict a

lower engine torque as long as the engine speed is kept under approximately

1 500 rpm due to the v2 dependent maximum torque function, see Section 2.1.

The aerodynamic drag and roll resistance will on the other hand be estimated

higher than what they really are. This results in a predicted slower accelera-

tion in uphill slopes but only with minor effects in steep downhill slopes due

to an estimation of decreased engine drag torque. In the opposite situation

with a negative fault in the wheel radius the control system will predict an

increased engine torque and decreased roll resistance and aerodynamic drag.

This causes the control system to accelerate the vehicle too late in steep up-

hill slopes. Again steep downhill slopes remain relatively unaffected due to an

increased engine drag torque which makes up for the lower rolling resistance

and aerodynamic drag. In Figure 4.8 these two cases can be seen compared

to the optimal case, the wheel radius is 52cm in the vehicle model and opti-

mizations are done with a wheel radius of 47cm, the optimal 52cm and 57cm.

Results from the simulations are presented in Table 4.4.

4.7 Changes to the Aerodynamic Drag Force and

Rolling Resistance

The last model errors presented directly in this thesis are changes to the aero-

dynamic drag force and the rolling resistance in the optimization. It could be

argued that good models are needed for these two forces since both directly af-

fect the calculation of when to accelerate and decelerate to reach the optimal

speed. The aerodynamic drag force is heavily dependent on weather condi-

tions or more exactly wind speed and direction compared to the truck. The

same can be said about the rolling resistance which is dependent on road con-

dition, road material and also the tyres and the condition of those. Errors in

both these resistances will show similar effects on the model since both are



4.7. Changes to the Aerodynamic Drag Force and Rolling Resistance 29

0 500 1000 1500 2000 2500 3000
0

5

10

15

Road Profile

Distance [m]

A
lti

tu
de

 [m
]

0 500 1000 1500 2000 2500 3000
75

80

85

90

95
Speed Profiles

Distance [m]

V
el

oc
ity

 [k
m

/h
]

 

 

opt r52
r47
r57

0 500 1000 1500 2000 2500 3000

0

0.5

1

Cruise Demand

Distance [m]

T
hr

ot
tle

 

 

opt r52
r47
r57

Figure 4.8: Simulations where optimization are done with wheel radius faults

of ±5cm resulting in a wheel radius of 47cm or 57cm instead of the vehicles

real 52cm.

modeled as negative forces, or rather torques, in the complete driveline model,

see Equation 2.28. Due to that the roll resistance force model is only depen-

dent on weight and road angle and the v2 dependence in the aerodynamic drag

force an error in the rolling resistance will have larger impact in low velocities

while the aerodynamic drag force fault will have larger effects the faster the

truck is traveling. It is interesting to note that even though at first glance

it looks bad with large errors in these two negative forces on the vehicle the

impact is less serious than expected. A 10% error in roll resistance does not

affect the calculation of the optimal speed profile very much, the effect is ap-

proximately the same as of a 20m bias fault in position in an uphill slope and

that of a 10m bias fault in a downhill slope, see Figure 4.9. With a 10% error

in the aerodynamic drag force the effects are even less, still steep uphill slopes

suffer more from this type of error, approximately the same as a 15m bias fault

while steep downhill slopes remain relatively unaffected, see Figure 4.10.
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Figure 4.9: Simulations done over a 500m, 3% plateau with model faults in the

rolling resistance.
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Figure 4.10: Simulations done over a 500m, 3% plateau with model faults in

the aerodynamic drag force.



4.8. Combined Disturbances 31

Plateau 3% 500m

∆-Function Value

Optimal Scenario

∆fopt −5.75%

∆topt −0.78%

∆fopt + c∆topt −6.45%

Rolling resistance −10%

∆f
−10% −6.02%

∆t
−10% −0.60%

∆f
−10% + c∆t

−10% −6.56%

Rolling resistance +10%

∆f+10% −5.31%

∆t+10% −0.98%

∆f+10% + c∆t+10% −6.19%

∆-Function Value

Aerodynamic drag −10%

∆f
−10% −5.86%

∆t
−10% −0.42%

∆f
−10% + c∆t

−10% −6.24%

Aerodynamic drag +10%

∆f+10% −4.78%

∆t+10% −0.97%

∆f+10% + c∆t+10% −5.66%

Table 4.5: Results from simulations with falsely estimated rolling resistance

(left column) and falsely estimated aerodynamic drag (right column) in a 500m
3% uphill slope combined with a 500m 3% downhill slope. The reference is the

standard PI cruise controller.

4.8 Combined Disturbances

Of course in real world applications the system will be under the influence of

many different disturbances at the same time. Therefore it is of interest to add

several types of disturbances together. When earlier results in this chapter are

taken into account it is easily realized that some faults will add together in a

way which will result in even larger loss of travel time or fuel compared to

scenarios with perfect input data. In other cases the effects will more or less

cancel each other.

If a downhill slope is considered, from fuel consumption perspective the

worst possible scenario is when a large positive position bias fault, in other

words the slope is coming earlier than expected, is combined with a large neg-

ative angular bias error meaning that the hill is steeper in reality than in the

recorded data. In this case the look ahead cruise controller will cut the in-

jection way too late compared to optimum wasting a lot of the potential saved

fuel. The same scenario in an uphill slope will instead cause longer travel time

since the vehicle will not accelerate early enough to reach optimal speed before

the uphill slope. In Figure 4.11 the result of a position bias fault of 50 m and

an angle error of −20 % in a 3% downhill slope can be seen. The result is a loss

of more than 50% of the potential fuel that could be saved, see Table 4.6.

The problem is that it does not end there. If an error of −10% is added

to the mass approximation the result will be even worse, see Figure 4.12 and

4.13. Still there are more possible faults that can be added to the system

which will degrade performance even more. In Figure 4.13 the same faults are

implemented in a simulation over a road profile with a 500m, 3% uphill slope

combined with a 500m, 3% downhill slope. The results from these simulations

are presented in Table 4.6.
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Figure 4.11: Plot of a simulation done in a 500m, −3% downhill slope with both

an angle bias fault and a position bias fault.
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Figure 4.12: Plot of a simulation done in a 500m, 3% downhill slope with an

angle bias fault, a position bias fault and a mass estimation error.
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Figure 4.13: Plot of a simulation done with an angle bias fault, a position bias

fault and a mass estimation error in a 500m, 3% uphill slope combined with a

500m, 3% downhill slope.

Several faults added together

Downhill 500m, −3%

∆-Function Value

Optimal Scenario

∆fopt −12.65%

∆topt +1.02%

∆fopt + c∆topt −11.73%

Position bias +50m,

angle bias −20%

∆fdist1 −5.50%

∆tdist1 +0.32%

∆fdist1 + c∆tdist1 −5.21%

Position bias +50m,

Angle bias −20%,

mass −10%

∆fdist2 −4.21%

∆tdist2 +0.22%

∆fdist2 + c∆tdist2 −4.01%

plateau, −3%

∆-Function Value

Optimal Scenario

∆fopt −5.75%

∆topt −0.78%

∆fopt + c∆topt −6.45%

Position bias +50m,

Angle bias −20%,

mass −10%

∆fdist3 −2.32%

∆tdist3 +0.17%

∆fdist3 + c∆tdist3 −2.17%

Table 4.6: Results from simulations with several different faults, position bias,

angle bias and mass fault, added together on a 500m 3% downhill slope (left

column) and on a 500m 3% uphill slope combined with a 500m 3% downhill

slope (right column). The standard PI cruise controller is used as reference.
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Function Value

∆fopt −5.43%

∆topt −1.49%

Disturbed Scenario with Gearshift:
∆fdws −3.23%

∆tdws −1.35%

Disturbed Scenario without Gearshift

∆fdns −4.89%

∆tdns −0.94%

Table 4.7: Results from a disturbed scenario which forces a gearshift and a

scenario where the gear shifting point has been lowered to avoid this unnec-

essary gear shift. The ∆ values are calculated with the PI cruise controller as

reference.

4.9 Gearshifts Caused by Disturbances

A disturbance could affect the vehicle in such a way that it will shift gear in

an uphill slope. If the look ahead system calculates wrong due to false input

data and accelerates the truck too late before a steep uphill slope the truck

might lose enough velocity to be forced to shift down one step. With correct

input data this unnecessary gear shift would have been avoided. There is also

another possible scenario here, the system could be constructed to lower the

shifting points slightly if the uphill slope is about to reach its end. This section

will compare both scenarios to the optimal case. In Figure 4.14 the optimal

speed trajectory is compared with a PI cruise controller and the disturbed op-

timal controller. According to the values received, see Table 4.7 this gearshift

wastes more than 2 percentage units of the potential fuel that could be saved.

There is also a minor loss in travel time, therefore avoiding this gearshift is

valuable. In Figure 4.15 the down shift point has been lowered to avoid a gear

shift at the end of the uphill slope. The results in Table 4.7 show that this is a

much better solution than the previous one. Travel time is increased slightly

compared to the scenario with the gearshift and fuel consumption is lower, not

as good as in the optimal case but the loss is more acceptable. A look ahead

system could and most likely should incorporate a system for gear selection

based upon the knowledge of upcoming road, this however is outside the sub-

ject of this master thesis.

4.10 Conclusions

Several different disturbances covering positioning errors, faulty angle data,

bad environmental models and mass errors have been simulated with this

model. It can be seen that the environmental errors have less effect on the

system than large angle or position faults. Wrong wheel radius almost only

has an impact in steep uphill slopes. Miscalculations in the mass estimations

also has a quite large impact on the system. A mass error combined with

an angle fault and a position fault results in severely degraded performance

compared to the optimal case. From the results in the section, since there is

known that a mass error of 10% is hard to avoide, it defenitely is of interest to

keep the angle fault under 10%. Also by keeping the position error under 25m
a lot has been won.
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Figure 4.14: Speed profile with a gear shift for the PI cruise controller but not

for the optimal strategy.
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Figure 4.15: Speed profile with a gear shift due to disturbance and a speed

profile with changed gear shifting point to avoid shifting gears due to distur-

bances.



Chapter 5

MPC with Dynamic
Programming, DP-tool

DP tool is a program written by Ph.D. Student Erik Hellström at Linköping

University. It uses a model predictive control (MPC) scheme with dynamic

programming (DP) as optimizer to achieve an optimal control strategy of how

to control the velocity and gear selection for a vehicle on a given road profile.

The control algorithm and optimization are thoroughly described in Hellström

(2005) and Hellström et. al. (2007). This approach is not bound to the simple

road profiles which the analytic approach in previous chapters was limited to.

Therefore it is possible to calculate optimal speed trajectories for real roads.

To suite the purpose of this thesis some modifications to DP-tool are made,

making it possible to optimize over defect input data but simulating the vehi-

cle over undisturbed data. This chapter will briefly note the algorithms behind

the DP and MPC used in this program. The vehicle model used in DP-tool is al-

most the same model as the one used in the previous chapters. Only a slightly

different model of the gearbox is used, see Appendix A and the simulation uses

a recorded torque map instead of the approximation in Section 2.1.

5.1 Model Predictive control

The idea of model predictive control is to use a model to predict future outputs

of a system. This puts some requirements on the model since if its power to

predict is not good enough the optimization algorithm would not be able to

accurately choose the optimal strategy. The algorithm for MPC is explained in

Ljung and Glad (2003) and is as follows:

1. At each instant t calculate predictions for the number of outputs y spec-

ified by a given horizon M , ŷ(t + k|t), k = 1, ..., M . These outputs will be

based upon future control signals, u(t + j), j = 0, 1, ..., N , and at time t
known measurable values.

2. Formulate a criterion based on these prediction and optimize in regard

of the control signals, u(t + j), j = 0, 1, ..., N .

3. Send the optimal control signal u(t).

4. Wait for the instant t + 1 and repeat the algorithm from step 1.

36
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5.2 Dynamic Programming

DP-tool utilizes dynamic programming (DP) to find the optimal control strat-

egy. Basically what the DP part of DP-tool does is to find a solution to a short-

est path problem. Dynamic programming is covered in Bertsekas (2000) and

Appelgren, Holvid and Zachrisson (1972) here only the shortest path algo-

rithm will be noted.

Shortest Path DP Algorithm (Bertsekas (2000) and Hell-
ström (2005))

ai,j
k , transition cost at step k from state i ∈ Sk to state j ∈ Sk+1

ai,t
N , terminal cost of state i ∈ SN

gk(i, ui,j
k , wk), weighting function to define the cost of a policy

wk, a random disturbance

J , the cost function

The cost ai,j
k is equal to gk(i, ui,j

k , wk) where ui,j
k is the control

that causes the transition between state i and j. The termi-

nal cost of state i is equal to gN (i). In DP-tool the cost of the

final stage gN(i) = 0 and wk is the road slope angle and is

considered as known.

1.

JN (i) = ai,t
N , i ∈ SN

2.

k = N − 1

3.

Jk(i) = min
j∈Sk+1

{

ai,j
k + Jk+1(j)

}

, i ∈ Sk

repeat for k = N − 2, N − 3, ..., 1

The optimal cost J0(s) is equal to the cost of cheapest trajec-

tory between s and t. The control sequence of the cheapest

trajectory is the optimal control sequence.

5.3 Complete Control Algorithm

The complete control algorithm for the system can be found in Hellström

(2005) but since this thesis work was published the system has evolved and

some changes have been made. Basically the system looks at a horizon of

1500m with a step size of 50m. The optimal speed for the vehicle every 50m
of the entire horizon is calculated and a control is used to get the vehicle to

the optimum speed at the next step. The optimal control for the next step is

defined by the cheapest way to reach the end point of the horizon. Then after

50m the entire optimization is redone with a new horizon and also fault cor-

rection based upon current speed and the during last optimization predicted

speed is applied and so on.
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5.3.1 Cost Function

A cost function is introduced to weigh fuel consumption and travel time this

cost function is given in Equation 5.1 and was already noted in Section 2.7.

I = M + βT (5.1)

To make the cost function in 5.1 usable in dynamic programming the look

ahead horizon is divided into N steps of length h. This brings the expression

given in Equation 5.2.

J =

N−1
∑

k=0

gk(vk, vk+1, uk, gk, gk+1, αk) (5.2)

Where gk is given in Equation 5.3. For the optimization algorithm the cost

function is including not only consumption, mf,k and travel time ,tk, but also

velocity changes ,|vk−vk+1|, and gear shifts ,|Gk−Gk+1|. vk represents velocity

at stage k, uk the control at stage k.

gk(vk, vk+1, uk, uk+1, αk) = [Q1, Q2, Q3, Q4]









mf,k

tk
|vk − vk+1|

χ (|Gk − Gk+1|)









(5.3)

k = 0, 1, ..., N − 1

Where χ is the unit step:

χ(t) =

{

1 , t > 0
0 , t ≤ 0

(5.4)

The penalty factors have to be decided for use in the optimization. First

the penalty on the amount of fuel used is assumed, Q1 = 1. The two parame-

ters penalizing gear shift and velocity changes are chosen on experience with

the system. Still the penalizing factor for travel time has to be calculated or

decided in some way. In Hellström et al. (2007) a way to calculate β = Q2 is

introduced and goes as follows:

If Equation 2.1 is considered with δ as a control signal, u, the equation can

be written as in Equation 5.6. Together with Equation 2.28 and 2.29, u can be

written as in Equation 5.7. This calculation of β is only correct as long as the

vehicle is traveling in a slope where it can keep it is reference velocity.

I = Mf + βT (5.5)

where Mf is the integrated amount of fuel and T the total time.

T̂map(N, u) = aeN + beu + ce (5.6)

û = cv2 v̂2 + cvv̂ + f(α) (5.7)

The fuel mass flow into the cylinders is stated in Equation 2.34 and 2.35

which together with Equation 2.29, 2.31 and δ = u gives Equation 5.8.

dm

ds
(v, u) = c3u (5.8)



5.3. Complete Control Algorithm 39

The cost function I = M + βT is then:

Î(v̂) =

∫ sf

s0

(

c3

(

2cv2 v̂2 + cv v̂f (α)
)

+
β

v̂

)

ds (5.9)

A stationary point to Î is desired and is found by taking the derivative and

set it equal to zero:

Î

dv̂
=

∫ sf

s0

(

c3 (2cv2 v̂ + cv) −
β

v̂2

)

ds = 0 (5.10)

Finally by solving Equation 5.10, Equation 5.11 is received.

β = c3v̂
2(2cv2 v̂ + cv) (5.11)
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Results DP-tool

This chapter contains results of simulations done with DP-tool over different

road profiles with different types of disturbances. Since a numerical approach

is used to solve the optimization problem almost any type of disturbance are

theoretically possible to simulate. However due to limitations in the imple-

mentation some types of disturbances aren’t possible to implement without

doing changes in the optimization algorithm. In some other cases the results

are somewhat odd and one should consider them with the knowledge that this

is a numerical approach in mind. The control system calculates the optimal

speed trajectory based upon the coming 1 500m of the road. The calculation is

redone every 50m. Reference speed is set to 85km/h and the vehicle is allowed

to speed up to 90km/h which is a hard limit and the soft lower limit is set to

80km/h. In other word if the vehicle cannot hold the minimum velocity in a

steep uphill slope it is allowed to drop to a lower speed, but it will be punished

in the cost function. All simulations starts at reference speed and uses gear

number 12 from the beginning.

6.1 Basic Roadprofiles

To be able to compare the results from DP-tool to those given in Chapter 3 and

4 simulations with the same road profiles and disturbances will also be done

in DP-tool. For the cases with perfect input data see Figure 6.1, 6.2 and 6.3.

The results from the simulations shown in these plots are in line with those

from the analytical optimization approach, see Chapter 3.

Looking at the throttle level plots for these three cases something worth

noting is obvious, the PI cruise controller used to set the speed has trouble

handling the discrete speed steps given to it by the control algorithm. To re-

duce this ripple effect the signal containing the reference speed to the cruise

controller passes through a low pass filter. Still however not all undesired

variations are removed. The low pass filter has an unwanted effect in that

it has a small negative influence on the result from the MPC. The effects of

the ripple and the low pass filter are not very large but it should not be ne-

glected because it reduces the potential of the MPC slightly. Changing the PI

controller parameters can solve this problem but while improving MPC con-

troller performance the standard cruise controller performance gets degraded.

Thus a balance where performance is acceptable for both cases has to be found.

When DP-tool has been tested on board this problem has not been seen most

likely due to the more advanced cruise controller available there.

40
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DP-tool seems to suffer in the same way from disturbances as the system in

Chapter 4 but the difference between the optimal scenario and the disturbed

ones are smaller. This is interesting and DP-tool does seem to be a lot less

sensitive to disturbances which will be seen in this chapter. There are most

likely several reasons why this system is more robust. First of all it is not as

exact as the precalculated speed profile from the beginning something which

has to do with the numerical optimization and the MPC. Secondly since it does

calculate a trajectory every 50 m and also has a feedback with the current

speed it has the opportunity correct prediction errors. This is most likely the

greatest part to why it is so much more robust. Also DP-tool does not set the

fuel injection to zero or max directly instead the driver demand is ramped up

and down. This with the help of the feedback built into the system allows

for changes in the ramps if it is discovered that the model and the real world

differs.
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Figure 6.1: A 500m, 3% downhill slope simulated in DP-tool with perfect input

data, the results are: ∆f = −12.51% and ∆t = 0.71%.
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Figure 6.2: A 500m, 3% uphill slope simulated in DP-tool with perfect input

data, the results are: ∆f = 0.36% and ∆t = −1.52%.
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Figure 6.3: A 500m, 3% plateu simulated in DP-tool with perfect input data,

the results are: ∆f = −4.48% and ∆t = −0.49%.
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6.2 Disturbance of Basic Road Profiles

6.2.1 Position Bias Faults

The result of a position bias fault in one of these simple road profiles is similar

to the effect of having the same fault in the simple model used earlier. However

the difference in fuel consumption and travel time between the disturbed road

profile and the optimal one are not as large as in the simple optimization used

earlier. This is most likely due to the feedback in the MPC. In Figure 6.4 the

behaviour of the dynamic programming based optimization is shown when a

position bias fault is added in a steep downhill slope. The behaviour in a steep

uphill slope is presented in Figure 6.5. The resulting changes in travel time

and fuel consumption are collected in Table 6.1.
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Figure 6.4: The Optimal solution calculated by DP-tool compared to solutions

calculated with position bias errors in the input data.

Downhill

∆-Function Value

Optimal scenario

∆fopt −12.27%

∆topt +0.70%

+50m position bias:
∆f+50m −11.63%

∆t+50m +0.62%

−50m position bias:

∆f
−50m −12.80%

∆t
−50m +0.78%

Uphill

∆-Function Value

Optimal scenario

∆fopt +0.36%

∆topt −1.52%

+50m position bias:
∆f+50m +0.46%

∆t+50m −1.46%

−50m position bias:

∆f
−50m +0.47%

∆t
−50m −1.72%

Table 6.1: The resulting changes in fuel consumption and travel time corre-

sponding to the cases simulated with position bias errors, Figure 6.4 and 6.5.

The standard PI cruise controller is used as reference.
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Figure 6.5: The Optimal solution calculated by DP-tool compared to solutions

calculated with position bias errors in the input data.

6.2.2 Angle Bias Faults

Adding a bias error to the angle data in a steep uphill or downhill slope also

gives similar behaviour as with the precalculated speed trajectory, see Figure

6.6 and Figure 6.7. Again it is obvious that the MPC with dynamic program-

ming is much better at handling inaccurate input data which is confirmed by

the ∆f and ∆t values in Table 6.2. The reason for the non existent differ-

ence between the optimal case and the case where the downhill slope appears

steeper than it really is to the system is because that a 500m 3% downhill slope

is enough to accelerate the vehicle from 80km/h to 90km/h. Thus because of

the 80km/h lower speed limit the control system cannot slow the vehicle more

even if it still would be possible to accelerate to maximum allowed velocity,

90km/h.

Downhill

∆-Function Value

Optimal scenario

∆fopt −12.27%

∆topt +0.70%

+20% angle bias

∆f+20% −12.27%

∆t+20% +0.70%

−20% angle bias

∆f
−20% −7.72%

∆t
−20% +0.20%

Uphill

∆-Function Value

Optimal scenario

∆fopt +0.36%

∆topt −1.52%

+20% angle bias

∆f+20% +0.52%

∆t+20% −1.67%

−20% angle bias

∆f
−20% +0.03%

∆t
−20% −0.76%

Table 6.2: The resulting difference in fuel consumption and travel time from

simulations with angle bias faults, Figure 6.6 and 6.7. The standard PI cruise

controller is used as reference.
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Figure 6.6: Simulations done over a steep downhill slope with angle bias errors

in the input data compared to the optimal solution.
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Figure 6.7: Simulations done over a steep uphill slope with angle bias errors

in the input data compared to the optimal solution.
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6.2.3 Mass Errors

Next fault to take a look at using DP-tool is a vehicle mass estimation error.

One problem, as explained earlier, with the mass estimation error is that it

is hard to get rid off since the estimation has to be made on board. Thus the

estimation has to be done with available resources in the truck. Therefore a

mass error of at least 10% should be accounted for when simulating a look

ahead system. A mass error will bring a direct error in the normal and grav-

itational force calculations, Equation 2.24 and 2.25. Also the vehicle inertia

will be affected by a mass error. In the downhill slope the outcome is hardly

influenced by the a mass error, see Figure 6.8. A higher or lower gravitational

force will be canceled by a lower or higher rolling resistance. In an uphill slope

there are on the other hand quite large differences. This because of a for the

control system increased mass results in estimations of an increased gravita-

tional force, an increased rolling resistance and an increased vehicle inertia.

If the vehicle mass is estimated lower than it really is the situation is the op-

posite. In an uphill slope all faults from parts that are influenced by a mass

error are added together resulting in quite large deviations from the optimal

speed trajectories. In downhill slopes the increased or decreased resistance

forces are canceled by an increased or decreased gravitational force.
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Figure 6.8: A 3%, 500m downhill slope where optimization has been done with

mass errors.
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Figure 6.9: Simulations with mass faults done over a 3%, 500m uphill slope.

Downhill

∆-Function Value

Optimal scenario

∆fopt −12.27%

∆topt +0.70%

+10% mass fault:

∆f+10% −12.24%

∆t+10% +0.65%

−10% mass fault:

∆f
−10% −11.97%

∆t
−10% +0.65%

Uphill

∆-Function Value

Optimal scenario

∆fopt +0.36%

∆topt −1.52%

+10% mass fault:

∆f+10% +0.80%

∆t+10% −1.87%

−10% mass fault:

∆f
−10% +0.58%

∆t
−10% −1.43%

Table 6.3: Results for simulations done with mass errors, Figure 6.8 and 6.9.

The reference is the standard PI cruise controller.
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6.2.4 Wheel Radius Error

Continuing through the basic model errors, optimization with the wrong wheel

radius in DP-tool gets a closer look. As said in Chapter 4 the outcome of a

wheel radius error is slightly harder to predict. The pattern though is again

the same with downhill hardly affected and quite large differences in steep

uphill slopes. Values and plots from the simulations are presented in Table

6.4 and Figure 6.10 and 6.11. A false wheel radius will result in wrongly

calculated torque from the aerodynamic drag force, the gravitational force and

the rolling resistance force. Also the engine torque will be wrongly predicted.

In steep uphill slopes these errors will add to each other while in a downhill

slope the errors carries different signs and more or less cancel each other.
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Figure 6.10: The optimal solution calculated by DP-tool compared to solutions

calculated with wheel radius errors in the input data.

Downhill

∆-Function Value

Optimal scenario

∆fopt −12.27%

∆topt +0.70%

+5cm radius fault, r57

∆fr57 −12.47%

∆tr57 +0.70%

−5cm radius fault, r47

∆fr47 −12.45%

∆tr47 +0.68%

Uphill

∆-Function Value

Optimal scenario

∆fopt +0.36%

∆topt −1.52%

+5cm radius fault, r57

∆fr57 +0.58%

∆tr57 −1.87%

−5cm radius fault, r47

∆fr47 +0.30%

∆tr47 −1.35%

Table 6.4: The resulting delta values corresponding to the simulated cases in

Figure 6.10 and 6.11. The PI cruise controller is used as reference.
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Figure 6.11: The optimal solution calculated by DP-tool compared to solutions

calculated with wheel radius errors in the input data.

6.2.5 Changes in Aerodynamic Drag and Rolling Resis-
tance

The first of the two disturbances to be studied in this subsection is the aero-

dynamic drag force. The fault is implemented as a change in the constant cw

in Equation 2.22. In the simulation environment the constant is left at its

nominal value, cw = 0.6, while it is changed to cw = 0.66 and cw = 0.54 in

the optimization. As indicated by Table 6.5 and Figure 6.12 and 6.13. The

effects could be seen as within the margin of error especially since one of the

disturbed cases gives better performance than the optimal scenario. In the

case of a rolling resistance error the result is following the same pattern as

for the aerodynamic drag force. The disturbance is introduced in the rolling

resistance force in the optimization, see Equation 2.23. The differences are a

bit larger between the optimal solution and the disturbed ones than what was

the case with the aerodynamic drag force, see Figure 6.14 and 6.15 and Table

6.6.
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Figure 6.12: The optimal solution calculated by DP-tool compared to solutions

calculated with a fault in the aerodynamic drag force in the input data.
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Figure 6.13: The optimal solution calculated by DP-tool compared to solutions

calculated with a fault in the aerodynamic drag force in the input data.
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Downhill

∆-Function Value

Optimal scenario

∆fopt −12.27%

∆topt +0.70%

+10% aerodynamic drag

∆f+10% −11.57%

∆t+10% +0.59%

−10% aerodynamic drag

∆f
−10% −12.30%

∆t
−10% +0.66%

Uphill

∆-Function Value

Optimal scenario

∆fopt +0.36%

∆topt −1.52%

+10% aerodynamic drag

∆f+10% +0.62%

∆t+10% −1.58%

−10% aerodynamic drag

∆f
−10% +0.28%

∆t
−10% −1.50%

Table 6.5: The difference in fuel consumption and travel time for simulation

with bad aerodynamic drag force estimation compared with the optimal case.

The PI cruise controller is used as reference.
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Figure 6.14: The optimal solution in a steep downhill slope compared to solu-

tions calculated with a fault in the rolling resistance in the input data.

Downhill

∆-Function Value

Optimal scenario

∆fopt −12.27%

∆topt +0.70%

+10% rolling resistance
∆f+10% −11.05%

∆t+10% +0.44%

−10% rolling resistance

∆f
−10% −11.92%

∆t
−10% +0.64%

Uphill

∆-Function Value

Optimal scenario

∆fopt +0.36%

∆topt −1.52%

+10% rolling resistance
∆f+10% +0.74%

∆t+10% −1.71%

−10% rolling resistance

∆f
−10% +0.67%

∆t
−10% −1.47%

Table 6.6: The difference in fuel consumption and travel time for simulation

with bad rolling resistance estimation compared with the optimal case. The

standard PI cruise controller is used as reference.
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Figure 6.15: The optimal solution in a steep uphill slope compared to solutions

calculated with a fault in the rolling resistance in the input data.

6.2.6 Combining Disturbances

To find a worst case scenario several different disturbances of the input data to

the optimization are simulated simultaneously. A look at Figure 6.16 and 6.17

shows that with both a positive position bias error and a negative angle fault

the vehicle hardly accelerates before a steep uphill slope or decelerates before

a steep downhill slope. As a result a lot of the possible gains in fuel or time are

lost due to the disturbances. This is also confirmed by the values in Table 6.7.

Adding a −10% mass fault to the system does not make that much difference

but the result is slightly worse. Plots of a steep downhill slope and a steep

uphill slope with a +50m position bias, a −20% angle bias and a −10% mass

error are presented in Figure 6.18 and 6.19. The corresponding differences in

travel time and fuel consumption are presented in Table 6.8.

Downhill

∆-Function Value

Optimal scenario

∆fopt −12.27%

∆topt +0.70%

Disturbed scenario

∆fDist −5.24%

∆tDist +0.04%

Uphill

∆-Function Value

Optimal scenario

∆fopt +0.36%

∆topt −1.52%

Disturbed scenario

∆fDist +0.12%

∆tDist −0.29%

Table 6.7: Results from simulations done with both a +50m bias fault and a

−20% angle fault. To the left downhill and to the right uphill. The standarad

PI cruise controller is used as reference.
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Figure 6.16: The optimal solution in a downhill slope calculated by DP-tool

compared to solutions calculated with a +50m bias fault in the position and a

−20% bias fault in the angle.

Downhill

∆-Function Value

Optimal scenario

∆fopt −12.27%

∆topt +0.70%

Disturbed scenario

∆fDist −5.01%

∆tDist +0.01%

Uphill

∆-Function Value

Optimal scenario

∆fopt +0.36%

∆topt −1.52%

Disturbed scenario

∆fDist −0.08%

∆tDist +0.26%

Table 6.8: Results from simulations done with a +50m position error, a −20%
angle fault and a −10% mass error. To the left downhill and to the right uphill.

As reference is the standard PI cruise controller used.
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Figure 6.17: The optimal solution in a uphill slope calculated by DP-tool com-

pared to solutions calculated with a +50m bias fault in the position and a −20%
bias fault in the angle.
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Figure 6.18: The optimal solution in an downhill slope calculated by DP-tool

compared to solutions calculated with a +50m bias fault in the position, a

−20% bias fault in the angle and a −10% fault in the vehicle mass.
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Figure 6.19: The optimal solution in an uphill slope calculated by DP-tool

compared to solutions calculated with a +50m bias fault in the position, a

−20% bias fault in the angle and a −10% fault in the vehicle mass.
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6.3 Real Road Profiles

While the simple road profiles are interesting from an analytical point of view

the real interest is of course in using a look-ahead system on real roads. This

section contains simulations done over the road Södertälje toward Norrköping

(the E4), see Figure 6.20. This road, especially the first part of it, is good for

speed optimizations of this kind which can be seen in the results and also by

looking at the altitude plot of the road. The first part of the road has up- and

downhill slopes of a length around 1 − 2km each which are quite optimal for

this type of optimizations. In Appendix B results from simulations done over

the road between Uppsala and Gävle are presented. Uppsala toward Gävle is

a road which isn’t really suited for this type of speed optimizations. As can

be seen in the altitude plot there are only smaller local variations and it is

not possible to optimize over a slowly climbing or descending road with the

look ahead horizon used here. The starting gear in all simulation is gear num-

ber 12, the reference speed is set to 85km/h and the vehicle mass to 40 000kg.

Again the vehicle is allowed to accelerate to a maximum of 90km/h and the

minimum speed is set to 80km/h, a boundary which if necessary may be bro-

ken.
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Figure 6.20: The road between Södertälje and Norrköping.
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6.3.1 Position Bias Errors on Real Road Sections

Adding position bias faults to the system on a real road simulates an inexact

map or, bad GPS signal or possibly delays in the calculation of the trajectory.

DP-tool is only mildly affected of a 50m bias fault like this road section. The

results in fuel consumption and travel time are presented in Table 6.9.

Södertälje - Norrköping

∆-Function Value

Optimal scenario

∆fopt −1.74%

∆topt −0.04%

∆fopt + c∆topt −1.78%

−50m position bias

∆f
−50m −1.72%

∆t
−50m −0.12%

∆f
−50m + c∆t

−50m −1.83%

−25m position bias

∆f
−25m −1.68%

∆t
−25m −0.12%

∆f
−25m + c∆t

−25m −1.79%

∆-Function Value

+25m position bias

∆f+25m −1.74%

∆t+25m −0.02%

∆f+25m + c∆t+25m −1.71%

+50m position bias

∆f+50m −1.65%

∆t+50m −0.06%

∆f+50m + c∆t+50m −1.70%

Table 6.9: The results from simulations of the first 40 km of Södertälje toward

Norrköping with position bias faults. The standard PI cruise controller is used

as reference.

6.3.2 Mass and Wheel Radius Errors

A mass error gives some minor effects on the outcome when this road is sim-

ulated. The benefits or losses in time and fuel are slightly reorganized but

totally the change is down to a one tenth of a percentage unit. When a false

wheel radius is used in the optimization slightly larger differences in fuel con-

sumption and travel time appears but they are still small. DP tool is appar-

ently very good at handling model errors when real roads are used to. Results

are presented in Table 6.10.

Södertälje - Norrköping

∆-Function Value

Optimal scenario rw = 52cm

∆fopt −1.74%

∆topt −0.04%

∆fopt + c∆topt −1.78%

−10% mass fault

∆f
−10% −1.79%

∆t
−10% 0.14%

∆f
−10% + c∆t

−10% −1.67%

+10% mass fault

∆f+10% −1.67%

∆t+10% −0.25%

∆f+10% + c∆t+10% −1.89%

∆-Function Value

Wheel Radius, rw = 47cm

∆fr47 −1.79%

∆tr47 0.15%

∆fr47 + c∆tr47 −1.65%

Wheel Radius, rw = 57cm

∆fr57 −1.57%

∆tr57 −0.32%

∆fr57 + c∆tr57 −1.86%

Table 6.10: Results from simulations of Södertälje - Norrköping with mass

errors to the left and false wheel radius to the right. The reference is the

standard PI cruise controller.
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6.3.3 Roll Resistance and Aerodynamic Drag Force Er-
rors

The impact of environmental disturbances like changes in the aerodynamic

drag force or the rolling resistance do not have much effect on the system ei-

ther when running simulations on recorded real world road profiles. It should

be remembered that a change in the aerodynamic drag force in the optimiza-

tion also affects the value of β, see Equation 5.11. The differences in travel

time and fuel consumption are presented in Table 6.11.

Södertälje - Norrköping

∆-Function Value

Optimal scenario

∆fopt −1.74%

∆topt −0.04%

∆fopt + c∆topt −1.78%

−10% aerodynamic drag

∆f
−10% −1.88%

∆t
−10% 0.16%

∆f
−10% + c∆t

−10% −1.73%

+10% aerodynamic drag

∆f+10% −1.61%

∆t+10% −0.21%

∆f+10% + c∆t+10% −1.79%

∆-Function Value

−10% rolling resistance

∆f
−10% −1.91%

∆t
−10% 0.19%

∆f
−10% + c∆t

−10% −1.73%

+10% rolling resistance

∆f+10% −1.61%

∆t+10% −0.25%

∆f+10% + c∆t+10% −1.83%

Table 6.11: Difference in fuel consumption and travel time for simulations

over Södertälje toward Norrköping with wrongly predicted aerodynamic drag

force (left) or rolling resistance (right). The standard PI cruise controller is

used as reference.

6.4 Map Quantisation

One of the key elements of this master thesis is to define how good the topo-

graphic road map has to be. To lower the amount of memory needed to store

the map some sort of quantization of the road gradient has to be done. The

system should not change the velocity for angles where it can keep reference

velocity. With the engine used in this thesis, a reference velocity of 85km/h and

with a truck mass of 40 000kg, angles between approximately −1.5% and 1.5%
should be possible to handle without loosing or gaining speed due to gravity.

Choosing a minimum angle in the quantization too close to these values will

result in optimization problems in DP-tool. Border angles of −1% and 1% with

a zero level in between did however work quite well. Two different types of

quantization will be investigated in this section, an uniform quantization and

a non uniform quantization with increasing step sizes and a gap between ±1%
but still with a zero level.

One company which currently is looking into the construction of a commer-

cial topographic road map has said that they at the moment are looking at im-

plementing a solution where the road slope angle is represented by five bits.

This limits the number of different angles that can be described to 25 = 32,

which at first look might seem like a dangerously small number. The results

from simulations though are not really what could be expected when a quite

”rough” quantization is applied. It should be noted that in applications like
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sound and video encoding there is often of interest to calculate the signal to

noise ratio (SNR). The SNR could be an interesting measurement of how good

the quantized signal actually is but it doesn’t work very well for the non uni-

form quantization used in this thesis due to the noise building up in the gap

around zero.

6.4.1 Uniform Quantisation

The first form of quantization which is studied is uniform quantization. A

uniform quantization is easy to implement and has the benefit of the same

difference in angle between every step. The big drawback is primary that the

relative errors for narrow angles will be much larger than for wider angles.

This also, if the number of levels are limited to 32, leads to a quite narrow

interval of angles if the errors for small angles should be left at a reasonable

level. It could be said here that it possibly would not matter if small angles

have a quite large fault since the angles of interest are generally over 1.5% for

the engine used in this thesis.

It will be noticed in the simulations that the system is not even closely as

sensitive as one could expect to quantization with relatively large step sizes.

The results speak for themselves, see Figure 6.22, 6.23, 6.24 and Table 6.12.

The system handles map data with quantization step sizes of up to 1.2% ex-

tremely well in this case which is kind of surprising since with a step size of

1.2% on this road, Södertälje - Norrköping, the system is limited to only seven

different angle values, from −3.6% to +3.6%. It should be said though that the

results in some simulations start to vary a bit already at a stepsize of 0.8%.

The figures shows that when utilizing a step size of 0.4% or 0.8% still the re-

sulting road is very similar to the real road, see Figure 6.22 and 6.23. At a step

size of 1.2% the resulting road is differing quite a bit from the real road but

still most dynamics is reconstructed by the quantized road and performance is

still good, Figure 6.24.

It should be remembered that the system is only looking at the coming 1.5

km section of the road so slowly climbing or falling roads will not affect the

performance of the system much. Once a quantization step size of over 1.2% is

used system performance becomes unstable leading to random results which

can be seen in Table 6.12. Whether a stepsize of 0.8% should be tolerated

or not can be discussed, there are deviations from the optimal result but it

cannot be concluded that it is performing worse. There might be situations

where the result is greatly degraded instead. A stepsize of 0.4% is no problem

for the result other than the limited amount of angles that can be covered if a

saturation is set. Simulations over the road between Uppsala and Gävle are

available in Appendix B.
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Figure 6.21: Uniform quantization, here with an angle step size of 0.2%.
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Figure 6.22: Uniform quantization with a step size of 0.4% applied on the first

40 km of the road between Södertälje and Norrköping.
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Figure 6.23: Uniform quantization with a step size of 0.8% applied on the first

40 km of the road between Södertälje and Norrköping.
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Figure 6.24: Uniform quantization with a step size of 1.2% applied on the first

40 km of the road between Södertälje and Norrköping.
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Södertälje - Norrköping

∆-Function Value

Optimal scenario

∆fopt −1.74%

∆topt −0.04%

∆fopt + c∆topt −1.78%

Stepsize 0.2%

∆fq02 −1.77%

∆tq02 −0.01%

∆fq02 + c∆tq02 −1.76%

Stepsize 0.4%

∆fq04 −1.72%

∆tq04 −0.06%

∆fq04 + c∆tq04 −1.77%

∆-Function Value

Stepsize 0.8%

∆fq08 −1.80%

∆tq08 +0.02%

∆fq08 + c∆tq08 −1.78%

Stepsize 1.2%

∆fq12 −1.84%

∆tq12 +0.02%

∆fq12 + c∆tq12 −1.82%

Stepsize 1.6%

∆fq16 −2.03%

∆tq16 +0.42%

∆fq16 + c∆tq16 −1.65%

Table 6.12: Results from uniform quantization of the angle vector from the

road between Södertälje and Norrköping (E4). As reference is the standard PI

cruise controller used.

6.4.2 Non Uniform Quantisation

The second type of quantization which is used in this thesis is a type of non

uniform quantization with a gap between ±1% but still the zero level is kept,

see Figure 6.25. Uniform quantization has the drawback that the precision for

small angles is much worse than for larger angles. For example if an uniform

quantization stepsize of 0.4% is used, a road slope angle of 1.01% would be

rounded off to 1.2% which is almost a 20% error. But for an angle of 2.19%,

which will be rounded off to 2.0%, the error will only be close to 10%. Thus

the step size is forced to be small enough to handle narrow angles which due

to data storage size limitations results in a low saturation of the angle data.

For example uniform quantization of a system with a step size of 0.2% and 32

levels will run into saturation at an angle of 3.2% which is not enough for most

roads.

Therefore it might be advantageous to look at a non uniform quantization

which allows small step sizes for small angles and larger step sizes the larger

the angle gets. This will result in better precision for smaller angles but lower

precision for larger angles compared to the uniform quantization. The system

will also not run into the saturation of the quantization as soon as for the

uniform quantization.

The idea with the gap is that since the system will be limited in the number

of angle sizes that it can represent, why waste space on angles that are not of

interest. For angles where reference speed can be kept it should be kept. A

good solution would be to let the vehicle run on standard cruise controller for

small angles where the reference speed can be kept. The size of the gap has to

be chosen so that all possible vehicle configurations can make use of the road

map. Here the minimum levels are chosen as ±1% which is quite a bit lower

than what is needed for the chosen vehicle configuration, 420hp and 40 000kg.

Most vehicle configurations should be able to handle road slopes of ±1% but it

might be needed to close the gap slightly to avoide performance reductions in

some cases.

For this to work of course the optimization algorithm has to be able to han-

dle the loss of information for angles between ±1%. With a step size resulting
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in maximum of a 10% fault, in other words steps increasing with 20% each

time, and a gap between ±1% the quantized angle now spans over the interval

[−12.84% + 15.41%] when 5 bits (32 levels) are used. This should be more than

enough for most roads. Possibly a stepsize where the fault is maximum of 20%
could be used but with larger steps than that performance is degraded. Using

5 bits, a maximum fault of 20% and a gap between ±1% allows a span of angles

over ±100%. Since angles between ±12.84% should be more than enough for

this system there is no reason to lower the precision more when 32 angle levels

are available. It should be remembered that a mass fault also directly will add

to the induced fault for the angle from the quantization, therefore keeping this

fault low should be a priority.
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Figure 6.25: Non uniform quantization with gap between ±1% but with a zero

level and with a step size increasing 20% from the current step.
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Figure 6.26: Non uniform quantization with an increasing step size of 20%
applied on the first 40 km of the road between Södertälje and Norrköping.
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Figure 6.27: Non uniform quantization with an increasing step size of 40%
applied on the first 40 km of the road between Södertälje and Norrköping.
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Figure 6.28: Non uniform quantization with an increasing step size of 80%
applied on the first 40 km of the road between Södertälje and Norrköping.

Södertälje - Norrköping

∆-Function Value

Optimal scenario

∆fopt −1.74%

∆topt −0.04%

∆fopt + c∆topt −1.78%

Stepsize 20%

∆fq20 −1.72%

∆tq20 −0.06%

∆fq20 + c∆tq20 −1.78%

Stepsize 40%

∆fq40 −1.80%

∆tq40 +0.02%

∆fq40 + c∆tq40 −1.78%

∆-Function Value

Stepsize 80%

∆fq80 −1.89%

∆tq80 +0.20%

∆fq80 + c∆tq80 −1.71%

Stepsize 120%

∆fq120 −1.62%

∆tq120 −0.22%

∆fq120 + c∆tq120 −1.81%

Stepsize 160%

∆fq160 −1.61%

∆tq160 −0.26%

∆fq160 + c∆tq160 −1.85%

Table 6.13: Results from non uniform quantization of the angle vector from

the road Södertälje toward Norrköping (E4). The standard PI cruise controller

is used as reference.
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Conclusions

This thesis looks into the sensitivities of two different types of look ahead sys-

tems. The first system uses analytical solutions of the optimal speed trajectory

for very simple road profiles. The second system uses model predictive control

and dynamic programming to be able to calculate the optimal solution and

thus gives the opportunity to optimize the velocity over complex road profiles

such as real recorded roads.

The results from the simple road profiles looked first upon in the two dif-

ferent implementations are quite clear. With disturbed road data the system

either reacts too early or too late, with a loss of fuel and/or time as a result.

While both the tested systems still are better than the PI cruise controller in a

case with road data with quite large deviations from the real world data a lot of

the potential fuel that otherwise could be saved is wasted. On these road pro-

files position faults of maximum of 25m and angle faults of max 10% of current

angle seems to be quite realistic tollerances. Especially since there is a mass

estimation error that can be upto around 10%. The analytical solution often

gives a better result in non disturbed cases but the model predictive control

with dynamic programming handles disturbed cases better. It should also be

kept in mind that dynamic programming is a numerical approach which some-

times does not result in a perfect solution compared to an analytical solution.

Also the MPC has the benefit of a built in feedback in the system.

However when the system using MPC and DP is run over recorded real

roads the disturbances do not have nearly the same influence on the result

as was the case with the simple road profiles. The system turns out to be

extremely tolerant toward defect input data. For example quantization of the

map data where a fault of up to 40% in the angle data is tolerated hardly has

any effect on the outcome. Also a position fault of 50m seems tolerable which

stands in contrast to the results from the simple road profiles. There are most

likely several parts to why this is the case. First of all real roads are more

forgiving since they will not change from level road to a 3% down or uphill

slope in a single sample. Second there is a feedback in the system allowing

for some correction of model errors. DP-tool ramps the driver demand up and

down which works well together with the feedback in the system to correct

model errors.

There should not be any problems to keep the position error under 50m
and the smaller fault the better and to be realistic it should not be a problem

to keep it under 25m either. A modern GPS gives a position error of under

5m, 95% of the time and with a modern integrated computer and the right

sampling requirements on the road map, giving a maximum position error at
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arround ±20m, this should be possible. Map quantization should be done so

the error stays under 20% for the angle and it is defenitely prefered to use a

non uniform quantization. A non uniform quantization will either save data

space and therefore cost of the system or allow better precision for most angles

than the uniform quantization. With a non uniform quantization of the kind

described in this thesis it is possible to keep the angle fault under 10% and

still keep the span of angles between [−12.84 + 15.41] % which is more than

enough. In an implementation it most likely would be better to close the gap

slightly and use a smaller stepsize to increase precision. Generally angles over

around 8% are of less interest since there are very few road slopes steeper than

that.



Chapter 8

Extensions and Future
Works

Still there are no topographic road maps available which will be needed if a

system like this is going to be constructed. While the dynamic programming

and model predictive control approach certainly works well it, at least in the

current implementation, requires too much computational power to be imple-

mented on board. In his licentiate thesis (2007) Erik Hellström has shown that

it is possible to implement a dynamic programming algorithm that is N log2 N
dependent instead of the current N2 dependant implementation. This opens

for new possibilities for the use of dynamic programming on board especially

if a dedicated unit can be added for this use. In time dynamic programming

might be a good choice but for use in trucks of today a simpler optimization

method is needed. When an on board implementation is constructed new simu-

lations and tests have to be done to investigate its robustness toward degraded

input data. Also tests of the system on board with scrambled input data espe-

cially with a quantized map have to be done to ensure the results are in line

with simulations of the system. Quantization of the road gradient might not

be the only possible solution instead a library of different road sections could

be built up and then combined together to form a complete topographic road

profile. The next step for look ahead control might very well be to implement

it in a hybrid driveline which should allow for very good control of when to

use the electrical engine and when it is advantageous to charge the energy

storage.
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Appendix A

Model Parameters

A.1 Simulink Model

In Figure A.1 the Simulinkmodel used in the first part of this thesis is shown.

Figure A.1: Simulink model used in the first simulations, see Chapter 3 and 4.
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A.2 Shared Parameters

Model Parameters

Parameter Value Unit

Engine Parameters

Number of Cylinders ncyl 6 −

Number of Revolutions per stroke nr 2 −

Engine Inertia Je 3.5 kgm2

Idle Engine SpeedNidle 600 rpm

Idle Fueling δidle 10.83 mg

stroke

Engine Map

ae −0.1135 Nm
rpm

be 9.4263 Nm stroke
mg

ce 5.6282 Nm

Maximum Fuel Flow

aδ −1.429 · 10
−4 mg

stroke rpm2

bδ 0.3973 mg

stroke rpm

cδ −48.5649 mg

stroke

Drag Torque

ad −0.0917 Nm
rpm

bd −46.0140 Nm

Forces

Gravity g 9.81 m
s2

Rolling Resistance Coefficient cr 7 · 10
−3

−

Air Drag Coefficient cw 0.6 −

Air Density ρa 1.29 kg

m3

Cross-section Area Aa 10 m2

Wheel Inertia Jw 32.9 kgm2

Wheel Radius rw 0.52 m

Final Drive

Ratio if 3.27 −

Efficiency ηf 0.97 −

Brake

Brake Constant kb 20 · 10
3

−

Table A.1: Model Parameters
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A.3 Cruise Controller

The cruise controller used in this thesis is a standard PI regulator. Brake us-

age is controlled by a second PI controller.

The cruise controller constants are:

Kp = 2.0

Ki = 0.05

The brake controller constants are:

Kp = 5.0

Ki = 0.02

To avoid integrator windup saturation levels are set for both PI controllers.

The cruise integrator part is allowed to take values between 0 and 30 and the

brake integrator part is allowed to take values between 0 and 35.

A.4 Gearbox

The gearboxes differs slightly in the two models used in this thesis due to

different ways of implementation.

Gear Ratios

Gear Ratio Efficiency

1 11.27 0.93

2 9.14 0.93

3 7.17 0.94

4 5.81 0.95

5 4.62 0.95

6 3.75 0.95

Gear Ratio Efficiency

7 3.01 0.96

8 2.44 0.96

9 1.91 0.96

10 1.55 0.96

11 1.23 0.96

12 1.00 0.97

Table A.2: Gear ratios and efficiencies for a GRS 900 gearbox, the efficiency

values stated here are only used in DP-tool.

A.4.1 Gearbox Model 1

The gearbox used by the simulation environment in chapter 3 and 4. The

efficiency is assumed to be ηg = 0.97 for all gears. The gearbox is only able to

shift the gear one step at a time but since all simulations but one with this

gearbox model only uses gear number 12 this is adequate for the purpose of

this thesis. Changing gear will drop the from the engine generated torque

after the gearbox to zero for one second.
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Gear shift points model 1

Gear Number 1 − 2 2 − 3 6 − 7 7 − 8 11 − 12

Shift Up Engine Speed 1400 1400 1550 1550 1650

Shift Down Engine Speed 1150 1135 1120 1110 1100

Table A.3: Gear shift points for a GRS 900 gearbox, down shift points modified

for maximum load. For gear shifts that are not listed linear interpolation

between listed points is applied.

A.4.2 Gearbox model in DP-tool

The gearbox used in DP-tool is a slightly better model.

Gear shift points (Engine Speed)

Gear Up [rpm] Down [rpm]

1 − 2 1500 950

2 − 3 1501 960

3 − 4 1502 970

4 − 5 1503 980

5 − 6 1504 990

6 − 7 1505 1000

Gear Up [rpm] Down [rpm]

7 − 8 1497 1006

8 − 9 1489 1012

9 − 10 1481 1018

10 − 11 1473 1024

11 − 12 1465 1030

Table A.4: Gear shift points used in DP-tool

Modifier at Max and Min Load

Load Up [rpm] Down [rpm]

Min −70 −100

Max 150 175

Table A.5: Gear shift points used in DP-tool



Appendix B

More Results

B.1 More Results from DP-tool

This section contains more results from simulations with DP-tool. The roads

simulated are Uppsala toward Gävle and in the opposite direction, this road

is plotted in Figures B.1. Also some simulations from Norrköping toward

Södertälje are presented in the tables in this section. The reference run was

done with the standard PI cruise controller.
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Figure B.1: The road between Uppsala and Gävle.
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Södertälje - Norrköping
∆-Function Value

Optimal scenario

∆fopt −1.74%

∆topt −0.04%

∆fopt + c∆topt −1.78%

−50m position bias

∆f
−50m −1.72%

∆t
−50m −0.12%

∆f
−50m + c∆t

−50m −1.83%

+50m position bias

∆f+50m −1.65%

∆t+50m −0.06%

∆f+50m + c∆t+50m −1.70%

Norrköping - Södertälje
∆-Function Value

Optimal scenario

∆fopt −2.08%

∆topt +0.39%

∆fopt + c∆topt −1.72%

−50m position bias

∆f
−50m −2.18%

∆t
−50m +0.50%

∆f
−50m + c∆t

−50m −1.73%

+50m position bias

∆f+50m −1.86%

∆t+50m +0.30%

∆f+50m + c∆t+50m −1.59%

Table B.1: Results from the road between Södertälje and Norrköping in differ-

ent directions with position bias faults.

Uppsala - Gävle

∆-Function Value

Optimal scenario

∆fopt −0.05%

∆topt +0.21%

∆fopt + c∆topt +0.15%

−50m position bias

∆f
−50m −0.07%

∆t
−50m +0.19%

∆f
−50m + c∆t

−50m +0.10%

+50m position bias

∆f+50m −0.06%

∆t+50m +0.22%

∆f+50m + c∆t+50m +0.13%

Gävle - Uppsala

∆-Function Value

Optimal scenario

∆fopt −0.48%

∆topt +0.25%

∆fopt + c∆topt −0.26%

−50m position bias

∆f
−50m −0.56%

∆t
−50m +0.29%

∆f
−50m + c∆t

−50m −0.30%

+50m position bias

∆f+50m −0.44%

∆t+50m +0.25%

∆f+50m + c∆t+50m −0.21%

Table B.2: Results from simulations of the between Uppsala and Gävle in

different directions with position bias faults.

Södertälje - Norrköping

∆-Function Value

Optimal scenario

∆fopt −1.74%

∆topt −0.04%

∆fopt + c∆topt −1.78%

−10% mass fault

∆f
−10% −1.79%

∆t
−10% +0.14%

∆f
−10% + c∆t

−10% −1.67%

+10% mass fault
∆f+10% −1.67%

∆t+10% −0.25%

∆f+10% + c∆t+10% −1.89%

Norrköping - Södertälje

∆-Function Value

Optimal scenario

∆fopt −2.08%

∆topt +0.39%

∆fopt + c∆topt −1.72%

−10% mass fault

∆f
−10% −2.15%

∆t
−10% +0.50%

∆f
−10% + c∆t

−10% −1.70%

+10% mass fault
∆f+10% −1.98%

∆t+10% +0.26%

∆f+10% + c∆t+10% −1.75%

Table B.3: Simulations with mass faults on the road between Södertälje and

Norrköping in both directions.
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Uppsala - Gävle

∆-Function Value

Optimal scenario

∆fopt −0.05%

∆topt +0.21%

∆fopt + c∆topt +0.15%

−10% mass fault

∆f
−10% −0.27%

∆t
−10% +0.20%

∆f
−10% + c∆t

−10% −0.09%

+10% mass fault

∆f+10% +0.09%

∆t+10% +0.11%

∆f+10% + c∆t+10% +0.19%

Gävle - Uppsala

∆-Function Value

Optimal scenario

∆fopt −0.48%

∆topt +0.25%

∆fopt + c∆topt −0.26%

−10% mass fault

∆f
−10% −0.54%

∆t
−10% +0.29%

∆f
−10% + c∆t

−10% −0.28%

+10% mass fault

∆f+10% −0.46%

∆t+10% +0.25%

∆f+10% + c∆t+10% −0.24%

Table B.4: Simulations with mass faults on the road between Uppsala and

Gävle in both directions.

Uppsala - Gävle

∆-Function Value

Optimal scenario

∆fopt −0.05%

∆topt +0.21%

∆fopt + c∆topt +0.15%

Stepsize 0.2%

∆fq02 −0.15%

∆tq02 +0.23%

∆fq02 + c∆tq02 +0.05%

Stepsize 0.4%

∆fq04 +0.08%

∆tq04 +0.18%

∆fq04 + c∆tq04 +0.25%

∆-Function Value

Stepsize 0.8%

∆fq08 −0.28%

∆tq08 +0.24%

∆fq08 + c∆tq08 −0.06%

Stepsize 1.2%

∆fq12 −0.10%

∆tq12 +0.34%

∆fq12 + c∆tq12 +0.21%

Stepsize 1.6%

∆fq16 −0.49%

∆tq16 +0.62%

∆fq16 + c∆tq16 +0.07%

Table B.5: Results from uniform quantization of the angle vector from the road

between Uppsala and Gävle (E4).

Uppsala - Gävle

∆-Function Value

Optimal scenario

∆fopt −0.05%

∆topt +0.21%

∆fopt + c∆topt +0.15%

Stepsize 20%

∆fq20 −0.28%

∆tq20 +0.27%

∆fq20 + c∆tq20 −0.03%

Stepsize 40%

∆fq40 −0.03%

∆tq40 +0.30%

∆fq40 + c∆tq40 +0.24%

∆-Function Value

Stepsize 80%

∆fq80 −0.21%

∆tq80 +0.28%

∆fq80 + c∆tq80 −0.05%

Stepsize 120%

∆fq120 +0.07%

∆tq120 +0.08%

∆fq120 + c∆tq120 +0.15%

Stepsize 160%

∆fq160 +0.15%

∆tq160 +0.03%

∆fq160 + c∆tq160 +0.18%

Table B.6: Results from non uniform quantization of the angle vector from the

road Uppsala toward Gävle (E4).



Appendix C

DP-Tool GUI

The original graphical user interface (GUI) for DP-tool was designed by Erik

Hellström. To be able to control disturbances the GUI was modified. The

original GUI allows the user to set the look ahead horizon, penalty parameters,

reference speed and vehicle parameters. The modified GUI also allows the

user to control position bias faults, mass estimation errors, angular bias faults

and add low pass filtered white noise to position and altitude data. Another

possibility for the user is to load an already disturbed road profile and run it

against the real one. The position bias fault slider is controlling the position

bias fault in meters. The mass fault is given in percent of the current mass

and also the angle bias is given in percent of the current angle, meaning that

a +20% bias fault on a 3% slope equals an angle of 3.6%. Quantization is

given in road slope angle percent and the control variable for white noise is

the variance.

Figure C.1: The DP-Tool GUI
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