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Sammanfattning
Vid förbränning av diesel bildas flera olika luftföroreningar, däribland kväveoxider
som är skadliga för människor. Detta har lett till hårdare lagkrav gällande avga-
sutsläpp för tung fordonstrafik. Lagen kräver lägre emissioner men även att last-
bilarna skall vara utrustade med ett diagnossystem (OBD). OBD-systemet skall
upptäcka fel som kan öka avgaserna. För att designa OBD-systemet har en metod
utvecklats på Scania CV AB som utifrån en motormodell automatiskt genererar
residualgeneratorer.

Huvudsyftet med detta examensarbete är att förbättra den redan befintliga
metoden på Scania CV AB för att hitta residualgeneratorer från en modell. Fokus
ligger på att hitta fler residualgeneratorer givet ett överbestämt delsystem. För att
göra detta måste derivator skattas från brusiga mätsignaler.

En metod för att använda både deriverande och integrerande kausalitet som
kallas mixad kausalitet har tagits fram. Det har visats att fler residualgenerator-
er kan genereras om mixad kausalitet används för att designa ett modellbaserat
diagnossystem. Detta medför en förbättrad felisolering. För att använda mixad
kausalitet skattas derivator med "smoothing spline approximation".
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Chapter 1

Introduction

This master thesis was performed at Scania CV AB in Södertälje, at the depart-
ment of Diagnosis, NED. The department is responsible for the on board diagnosis
system (OBD). Scania CV AB is a manufacturer of heavy duty trucks which are
sold worldwide. The trucks has a gross vehicle weight of more than 16 tonnes and
around 60 000 trucks was manufactured during 2006, see [18].

1.1 Background
Several different air pollutions are produced during combustion in a diesel engine,
for example nitric oxides, NOx, which can be harmful for humans. This has led
to stricter emission legislations for heavy duty trucks. The law requires both
lower emissions but also that all heavy duty trucks have an OBD system. The
OBD system supervises the engine in order to keep the emissions below legislation
demands. The OBD system shall detect malfunctions which may lead to increased
emissions.

There are different approaches but one approach to design the OBD system
is to use model based diagnosis. The idea with model based diagnosis is to build
a model of the process, in this case the vehicle engine, and construct tests from
the model. These tests run in a real-time control unit in the truck. The tests are
typically based on the output from residual generators. The residual generator
consists of a model of the system and the output is the difference between a
modeled variable and the same measured variable. If they are not equal a fault
has probably occurred.

If the model of the process is complex the residual generators will also become
very complex. If the process and the model are changed the residual generators
must also be changed. Therefore it is necessary to have reliable methods that
can find and construct the residual generators automatically given a model of the
process.

Such a tool is developed at Scania. The tool extracts overdetermined subsys-
tems and produce residual generators from them. From all found subsystems there
are only possible to create residual generators from less than a twentieth of them.

3



4 Introduction

To increase the ability to detect faults and isolate them it is desirable to con-
struct more residual generators.

1.2 Existing Work
This thesis is a part of a bigger project where much work already has been done.
Algorithms to transform a Simulink model to analytical equations and extracting
overdetermined subsystems from the equation systems has been carried out in [5].
The method to extract overdetermined subsystems has been improved in [19].
Based on the overdetermined subsystems a method to generate model based resid-
ual generators has been done in [6]. The overall method has been theoretically
compared with a similar method and an approach to solve the instability issues is
presents in [4].

1.3 Objectives
The main objective of this thesis is to improve the existing methods at Scania CV
AB to extract residual generators from a model in order to generate more residual
generators. The focus lies on the methods to find possible residual generators
given an overdetermined subsystem. The main objective can be divided in two
subparts

• Investigate and compare different methods to estimate derivatives of signals
in order to use derivatives for realizing model based residual generators.

• Find a method that combines integration and differentiation to find model
based residual generators.

1.4 Outline of the Thesis
Part I: Presents the background theory in control theory, model based diagnosis

and structural analysis that are used trough out the thesis to the reader.

Part II: Presents a discussion of two methods used to construct residual genera-
tors and a third method that builds on the other two methods.

Part III: Present a method to realize residual generators without estimating
derivatives and three different methods to estimate derivatives. A compar-
ison is made between these two methods. An evaluation of the methods in
previous part on a Scania engine model is carried out.

1.5 Contributions
Chapter 4: A discussion of how differential equations must be handled in struc-

tural analysis in order to use mixed causality.
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Chapter 5-6: A discussion of when a correct initial condition is needed and a pre-
sentation of when derivative causality have advantages compared to integral
causality. Also a discussion of when differential loops can be solved.

Chapter 7: A presentation of how integral and derivative causality can be used
together and an algorithm for matching variables.

Chapter 8: A presentation of three different methods to estimate derivatives and
a comparison between residual generators based on estimated derivatives and
residual generators realized in state-space form.

Chapter 9: An evaluation of the methods described in previous chapters, which
shows that the algorithm developed, gives a contribution to finding more
model based residual generators.

1.6 Target Group
The target group for this thesis is undergraduate students and graduate engineers
who have an interest in model based diagnosis. Knowledge in model based di-
agnosis, structural analysis, signal processing and control theory gives a better
understanding of the thesis.





Chapter 2

Control Theory

The purpose with this chapter is to explain some theories in control theory, see [9].
The theories include system models, stability for a system and observer theory.

2.1 System Models
Systems in state-space form, either in linear or non-linear form are considered in
this thesis. System (2.1) is a linear state-space system

ẋ(t) = Ax(t) +Bu(t) (2.1a)
y(t) = Cx(t) +Du(t), (2.1b)

which is a special case of the non-linear state-space system

ẋ(t) = f(x(t), u(t)) (2.2a)
y(t) = h(x(t), u(t)), (2.2b)

where x(t) are states, u(t) inputs and y(t) outputs.
Semi-explicit differential algebraic equations are another frequently used sys-

tem model in this thesis. The state-space model (2.2) is a special case of the
non-linear semi-explicit differential algebraic equations

ẋ1(t) = f(x1(t), x2(t), z(t)) (2.3a)
0 = g(x1(t), x2(t), z(t)), (2.3b)

where x1(t) are differential variables, x2(t) unknown algebraic variables and z(t)
known in and outputs.

To get a more readable thesis, the time index t will in the sequel be omitted
when the time is not relevant, system (2.3) then becomes

ẋ1 = f(x1, x2, z) (2.4a)
0 = g(x1, x2, z). (2.4b)

7



8 Control Theory

2.2 Stability
There are a number of different stability definitions for systems in state-space form,
for example input-output stability, stability for equilibrium points and stability of
a solution. The stability of a solution to system (2.2) is connected to how the
initial condition, x0, affect the solution.

Definition 2.1 A solution x∗ to the system of differential equations (2.2a) is
stable if there for every ε exists a δ such that |x∗0 − x0| < δ yield |x∗ − x| < ε for
every t > 0. The solution is unstable if not stable. The solution is asymptotic
stable if it is stable and there exist a δ such that |x∗0 − x0| < δ yields |x∗ − x| → 0
when t→ ∞. Where x0 is the initial condition of the system and x∗0 is the initial
condition of the solution.

Theorem 2.1 provides a result that can be useful when investigating stability of a
linear system.

Theorem 2.1 (Stability for linear system) A linear system (2.1) is asymptotic
stable if and only if the eigenvalues λ to the matrix A are in the closed left half
plane, that is

�{λ(A)} < 0, (2.5)

where λ(A) are the eigenvalues to the matrix A.

Proof
See [9]. �

There is no similar useful theorem when investigating stability for non-linear
systems. However, there are methods to investigate the stability of the equilibrium
points but that can not be used to determine if the system is globally stable or
not.

2.3 Observers
Given a state-space model of a system, the states, x, are not usually observed but
only the outputs, y. However, with an observer the states x can be reconstructed
by using known in and outputs, u and y.

Given a state-space model (2.2), the states x, are observed as

˙̂x = f(x̂, u) (2.6)

To measure how good the observed states, x̂, corresponds to the states, x, the
quantity y − h(x̂, u) can be used. This quantity is zero when x = x̂ and there is
no measurement noise. This quantity can also be used as feedback to make the
observed states converge to the correct states. The observer is on the form

˙̂x = f(x̂, u) + l(y − h(x̂, u)), (2.7)
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where l is some observer function. The observer function, l, affects if and how
fast the estimation error converge to zero and how sensitive the observer is for
measurement noise. For linear systems the observer function, l, is replaced by an
observer gain, K, which can be determined in a number of ways. The Kalman filter
is used in this thesis to determine the observer gain K. The observer function,
l, can be determined in many different ways for non-linear systems. Since no
non-linear observers are used in this thesis they are not discussed further.

2.3.1 Kalman Filter
The Kalman filter is a well-known and efficient tool that can be used for observing
states of a linear dynamic system given a system model and measurements, see
[7]. The system (2.1) with process noise w and measurement noise v is denoted

ẋ = Ax+Bu+Nw (2.8a)
y = Cx+Du+ v. (2.8b)

The noises w and v are assumed to be white noises with variances Q and R
respectively. The cross-covariance, S, between w and v is assumed constant. The
stationary Kalman filter minimizes the variance of the estimation error, x̃ = x̂−x,
and is given by

˙̂x = Ax̂ +Bu+K(y − Cx̂−Du), (2.9)

where K is the Kalman gain given by

K = (PCT +NS)S−1, (2.10)

and P is the positive semidefinite solution to

AP + PAT − (PCT +NS)R−1(PCT +NS)T +NQNT = 0. (2.11)

Equation (2.11) is called the stationary Riccati equation and several approaches to
solve the stationary Riccati equation exist. If w and v are Gaussian there are no
better linear or non-linear state-estimator than the Kalman filter, and regardless
of the distribution of the noises w and v it does not exist any better linear filter,
see [11].





Chapter 3

Diagnosis

The purpose of this chapter is to present the basic diagnosis theory, see [8]. The
concept of model based diagnosis is explained and a brief discussion of what quan-
tities that makes a diagnosis system good is presented.

3.1 Introduction to Diagnosis
Diagnosis is to make a statement of a system given observations of the system
that shall be diagnosed. That is, from observations and knowledge of the system
detect if a fault is present and if so, it is desirable to isolate the fault.

A fault in a system is described as a deviation of the system structure or the
system parameters from the nominal situation, see [1].

When monitoring technical systems, faults can be detected in several different
ways. The traditional diagnosis method has been to check when certain measured
variables go outside a predefined range. If a signal exceeds the limit, there is a
fault present. Another method is to have hardware redundancy, which means that
there are many sensors measuring the same variable. With two sensors measuring
the same variable and one of the sensors diverge from the other, there is a fault
in one of the two sensors. The problem is to know in which sensor the fault has
occurred. With three sensors measuring the same variable and one sensor diverges
from the other two, a fault has most likely occurred in the sensor that diverges.
This method is reliable but very expensive.

If only one sensor is used to monitor a variable and at the same time the
variable is modeled, it is maybe possible to detect and isolate the fault. This leads
to model based diagnosis.

3.2 Model Based Diagnosis
The concept of model based diagnosis is to make a model of the system that shall
be monitored and use that information along with information from sensors. The

11



12 Diagnosis

model of the system is

ẋ = f(x, u, f) (3.1a)
y = h(x, u, f), (3.1b)

where f represents arbitrary faults, for example actuator faults and sensor faults.
The relation between the modeled variable and the measured variable is used in
a residual generator, F , where the output, R, is zero in the fault-free case and
nonzero when a fault that affects the residual generator is present. A residual
generator is a system, F , with inputs u and y and output R.

Definition 3.1 A residual generator is a function F (u(t), y(t)), such that

u, y ∈ ΘNF ⇒ R = F (u(t), y(t)) → 0, t→ ∞, (3.2)

is satisfied.

The observed fault free set of signals, ΘNF , and the observed set of signals, ΘFi ,
when a fault, fi, is present are defined as

ΘNF = {[u, y]|∃x : ẋ = f(x, u, 0), y = h(x, u, 0)} (3.3a)
ΘFi = {[u, y]|∃x, fi : ẋ = f(x, u, fi), y = h(x, u, fi)}. (3.3b)

A fault fi is detectable if and only if the observed signals u and y can not be
explained by the fault free case,

ΘFi /∈ ΘNF . (3.4)

The idea with model based diagnosis is seen in Figure 3.1.

System

Model ŷ

y

R
_

+
u

Figure 3.1. Idea with model based diagnosis.

Example 3.1
The system in Figure 3.1 could for example be

x = 3u (3.5a)
y = x+ 2 + f, (3.5b)

where f is a sensor fault. A residual generator can be generated from system (3.5)
as

R = F (u, y) = y − 3u− 2. (3.6)
The fault, f , is detectable since ΘFi /∈ ΘNF and F (u, y) is a residual generator
according to the definition since u, y ∈ ΘNF ⇒ R = F (u, y) = 0.
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In system (3.5), there are two equations and one unknown variable. The fault
f is not seen as an unknown variable since it shall be detected. A condition that
must be satisfied if it shall be possible to generate a residual generator is that it
shall be possible to determine an unknown variable in more than one way. That
is, there must be at least one more equation than there are unknown variables,
which means that the system is overdetermined. The residual generator (3.6) can
be expressed as R = x − x where the first x is calculated as x = y − 2 and the
other as x = 3u.

A consistency relation (3.7) is an analytical relation between known or mea-
sured variables and their derivatives, which is zero in the fault-free case

c(y, ẏ, ÿ, ..., u, u̇, ü, ...) = 0, u, y ∈ ΘNF . (3.7)

Therefore, consistency relations are often used as residual generators.

Example 3.2
Consider the following state-space model,

ẋ = −x+ u

y = 2x.

A residual generator can be generated as

R = c(y, ẏ, u) =
ẏ

2
+
y

2
− u.

3.3 Evaluation of Residual Generators
Due to noisy measurements and model uncertainties a residual generator can differ
from zero even in the fault free case. To get less noise sensitivity it is possible to
construct tests based on residual generators.

3.3.1 Tests
A false alarm occurs if a residual generator gets above a certain threshold when
there is no fault present. To minimize false alarms, a test quantity, T (z), can be
constructed based on a residual generator and observations, z = [u, y]T . A test
reacts if the corresponding test quantity is above or below certain thresholds, J1

and J2. The test quantity used in this thesis is a mean value filter,

T (z(t)) =
1

N + 1

N∑
k=0

R(z(t− kTs), (3.9)
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where N + 1 is the number of samples from the residual generator R(z(t)) and Ts

the sample time. If the test reacts there is a fault present.
The test is less sensitive to noise but it is also less sensitive to small faults than

the residual which the test origin from.
There are different ways to determine the thresholds J1 and J2. With the

approach used in this thesis it is assumed that the test quantity T (z) is a normal
distributed stochastic variable. The thresholds can then be determined from

P (|T (z)| < J |z ∈ ΘNF ) = 1 − PFA, (3.10)

where PFA is the probability for false alarm and J = J1 = −J2.

3.3.2 Test Evaluation
A good test shall have small probability to false alarm and high probability to
detect faults. To examine how the test behaves it is possible to make a power
function. A power function, β(θ), is a measure for how good a test quantity, T (z),
is for a specific fault, θ. A power function is described as

β(θ) = P (T (z) ≥ J |θ), (3.11)

where θ is a parameter for a specific fault in the system, for example a sensor
fault. In the fault free case, the power function, β(θ), shall have a small value
since this is the probability for false alarm. When there is a fault present, the
power function, β(θ), shall have a high value since this is the probability to detect
the fault. A typical power function for a test, T (z), is seen in Figure 3.2.
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Figure 3.2. Typical power function β(θ) for a test T(z), θ = 0 in the fault free case and
θ �= 0 when there is a fault present.

3.3.3 Fault Detectability
When searching for residual generators it is good to know what qualities that
makes a residual generator good. There are a number of factors that can be taken
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in to consideration, such as fault detectability, fault isolation, fault sensitivity,
noise sensitivity and so on.

Fault detectability is the ability to detect certain faults and fault isolation is the
ability to decide which fault that has occurred from the faults that are detectable.
For fault isolation it is desirable that different residuals are sensitive for and can
detect different faults. Fault sensitivity is how sensitive a residual is for a certain
fault, that is how much the fault must differ from its nominal behavior before it
is detected. Noise sensitivity is how much measurement and process noise affects
the residual generator.

In this thesis it is first and foremost the fault detectability that is considered.
The fault detectability is considered to be the same for residual generators that
are computed from the same set of equations. If the fault detectability is the same
for several residual generators, the fault isolation is examined. If several resid-
ual generators from the same set of equations are examined, the fault sensitivity
is considered for a specific fault. Fault sensitivity is investigated with a power
function.





Chapter 4

Structural Analysis

Structural analysis provides many tools for examine different properties of systems.
In this chapter the basic theory of structural models, some graph theory and two
different ways of handling dynamic systems are presented.

4.1 Structural Models
A structural model is a representation of a system where only the connections
between variables and equations are seen and not the actual analytical equations.
Structural models can be used in different ways. One way is to make a structural
model of a system where the only knowledge is how variables and states are con-
nected but not the actual analytical equations. This makes it easier to analyze the
system and then make an analytical model. Another way is to make a structural
model of a known analytical system and use the structural model because it is
less complex to use when analyzing the system, instead of analyzing all equations.
The second approach is used in this thesis.

In the structural model, the set of variables are denoted Z and the set of
equations are denoted C. The set Z is divided into known and unknown variables.

Consider the state-space system

e1 : ẋ = f(x, u) (4.1a)
e2 : y = g(x, u), (4.1b)

where ei are equation names, x the states, u inputs and y outputs. The set with
unknown variables are then X = {x1, . . . , xn} and the set with known variables
are Y = {y1, . . . , ym, u1, . . . , ul}. The sets of equations and variables are expressed
as

Z = X ∪ Y
C = {e1, . . . , ep}.

17
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The structural model can be represented in different ways. In this thesis the
structural matrix1 and bi-partite graph are used, see [1], [2].

4.2 Bi-Partite Graph
A bi-partite graph, which is a set of vertices and edges, can be used to represent
the structural model. The vertex set consists of two sets, Z and C, and the edges,
Υ, representing the connection between a variable and an equation. An edge exists
between vertex zi ∈ Z and vertex cj ∈ C if and only if the variable zi occurs in
the equation cj , see [1].

Definition 4.1 The structural model of the system (C,Z) is a bi-partite graph
G(C,Z,Υ) where Υ ⊂ C × Z

U Y X

e1 e2

Figure 4.1. Bi-partite graph for system (4.3).

The bi-partite graph in Figure 4.1 is an example of a structural model of the
system

e1 : x = u (4.3a)
e2 : y = x, (4.3b)

with two equations, e1 and e2, and three variables, u, y and x.

4.3 Structural Matrix
The structural matrix is, like the bi-partite graph, a way of representing how the
equations, C, and the variables, Z, are connected. Consider the system

e1 : f1(x1, x2, u) = 0 (4.4a)
e2 : f2(x2, u) = 0 (4.4b)
e3 : g(x1, x2, y) = 0, (4.4c)

where x1, x2 are unknown variables and u, y known variables. The structural
matrix is shown in Table 4.1. Often it is only interesting to study the unknown

1Also called biadjacency matrix and incidence matrix
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Unknown Known
eq x1 x2 y u
e1 X X X
e2 X X
e3 X X X

Table 4.1. Structural matrix for system (4.4).

variables in the structural matrix and therefore the structural matrix can be shown
in two different ways, one as is in Table 4.1 and the other as in Table 4.2. In the
sequel, no difference is made between these two representations.

eq x1 x2

e1 X X
e2 X
e3 X X

Table 4.2. Structural matrix for system (4.4) with only unknown variables.

4.4 System Canonical Decomposition
An overdetermined system is a system that contains more equations than unknown
variables, that is, from which it is possible to calculate a variable in more than
one way and construct a residual generator. From the bi-partite graph and the
structural matrix it is possible to determine if the system is overdetermined. Let
(C,Z) represent a system and let M = (C1, Z1) where C1 ⊆ C, Z1 ⊆ Z and X is
the unknown variables in Z1. The operator |A| denotes the cardinality of A, which
is the number of members in A.

Definition 4.2 The set M is called structurally overdetermined, SO, if |C1| >
|X |, structurally just-determined if |C1| = |X | and structurally under-determined
if |C1| < |X |.

One more equation than there are unknown variables is needed when searching
for residuals, see Section 3.2, and with knowing that a proper subset is a subset
Sp to S such that Sp ⊂ S, the following definition of a Minimal Structurally
Overdetermined set is useful in this thesis.

Definition 4.3 The structurally overdetermined set M is called Minimal Struc-
turally Overdetermined, MSO, if there exists no proper structurally overdeter-
mined subsets in M .
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An MSO set which contains differential equations is in semi-explicit form. This
is because every differential equation in an MSO set introduces at least one un-
known variable. Hence, there is at least one static equation in every MSO set.

Given the assumption that residual generators have the same fault detectability
if they are from the same MSO set, best possible fault detectability and fault
isolation is achieved if a residual for every possible MSO set is found, see [14].

A structural model can be decomposed in to three different subsystems, see [1].
The decomposition can be done in different ways but one commonly used method
is Dulmage-Mendelsohn decomposition, see [2]. The subsystems are overdeter-
mined, just-determined and under-determined. By doing this, it is possible to find
the overdetermined part, if it exists, of any system. The interesting part of the
decomposed structural matrix is the overdetermined part because it is only in the
overdetermined part that residual generators can be found.

4.5 Matching

To construct a residual generator from an MSO set all the unknown variables must
be calculated. An unknown variable can be calculated from different equations in
an MSO set and to decide how the variable shall be calculated to get a residual
generator a bi-partite graph can be used. With a bi-partite graph it is possible
to see which variable that must be calculated from which equation. When it is
decided from which equation an unknown variable is calculated from the variable
is called the matched variable. The matched variable together with the equation
that is used to calculate the variable is called a matching.

Definition 4.4 A matching, Γ, in a bi-partite graph is a subset of edges such that
not any edges are sharing the same vertex.

Definition 4.5 A complete matching, ΓM , with respect to C is when |ΓM | = |C|
and a complete matching with respect to Z is when |ΓM | = |Z| .

A matching that is complete with respect to both C and Z is called a perfect
matching. Perfect matchings are of special interest when searching for match-
ings because the set of equations and variables is minimal in the sense that all
information in the set is used.

A matching, Γ, is written as Γ = {(ei, xj), (ej , xi)} which means that, xj , is the
matched variable from equation, ei, and variable, xi, is the matched variable from
equation, ej. In the structural matrix, a matching is seen as encircled crosses,

⊗
.

In a bi-partite graph the edges has no direction. To show how variables and
equations are connected in a matching it is possible to introduce an oriented graph.

An oriented graph has the same number of vertices and edges as the correspond-
ing bi-partite graph and the direction of the edges comes from the matching.



4.6 Derivative and Integral Causality 21

Given a matching Γ = {(ei, xj), (ej , xi)} and a bi-partite graph, G, the direc-
tions of the edges in the oriented graph are described as

if {ei, xj} ∈ Γ then ei → xj

if {ei, xj} /∈ Γ then xj → ei.

An example of an oriented graph induced from the matching Γ = {(e1, x), (e2, y)}
and the bi-partite graph in Figure 4.1, is seen in Figure 4.2.

U X Y

e
1

e
2

Figure 4.2. Oriented graph induced from the bi-partite graph in Figure 4.1 and the
matching Γ.

4.6 Derivative and Integral Causality
There are two main approaches for how differential equations are handled, either
with derivative causality or with integral causality.

Causality represents the calculation order that must be followed when variables
are matched in a differential equation. This means that with integral causality
a differential equation, for example ẋ1 = x2, can only be calculated as x1 =
x1(t0) +

∫ t

t0
(x2(τ))dτ . With derivative causality instead, only the variable x2 can

be matched and is calculated as x2 = d
dtx1.

A side effect of this is that with integral causality the initial condition of dif-
ferentiated variables must be known and with derivative causality the derivative
of a variable must be known or possible to estimate.

4.7 Handling Derivatives in Structural Models
In a structural model there are two main approaches for handling derivatives of
variables, see [14]. When the differentiated variable is handled as the same variable
as the non-differentiated variable, the structural model is called a Differentiated-
Lumped Structural-Model (DLSM). When the differentiated variable and the non-
differentiated variable are handled as different variables, the structural model is
called a Differentiated-Separated Structural-Model (DSSM).

To show the difference between DSSM and DLSM consider the equation system

e1 : ẋ = −x+ u (4.6a)
e2 : y = 2x, (4.6b)
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Unknown Known
eq ẋ x y u
e1 X X X
e2 X X

Table 4.3. Structural matrix with
DSSM for system (4.6).

Unknown Known
eq x y u
e1 X X
e2 X X

Table 4.4. Structural matrix with
DLSM for system (4.6).

which contains the differentiated variable ẋ and the non-differentiated variable x.
The two structural models are seen in Table 4.3 and 4.4.

The system in Table 4.4 is an overdetermined system but the system in Ta-
ble 4.3 is a just-determined system. This is a direct effect of the use of DLSM
where there is no structurally difference between a variable xi and its derivative ẋi.
But with DSSM these two variables are handled as different variables and there is
no information about the relation between them.

To avoid this, it is possible to introduce an extra equation that describes the
relation between a variable and its time derivative. The differentiated variable ẋ is
replaced with xd to avoid misunderstandings with the notation for time derivatives.
The extra equation and the renamed variable are seen in (4.7).

e1 : xd = −x+ u (4.7a)
e2 : y = 2x (4.7b)

d1 : xd =
d

dt
x (4.7c)

Introducing the extra information in the DSSM in Table 4.3 results in a new
structural representation, called an Extended Differentiated-Separated Structural-
Model (EDSSM), which is seen in Table 4.5. The systems in Table 4.4 and Table
4.5 are now both overdetermined systems with one more equation than unknown
variables.

Unknown Known
eq xd x y u
e1 X X X
e2 X X
d1 X X

Table 4.5. Structural matrix with EDSSM for system (4.6).

The extra equation is necessary to get an unambiguous decided calculation
order if both integral and derivative causality are used. This is illustrated in
Example 4.1.

Example 4.1
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xd x
e1 × ×
d1 × ×

Table 4.6. Structural matrix for (4.8) with EDSSM.

x
e1 ×

Table 4.7. Structural matrix for (4.8) with DLSM.

Consider the differential equation

e1 : ẋ = −x+ u. (4.8)

The structural model for the differential equation is represented with DLSM in
Table 4.7 and with EDSSM in Table 4.6. From Table 4.6, the variable x can
be matched in two different ways which gives two different ways to calculate the
variable. Either as x =

∫
(−x+ u) dt or x = −ẋ+ u. From Table 4.7, the variable

x can only be matched in one way and now it is not decided how the variable x is
calculated.

When only one of the two methods, integral and derivative causality, is used there
must be something that marks which variables that can not be matched. Consider
the equation system

xd
i =f(X) (4.9a)

xd
i =

d

dt
xi, (4.9b)

where X = [x1, ..., xn]T . With integral causality, only variable xi can be matched
in equation (4.9b) and with derivative causality, only the variable xd

i can be
matched in equation (4.9b). The variables that can not be matched are marked
with a Δ in the structural matrix. This holds not only for the non-matchable
variables in differential equations but for all variables that are not matchable, for
example variables in non-invertible equations.

In the sequel only EDSSM is used, and to reduce the number of equations when
a system is presented, an equation system is presented as in (4.6) but is handled
as in (4.7). That is, the analytical equations are presented without the renamed
variables and the extra equations but they are included in the structural model.

Since a new equation and a new variable are introduced, named di and xd
i re-

spectively, the sets C and Z have changed. Let E = {e1, . . . , ep}, D = {d1, . . . , dk}
and X d = {xd

1, . . . , x
d
k}, where p is the number of equations and k is the number of

differential equations in the system. This gives new sets of variables and equations
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as

Z = X d ∪ X ∪ Y
C = E ∪D.

4.8 Strongly Connected Components
If a perfect matching exists for a system, it can be found from the structural matrix
and this matching gives a computation sequence. Depending on system proper-
ties the sequence can sometimes not be unambiguous decided because the system
contains strongly connected components (SCC). Strongly connected components
are variables that depend on each other and must be calculated at the same time.

Strongly connected components are seen in the structural matrix for a just-
determined system as blocks on the diagonal if the matrix is decomposed to a
block upper triangular matrix. A structural matrix can always be decomposed to
a block upper triangular matrix with some row and column permutations, see [2].
The decomposed matrix can for example be computed with Matlab using the
command dmperm.

Strongly connected components contain one or several algebraic loops, which
is illustrated in Figure 4.3 and an algebraic loop is exemplified in Example 4.2.

Example 4.2
Consider the system of equations

e1 : y1 = x1 + x2 (4.11a)
e2 : y2 = 2x1 − x2. (4.11b)

The structural matrix for this system is seen in Table 4.8 which contains strongly
connected components. The matching, Γ = {(e2, x1), (e1, x2)}, gives a computa-
tion sequence

x1 =
y2 + x2

2
x2 = y1 − x1,

which contains an algebraic loop because to calculate x1, x2 is needed and vice
verse.

eq x1 x2

e1 × ×
e2 × ×

Table 4.8. Structural matrix for system (4.11) with an algebraic loop.
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X3

x5

e1

e3 e2

e4

e6

e5

x6

Figure 4.3. Oriented graph with two SCC.

The oriented graph in Figure 4.3 consists of three different algebraic loops but
two different strongly connected components.

Strongly connected components can induce three different forms of algebraic
loops. The algebraic loops can either be static, differential or both static and
differential. The purely static loops contain no differential equations and to solve
them, some sort of equation solver is needed. If static loops occur they are handled
as not solvable. If differential loops, or loops with both static and differential
equations occur, they can be solved in some cases, which are further discussed in
Sections 5.4 and 6.4.
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Part II

Residual Generation with
Different Causality
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Chapter 5

Integral Causality

The aim of this chapter is to discuss the existing method to find residual genera-
tors. The discussion includes the need of initial conditions when solving differen-
tial equations and how strongly connected components are handled with integral
causality.

5.1 Finding Residual Generators from Mathemat-
ical Models

The process to find residual generators from mathematical models can be divided
to a number of steps, see [4]. The first step is to transform the mathematical model
to a structural matrix. The overdetermined part is extracted from the structural
matrix because it is only when redundant information exists, residual generators
can be created.

To create a residual generator only one more equation is needed than there are
unknown variables. Hence, MSO sets are searched for in the overdetermined part
of the structural matrix. In each MSO set it is possible to remove one equation
at the time and use that one as residual equation. When an equation is removed
from the MSO set, the new set is just-determined and if it exists a perfect match-
ing the residual generator can be realized unless it contains non-solvable strongly
connected components. From the perfect matching all variables can be calculated
and used in the residual equation. The chain from a mathematical model to a
residual generator is illustrated in Figure 5.1.

Mathematical
model

Structural
matrix

Find MSO
sets

Remove
residual
equation

Match
variables

Calculate
residual

generator
R

Figure 5.1. Process of finding a residual generator from a mathematical model.

All equations except the extra equation, see Section 4.7, can be used as residual

29
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equations. The extra equation is not used because this is an equation that is added
afterwards and is considered to be a dummy-equation. However, there are no loss of
residual generators when not using this equation because every residual generator
that is found with the extra equation as residual equation can be found in the
same MSO set with another equation as residual equation, see [4].

Integral causality is used when variables are matched and calculated, which
represents the two last steps of the chain in Figure 5.1. In the following two chap-
ters, modifications that can be made in these two steps when residual generators
are searched for are presented.

5.2 Structure of Residual Generators with Inte-
gral Causality

The structure of a residual generator generated with integral causality, as described
in Section 5.1, is on the form

ẋ = f(x, u, y) (5.1a)
RIC = g(x, u, y). (5.1b)

To calculate x an initial condition is needed.

5.3 Initial Conditions with Integral Causality
When using integral causality the initial condition for the differentiated variable
must be known if it shall be possible to calculate the variable. This assumption
can be partly modified. If the system is stable, the initial condition can be chosen
arbitrary. This will work because the solution will converge to the correct value
after some time. The difference with knowing the correct initial condition is that
the residual generator will be zero from the beginning if the system is fault-free.

For an unstable system with correct initial condition, the residual generator
will not converge to zero in many cases, due to process and measurement noise.
This is illustrated in Example 5.1.

Example 5.1
Consider the unstable system

ẋ = x+ u+ w (5.2a)
y = x+ v, (5.2b)

which yields the residual generator

ẋ = x+ u (5.3a)
R = y − x. (5.3b)

Three simulations of the system and the residual generator were done and in
Figure 5.2 the results from the three simulations are shown. The first was done
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without noise and with correct initial condition, x0 = 0. The second simulation
was done without noise and with a faulty initial condition, x0 = 0.001. The third
simulation was done with process and measurement noise, where the noises are
Gaussian with variance 0.05 and 0.1 respectively, and with correct initial condition.
Only one residual generator converges to zero and that residual generator gets its
values from the model without noise and with the correct initial condition.
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Figure 5.2. Three simulations of residual generator (5.3b) with different initial condi-
tions.

The fact that a stable system converge to the correct value and an unsta-
ble system does not can be seen by writing the solution of a linear state-space
system (2.1) as

x(t) = eAtx0 +

t∫
t0

eA(t−τ)Bu(τ)dτ ,

where the first term eAtx0 converge to zero if the system is stable, independently
of x0, see Section 2.2. For an unstable system with a correct initial condition and
without noise the residual generator is zero. An unstable residual generator will
not converge if there is noise present, see Figure 5.2. There are different methods
to stabilize unstable residual generators and one method is to use observer theory,
see [4]. This method has already been investigated and is not discussed further.

For non-linear systems there are many different methods to investigate stability,
see [9]. Even if all equilibrium points to a non-linear system are stable there is no
guarantee that the solution will converge to the correct value if the initial condition
has been chosen badly. This is shown in Example 5.2.
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Example 5.2

Consider the non-linear state-space system

ẋ = − sinx+ u (5.4a)
y = x, (5.4b)

for which the residual generator

ẋ = − sinx+ u (5.5a)
R = y − x, (5.5b)

can be designed. The residual generator is sensitive for the initial condition x0.
The system was simulated in Matlab/Simulink with two different initial con-
ditions. Both simulations were done with faulty initial conditions. The correct
initial condition for the system is x0 = 0 and the initial conditions in the simu-
lation was x0 = 2 and x0 = 3.5 respectively. The two simulations are shown in
Figure 5.3. The simulations were fault-free but the residual generator converges
to two different values.
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Figure 5.3. Two simulations of system (5.5) with different initial conditions.

For a stable linear system a faulty initial condition will work satisfactory. Sta-
bility of linear systems is easy to examine, see Section 2. For non-linear systems
both the stability and to what value the solution converge must be examined.
However, this is out of scope of this thesis and will not be studied further.

The conclusion is that correct initial conditions are needed for non-linear sys-
tems but for linear stable systems the initial conditions can be chosen arbitrary.
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5.4 Solvability of Strongly Connected Components
with Integral Causality

When strongly connected components only contain differential equations they in-
duce a differential loop on the form

e1 : xd = f(x, z) (5.6a)

d1 : xd =
d

dt
x. (5.6b)

The structural model for these equations is seen in Table 5.1 with matched
variables marked, which also is the only possible matching. The matching in
Table 5.1 is a loop and this loop can be solved numerically with the Euler forward
method as

x(t+ T ) = x(t) + Tf(x(t), z(t)), (5.7)

where T is the sample time. The loop and the solved loop are illustrated in
Figure 5.4 and Figure 5.5.

eq xd x
e1

⊗ ×
d1 Δ

⊗
Table 5.1. Structural matrix for SCC containing differential equations with matched
variables.

X
1

X
1

dZ

e1 d1

Figure 5.4. An oriented graph which contains a differential loop.

X
1
(t+T)

Z(t)
e1 d1

X
1

d(t)

X
1
(t)

Figure 5.5. An oriented graph which contains a solved differential loop.

If the strongly connected components contain both differential and static equa-
tions the induced loop can be solved if the static variables do not induce a static
loop. A solvable and a non-solvable loop that contains both differential equations
and static equations are illustrated in Examples 5.3 and 5.4.
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Example 5.3

Consider the semi-explicit system

e1 : ẋ1 = −x1 + 2x2 (5.8a)
e2 : y = 3x1 + x2. (5.8b)

The structural matrix for system 5.8 is seen in Table 5.2 and contains strongly
connected components. The circles show a matching that induce an algebraic loop
that contains both static and differential variables but can be solved numerically
with the Euler forward method.

eq xd
1 x1 x2

e1
⊗ × ×

e2 × ⊗
d1 Δ

⊗
Table 5.2. Structural matrix for system 5.8 containing both differential and static
equations with matched variables.

Example 5.4

Consider another semi-explicit system

e1 : ẋ1 = −x1 + 2x2 + 5x3 (5.9a)
e2 : y1 = 3x1 + x2 + 3x3 (5.9b)
e3 : 0 = x2 + 4x3. (5.9c)

The structural matrix for system 5.9 is seen in Table 5.3 and contains strongly
connected components. The unknown variables can not be matched without in-
ducing a loop which contains both static and differential variables that can not be
solved. This is because the static variables will induce a static loop which can not
be solved, see Section 4.8.

eq xd
1 x1 x2 x3

e1 × × × ×
e2 × × ×
e3 × ×
d1 Δ ×

Table 5.3. Structural matrix for system 5.9 containing both differential and static
equations.
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When there are strongly connected components containing both differential
and static equations, a solvable matching can be found if the structural matrix,
with the differential equations and the differential variables removed, does not
contain any strongly connected components.





Chapter 6

Derivative Causality

When using integral causality the initial conditions of a system have to be known
for certain systems. In many cases this is not a realistic assumption. Instead
derivative causality can be used, which do not need the initial conditions but
instead derivatives are needed. Derivatives of measurements are supposed to be
known in this chapter, but how they are estimated is further discussed in Section
8.1.

In this chapter the use of derivative causality is motivated and there is a dis-
cussion of how some arising difficulties are handled.

6.1 Structure of Residual Generators with Deriva-
tive Causality

The structure of a residual generator generated with derivative causality is different
than the structure that was given with integral causality. The structure of a
residual generator with derivative causality is on the form

x = f(u, y) (6.1a)
RDC = g(x, ẋ, . . . ), (6.1b)

where the derivatives are estimated with the methods described in Section 8.1.
With derivative causality, the last two steps in Figure 5.1, see Section 5.1, are
changed. Variables are matched as described in Section 4.6 and residual generators
are calculated as (6.1).

6.2 Introduction to Derivative Causality
The use of derivative causality is motivated in Example 6.1 where an unstable
system is considered.
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Example 6.1

Consider the following unstable state-space system

ẋ = x+ u+ w (6.2a)
y = x+ v + fy, (6.2b)

where v and w are Gaussian noise and fy is an additive fault on sensor y. The
system is kept stable by a control loop but it is only the uncontrolled system that
is diagnosed. With integral causality a found residual generator is

ẋ = x− u (6.3a)
RIC = y − x. (6.3b)

With derivative causality a found residual generator is

RDC =
d

dt
y − y − u. (6.4a)

By simulating the system and the residual generator in Matlab/Simulink,
the behavior of the residuals was investigated. In the simulation the process noise
w has variance 0.05 and the measurement noise v variance 0.1. Both noises have
zero mean value. A bias fault in sensor y occurred after 5s. The result of the
simulation is seen in Figure 6.1. The residual RDC detects the bias fault but the
residual RIC is of no use because it is unstable and therefore very sensitive to
noise.
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Figure 6.1. Simulation of residual RIC and RDC .
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The use of derivative causality has advantages compared to integral causality.
One advantage is seen in Example 6.1 where an unstable system can be handled
better than with integral causality. On the other hand, there are also disadvan-
tages, namely that derivatives of noisy signals are difficult to estimate and the
occurrence of differential loops. The incidence of differential loops is investigated
in Example 6.2.

Example 6.2
Consider the following state-space system

e1 : ẋ1 = −x1 − 5x2 + u (6.5a)
e2 : ẋ2 = −x2 + u (6.5b)
e3 : y1 = x1 + x2 (6.5c)
e4 : y2 = x2. (6.5d)

It is possible to find three MSO sets from the system and in two of the sets it
is possible to find a residual generator without induced differential loops. The
structural matrices of the MSO sets from which it is possible to generate residuals
are seen in Tables 6.1 and 6.2. The two realizable residuals are seen in (6.6).

eq xd
1 x1 x2

e1 Δ × ×
e3

⊗ ×
e4

⊗
d1

⊗
Δ

Table 6.1. Structural matrix for MSO 1 from system (6.5).

eq xd
2 x2

e2 Δ X
e4

⊗
d2

⊗
Δ

Table 6.2. Structural matrix for MSO 2 from system (6.5).

R1 = ẏ1 − ẏ2 + y1 + 4y2 − u (6.6a)
R2 = ẏ2 + y2 − u (6.6b)

In total there are three MSO sets and in the third MSO set there are four different
ways of matching variables but all lead to differential loops1, which are non-solvable
and further discussed in Section 6.4. If it would be possible to find a residual
generator from each MSO set, higher fault detectability and better fault isolation
could possible be achieved.

1All found MSO sets and residual generatos can be seen in Appendix A
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6.3 Initial Conditions for Derivative Causality
An advantage with derivative causality is that initial conditions for the system
states are not needed, see [1]. This is a truth with modifications. When deriva-
tives are estimated an initial condition is usually needed, see Section 8.1. When
consistency relations are realized in state-space form to remove derivatives of sig-
nals as inputs, an initial condition is also needed, see Section 8.2. An initial
condition is therefore needed in many cases, even with derivative causality. Since
the methods to estimate derivatives and realization in state-space form are stable
the initial condition can be chosen arbitrary.

The conclusion is that correct initial conditions are not needed when derivative
causality is used.

6.4 Solvability of Strongly Connected Components
with Derivative Causality

Strongly connected components which consist of differential equations will form a
differential loop, see Section 5.4. The difference with derivative causality is that
different variables are matchable, see Section 4.6.

There are different methods to solve differential loops but they rely on previous
time samples in some way, see [17]. This means that the initial condition is needed
and the loop is solved in the same way as the loop is solved with integral causal-
ity, see Section 5.4. The variables are no longer matched as they should when
derivative causality is used, see Section 4.6. Instead the variables are matched in
the same way as when integral causality is used and this is not a way of solving
differential loops with derivative causality. Hence, differential loops are considered
non-solvable when derivative causality is used.



Chapter 7

Mixed Causality

Previously in this thesis either integral or derivative causality have been used
when searching for residual generators. Each of these lead to different ways of
handling differential equations, that is, limits in the possible matchings for the
differential equations. If there exists systems were two differential equations have
to be handled differently to be able to find any residual generators, neither integral
nor derivative causality would find any residual generators. Hence, it is desirable
to have a method where differential equations can be handled in different ways in
the same system.

The purpose of this chapter is to discuss mixed causality and present an algo-
rithm that extracts all possible residual generators.

7.1 Structure of Residual Generators with Mixed
Causality

The structure of a residual generator generated with mixed causality is on the
form

ẋ1 = f1(x1, x2, u, y) (7.1a)
x2 = f2(x1, x2, u, y) (7.1b)

RMC = g(x1, x2, ẋ2, ẍ2, . . . , u, y), (7.1c)

where the derivatives are estimated with the methods described in Section 8.1.
With mixed causality the last two steps when extracting residual generators are
changed, see Figure 5.1 in Section 5.1. How variables are matched is presented in
Section 7.4 and the residual generator is computed as (7.1).

7.2 Introduction to Mixed Causality
The advantage with mixed causality is illustrated in three examples, Example 7.1,
7.2 and 7.3. In the first example no restrictions of possible matchings are made,
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which means that it is assumed that the initial conditions for all states are known
and that derivatives can be estimated.

Example 7.1
Consider the following MSO set that is in semi-explicit form

e1 : ẋ1 = f1(x1, x2, x3) (7.2a)
e2 : ẋ2 = f2(x1) (7.2b)
e3 : y1 = x1 (7.2c)
e4 : y2 = f3(x2, x3), (7.2d)

where f3 is a non-invertible function for both x2 and x3. Since no variable can
be matched from equation e3 that equation is used as residual equation. The
structural matrix of (7.2) is seen in Table 7.1. From the structural matrix it can
be seen that only one possible residual generator exists and it has no differential
loops. This residual generator is derived with equation, e4, as residual equation and
matching, Γ = {(e1, x3), (e2, xd

2), (e3, x1), (d1, x
d
1), (d2, x2)}. The matching Γ would

not have been found with integral or derivative causality separately. Figure 7.1
shows the oriented graph corresponding to the matching, Γ.

eq xd
1 xd

2 x1 x2 x3

e1 × × × ⊗
e2

⊗ ×
e3

⊗
e4 Δ Δ
d1

⊗ ×
d2 × ⊗

Table 7.1. Structural matrix of (7.2) without restrictions on the differential equation.
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Figure 7.1. Oriented graph for the matching Γ and the structural matrix in Table 7.1.

In Example 7.1 the use of mixed causality is motivated because a possible match-
ing, which can not be found using integral or derivative causality separately, is
found.

Another form of mixed causality is presented in Example 7.2, where deriva-
tive causality is used and for the induced differential loops, which is discussed in
Chapter 6, integral causality is used to avoid the loops.
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Example 7.2
Consider the following MSO set that is in semi-explicit form

e1 : ẋ1 = f1(x1, x2, x3, u) (7.3a)
e2 : ẋ2 = f2(x2, x3) (7.3b)
e3 : y1 = h1(x2) (7.3c)
e4 : y2 = h2(x1, x3), (7.3d)

where h2 is a non-invertible function. The structural matrix for (7.3) with deriva-
tive causality is seen in Table 7.2. The decomposed matrix for the structural
matrix in Table 7.2 without equation, e4, is seen in Table 7.3. In the top left
corner of Table 7.3 there are strongly connected components that induce a differ-
ential loop. The problem with this loop can be avoided by switching causality and
a solution can be computed numerically, see Section 5.4. The found matching is
Γ = {(e3, x2), (d2, x

d
2), (e2, x3), (e1, x1), (d1, x

d
1)} and Figure 7.2 shows the oriented

graph corresponding to the matching, Γ.

eq xd
1 xd

2 x1 x2 x3

e1 Δ × × ×
e2 Δ × ×
e3 ×
e4 Δ Δ
d1 × Δ
d2 × Δ

Table 7.2. Structural matrix of (7.3) with derivative causality.

eq xd
1 x1 x3 xd

2 x2

d1 × Δ
e1 Δ × × ×
e2 × Δ ×
d2 × Δ
e3 ×

Table 7.3. Decomposed structural matrix of (7.3) without residual equation, e4, with
the strongly connected components marked.
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Figure 7.2. Oriented graph for the matching Γ and the structural matrix in Table 7.2,
where x1,−T symbolize the variable x1 in the previous sample.
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Example 7.2 shows that a differential loop can be solved with integral causality,
this is further discussed in Section 7.3. A third form of mixed causality is presented
in Example 7.3.

Example 7.3
Consider the following linear system

e1 : ẋ1 = −x1 + u (7.4a)
e2 : ẋ2 = x1 (7.4b)
e3 : y = x2. (7.4c)

Independent of the initial condition, x1,t0 , the state, x1, converge to the right value.
However, the state, x2, does not converge to the right value if the initial condition,
x2,t0 , is chosen badly or there is noise present in the system. Therefore it is desir-
able to match state x1 but not x2 with integral causality. Assume, that from some
system knowledge it is well-known that it is difficult to differentiate state x1 but
not x2. It is actually y that is differentiable and due to high frequency components
in the signal it is difficult to get any good information from higher order derivatives.
Hence, it is desirable to match state x2 but not x1 with derivative causality. The
structural matrix of (7.4) and the knowledge presented above is seen in Table 7.4.
Only one possible perfect matching, Γ = {(e3, x2), (e2, xd

2), (d1, x1), (e1, xd
1)}, is

found from the structural matrix when neither equation d1 or d2 is used as resid-
ual equation. Figure 7.3 shows the oriented graph corresponding to the matching,
Γ.

eq xd
1 xd

2 x1 x2

e1
⊗ ×

e2 × ×
e3

⊗
d1 Δ

⊗
d2

⊗
Δ

Table 7.4. Structural matrix of (7.4).
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Figure 7.3. Oriented graph for the matching Γ and the structural matrix in Table 7.4,
where x1,−T symbolize the variable x1 in the previous sample.
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In Example 7.3 one form of mixed causality is shown, which can be useful if
there are knowledge about which states the initial conditions are known for and
which states that can be differentiated or not.

Consider the linear system studied in Example 7.3 with added measurement
noise. Integral, derivative and mixed causality each generates one residual gener-
ator.

ẋ1 = −x1 + u (7.5a)
ẋ2 = x1 (7.5b)

RIC = y − x2 (7.5c)

RDC = u− ẏ − ÿ (7.6a)

ẋ1 = −x1 + u (7.7a)
RMC = x1 − ẏ (7.7b)

The initial conditions for the system can not be determined and are therefore
assumed to be zero. Power functions for tests based on the different residual
generators are presented in Figure 7.4 with varying actuator bias fault. The prob-
ability for the test to react when no fault has occurred is set to 5%. According
to Figure 7.4 the residual generator found with mixed causality has the best fault
detectability. The residual generator found with integral causality detects a fault
even when no fault is present, this is because the initial condition for the system
has not been estimated correctly and there is noise present in the system. This
result shows that mixed causality is useful when trying to detect faults in a system
where derivatives can be estimated and some differential equations are unstable.
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Figure 7.4. Power functions for RIC , RDC and RMC with actuator bias fault.
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All three Examples 7.1, 7.2 and 7.3 presented in this section are different
forms of mixed causality, each with different characteristics. The first example
motivates the use of mixed causality because no residual generators are found with
either integral or derivative causality separately. The second example shows how
differential loops are solved with integral causality. The third and last example
presented above shows that with some system knowledge it is desirable to handle
different differential equations with different methods.

7.3 Solvability of Strongly Connected Components
with Mixed Causality

Strongly connected components can induce two different forms of loops, see Sec-
tion 4.8. If they are static they are considered not solvable. Differential loops are
considered solvable if they are matched with integral causality, see Section 5.4,
and considered not solvable if they are matched with derivative causality, see
Section 6.4. Hence, differential loops are matched with integral causality in this
chapter.

7.4 Structural Methods for Finding Residual Gen-
erators with Mixed Causality

An algorithm for finding residual generators with mixed causality is presented and
illustrated with an example in this section. The algorithm does not have any
matching restriction of the type that is introduced in Section 7.2.

A brief outline of the algorithm is:

1. Transform the simulink model to a structural model.

2. Find all possible MSO sets.

3. Find all realizable residual generators in every MSO set.

4. Based on an evaluation of the residual generators, remove all without useful
properties, for example unstable residual generators.

Algorithm 1 is illustrated in Example 7.4. Since no restrictions are made in
this algorithm for how differential equations are handled, all residual generators
found with either integral or derivative causality are subsets of the set of residual
generators found with this algorithm.
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Algorithm 1: Residual generation with mixed causality
Input : A SIMULINK-model file, model.mdl
R:= ∅
ME:= Sim2Me (model.mdl)
ME:= AddExtraEquations (ME)
SM:= Me2Se (ME)
SMMSO:= FindAllMso (SM)
forall MSO sets M ∈ SMMSO do

forall equations e ∈ M \(extra equations) do
m:= M \ e
SCC:= FindAllStronglyConnectedComponents (m)
m’:= m \ SCC
Γ′:= FindPerfectMatching (m’)
forall strongly connected components Si ∈ SCC do

ΓSi := FindSolvablePerfectMatching (Si)
end
ΓSCC :=

⋃
iΓSi

Γ:= Γ′ ∪ ΓSCC

if |Γ | = 0 then
R’:= CalculateResidualGenerator (Γ, e)
R:= R ∪ R’

end
end

end
R:= EvaluateResidualGenerators (R)
Output: A set of residual generators, R

The first step where a Simulink model is transformed to a structural model
is divided in three sub steps. All model equations are first extracted from the
simulink model with Sim2Me. The extra equations, see Section 4.7, are then added
with AddExtraEquations. The model equations are in the third sub step trans-
formed to a structural model with Me2Sm. The two functions Sim2Me and Me2Sm
are based on algorithms described in [5].

The second step to find all possible MSO sets is performed by function FindAllMso,
see [5].

The third step to find all solvable residual generators in a MSO set is divided in
four sub steps. All strongly connected components are in the first sub step found
with FindAllStronglyConnectedComponents. A perfect matching is searched for
with FindPerfectMatching on the structural model without strongly connected
components. For every strongly connected components is the solvable perfect
matching found with FindSolvablePerfectMatching if it exists. In the last sub
step the found solvable matching is realized with CalculateResidualGenerator.

The fourth and final step in the algorithm is performed in function Evaluate-
ResidualGenerators, where the residual generators are evaluated in a stability
and fault sensitive sense.
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Example 7.4
Consider the linear system

e1 : ẋ1 = −x1 − 5x2 + u (7.8a)
e2 : ẋ2 = −x2 + u (7.8b)
e3 : y1 = x1 + x2 (7.8c)
e4 : y2 = x2. (7.8d)

In Example 6.2 residual generators for two of in total three MSO sets for system
(7.8) are presented. Consider the third MSO set, M , with equations {e1, e2, e3, d1, d2},
where no residual generators with derivative causality is found. Use Algorithm 1
on the third MSO set, M .

The structural matrix of M is found in Table 7.5. Every equation, ei, except
the extra equations are removed once at a time and the resulting matrices, mi, are
seen in Table 7.6, 7.7 and 7.8 with the strongly connected components marked.

eq xd
1 xd

2 x1 x2

e1 × × ×
e2 × ×
e3 × ×
d1 × ×
d2 × ×

Table 7.5. Structural matrix of the third MSO set, M , equations {e1, e2, e3, d1, d2} of
system (7.8).

eq xd
1 x1 x2 xd

2

d1

⊗ ×
e3

⊗ ×
d2

⊗ ×
e2 × ⊗

Table 7.6. Decomposed structural matrix of MSO 3, without equation e1, m1, contain-
ing one SCC.

eq xd
2 x1 x2 xd

1

d2

⊗ ×
e3 × ⊗
e1 × × ⊗
d1

⊗ ×
Table 7.7. Decomposed structural matrix of MSO 3, without equation e2, m2, contain-
ing one SCC.
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eq xd
1 x1 x2 xd

2

d1 × ⊗
e1

⊗ × ×
d2

⊗ ×
e2 × ⊗

Table 7.8. Decomposed structural matrix of MSO 3, without equation e3, m3, contain-
ing two SCC

All strongly connected components found are differential and are therefore
solvable if they are matched with integral causality. The resulting matchings for
every MSO set are

Γ1 = {(d1, x
d
1), (e3, x1), (d2, x2), (e2, xd

2)} (7.9a)
Γ2 = {(d2, x

d
2), (d1, x1)(e3, x2), (e1, xd

1)} (7.9b)
Γ3 = {(d1, x1), (e1, xd

1), (d2, x2), (e2, xd
2)}. (7.9c)

The found matchings (7.9) results in three residual generators, see Figure 7.5, 7.6
and 7.7.
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Figure 7.5. Oriented graph for residual generator R1 yield by matching Γ1 and the
structural matrix in Table 7.6, where x2,−T symbolize the variable x2 in the previous
sample.

e
3x1

e
1

u

ZEROx
2

dx
2

d2

d1

e2

y
1

x1
d

x2,-T

x1,-T

Figure 7.6. Oriented graph for residual generator R2 yield by matching Γ2 and the
structural matrix in Table 7.7, where xi,−T symbolize the variable xi in the previous
sample.

The last step in the algorithm is to evaluate the realized residual generators
and remove all without useful properties. The residuals are evaluated according to
their ability to detect a bias fault in sensor y1 and in a stability sense. According
to the power function in Figure 7.8, both residual R1 and R3 have the ability to
detect a bias fault in sensor y1. The fault free simulation in Figure 7.9 shows
that residual R2 does not converge to zero and is therefore rejected. The resulting
residual generators are R1 and R3.
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Figure 7.7. Oriented graph for residual generator R3 yield by matching Γ3 and the
structural matrix in Table 7.8, where xi,−T symbolize the variable xi in the previous
sample.
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Part III

Estimating Derivatives and
Evaluation of Methods
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Chapter 8

Realizing Consistency
Relations

Time derivatives of signals are in Chapter 6 and 7 used in residual generators and
they are in general not known. Hence, it is either necessary to have methods that
estimate the derivatives or realize the residual generator in a way that derivatives
of signals are avoided. In this chapter different methods to estimate derivatives
and realize consistency relations are presented and discussed.

8.1 Methods for Estimating Derivatives
Numerical differentiation in a noisy environment is an ill-posed problem in the
sense that small measurement errors may cause large estimation errors. In this
section, three different methods to estimate derivatives are presented and evalu-
ated.

8.1.1 Approximately Differentiating Filter
A basic and straightforward method to estimate derivatives is to use an approxi-
mately differentiating filter and the most simple is, see [8]

ẏ ≈ s

1 + sTd
y. (8.1)

This is a first order low-pass differentiating filter with Td as a design parameter.
This filter is a good approximation of the derivative for signals with low frequencies
in relation to the noise frequencies but is not for signals with high frequencies in
relation to the noise frequencies. More advanced filter theory can be applied in
order to get a better result.

If information about the noise and signal frequencies exists, a filter, H(s), that
passes the signal frequencies and attenuates the noise frequencies can be used to
derive a differentiating filter, D(s), as

D(s) = sH(s). (8.2)
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The filter, H(s), needs to be flat in the passband in order to gain good differenti-
ation capacity in the passband and therefore a Butterworth filter is used since the
passband is flat, see [20].

Design Parameter

When an approximately differentiating filter is used to estimate derivatives the
cut-off frequencies for the filter and the order of the filter have to be decided,
which means that good knowledge about the signals is needed.

8.1.2 Smoothing Spline Approximation
Another method to estimate derivative is to use smoothing spline approximation,
see [10]. In this approach analytical functions are used to approximate the mea-
sured signal. The derivative is then computed analytically from the analytical
function. This method is adjusted to a smoothing spline approximation on a
sliding window in this section.

Let the sliding window consist of n equidistant measurement points t1, t2, . . . , tn
such that ti = t0 + T i and let k be an integer satisfying 2 ≤ k ≤ n, where k is the
order of the smoothing spline. Assume that y(t) is a noisy measurement of the
function x(t) and that there exists a δ, called noise level, satisfying

1
n

n∑
i=1

(y(ti) − x(ti))2 ≤ δ2. (8.3)

The noise level δ can be interpreted as the deviation of the measurement noise,
σv. The main objective with this method is to find a smooth function f(t) such
that the derivative f (j)(t) approximates the function x(j)(t) where 1 ≤ j ≤ k − 1
is a positive integer. The problem can be written as a minimizing problem to be
solved in every sampling point.

min
f

Φk(f) = min
f

1
n

n∑
i=1

(f(ti) − y(ti))2 + α ‖ fk ‖2
L2(R), (8.4)

where α is a regularization parameter. The minimizing problem, (8.4), can be
separated in two sub-problems:

(1) Find a regularization parameter α.
(2) Find a minimizer f of the minimizing problem (8.4).
Consider the first problem, two methods to find the regularization parameter

α exist. One priori choice method and one posteriori method, see [10]. In this
thesis the priori choice method will be used to find the regularization parameter
α so it can be used to calculate the coefficient vectors c and d in (8.9). The priori
choice strategy takes α = δ2 ≈ σ2

v .
Consider the second problem defined above, which is to find a minimizer f .

Denote

fα(t) =
n∑

j=1

cj |t− tj |2k−1 +
k∑

j=1

djt
j−1 (8.5)
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where coefficients {cj}n
1 and {dj}n

1 satisfy

fα(ti) + 2(2k − 1)!(−1)kαnci = y(ti), i = 1, . . . , n (8.6a)
n∑

j=1

cjt
i
j = 0, i = 0, . . . , k − 1. (8.6b)

The problem to find a minimizer f is actually a problem to find the coefficients
for the polynomial in (8.5). The linear system of equations (8.6) can be written as(

A+ (−1)kD P
PT 0

)(
c
d

)
=
(
y
0

)
(8.7)

where c = (c1, c2, . . . , cn)T , d = (d1, d2, . . . , dk)T , A = (|ti − tj |2k−1)n×n, D =
2(2k − 1)!αnIn×n, y = (y(t1), y(t2), . . . , y(tn))T and P is a Vandermonde matrix

P =

⎛
⎜⎜⎝

1 t1 . . . tk−1
1

1 t2 . . . tk−1
2

. . . . . . . . . . . .
1 tn . . . tk−1

n

⎞
⎟⎟⎠ .

Then fα is a unique solution to the minimizing problem (8.4) and it exists a unique
solution for the linear system of equations (8.7), see [10].

Assume that t0 = 0 then the matrices P and A can be rewritten as A =
(|T (i− j)|2k−1)n×n and

P =

⎛
⎜⎜⎝

1 T . . . T k−1

1 2T . . . (2T )k−1

. . . . . . . . . . . .
1 nT . . . (nT )k−1

⎞
⎟⎟⎠ .

If (
A+ (−1)kD P

PT 0

)
(8.8)

is invertible the coefficient-vectors c and d can be calculated as a function of the
measurement data. (

c
d

)
=
(
A+ (−1)kD P

PT 0

)−1(
y
0

)
(8.9)

The determinant of matrix (8.8) is not equal to zero, which means that it is
invertible.

det

(
A+ (−1)kD P

PT 0

)
= det(PT )det(P ) = det(P )2 = (

∏
1≤i<j≤n

(T (j− i)))2 = 0

(8.10)
The derivative can be computed as

fα

dt
(t) = (2k − 1)

n∑
j=1

cj |t− tj |2k−2 +
k∑

j=2

(j − 1)dj(t− t0)j−2. (8.11)
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Example 8.1
Consider the trigonometric function

y(t) = sin t. (8.12)

The Maclaurin series expansion of sin(t) is

sin(t) =
∞∑

n=0

(−1)n

(2n+ 1)!
t2n+1 = t− t3

3!
+
t5

5!
. . . . (8.13)

If smoothing spline is used to estimate y(t) the coefficient-vector d should have
the same characteristic as the Maclaurin expansion coefficients. Smoothing spline
on a window with the length of one period and k = 8 yields

f(t) = 0.000018 + 1t+ 0.0018t2 − 0.171t3 + 0.0048t4 + 0.0050t5

+ 0.0014t6 − 0.00058t7, (8.14a)

which not is far from (8.13)

sin(t) ≈ t− 0.17t3 + 0.0083t5 − 0.0002t7 (8.14b)

Design Parameter

With smoothing spline approximation three design parameters are to be tuned.

σ2
v The variance of the measurement noise
k The smoothing parameter
n The length of the sliding window

8.1.3 Kalman Filter
The Kalman filter is a well studied method and it is used to estimate states for
a dynamical system, see Section 2.3.1. If an integrator is used as the dynamical
system a Kalman filter can be used to estimate the states of the system, which
means the derivative of the measured signal.

A state-space model for a triple integrator can be described as

ẋ =

⎛
⎝ 0 1 0

0 0 1
0 0 0

⎞
⎠x+

⎛
⎝ 0

0
1

⎞
⎠ u (8.15a)

y =
(

1 0 0
)
x, (8.15b)
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with u as input signal and y as output. Suppose that y is measured with added
noise v that can be described as white noise with standard deviation σv and input
u in some sense can be described as white noise with standard deviation σu. Let
u = w then (8.15) can be written on the form

ẋ =

⎛
⎝ 0 1 0

0 0 1
0 0 0

⎞
⎠x+

⎛
⎝ 0

0
1

⎞
⎠w (8.16a)

y =
(

1 0 0
)
x+ v. (8.16b)

This model yields the state-vector

x =

⎛
⎝ y

ẏ
ÿ

⎞
⎠ .

If a Kalman filter is used in order to estimate the state-vector x, an estimator for
the measured signal y and its first and second order derivatives have been created.
The transfer function for the steady-state Kalman filter, with cross-covariance
S = 0, from input y to its derivative ẏ is

Gẏy(s) =
2(Q/R)1/3s2 + (Q/R)1/2s

s3 + 2(Q/R)1/6s2 + 2(Q/R)1/3s+ (Q/R)1/2
(8.17)

Design Parameters

When using the Kalman filter as an estimator of the derivative of the measured
signal there are three design parameters to tune, Q, R and S. Q and R can be
interpreted as one parameter because it is only the quotient Q/R that affect the
filter, see transfer function (8.17). The cross-covariance S is zero if w and v both
are Gaussian variables. Now this three design parameters can be reduced to one,
the quotient Q/R.

Q/R The quotient between process noise and measure noise

8.1.4 Evaluation of the Estimating Methods
The trade-off between noise reduction and time delay has to be considered when
estimating derivatives from a noisy environment. The connections between this
trade-off and the design parameters for the different estimation methods are de-
scribed below.

Approximately differentiating filter
The cut-off frequencies for the filter have to be decided in a way that signal

frequencies passes and noise frequencies attenuates. The choice of filter order
yields different phase-characteristic which gives a time-delay. A filter of higher
order can attenuates noise better but yields a longer time-delay.
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Figure 8.1. Signal with and without noise.

Smoothing Spline Approximation
Both k and n can be used to adjust the trade-off. The window length, n, adjust

the time-delay and the smoothing parameter, k, adjust the noise reduction.

Kalman Filter
The quotient Q/R is the direct trade-off between noise reduction and time-delay.

High quotient yields good noise reduction but long time-delay, on the other hand
low quotient gives short time-delay but bad noise reduction.

In this thesis the estimated derivatives are used in residual generators based on
consistency relations. In other words, if the derivatives are time delayed, then all
other signals in the consistency relation have to be delayed for the consistency to
hold. Two ranking quantities to evaluate an estimate, ḟ(t), of a signal derivative,
ẏ(t), are defined as follow.

Definition 8.1 The time delay, τ , of a estimation and the square estimation error,
SEE, with the time delay in mind are defined as

SEE =
1
n

n∑
i=1

(ḟ(ti) − ẏ(ti − τ))2 (8.18a)

τ = arg min
τ
SEE. (8.18b)

When comparing different estimation methods to each other, one estimation method
is better than another if it have smaller τ and SEE. The signal derivative, ẏ(t),
is usually not known and therefore a signal with known derivative is used in order
to get an evaluation about the estimation methods.

Figure 8.1 present a signal that is used to evaluate the different methods pre-
sented in this chapter to estimate derivatives. To get some information on how
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Estimate τ [s] SEE
Kalman 0.45 0.019
F1(s) 0.45 0.066
F2(2) 0.45 0.067
Spline 0.45 0.006

Table 8.1. Ranking quantities for four different estimation methods, with focus on short
time-delay.

Estimate τ [s] SEE
Kalman 0.45 0.014
F1(s) 1.45 0.002
F2(2) 1.7 0.018
Spline 0.95 0.001

Table 8.2. Ranking quantities for four different estimation methods, with focus on noise
reduction.

the noise affects the different estimation methods, Gaussian noise with suitable
variance is added to the signal.

In order to evaluate the different methods two simulations were made in Mat-
lab/Simulink where the derivative was estimated with 2 different approximately
differentiating filter (Section 8.1.1), smoothing spline (Section 8.1.2) and with a
Kalman filter (Section 8.1.3). The approximately differentiating filters are

F1(s) =
s

(Td1s+ 1)2
(8.19a)

F2(s) =
s

(Td2s+ 1)
. (8.19b)

The design parameters for the different estimation methods, were tuned ad-hoc to
get satisfying results, one simulation with focus on short time-delay and one with
focus on good noise reduction. In Figure 8.2 the results from the two simulations,
where the derivative was estimated with four different methods, are presented
together with the analytical derivative.

Consider the estimations presented in Figure 8.2, the ranking quantities, τ and
SEE, can be calculated and analyzed for every estimation methods for the two
simulations to get a ranking among the different estimation methods.

According to the ranking quantities presented in Table 8.1 and 8.2 smoothing
spline has best SEE when the estimation methods have been tuned to get a short
time-delay. When the estimation methods have been tuned to get a good noise
reduction has smoothing spline shortest time-delay and also lowest SEE. Hence,
smoothing spline is the best estimation method according to these two properties.

Methods to generate residual generators using derivatives are presented in
Part II. Since derivatives that may contain other derivatives are used, higher
order derivatives have to be estimated. This leads to that estimates of derivatives
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Figure 8.2. The derivative of signal estimated with three different methods.
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Figure 8.3. Bode plot of the evaluated methods.

of different order have different time-delays and all signals have to be delayed so
all signals in the residual generator gets the same time-delay. It is important to
keep the time-delay, τ , small, because it is desirable to detect a fault as soon as it
occurs.

A bode plot for all estimation methods, with the parameters used above to get
the ranking quantities in Table 8.1, is presented in Figure 8.3. The breakpoints
for the different methods can be moved along the theoretical derivative if the
design parameters for each filter are changed. It can be seen that filter F1, F2 and
smoothing spline have the most accurate bode plot and F1, smoothing spline and
the Kalman filter have the best reduction for higher frequencies.

The conclusion that can be made from the evaluation presented in this sec-
tion is that smoothing spline is the best method to estimate derivatives. Hence,
smoothing spline is used in the sequel to estimate derivatives.

8.2 Realize in State-Space Form
This aim with this section is to present a method to avoid the need of numerical
estimation of derivatives. The main idea is to add dynamics to the consistency
relation in a way that a state-space realization without derivatives as inputs exists.
Conditions for when this realization exists and how it can be done are presented
and discussed.

8.2.1 Linear Systems
Given a linear system a residual generator based on a consistency relation, with
the highest order of derivative n− 1, can be written as

R =
n∑

i=1

Ciu
(n−i) +

n∑
i=1

Diy
(n−i), (8.20)
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where Ci and Di are row-vectors. Let u̇ = pu, where p is the derivative operator,
and add stable dynamics, d(p), to the residual generator. In other words let
d(p) = pn + a1p

n−1 + . . .+ an−1p+ an be a polynomial with all roots in the open
left half plane. Then (8.20) can be written as

R =
1
d(p)

(
n∑

i=1

Cip
n−i

)
u+

(
n∑

i=1

Dip
n−i

)
y = Gru(p)u+Gry(p)y, (8.21)

whereGru(p) is the transfer function from u to r andGry(p) is the transfer function
from y to r. The polynomial, d(p), can be chosen such that d(p) have no roots in
common with the numerators in the polynomial matrices Gru(p) or Gry(p). This
can be done since there exist only a finite number of roots in the numerators and
there exists infinite numbers of choices for the roots to d(p). It can be proved
that a minimal realization of input-output behavior (8.21), with the characteristic
described above, have dimension n, see [13]. The system (8.21) can be realized in
observer companion form

ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−a1 1 0 . . . 0

−a2 0 1 0
...

...
...

. . . 0
−an−1 0 . . . 0 1
−an 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
x+

⎛
⎜⎜⎜⎜⎜⎝

C1 D1

C2 D2

...
...

Cn−1 Dn−1

Cn Dn

⎞
⎟⎟⎟⎟⎟⎠
(
u
y

)
(8.22a)

R =
(

1 0 . . . 0
)
x, (8.22b)

which have dimension n and therefore is a minimal realization of the input-output
behavior (8.21).

8.2.2 Non-Linear Systems
For non-linear systems it is not easy to determine the conditions for when it is
possible to realize a non-linear consistency relation in state-space form, see [12]. In
certain cases a possible approach to handle non-linear consistency relations is to
find a variable substitution such that the non-linear problem is transformed to a
linear problem. When the problem is transformed to linear problem the methods
described in Section 8.2.1 can be used.

Example 8.2
Consider the non-linear consistency relation

c(ẏ, y) = 2y1ẏ1 + y2. (8.23)

This consistency relation is not straightforward to realize in state-space form but
since d

dt(y
2
1) = 2y1ẏ1, the consistency relation can be written in linear form as

c(ẏ, y) =
d

dt
(y2

1) + y2 = v̇ + y2, (8.24)

with variable substitution v = y2
1 . The method for the linear case can now be

applied.
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The problem to find a suitable variable substitution in a way that the non-linear
consistency relation is transformed to a linear problem, as in Example 8.2, is not a
trivial problem. Furthermore, the existence of such a variable substitution is not
obvious, see [12].

In general the problem can be described as to find two transformations, Ψ(c(ẏ, y), y)
and ψ(r, y), and residual dynamics, h(r, y), such that there exist a state-space re-
alization

ω̇ = f(ω, y) (8.25a)
r = ψ−1(ω, y), (8.25b)

with the variable substitution ω = ψ(r, y), for the residual generator

ṙ + h(r, y) = Ψ(c(ẏ, y), y). (8.26)

There exist several conditions on the consistency relation, c(ẏ, y), for when it is
possible to find Ψ(c(ẏ, y), y), ψ(r, y) and h(r, y) such that it exists a state-space
realization (8.25), see [12]. However, this is beyond the scope of this thesis.

8.3 A Comparison Between State-Space Realiza-
tion and Estimation of Derivatives

This section contains a comparison, for linear system, between the methods to
estimate derivatives, described in Section 8.1, and the method to realize the con-
sistency relation in state-space form, described in Section 8.2.

Example 8.3
Consider the linear consistency relation c(ẏ, y) = ẏ+y. Assume that the derivative
is estimated with a differentiating filter

D(p) = pH(p) =
p

(pTd + 1)2
. (8.27)

This yields a residual generator

R =
p

(pTd + 1)2
y + y. (8.28)

If y in eqution (8.28) is filtered with H(p), then residual generator (8.28) have the
same form as if the residual generator were realized in state-space form with the
same dynamic as the filter H(p). That is, there is no difference in the linear case
between a residual generator realized in state-space form and a residual generator
where derivatives are estimated with an approximately differentiating filter and
all other signals are filtered.

In Example 8.3 the differences between a state-space realization and a realization
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Fault Fault free
fu Bias-error in actuator 0
fy1 Bias-error in sensor 1 0
fgy1 Gain-error in sensor 1 1
fy2 Bias-error in sensor 2 0

Table 8.3. Table describing the fault implemented in system (8.29) and their values in
the fault free case.

when derivatives are estimated is presented. The connection between the polyno-
mial d(p) and the differentiating filter’s design parameter is also illustrated. In
other words, when dynamics are added to the residual generator, all zeros to the
polynomial, d(p), can be chosen in the same way as the design parameters for the
approximately differentiating filter.

Consider the linear system described in Example 6.2 with faults implemented
as

e1 : ẋ1 = −x1 − 5x2 + u+ fu (8.29a)
e2 : ẋ2 = −x2 + u+ fu (8.29b)
e3 : y1 = fgy1(x1 + x2) + fy1 (8.29c)
e4 : y2 = x2 + fy2, (8.29d)

where the faults fi are described in Table 8.3. Measurement noise were added to
the two sensors y1 and y2 during the simulation. The residual generators from
Example 6.2 are given by

R1 = ẏ2 + y2 − u (8.30a)
R2 = ẏ1 − ẏ2 + y1 + 4y2 − u. (8.30b)

Residual generator (8.30b) was realized according to the method presented in
Section 8.2.1. This was simulated in Matlab/Simulink along with the same
residual generator where derivatives were estimated and all other signals in the
residual generator were filtered with the same characteristic as the differentiating
filter. The results from the simulation are presented in Figures 8.4 and 8.5 as power
functions of the test, T (z). The test T (z) is based on the residual generatorR2 with
gain-error and bias-error on sensor y1. The threshold, J , for the test was chosen
such that the probability of |T (z)| < J in the fault free case is 95%. It can be seen
in Figures 8.4 and 8.5 that the different power functions have approximately the
same characteristic, as it was shown in Example 8.3. For non-linear consistency
relations there are several conditions for when a state-space realization exists and
therefore this approach is not considered as useful for the purpose of this thesis
and hence not further investigated.
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Figure 8.4. Power functions for residual generator R2 with various bias-errors on sensor
y1.
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8.4 Discussion
The parameters for the different estimations methods are easier to choose if there
exists good knowledge about the signal that shall be differentiated.

Conclusions about how good an estimation method is, are very hard to de-
cide. It depends on what properties that define a good estimation. The different
estimation methods are evaluated in a noise sensitive sense and the time-delay
is also taken in to consideration in this chapter. Since estimated derivatives are
used in residual generators in this thesis, the behavior of residual generators is an
important property to investigate.

To get information on how good the estimation methods are to estimate deriva-
tives from real measurement data, different residual generators where different
signals are differentiated are needed. In the next chapter, a Scania diesel engine
model is used to extract residual generators and one residual generator based on
differentiation is presented. Further investigations about the estimation methods
can be made from the behavior of the residual generator.



Chapter 9

Evaluation of the Residual
Generation Methods

The methods to generate residual generators, see Part II, were compared and
evaluated and the results are presented in this chapter. From which MSO sets
it was possible to construct residual generators with the different methods was
analyzed. But also how residual generators with estimated derivatives work, with
measured signals from a real system, in this thesis a Scania engine.

9.1 Comparison of the Methods on a Satellite Sys-
tem

The different methods to generate residual generators were compared on a small
satellite system. The intention with this comparison was to see from which MSO
sets a residual generator were created and design a diagnosis system were two
faults could be detected and isolated from each other. Consider the point-mass
satellite model

e1 : ṙ = v (9.1a)

e2 : v̇ = rω − θ1
1
r2

+ (θ2 + fu1)u1 (9.1b)

e3 : φ̇ = ω (9.1c)

e4 : ω̇ = −2vω
r

+ θ2
u2

r
(9.1d)

e5 : y1 = r + fy1 (9.1e)
e6 : y2 = φ (9.1f)
e7 : y3 = ω, (9.1g)

where (r, φ) is the position of the satellite in polar coordinates in the plane, v
radial velocity, ω angular velocity, u1, u2 radial and tangential thrust respectively

67
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and θ1, θ2 known constants, see [16]. The structural matrix for the satellite system
is seen in Table 9.1. Equation e4 is considered non-invertible for r and ω. The
variable r can not be decided due to ω̇ may become zero, which would lead to a
division by zero. The variable ω can not be decided because the radial velocity
v may become zero. Even in this case it would lead to a division by zero. The
two faults that the diagnosis system was designed to detect and isolate were an
actuator fault, fu1 , and a sensor fault, fy1 . There were ten different MSO sets
found in this system. All MSO sets and which equations the MSO sets consist of
are seen in Table 9.2.

eq rd vd φd ωd r v φ ω
e1 × ×
e2 × × ×
e3 × ×
e4 × Δ × Δ
e5 ×
e6 ×
e7 ×
d1 × ×
d2 × ×
d3 × ×
d4 × ×

Table 9.1. Structural matrix for system (9.1).

MSO eq
1 e3, e6, e7, d2

2 e1, e2, e4, e5, d1, d2, d4

3 e1, e2, e4, e7, d1, d2, d4

4 e1, e4, e5, e7, d1, d4

5 e2, e4, e5, e7, d2, d4

6 e1, e2, e5, e7, d1, d2

7 e2, e3, e4, e5, e6, d2, d3, d4

8 e1, e3, e4, e5, e6, d1, d3, d4

9 e1, e2, e3, e4, e6, d1, d2, d3, d4

10 e1, e2, e3, e5, e6, d1, d2, d3

Table 9.2. MSO sets found in system (9.1).

To achieve best possible fault isolation for a system, a residual generator from
each MSO set is needed, see Section 4.4. In Table 9.3 it is shown for which MSO
sets it was possible to design residual generators with the different methods.

Residual generators from seven out of the ten MSO sets were found with inte-
gral causality. Hence, better fault detectability and isolation could be achieved if
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MSO IC DC MC
1 Yes Yes Yes
2 Yes Yes Yes
3 Yes - Yes
4 - Yes Yes
5 Yes Yes Yes
6 Yes Yes Yes
7 Yes Yes Yes
8 - Yes Yes
9 Yes - Yes
10 - Yes Yes

Table 9.3. Found residual generators with different methods, integral causality (IC),
derivative causality (DC) and mixed causality (MC), for each MSO set.

residual generators from the remaining MSO sets were found. Neither with deriva-
tive causality were residual generators from all MSO sets found. Only from eight
out of the ten MSO sets were residual generators derived. However, with mixed
causality residual generators from all MSO sets were found.

The fault detectability for each found residual generator is seen in Table 9.4.
With all residual generators that were constructed with integral causality, the fault
fy1 could not be isolated from the fault fu1 . With derivative causality, the fault
fu1 could not be isolated from the fault fy1 . However, with mixed causality were
a residual generator from each MSO set constructed, which yielded that the fault
fy1 could be isolated from the fault fu1 and vice versa.

(a)

fu1 fy1

R1

R2 X X
R3 X

R5 X X
R6 X X
R7 X X

R9 X

(b)

fu1 fy1

R1

R2 X X

R4 X
R5 X X
R6 X X
R7 X X
R8 X

R10 X X ´

(c)

fu1 fy1

R1

R2 X X
R3 X
R4 X
R5 X X
R6 X X
R7 X X
R8 X
R9 X
R10 X X

Table 9.4. (a) Fault detectability with IC. (b) Fault detectability with DC. (c) Fault
detectability with MC.

This comparison shows that mixed causality is better than derivative and in-
tegral causality separately to find residual generators. This is because the union
of all residual generators found with integral and derivative causality is also found
with mixed causality.
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9.2 Evaluation of the Residual Generation Meth-
ods on a Scania Diesel Engine

To compare the methods on a more complex system than the satellite system, a
comparison was made on a Scania diesel engine. One residual generator, where
derivatives are used, was evaluated to see if the residual generator could detect
faults even when derivatives were estimated.

9.2.1 Engine Model
The model of the Scania diesel engine used in this thesis is developed at the
Division of Vehicular Systems, Linköpings University, see [15].

To get the model compatibly with the methods used to find residual generators,
some modifications have been made to the original model. The modifications
include two new states, T1 and xr, which are added to get the model in state-
space form. The modified model is on the form

ẋ = f(x, uc, um) (9.2a)
y = h(x), (9.2b)

where uc is the control input vector

uc = (uδ, uegr, uvgt)T (9.2c)

and um an input vector with measured variables

um = (ne, Tim, Tamb, pamb)T . (9.2d)

The state vector x is

x = (pim, pem, XOim, XOem, ωt, ũvgt, T1, xr)T , (9.2e)

and the output vector y

y = (wcmp, pim, pem, ntrb)T . (9.2f)

All nomenclature used above to describe the model are explained in Table 9.5.
One of the input signals used in uc are not the actual control signal, instead of the
EGR control signal the measured position of the EGR valve is used. However, uδ

and uvgt are the control signals.
In Figure 9.1 a Matlab/Simulink implementation of the model is shown.

Validation of the Modified Model

To verify that the modifications made in the model (9.2) are correct, a validation
of the modified model was performed. Same input signals, uc and um, were used
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Variable Description Unit
uδ Mass of injected fuel mg/cycle
uegr EGR control signal %
uvgt VGT control signal %
ne Engine rotational speed rpm
Tim Intake manifold temperature K
Tamb Ambient temperature K
pamb Ambient pressure Pa
pim Intake manifold pressure Pa
pem Exhaust manifold pressure Pa
XOim Intake manifold oxygen concentration −
XOem Exhaust manifold oxygen concentration −
ωt Turbine rotational speed rad/s
ũvgt VGT valve position −
T1 Cylinder temperature after intake stroke K
xr Residual gas fraction −
wcmp Compressor mass flow kg/s
ntrb Turbine rotational speed rpm

Table 9.5. Nomenclature for the Scania engine model (9.2).
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Figure 9.1. A Matlab/Simulink implementation of the model (9.2).
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to both the original model and the modified model and the outputs, y, from both
models were compared. The relative errors between these outputs were used to
validate the modified model and the relative error is calculated as

E(i) =
yoriginal(i) − ymodified(i)

1
N

∑N
i=1 yoriginal(i)

. (9.3)

How the relative errors vary over time is seen in Figure 9.2. The mean relative
error and max relative error is also shown for every output. These were calculated
without the first 20 seconds of the simulation. This is because the modified model
is incorrect in the beginning of a simulation due to removed saturations.

The mean relative error for all outputs was between 0.2% and 0.36% and the
maximum relative error for all outputs was between 0.9% and 2.4%. The rela-
tive errors were around a tenth of the relative errors that the original model has
compared to the measured outputs from the engine, see [15], which justifies the
modifications.
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9.2.2 Comparison of the Different Methods to Generate Resid-
ual Generators

To evaluate the methods to generate residual generators from the engine model
a Matlab toolbox developed at Scania was used. The toolbox automatically
generates residual generators. The toolbox is built on the work that has been
done in [6], [5] and [3]. The toolbox handled integral causality and has therefore
been upgraded to handle derivative causality and partly mixed causality.

To evaluate the methods, the number of residual generators from different MSO
sets was compared. From the engine model the toolbox extracted 90 different MSO
sets. With integral causality residual generators from four different MSO sets were
found and with derivative causality it was only possible to find a residual generator
from one MSO set. It was possible to find residual generators from 35 of the total
90 MSO sets with mixed causality. The MSO sets where residual generators were
found, with the different methods, are seen in Table 9.6. An important thing to
notice is that the union of residual generators found with integral and derivative
causality is not equal to the set of residual generators found with mixed causality.

Residual Generators with Integral Causality

It was possible to generate residual generators from four different MSO sets with
integral causality. The small number of residual generators was mainly due to
many non-invertible equations. The constructed residual generators were

RIC1 = f1(ntrb, pamb, pim, Tamb, wcmp) (9.4a)
RIC43 = f2(uδ, ne, ntrb, pamb, pem, pim, Tamb, Tim, uvgt) (9.4b)
RIC76 = f3(uδ, ne, pamb, pem, pim, Tamb, Tim, uvgt, wcmp) (9.4c)
RIC88 = f4(uδ, ne, ntrb, pamb, pem, pim, Tamb, Tim, uvgt, wcmp). (9.4d)

Only the signals that the residual generators need is written since the residual
generators contain between five and 40 equations. Residual generator (9.4a) is
static.

Residual Generators with Derivative Causality

It was only possible to find one residual generator with derivative causality and
that was the static residual generator (9.4a), which was also found with integral
causality.

There are two main reasons that explain why no new residual generators were
found with derivative causality.

The first reason is because there are many non-invertible equations in the
model. These equations are of the type x1 = min(x2, x3), x1 = max(x2, x3) and
x1 = saturate(x2). If these equations are removed from the model, there are
in total 598 MSO sets found. From these MSO sets it was possible to design
13 residual generators with derivative causality. In only two of these MSO sets
were residual generators found with integral causality as well. Hence, derivative
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MSO IC DC MC
1 Yes Yes Yes
2 - - Yes
4 - - Yes
5 - - Yes
7 - - Yes
8 - - Yes
10 - - Yes
11 - - Yes
12 - - Yes
20 - - Yes
21 - - Yes
23 - - Yes
24 - - Yes
25 - - Yes
39 - - Yes
40 - - Yes
41 - - Yes
43 Yes - Yes
44 - - Yes
45 - - Yes
46 - - Yes
51 - - Yes
53 - - Yes
57 - - Yes
58 - - Yes
60 - - Yes
61 - - Yes
62 - - Yes
63 - - Yes
74 - - Yes
76 Yes - Yes
85 - - Yes
86 - - Yes
88 Yes - Yes
90 - - Yes

Table 9.6. Found residual generators with different methods, integral causality (IC),
derivative causality (DC) and mixed causality (MC), for each MSO set.
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causality would give a contribution to the overall fault detectability if allmin, max
and saturate equations were removed. However, modifications of that kind results
in an incorrect model.

The second reason why there were no new residual generators found with
derivative causality is because differential loops, see Section 6.4. Differential loops
often occur in systems where there are cross dependencies between differential
variables. Since no methods to handle differential loops with derivative causality
are presented in this thesis, all MSO sets where differential loops occurred were
discarded.

Residual Generators with Mixed Causality

In this section one residual generator that was found with mixed causality is shown
and evaluated in a fault detectability and isolation sense.

The MSO set, from which the residual generator was derived, was chosen in a
way that no residual generators with either integral or derivative causality could be
found in that set. Another criterion for the MSO set was that it did not contain the
signal tamb but did contain the signal tim. This yielded that it would be possible
to isolate a fault affecting sensor tim from a fault affecting sensor tamb.

The structural matrix for the MSO set from which the residual generator was
constructed is seen in Figure 9.3. The strongly connected components marked
in the figure induce a differential loop which was solved with integral causality.
Equation (e37) was used as residual equation.

The residual generator was

RMC4 = f(uδ, ne, ntrb, Tim, pamb, pim, pem, wcmp). (9.5)

Based on the residual generator (9.5) a test was constructed. The length of the
sliding test window was N = 2000 samples. The residual generator was simulated
with measured sensor signals from a truck and with different faults implemented.
The results of the simulations are seen in three different figures. In Figure 9.4,
the result from the fault-free simulation is illustrated. In Figure 9.5, the result
from the simulation where a bias fault in sensor Tim has occurred after 220s is
presented. In Figure 9.6, the result from the simulation where a bias fault in sensor
wcmp has occurred after 200s is presented. The threshold was chosen such that
the probability of |T | < J in the fault free case was 99%.

The residual generator did only react for a limited time for the bias fault in Tim.
There are two possible explanations for this. One explanation is that the residual
generator only reacted for changes in Tim and the second is that the control loop
compensated for the fault.

Derivatives from three signals, pim, pem and ntrb, was used in residual gener-
ator (9.5). Smoothing spline was used to estimate the derivatives and from the
simulation results in Figures 9.4, 9.5 and 9.6 it is seen that the derivative estima-
tion are satisfactorily correct since the tests reacted when the two different faults
occurred and did not react in the fault-free case.
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Figure 9.4. Fault-free simulation of residual generator (9.5).
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Figure 9.5. Simulation of residual generator (9.5) with a bias fault in sensor Tim.
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Figure 9.6. Simulation of residual generator (9.5) with a bias fault in sensor wcmp.

The fact that the residual generator (9.5) reacted to the bias fault in Tim shows
that it is useful. With this residual generator, a bias fault in Tim could be isolated
from a fault in Tamb.

Fault Isolation Comparison

To see how much the fault isolation would improve if all found residual generators
were realized, a fault isolation comparison was made. Two assumptions were
made, the first was that all found residual generators were realizable. The second
assumption was that only actuator and sensor faults were considered. That is, if
a residual generator needs signal Tim, the residual generator is sensitive for faults
in sensor Tim.

The fault detectability is seen in Table 9.7 for all residual generators con-
structed with integral causality and in Table 9.8 with mixed causality. From the
fault detectability tables, it was possible to construct fault isolation matrices. The
faults that actually occur are seen on the vertical axis and all possible faults that
could explain the behavior are seen on the horizontal axis.

The fault isolation is seen in Table 9.9 for the diagnosis system designed with
integral causality and in Table 9.10 with mixed causality. Faults in sensor uegr

have been left out because no residual generator is sensitive for faults in sensor
uegr .

The fault isolation with mixed causality has improved compared to the fault
isolation with integral causality. For example, a fault in sensor pim was previously
a possible explanation for all possible faults but with mixed causality it is not.
This shows that mixed causality is better in a fault isolation sense than integral
causality and would give a contribution if it is used when designing a model-based
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diagnosis system.

uδ neng ntrb pamb pem pim tamb tim uvgt wcmp uegr

R1 × × × × ×
R43 × × × × × × × × ×
R76 × × × × × × × × ×
R88 × × × × × × × × × ×

Table 9.7. Fault detectability with integral causality.

9.3 Discussion
The evaluation has shown that derivative causality does not work well when trying
to find residual generators when the model consists of many non-invertible equa-
tions. However, with integral causality residual generators were found and when
using these two methods separately, integral causality is considered better. By
using mixed causality it was possible to generate residual generators from many
more MSO sets than it was with integral and derivative causality separately. Even
though many more residual generators were found with mixed causality, there are
still only residual generators from 35 of 90 MSO sets found. This can partly be
explained by the many non-invertible equations. Hence, if non-invertible equations
are avoided as far as possible when models are constructed it would be easier to
find more residual generators.

The realized residual generator with mixed causality has three estimated deriva-
tives of measured signals as inputs. The results of the simulations of the residual
generator show that the method to estimate derivatives is good enough in this
application. Only the derivatives of three measurement signals are estimated, and
in order to evaluate derivatives of other signals more residual generators, which
need derivatives of other signals as input, are needed to be realized and analyzed.
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uδ neng ntrb pamb pem pim tamb tim uvgt wcmp uegr

R1 × × × × ×
R2 × × × × × × × ×
R4 × × × × × × × ×
R5 × × × × × × × ×
R7 × × × × × × × ×
R8 × × × × × × × ×
R10 × × × × × × × ×
R11 × × × × × × × ×
R12 × × × × × × × ×
R20 × × × × × × × ×
R21 × × × × × × × ×
R23 × × × × × × × ×
R24 × × × × × × × ×
R25 × × × × × × × ×
R39 × × × × × × × × ×
R40 × × × × × × × × ×
R41 × × × × × × × × ×
R43 × × × × × × × × ×
R44 × × × × × × × × ×
R45 × × × × × × × × ×
R46 × × × × × × × × ×
R51 × × × × × × × × ×
R53 × × × × × × × × ×
R57 × × × × × × × × ×
R58 × × × × × × × × ×
R60 × × × × × × × × ×
R61 × × × × × × × × ×
R62 × × × × × × × × ×
R63 × × × × × × × × ×
R74 × × × × × × × × ×
R76 × × × × × × × × ×
R85 × × × × × × × × × ×
R86 × × × × × × × × × ×
R88 × × × × × × × × × ×
R90 × × × × × × × × × ×

Table 9.8. Fault detectability with mixed causality.
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uδ neng ntrb pamb pem pim tamb tim uvgt wcmp

uδ × × × × × × × ×
neng × × × × × × × ×
ntrb × × × ×
pamb × × ×
pem × × × × × × × ×
pim × × ×
tamb × × ×
tim × × × × × × × ×
uvgt × × × × × × × ×
wcmp × × × ×

Table 9.9. Fault isolation with integral causality.

uδ neng ntrb pamb pem pim tamb tim uvgt wcmp

uδ × × × ×
neng × × × ×
ntrb × ×
pamb ×
pem × × × × ×
pim × ×
tamb × ×
tim × × × ×
uvgt × × × × ×
wcmp × ×

Table 9.10. Fault isolation with mixed causality.





Chapter 10

Conclusions and Further
Work

10.1 Conclusions
The conclusions that have been made in this thesis can be summarized as:

• Three different methods to estimate derivatives were presented and from
those methods it has been shown that smoothing spline approximation has
the best properties for the purpose in this thesis. That is, to use estimated
derivatives of known signals as inputs in residual generators.

• Using mixed causality when searching for residual generators gives a contri-
bution to the number of MSO sets where residual generators can be realized,
which improves the fault isolation compared to the existing method at Scania
using integral causality.

• Using an extra equation to describe the connection between a variable and
its derivative in structural models is necessary when mixed causality is used
to generate residual generators.

• Purely differential loops can always be solved with integral causality. Loops
with both differential and static equations can be solved with integral causal-
ity under certain conditions.

10.2 Further Work
There are some areas that may need further work in order to improve the methods
to find realizable residual generators. These are:

• Design an engine model with as few as possible non-invertible equations
would most likely increase the number of possible residual generators.
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• Test the methods to estimate derivatives in a real engine for more residual
generators to see how they behave in a real-time application.
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Appendix A

Residual Generators from
Example 6.2

From the system

e1 : ẋ1 = −x1 − 5x2 + u (A.1a)
e2 : ẋ2 = −x2 + u (A.1b)
e3 : y1 = x1 + x2 (A.1c)
e4 : y2 = x2 (A.1d)

there are three different MSO sets found. These are seen in Table A.1.

MSO Equations
1 {e1, e3, e4, d1}
2 {e2, e4, d2}
3 {e1, e2, e3, d1, d2}

Table A.1. Different MSO sets found from system (A.1).

All possible residual generators will then be

R1 = ẏ1 − ẏ2 + y1 + 4y2 − u (A.2a)

R2 = ẏ2 + y2 − u (A.3a)

x1 =
xd

1

4
+

5
4
y1 − u (A.4a)

xd
1 =

d

dt
x1 (A.4b)

R3 = y2 − y1 − x1 (A.4c)
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x2 =
xd

2

4
− 1

4
d

dt
y1 +

1
4
u (A.5a)

xd
2 =

d

dt
x2 (A.5b)

R4 = y2 − x2 (A.5c)

x2 = −xd
2 + u (A.6a)

xd
2 =

d

dt
x2 (A.6b)

R5 = y2 − x2 (A.6c)

x2 = −xd
2 + u (A.7a)

x1 = −xd
1 − 5x2 + u (A.7b)

xd
1 =

d

dt
x1 (A.7c)

xd
2 =

d

dt
x2 (A.7d)

R6 = y1 − x1 − x2 (A.7e)

x1 =
xd

1

4
+

5
4
y1 − u (A.8a)

xd
1 =

d

dt
x1 (A.8b)

R7 =
d

dt
y1 + y1 − d

dt
x1 − x1 − u (A.8c)

x2 =
xd

2

4
− 1

4
d

dt
y1 +

1
4
u (A.9a)

xd
2 =

d

dt
x2 (A.9b)

R8 =
d

dt
x2 + x2 − u (A.9c)

x2 = −xd
2 + u (A.10a)

xd
2 =

d

dt
x2 (A.10b)

R9 =
d

dt
y1 − y1 − d

dt
x2 − 4x2 + u (A.10c)
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