
Institutionen för systemteknik
Department of Electrical Engineering

Examensarbete

Simulation and synchronization of distributed

real-time systems

Examensarbete utfört i Fordonssystem
vid Tekniska högskolan i Linköping

av

Andreas Karlsson and Joakim Leuhusen

LITH-ISY-EX--09/4161--SE

Linköping 2009

Department of Electrical Engineering Linköpings tekniska högskola
Linköpings universitet Linköpings universitet
SE-581 83 Linköping, Sweden 581 83 Linköping

Simulation and synchronization of distributed

real-time systems

Examensarbete utfört i Fordonssystem

vid Tekniska högskolan i Linköping
av

Andreas Karlsson and Joakim Leuhusen

LITH-ISY-EX--09/4161--SE

Handledare: Erik Hellström
isy, Linköpings universitet

Roger Eriksson
BAE Systems Hägglunds AB

Martin Hallberg
BAE Systems Hägglunds AB

Examinator: Lars Nielsen
isy, Linköpings universitet

Linköping, 13 February, 2009

Avdelning, Institution

Division, Department

Division of Automatic Control
Department of Electrical Engineering
Linköpings universitet
SE-581 83 Linköping, Sweden

Datum

Date

2009-02-13

Språk

Language

� Svenska/Swedish

� Engelska/English

�

⊠

Rapporttyp

Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

⊠

URL för elektronisk version

http://www.control.isy.liu.se

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-ZZZZ

ISBN

—

ISRN

LITH-ISY-EX--09/4161--SE

Serietitel och serienummer

Title of series, numbering
ISSN

—

Titel

Title
Simulering av distribuerade realtids system i Stateflow och TrueTime

Simulation and synchronization of distributed real-time systems

Författare

Author
Andreas Karlsson and Joakim Leuhusen

Sammanfattning

Abstract

Today we are very much dependent on different kinds of real time systems. Usually,
a real time system is a system which is interacting with a physical environment
with sensors or activators. There are many advantages by replacing mechanical
components with electrical ones. For instance, it is usually cheaper and possible
to add new functions to the device without replacing the electronic part, which
would have been necessary with a mechanical one.

The possibility of simulating a distributed system is used throughout the vehi-
cle industry. With the simulation of connected sub systems, using modeled buses
and real time kernels, one could increase the correctness of the behavior of the sys-
tem and consequently decrease the amount of time spent later in the developing
process.

In this master thesis we used modeled CAN-buses and real time models to
simulate the connection and execution time of the systems. The simulation results
are used to validate the functionality of the distributed system. Additionally, a
worst-case response time analysis is made to set timing constraints on the system
to fulfill given deadlines.

During the work, different settings of the network are tested to analyze the
system frequency needed to sustain deadlines and correctness on the network.

Nyckelord

Keywords Realtime, distributed, network, syncronization, TrueTime, Stateflow

Abstract

Today we are very much dependent on different kinds of real time systems. Usually,
a real time system is a system which is interacting with a physical environment
with sensors or activators. There are many advantages by replacing mechanical
components with electrical ones. For instance, it is usually cheaper and possible
to add new functions to the device without replacing the electronic part, which
would have been necessary with a mechanical one.

The possibility of simulating a distributed system is used throughout the vehicle
industry. With the simulation of connected sub systems, using modeled buses and
real time kernels, one could increase the correctness of the behavior of the system
and consequently decrease the amount of time spent later in the developing process.

In this master thesis we used modeled CAN-buses and real time models to
simulate the connection and execution time of the systems. The simulation results
are used to validate the functionality of the distributed system. Additionally, a
worst-case response time analysis is made to set timing constraints on the system
to fulfill given deadlines.

During the work, different settings of the network are tested to analyze the
system frequency needed to sustain deadlines and correctness on the network.

v

Acknowledgments

First of all we would like to thank our supervisors, Erik Hellström at the depart-
ment of Electrical Engineering at Linköping University, for his encouragement and
positive attitude. Secondly we thank Roger Eriksson and Martin Hallberg at BAE
Systems Hägglunds for all the support during the work.

We would also like to thank the following people for their engagement during
the progress of our master thesis:

• Soheil Samii at the department of Computer and Information Science, Linköping
University

• Anton Cervin at the department of Automatic Control, Lund University

• Palencia Gutierrez, Jose Carlos, departamento Electronic Y Computadores,
Universidad De Cantabria

vii

Contents

1 Introduction 1
1.1 Purpose . 2
1.2 Problems To Solve . 2
1.3 Limitations . 3
1.4 Method . 3

2 Design Of Simulator 5
2.1 Warning Lights Model . 5

2.1.1 Network . 5
2.2 Hybrid Brake Model . 6

2.2.1 Mechanical Brake . 12
2.2.2 Electrical Brake . 12
2.2.3 Network . 12

2.3 Design Alternatives . 13
2.3.1 TrueTime . 13
2.3.2 Stateflow In TrueTime . 14
2.3.3 TrueTime/Stateflow . 14

2.4 Choice Of Design . 15

3 Real-Time System Analysis 17
3.1 Response-Time Analysis . 17

3.1.1 Exact Response-Time Analysis 17
3.1.2 Upper-Bound Approximation for Worst-Case Analysis . . . 22
3.1.3 Analysis for Tasks with Dynamic Offsets and Distributed

systems . 24

4 Experiments 27
4.1 Task Model . 27
4.2 Results . 30

5 Methodology Summary 37
5.1 True-Time Implementation . 37
5.2 Task Model . 40
5.3 Syncronization . 40

ix

x Contents

6 Conclusions 41

7 Future Work 43

Bibliography 45

A Matlab Code 47
A.1 The TU-Code File . 48
A.2 The Messagehandler File . 49

B Tables 50
B.1 Simulation Parameters . 51

Chapter 1

Introduction

This master thesis is performed in collaboration with BAE Systems Hägglunds in
Örnsköldsvik, Sweden, and the Division of Vehicular Systems at the Department
of Electrical Engineering at Linköping University.

A lot of research has been done in the subject of distributed systems and real-
time-synchronization and it is a hot subject because of its very wide application.
There are various definitions of what a distributed system is so in this thesis we
define it as follows: a distributed system refer to a system where different single-

processors have been connected by a network making it a system that consists of

several subsystems. In distributed systems it is important that all nodes have the
same time synchronized on their internal clocks. In many cases this synchroniza-
tion is done automatically by the network, as they are in our system. Also, one
needs to know how long time it takes from sending messages until they reach their
final destinations. This time can ideally be calculated off-line using worst-case-
response time analysis or in some cases be estimated using simulation.

There is a lot of research being done in response-time analysis. One of the
earliest articles, which has spawned many follow ups, is: "Holistic Schedulability
Analysis for Distributed Hard Real-time Systems" [7]. In the article it is shown how
response time analysis is done in a CPU which have tasks with static priorities.
This is further developed in [8], showing how scheduling is made in distributed
systems with Rate Monotonic (RMA). Lately there has been a trend towards
studying scheduling analysis for dynamic distributed systems and a less pessimistic
analysis.

"The Gast Project" is a relatively new project in combination with industrial
companies that are trying to come up with good solutions in x-by-wire problemat-
ics. Nowadays there are only military vehicles that use x-by-wire for safety critical
applications like steering and breaking. In civilian vehicles the hardware is only
operating the non safety critical applications. The goal is that in the future even
civilian vehicles will be running with x-by-wire.

A very interesting and important problem in x-by-wire structures is how the
system responds to a fault in terms of redundancy. If a node breaks down or
malfunctions, it is important that the systems runs smoothly anyway or at least

1

2 Introduction

informs the operator. In this thesis we will not try to implement redundancy but
in reality it would be needed.

As an aid in the developing process we used a Simulink compatible program
called TrueTime, made by Lund University in Sweden. This is a series of S-
functions, mex and Matlab files, used to simulate a real-time processor kernel
with scheduling and buses. TrueTime is free to download at [11] and is used in
various programming courses throughout Sweden. There are six different blocks
that can be used to simulate real-time and buses in the Simulink environment. The
main one is called the "TrueTime Kernel" which is used to simulate the processor
core. TrueTime can be used for a variety of system validation analysis. One
can see how different schedules affect the nodes or how different systems work
together. One problem we faced early on in the development was that TrueTime
is not completely compatible with Stateflow models. We needed to come up with
a solution to this problem to be able to continue with our work.

1.1 Purpose

The main purpose with this master thesis is to come up with a methodology that
can be used when testing distributed Simulink/Stateflow models, communicating
over a simulated CAN and real-time network. The analysis will contain sample
rate, disturbance and response time calculations of the generated distributed sys-
tem. Our goal is to be able to analyze the models and find the worst-case response
time of the system.

The main objective of this thesis is to describe a methology for testing dis-
tributed systems. At this time, there is no such help at Hägglunds which could
ease and speed up the developing process. So hopefully, this thesis can add a new
dimension to Hägglunds engineering team.

1.2 Problems To Solve

The main problem in this thesis is to find out how to build a model of a distributed
system that can be used when analyzing the interactivity between different com-
puter nodes. We basically have four main difficulties that need to be solved:

1. The first problem is to come up with a plan on how to implement the dis-
tributed system and choose which tools that should be used.

2. Without some sort of communication the nodes will not be able to synchro-
nize which means that we have to come up with a way for the nodes to
communicate with each other and agree on how and when to simultaneously
cooperate.

3. The third problem is how to find the response times of different signals in
the system.

4. When we have found out how to calculate the response times in a distributed
system we also need to apply the analysis to our models.

1.3 Limitations 3

1.3 Limitations

There are many difficulties when studying distributed systems. To name a few
there are: clock drift, redundancy and utilization of computer capacity. However,
we will assume that the clocks are perfect and there is no redundancy. We will
not study different scheduling policies.

1.4 Method

We started the work by doing an extensive research on the subject concerning
CAN, real-time information, TrueTime, Stateflow and more. In the developing
stage, we used a simplified model of a blinking light system which is used in BAE
Systems Hägglunds "SEP". The blinking system represents the vehicles warning
lights and is used as a simple demonstration over how this template is supposed
to function. There are 7 different lights on 5 different nodes making it difficult for
the system to make all lights blink at the same time. Our second model simulates
a hybrid braking system which consists of one mechanical brake and one electrical
brake that are used together, over a set of nodes, making a single brake force
out of the two systems. This is a far more complex system than the warning
lights with more nodes, buses and systems involved in the process. The system
contains a simple car model representing the vehicle, node-blocks representing
the actual hardware used by the vehicle and CAN buses used for communication
between different nodes. We implemented the models in different ways to see
which approach that was best suited in different cases.

Chapter 2

Design Of Simulator

In this chapter we introduce the models and different alternatives for building
a model of a distributed system in computer software. We compare different
programs that can be used, benefits and drawbacks, and conclude about the best
way to build the model. We describe both with images and text how the systems
work. We have only been using a small portion of the SEP-vehicle’s internal nodes
but these are the nodes used in the braking and blinking system of the vehicle.
Since the SEP is a military vehicle we can, in some cases, not give out exact
information but instead write in more general terms.

2.1 Warning Lights Model

The warning light system, illustrated in Figure 2.1 and 2.2 below, contains 6 nodes
and 3 buses. All the buses are CAN buses, with a maximum transmission speed
of 1 Mbit/s, and all the nodes represent real-time kernels, CPUs. The model
represents nodes used in the SEP and shows the problem with synchronizing all
the warning lights. Since the nodes are connected with different buses they have
to communicate data between one another which would make the lights blink
asynchronous because of the time delay, if nothing was done to fix the problem.
This made the system a good starting ground for testing and understanding the
problem with unsynchronized nodes. In order to synchronize the system one have
to come up with an idea on how to make the nodes concurrent.

2.1.1 Network

When the driver pushes the warning lights button, illustrated by the switch in
Figure 2.1, the system should respond accordingly by sending a signal to the
actuators which turn the lights on and off synchronous. Node A2 is the first node
in the communication chain who receives a signal from the on/off button. When
A2 senses a change in the lights button it sends a activation signal over the CAN1
bus. The signal then propagates over the CAN1 bus and reaches node A1 and
A3. Node A1 is then able to start the warning lights as it desires but A3 have to

5

6 Design Of Simulator

Disturbance on CAN1:
If PeriodCAN1 is set to 0 there
will be no disturbance on CAN1.

Startbutton:
Press the startbutton to turn on
and off the warninglights.

Disturbance on node A3:
If periodA3 is set to 0 there
will be no disturbance on A3.

Insig

DisturbanceCAN1

DisturbanceNodA3

NodeFrequency

PCFrequency

On/Off

FrontLeft

FrontRight

RearLeft

RearRight

Panel1

Panel2

WarningLigtSystem

Startbutton

0

SimulationTime

Signals

0

PeriodCAN1

0.01

PeriodA3

0.02

PCPeriod

1

On

0

Off

0.02

NodePeriod

64

MessageLength

0.0069

Exectime

Clock

Figure 2.1. The Simulink implemented warning lights, user interface

send another signal over CAN2 and CAN3, telling node A5, PC1 and PC2 that
the system is active. Now all the nodes have information about the state of the
warning lights button and are able to compute the information. The CAN buses
that we simulate are CAN 2.0 A, standard format [3]. The priority of each message
is unique and set in the identifier bits of each message frame.

2.2 Hybrid Brake Model

The hybrid brake system contains 11 nodes and 6 buses. All the buses are CAN
buses, with a maximum transmission speed of 1 Mbit/s, and all the nodes represent
real-time kernels, CPUs.

We can see the model in Figure 2.3 what the shell of the brake system looks

2.2 Hybrid Brake Model 7

7

Panel2

6

Panel1

5

RearRight

4

RearLeft

3

FrontRight

2

FrontLeft

1

On/Off

Rcv D/A1

PC2

Rcv D/A1

PC1

DisturbanceCAN1 Snd

DisturbanceNodeCAN1

In1

In2

DistributePeriods

ChA1

ChB2

ChB3

CAN3

ChA1 ChB2

CAN2

ChA2

ChA4

ChB1

ChB3

CAN1

Rcv

D/A1

D/A2

A5

Rcv1

Disturbance

Snd2

Snd3

A3

Switch

D/A1

Snd

A2

Rcv

D/A1

D/A2

A1

5

PCFrequency

4

NodeFrequency

3

DisturbanceNodA3

2

DisturbanceCAN1

1

Insig

Figure 2.2. User interface of the warning lights model

like. We are able to excite the system by simply using one of the signal inputs and
looking at the scope. Inside the shell lies the brake model which can be seen in
Figure 2.6. The vehicle starts at a predefined speed and decreases at a rate that
is proportional to the pedal position until it reaches a minimum velocity of zero.

In Figure 2.4 it can be seen how we created the BU node with Simulink, True-
Time and Stateflow. Since we could not come up with another way of using
Stateflow without loosing the internal states, we let the Stateflow be in an enabled
subsystem so that we can trigger it for as long as we would like. Now we only
want the Stateflow model to be active for one “tick“ at the time, this means that
we send a signal that enables and disables it after a preset period of time which
coincides with a time set in the TrueTime kernel. In this way we can enable and
then disable the model, forcing it to only do one “tick“.

8 Design Of Simulator

Terminator3

Terminator2

Terminator1

Scope

Saturation

PedalCurve2

Signal 2

PedalCurve1

Manual Switch0.6

Constant1

0

Constant

PedalPosition

Velocity

MechForce

ElecForce

TotForce

BrakeLight

BrakeSystem

Figure 2.3. The Simulink implemented brake model

2

Snd1

1

BrakeSignal

Terminator2

Terminator1

Terminator

Ground

[BU]

FromCAN1ChB1

A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

P

BrakeUnit

WeightFront

WeightMiddle

WeightRear

BrakeCapacityFL

BrakeCapacityFR

BrakeCapacityML

BrakeCapacityMR

BrakeCapacityRL

BrakeCapacityRR

PedalPosition

MecanicalBrakeFL

MecanicalBrakeFR

MecanicalBrakeML

MecanicalBrakeMR

MecanicalBrakeRL

MecanicalBrakeRR

ElectricalBrakeFL

ElectricalBrakeFR

ElectricalBrakeML

ElectricalBrakeMR

ElectricalBrakeRL

ElectricalBrakeRR

Active

Application

1

PedalPosition

Figure 2.4. The Brake Unit implemented with True-Time and Simulink

The model in Figure 2.6 represents nodes used in the SEP and shows the prob-
lem with synchronizing the electrical brake and the mechanical brake. Since the
nodes are connected with different buses they have to communicate data between
one another which would make the brakes brake asynchronous because of the time
delay. In order to synchronize the system one have to come up with an idea on
how to make the nodes work concurrently.

2
.2

H
y

b
rid

B
ra

k
e

M
o

d
e
l

9

13

Active

12

ElectricalBrakeRR

11

ElectricalBrakeRL

10

ElectricalBrakeMR

9

ElectricalBrakeML

8

ElectricalBrakeFR

7

ElectricalBrakeFL

6

MecanicalBrakeRR

5

MecanicalBrakeRL

4

MecanicalBrakeMR

3

MecanicalBrakeML

2

MecanicalBrakeFR

1

MecanicalBrakeFL

weight

Mtot

FullBrake

FrontL

FrontR

MidL

MidR

RearL

RearR

PedalPosition

Capacity

ElectricalBrake

MechanicalBrake

Active

fcn

Embedded
MATLAB Function

Mtot

Constant1
Mtot

WeightF

WeightM

WeightR

Cap1

Cap2

Cap3

Cap4

Cap5

Cap6

Pedal

FullBrake

FrontL

FrontR

MidL

MidR

RearL

RearR

PedalPos
Chart

10

PedalPosition

9

BrakeCapacityRR

8

BrakeCapacityRL

7

BrakeCapacityMR

6

BrakeCapacityML

5

BrakeCapacityFR

4

BrakeCapacityFL

3

WeightRear

2

WeightMiddle

1

WeightFront

F
ig

u
r
e

2
.5

.
T

h
e

S
im

u
lin

k
im

p
lem

en
ted

a
p

p
lica

tio
n

o
n

B
ra

k
e

U
n

it

10 Design Of Simulator

In the real SEP vehicle the nodes do far more calculations then just the brake
control. For our simulation we need to simplify these nodes but still keep all the
time aspects intact. All the nodes are working periodically and the problem is to
find at which period the nodes should be running, while still managing to cope
with given deadlines and find how the communication works with that periodicity.
The nodes can only handle a limited amount of messages every period even tough
the bus is faster. This means that every node has to be set either a fixed amount
of messages it can handle every period, or include this in the modeling so that
different messages takes different time to process in the nodes. Given deadlines
for the system have been supplied by BAE Systems Hägglunds. From the time the
driver starts braking to the time the actuators gives the signal to brake should not
exceed 0.6 seconds according to law statements. Our goal is to reduce this time
considerately down to satisfying 0.1 seconds. When the brake pedal is pushed,
the brake lights should be lit in 0.1 seconds. To be able to study the functionality
of the hybrid brake model we need to implement a simple vehicle model which
responds to the brake signals. The electrical signals coming from the electrical
system needs to be transformed to physical brake force. We also introduced the
relationship F = ma as well as a mapping between the vehicle velocity and the
electrical brake capacity. The mapping is done so that the electrical brake capacity
is higher when the velocity of the vehicle is small and then decreases when the
velocity increases. This was all done in the VehicleModel in Figure 2.6.

2
.2

H
y

b
rid

B
ra

k
e

M
o

d
e
l

1
1

5

BrakeLight

4

TotForce

3

ElecForce

2

MechForce

1

VelocityMechanicalBrake

ElectricalBrake

Velocity

MechForce

ElecForce

TotForce

VehicleModel

Rcv2

Snd1

Snd3

VDU

Rcv1

Snd1

Snd3

TU

Rcv1 BrakeSignal

EBA6

Rcv1 BrakeSignal

EBA5

Rcv1 BrakeSignal

EBA4

Rcv1 BrakeSignal

EBA3

Rcv1 BrakeSignal

EBA2

Rcv1 BrakeSignal

EBA1

Rcv1 BrakeLight

E5

Rcv1 Snd2

E3

Snd

DisturbanceCAN4

Snd

DisturbanceCAN2

Snd

DisturbanceCAN1

ChA1 ChB2

CAN6

ChA1 ChB2

CAN5

ChA1

ChA5

ChB2

ChB3

ChB4

CAN4

ChA1

ChB2

ChB3

ChB4

CAN3

ChA2

ChA3

ChB1

CAN2

ChA1

ChA3

ChB2

CAN1

PedalPosition

BrakeSignal

Snd1

BU

1

PedalPosition

F
ig

u
r
e

2
.6

.
T

h
e

S
im

u
lin

k
im

p
lem

en
ted

b
ra

k
e

m
o
d

el

12 Design Of Simulator

2.2.1 Mechanical Brake

The mechanical brake is a conventional brake system containing hydraulic. This
means that the system is using hydraulic pressure to enforce the muscle power
given by the driver to the brake pedal.

The basic idea is that one can control pistons, and thereby the pressure, by
shifting the brake pedal a fluid called brake fluid can apply pressure to pistons in
the wheel cylinders so they brake the forward motion. Because of the friction and
heat created by the braking one will eventually wear out the pads.

In most four wheeld vehicles, the master cylinder is divided into two which
each controls two wheels. This is mainly done to increase safety so that if one
system brakes you will not loose the entire brake capacity of the vehicle [2].

In the SEP the driver’s pedal sends a signal which propagates to a computer
which validates and transforms the signal into a current which controls a valve.
The valve controls the fluid to the pads or shoes which brakes harder the more
fluid that is sent to the brake block by opening or closing this valve.

2.2.2 Electrical Brake

The functionality is basically the same as for the mechanical brake but instead
of having pressure from fluid one have pressure from actuators on the brake ring.
These electrical brake actuators are given signals from a control box which has
been given signals from a computer. The computer is directly connected to the
brake pedal so that depending on the pedal the computer calculates the electrical
signals from the pedal into signals that can be understood by the control box [1].

An electrical brake works like a reversed electrical motor. Instead of feeding
the electrical motors with current so that it helps pushing the vehicle forward,
the system gives less than the necessary current to the electrical motors so that it
starts braking the vehicle instead. This current could then be stored in a battery
and be used in other applications instead. The drawback is that the electric brake
is able to brake less for increased speed. This means that the system needs to use
the mechanical brake only at high speed and then uses more and more electrical
brake the more the vehicle has slowed down. Also, the brake capacity is measured
by the EBA and then sent back to the BU which means that the measured value
is evaluated and applied a bit later, depending on sample rate and bus capability.

2.2.3 Network

In the SEP model, every node is working with a fixed period rate with only one
task in every node. The node called BU, Brake Unit, is the node that needs to do
the most application in our model. It needs to send signals to node E5, who turns
on the warning lights, as well as all the EBA nodes and turn on the mechanical
brake. It needs to consider many factors before it sends out signals, such as:

• Pressure on axles, sent from TU over VDU.

• Brake capacity of the EBA, sent from EBA over TU and VDU.

2.3 Design Alternatives 13

• Pedal position, given by the driver.

When all of these factors have been considered BU will send signals over the
network to the desired nodes with information about how hard to brake and when.

Vehicle Dynamics Unit, VDU, is the node that knows the pressure on each
wheel relative the ground. Also, in the network it is the node that is positioned
between BU and all the rest of the nodes which means that it will be a gateway
in the system since all messages needs to go through it.

Traction Unit, TU, is the node which lies between VDU and all the EBA. In
our model it is not doing any calculations but in reality it has more applications
then simply sending received messages. It is however receiving many messages
from many nodes so it is a likely bottleneck for the communication in the system.

E3 is simply sending received messages from VDU to E5.
E5 will turn on the brake light as soon as it gets a signal from E3. Here there

is not any synchronization problem but instead it just needs to warn vehicles from
behind that it is braking.

All of the Electrical Brake Actuator, EBA, nodes are working in the same way.
The only difference is that three nodes are positioned on CAN3 and the last three
are positioned on CAN4. These are the nodes that acts upon the electrical brake.
Their application is waiting for a message from the BU that tells the EBA to start
braking, and how hard, as well as sending information on how much the brake is
able to brake at given speed to BU. The nodes know how much the brakes can
brake at all time simply by measuring the wheel speed.

2.3 Design Alternatives

2.3.1 TrueTime

TrueTime is a Simulink library developed at the department of automatic control
at Lund University in Sweden [11]. The TrueTime library offers some new Simulink
blocks, for example the "TrueTime Kernel", the "TrueTime Network" and the
"TrueTime Battery" blocks. Figure 2.7 below shows the TrueTime Kernel block
to the right and the TrueTime Network block to the left, which were the only
TrueTime blocks needed in our models.

Snd

Rcv

Schedule

1

TrueTime Network

A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

P

TrueTime Kernel

Figure 2.7. The TrueTime Kernel and TrueTime Network blocks

14 Design Of Simulator

The Snd and Rcv ports on the Kernel block are used for sending messages to
and receiving messages from the network blocks. The A/D and D/A ports are
used for analog signals to and from the node and can be connected to ordinary
Simulink blocks. The Interrupts port is used for external interrupts and triggers
and the Schedule port can be connected to a scope block which makes it possible
to study the execution order and execution time of the tasks on the node and
the Monitors port can be used for task synchronization. The last port, P, is used
together with the TrueTime Battery block to simulate power consumption.

Our first design alternative was to build the systems with only TrueTime/Simulink
blocks and to implement all functionality as tasks using Matlab code functions.
We built the system in an iterative way by adding the nodes one by one to the
model and connecting them to the CAN networks. After a new node was con-
nected to the network we implemented all functionality on the node as periodic
and aperiodic tasks. The aperiodic tasks can be triggered by external events from
the interrupts port or by internal events like deadline overruns etc. When a trigger
signal is detected a related interrupt handler will be activated to start the execu-
tion of a task. After we had implemented the node´s functionality we tested the
communication between the new node and the other nodes, connected to the same
CAN-bus. If the system behaved as supposed, we would begin implementing the
next node.

2.3.2 Stateflow In TrueTime

Stateflow is a graphical design tool that can be used with Simulink to model
complex logical behavior of a system [10]. The operating mode of the system is
represented as states in a chart, where transitions between states happen when
a certain criterion is met. Stateflow is widely used in the automotive industry
and therefore it would be nice to implement the system behavior using Stateflow
charts.

Our second design alternative was to build the system in the same way as in
the first design alternative, but instead of implementing the functionality directly
in the task code we called a Simulink subsystem from the code. Our intention was
to call a subsystem containing a Stateflow chart and thereby reduce the code and
make the model more lucid.

2.3.3 TrueTime/Stateflow

Our third design alternative was to combine both TrueTime and Stateflow blocks
on the same level in the model. In this case we used a single task in the kernel
block to send messages, read analog signals and write analog signals. One of the
analog signals from the node was used to enable a subsystem containing the nodes
application in a Stateflow chart. When the subsystem becomes enabled, the states
in the chart are updated and a new input to the node is generated. Figure 2.8
illustrates the connection between a Kernel block and a triggered subsystem and
Figure 2.9 shows the Stateflow chart together with a user defined code function
that is placed inside the triggered subsystem.

2.4 Choice Of Design 15

2

Snd

1

Out

Terminator2

Terminator1

Terminator

A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

P

Node

Ground

[Node]

FromCAN1ChB1

FromNode

FromSimulink

ToNode

Application

1

In

Figure 2.8. Design alternative 3, the kernel node triggers a subsystem containing the
Stateflow chart

1

ToNode

Input Outputfcn

Embedded
MATLAB Function

FromSimulink

FromNode

ToFunction

Chart

2

FromSimulink

1

FromNode

Figure 2.9. Design alternative 3, the Stateflow chart

2.4 Choice Of Design

One of the biggest benefits with using TrueTime is that buses and real-time kernels
can easily be modeled, and connected to each other, to form a distributed system.
This makes TrueTime a very suitable tool indeed when simulating real time aspects
of a system, such as response times, synchronization and schedulability of tasks
on the CPUs.

The first design alternative, using only TrueTime, is well suited when building
a new model of a small system. The application on each node can be implemented
as periodic and triggered tasks and one can get a working model quickly. In a
more complex system it might be hard to implement all functionality in the tasks
and it can be difficult to get a good overview of the model.

Other advantages that comes with TrueTime is that it is compatible with State-
flow and other important Simulink libraries which makes it possible to combine
and use different simulation tools to create a good model. It is free to download,
tasks can be implemented as M-files or C++ functions and it is also possible to
call Simulink block diagrams from within the code functions. In addition the True-
Time source code is open and free to be modified by the user, and it contains C,
Simulink, Matlab and S-functions.

16 Design Of Simulator

The second alternative would have been a good solution for complex systems
and an easy way to test how different models, already modeled, work together in
a distributed system. The problem is that, when the Stateflow block system is
being called from TrueTime it does not remember the internal states from the last
call. On the other hand if the states in the block system do not need to be saved,
this would be a good design choice.

The third design alternative is also intended for complex systems. With this
design one need to place the Stateflow models beside the kernel nodes and connect
them to each other, which requires a little more work than calling them from a
block system. The advantage is that internal states can be saved.

Since BAE Systems Hägglunds request an easy way to test their models in a
distributed system we choose to implement our brake system, using design alter-
native three.

Chapter 3

Real-Time System Analysis

Real-time analysis has been used as long as there have been computers. The idea is
to divide every program into small subprograms, called tasks, and define different
attributes such as worst-case execution time, C, period time, T , and many more.
When these tasks have been assigned the attributes, one wants to know if they
will be able to run without malfunction and if they will be able to meet their
deadlines. The problem in computers, and distributed systems, is often that one
has many subprograms and applications which all need to compete for the same
time and even the same resources. This can lead to clashes when some programs
want to start at the same time or when the tasks try to allocate a shared resource
at the same time. One must therefore be able to measure these effects before the
system is put into practice and this is where real-time analysis comes in.

3.1 Response-Time Analysis

There are many different ways to analyze real-time systems. The difference lies in
which scheduling policy that is being used, in other words the way the priority is
assigned to the tasks. There are dynamic priorities, where the priority is changed
over time according to some criteria, and static priorities, the priority is deter-
mined before according to some criteria and stays that way the entire time. There
are different advantages and disadvantages with both scheduling policies but in
this thesis we have focused on fixed priority scheduling and with dynamic offsets
Dynamic offsets are needed when dealing with distributed hard real-time systems,
and systems in which tasks suspend themselves.

3.1.1 Exact Response-Time Analysis

The main theory used in our thesis is developed in [5]. In our thesis, the real-time
systems taken under consideration are composed of tasks, τ , with dynamic offsets,
grouped into entities called transactions [7]. Every transaction, Γ, is a set of tasks
with the same period and are ordered in some way, this is easy to understand if
you think off Γ as a computer program with many small applications in it. More

17

18 Real-Time System Analysis

definitions can be found in [5]. Every task with higher or equal priority in the
system will contribute to the worst-case response time, WCRT , of the task under
analysis, τab. In order to understand how the WCRT will develop, we need to find
out how every task contributes to the WCRT. Since we are dealing with tasks with
offsets that can be larger than a whole period we need to consider the possibility
that the critical instance (the time at which the task under analysis is activated,
that gives the worst case response-time) may not be the simultaneous activation
off all higher priority tasks, as is the case when all tasks are independent. Since
we are working with dynamic offsets which can be larger then a whole period Ti
we need to define a reduced task offset

φij = Φij mod Ti (3.1)

The main reason for doing this is that offsets of a higher priority task, other than
the one under analysis, may be changed by adding or subtracting whole periods
of the latter task, without any effects on the response time of the lower priority
task. This will help us in further analysis.

The first stage of the analysis is to understand how every task contributes to
the WCRT. We only need to know at what time the critical instant occurs the
critical instants will be derived later on. Taking any task under consideration, τij ,
with phase relation between the critical instant and the task, φ, so that 0 ≤ φ < Ti,
we will find out the worst-case contribution on lower priority tasks depending on
the relationship in size of φ and φij . In figure 3.1 we can see four effects that will
affect the outcome.

• Scenario1: τij can be delayed by the jitter Jij until task τab busy period and
with φ >= φij . This makes it necessary to include τij in the analysis.

• Scenario2: τij can be delayed by the jitter Jij until task τab busy period and
with φ < φij . This makes it necessary to include τij in the analysis.

• Scenario3: τij can not be delayed by the jitter Jij until task τab busy period
making it unable to affect τij WCRT.

• Scenario4: the activation of τij starts after τab busy period, making it unable
to affect τij WCRT.

Now that we know what is important for the WCRT we simply need to cat-
egorize τij into the four scenarios above and use the following theorem which is
given in [5].

Theorem 3.1 Given a task τab critical instant, tc, and a phase relation φ between

the arrival pattern of transaction Γi and the critical instant, the worst-case contri-

bution of task τij to the response time of τab occurs when the activations of tasks

that can coincide with τab busy period, have an amount of jitter such that they

all occur at the critical instant, and when activations of tasks that occur after the

busy period of τab have an amount of jitter equal to zero.

3.1 Response-Time Analysis 19

The proof can be found in [5]. Here, we only sketch the proof.
ProofTasks that occur before the critical instant and that can not be delayed to the
critical instant by jitter are not involved in the busy period.

For tasks that can coincide with the busy period it would be best to activate them
exactly at the critical instant so that they don’t miss the busy period of τab.

For tasks that start after the critical instant it would be best to start them as soon

as possible so that the probability for them to coincide with the busy period would be

as big as possible. This would mean that the jitter is zero. �

Now that we know what needs to be done to get an optimal result, we will
calculate how many activations may be accumulated at the critical instant. There
is a possibility that the same task will stop itself because it has experienced a jitter
that coincides with the critical instant. To be able to calculate this number, nij ,
we need to define a variable that tells us at what time the last activation of tasks
before or at the critical instant would have occurred. We define this variable as
∆ which shows us the difference in time from the nearest activation of τij and the
critical instant. We now get two different results for this ∆, one for which φ ≥ φij
and one for which φ < φij . This give us by inspection of figure 3.1

∆ =

{

φ− φij if φ ≥ φij
Ti + φ− φij if φ < φij

or simply:
∆ = (φ− φij) mod Ti (3.2)

Now we can come up with two relations by simply examine the figure 3.1 and
reminding that the first activation that may occur at or before the critical instant
is t0.

Figure 3.1. Computational model of a system composed of transactions with static
offsets [5].

t0 + φij + Jij > tc (3.3)

20 Real-Time System Analysis

t0 − Ti + φij + Jij < tc (3.4)

tc = t0 + (nij − 1) ∗ Ti + φij + ∆ (3.5)

Now we get two equations of nij by replacing (3.5) in (3.3) and (3.4).

nij − 1 ≤
Jij −∆

Ti

nij − 1 >
Jij −∆

Ti
− 1

Since nij is an integer number we get the solution to the two above equations:

nij =
⌊

Jij−∆
Ti

+ 1
⌋

(3.6)

By applying (3.1), we know that the worst-case contribution of the task τij to
a lower tasks busy period is nij activations of τij at the critical instant, plus the
sequence of periodic activations of the same task because of its preemption of itself
starting at Ti −∆, we define this time as ϕ, time units after the critical instants.
When we define this mathematically we get:

W (τij , φ, t) = nijCij +
⌈

t−ϕ(φ)
Ti

⌉

Cij =
(⌊

Jij+ϕ(φ)
Ti

⌋ ⌈

t−ϕ(φ)
Ti

⌉)

Cij (3.7)

This is the interference of one task on one τab so if we want to know how all
higher priority tasks contribute we simply need to add them all together:

W (Γi, θ, t) =
∑

∀∈hpi(τab)

W (τij , θ, t) (3.8)

hp(τab) is the usual all higher or equal priority tasks except τab itself. One
might wonder why we include all higher or equal priority tasks in the definition
since one should never have two tasks with equal priority in static real-time sys-
tems. However, in many actual real-time systems this is the case, because of the
involvement of many developers and different solutions, which makes us having to
consider this as well. For distributed systems we extend this definition to:

hp(τab) =
{

 ∈ Γi|priority(τij) ≥ priority(τab
∧

processor(τij) = processor(τab)
}

(3.9)
The reason for this definition is simply the fact that tasks on other processors can
not affect the task under analysis.

We want to find out the worst case contribution of an entire Γi to the task
under analysis. By doing so we can find out the last unknown variable in our
analysis φ, which is defined as the phase between the arrival pattern of Γi and the
critical instant. This theorem and its proof is given in [5].

3.1 Response-Time Analysis 21

Theorem 3.2 The worst-case contribution of transaction Γi to a task τab critical

instant is obtained when the first activation of some task τik in hpi(τab) that occurs

within the busy period coincides with the critical instant after having experienced

maximum amount of jitter, Jik.

Now we have a tool for determining the phase between the event arrivals and
the critical instant. Note that the theorem does not say any but some, meaning
that this τik is in fact the task which started the critical instant. If we suppose
that we know which task started the critical instant we can use the relation

φ = (φik + Jik) mod Ti (3.10)

This is the same relation as was given in (3.2)
Now we can solve equation (3.8) since we know how to solve φ. This gives us

the relation:

ϕijk = ϕ(θ)|θ=(θik+Jik) mod Ti = Ti−((φik+Jik) mod Ti−φij) mod Ti (3.11)

which can be simplified using the the properties of the modulus function,

ϕijk = Ti − (φik + Jik − φij) mod Ti (3.12)

Since we don’t know which task is the τik we need to test all tasks in (3.8) and
use the task that contributes to the highest response-time. Also we have only said
that this is done for one transaction Γi but there can be many more transactions in
the system and we need to know how all these transactions contributes to the worst
response-time. This leads to an exponentially increasing number of combinations
that are needed to be tested, in fact the number of variations are the number of
all task belonging to hp(τab)in all transactions, plus one because of the possibility
that τab can be the one that starts the critical instant, multiplied by each other:

Nv(τab) = (Na(τab) + 1) ∗
∏

∀i6=a

Ni(τab) (3.13)

notice that Ni is a function that returns the number of tasks belonging to hpi(τab)
if there are any, and a one otherwise. Each of the Nv(τab) variations has a set of
tasks v, which contains one task from each transaction Γi. We call the task that
initiates the critical instant, v(i). This means that we need to do the analysis for
one task in every transaction until we find which choice that gives us the biggest
contribution.

Now we need to number the jobs of the task under analysis with p, having
subsequent numbers ordered according to the activation time that they would
have if they had not experienced jitter. Also we will use p = 1 to the activation
of τab that range in the interval [0, τab]. This is followed by [Ta, 2Ta] where p
= 2 as well as p = 0 when the activation would have occurred in the interval
[−Ta, 0] but was delayed because of jitter. This is convenient because we now have
positive number for activations that occur after the critical instant and negative
for previous jobs.

22 Real-Time System Analysis

For each variation v we obtain the completion time for each of the jobs of τab
in the busy period. This time, wvab(p) is obtained by adding the execution time of
τab with the interference of all other tasks:

wvab(p) = Bab + (p− pv0,ab + 1) +
∑

∀i

Wiv(i)(τab, w
v
ab(p)) (3.14)

where pv0,ab is the lowest-numbered job:

pv0,ab = −
⌊

Jab+ϕabv(a)

Ta

⌋

(3.15)

We solve this in the normal iterative way where we start at zero and stop when
we have two subsequent equal results. The analysis needs to be repeated for all
jobs in the busy period. To be able to know for which p the analysis needs to be
done, we need to calculate the length of the busy period, Lvab. We can solve this
by another iterative solution where we add the contribution of interference from
all other tasks in the system and the execution of τab:

Lvab(p) = Bab + (
⌈

Lab−ϕabv(a)

Ta

⌉

− pv0,ab + 1) +
∑

∀i

Wiv(i)(τab, w
v
ab(p)) (3.16)

which is the first instant after the critical instant at which all jobs of τab of higher
priority tasks have been completed. The maximum value of p can now be calcu-
lated as the number of busy periods in a period:

pvL,ab =
⌈

Lab−ϕabv(a)

Ta

⌉

(3.17)

By calculating Lvab(p) we have enough tools to calculate the entire completion
time. However, in order to obtain the global response time we need to subtract
the time the instant at which the external event that activated the transaction
arrived, ϕabv(a) + (p− 1)Ta − Φab. This leads us to the following expression:

Rvab(p) = wvab−(ϕabv(a) +(p−1)Ta−Φab) = wvab−ϕabv(a)−(p−1)Ta+Φab (3.18)

This has to be done for all p in the range of [pv0,ab, p
v
L,ab] and for all choices of v.

The amount of calculations that needs to be done is exponentially growing and in
most cases, as in ours, too many to be dealt with. This is the main problem with
the exact analysis and the main reason why we need to extend the analysis into a
more usable one in which we decrease the number of calculations that needs to be
done. There is an easy way to do this, and at the same time get results that are
not too pessimistic, which we will describe in the next section.

3.1.2 Upper-Bound Approximation for Worst-Case Analy-
sis

The easiest way to reduce the number of calculations is to do some kind of ap-
proximation in the analysis. Since we don’t know which task τik must be used to

3.1 Response-Time Analysis 23

create the worst-case busy period we needed to test all combinations and use the
one that contributed the most. If we think about it, the maximum contribution
Wik(τab, w) of higher priority tasks is equal to or less, than the maximum con-
tribution in every transaction. This means that we could create an upper-bound
approximation by defining a function, W ∗i (τab, w) that finds the maximum of all
possible inferences that could be caused by considering each of the tasks of Γi and
use it as the one that originates the busy period:

W ∗i (τab, w) = max
∀k∈hpi(τab)

Wik(τab, w) (3.19)

We could use this on every transaction but in order to introduce less pessimism,
we will not use that function for the transaction that belongs to the task under
analysis but instead try all belonging to hpa(τab) plus the task itself. This means
that, the number of possibilities will simply be the number of tasks in the same
transaction Γa plus the task under analysis itself τab. Now we can calculate the
worst-case response time by testing all choices, c, and saving the worst one. For a
critical instant created by τac, the worst case response time is determined by:

wabc(p) = Bab+ (p− p0,abc+ 1) +Wac(τab, wabc(p)) +
∑

∀6=a

W ∗i (τab, wabc(p)) (3.20)

where the first activation that occurs at the critical instant corresponds to:

p0,abc =
⌊

Jab−ϕabc
Ta

+ 1
⌋

(3.21)

The length of the busy period :

Labc(p) = Bab+(
⌈

Labc−ϕabc
Ta

⌉

−pv0,ab+1)Cab+Wac(τab, Labc)+
∑

∀6=a

W ∗i (τab, w
v
ab(p))

(3.22)
with the maximum activation that occurs at the critical instant:

pvL,ab =
⌈

Lab−ϕabv(a)

Ta

⌉

(3.23)

Now we get the global worst case response time by, as we did in the exact
analysis, subtracting from the completion time the instant at which the associated
event arrived:

Rabc(p) = wabc(p)− ϕabc − (p− 1)Ta + Φab (3.24)

Then we simply take the worst of all the response times obtained:

Rab = max
∀c∈hpa(τab)∪b

[

maxp=p0,abc...pL,abc(Rabc(p))
]

(3.25)

24 Real-Time System Analysis

3.1.3 Analysis for Tasks with Dynamic Offsets and Distributed
systems

The main advantage with introducing dynamic offsets is that we can model dis-
tributed systems and systems that suspend themselves. The reason for this is that
both distributed systems and systems that suspend themselves will be suspended
by either, as in the case with distributed systems, waiting for a message to arrive
or when tasks waits for an earlier task to finish. The effects will be the same
because when we model distributed systems we need to model the messages that
are being sent between the processors as tasks, with a short additional blocking
time because there is no preemption on the buses [4]. This would also work for
point to point lines and other scheduling strategies for the messages in the sys-
tems. Now we have the possibility of modeling our system where we group chains
of events in transactions with tasks by knowing that each task, τij , is activated by
the completion of the previous task in its transaction τij .

In order to be able to use the analysis above, we need to make some changes.
Theorem (3.2) shows that the activation phase represented the minimum interval
of time that could exist between the arrival of the external event and the activation
of the associated task. Also, the jitter term represents the maximum amount of
delay that the task activation could suffer, counted from the arrival of the external
event plus the task’s offset. For that reason, we can model the case in which the
offsets may vary as a special case of a system with static offsets, simply by defining
a equivalent static offset Φ

′

ij and associated equivalent jitter term Jij for each task
in the following way:

Φ
′

ij = Φij,min (3.26)

J
′

ij = Jji + Φij,max − Φij,min

With these changes we can now use the same analysis that was used for the
static analysis to calculate the worst-case response times. The problem here is
that in most systems where task offsets can change dynamically, their minimum
and/or maximum value are dependent on the response times of the previous tasks
in the transaction, as it is in our distributed model. We know that, when we speak
of distributed systems, every transaction is a chain of tasks that all have to wait
for the previous task to finish. The first task in the transaction is activated by
an external event, let us assume that this has no jitter. Now we can model the
behavior of a distributed, triggered and suspending, system by giving a jitter and
offset term of zero for the one that initiates the transaction and with the following
values for every other task:

Φ
′

ij = Φij,min = Rbij−1 (3.27)

J
′

ij = Jji + Φij,max − Φij,min = Rij−1 −R
b
ij−1

where Rbij−1 is a lower bound to the best-case response time of task τij , and Rij−1

is an upper bound for the worst-case response time. In our distributed system

3.1 Response-Time Analysis 25

we do not have the same behavior as was described in [5]. Instead of the tasks
suspending themselves until the previous task in the transaction is ready , the tasks
run periodically without suspending themselves. However, they will not have the
desired information until the message has been sent throughout the transaction
and reached the task under analysis so the behavior is very similar. The main
difference is that we have forced offsets, Φnode,ij , so that the messages need to
arrive before the task is ready to use the information. To model this we need to
know the offsets and we need to consider the fact that if the message comes to late
it can not be sent until the next period. The modified equations are:

Φij = Rbij−1 = max

∑

k=1..j−1

Cik,Φnode,ij

 (3.28)

To calculate the offset for task τij we have to find the earliest starting time of
a new execution of τij that begins after the best case response-time of task τij−1

and use this value as offset. There is more detailed information on this in Chapter
4.1.

Now we see the main difficulties with the analysis, the response times are
dependent on the task jitters and the task jitters are dependent on the response
times. The solution to this problem is to start with a Jitter term of zero and
iterating over the analysis until a stable solution is found. This analysis can be
found in [7]. We start with a Jitter term of zero and obtain a response time of
every task. Then we use these response times and recalculate the jitter terms and
do the analysis all over until we obtain two successive iterations with:

R
(n−1)
ij = R

(n)
ij ∀i,∀j (3.29)

The analysis will converge to the worst-case response times of the system under
study, if possible with the scheduling policy beeing used. Otherwise the response
times will be equal to infinity.

Chapter 4

Experiments

To be able to compute the worst-case response times of our systems we needed to
come up with a correct model of the tasks, nodes and the messages which are sent
over the CAN networks. When we have done this we can calculate the WCRT
and use this in our simulation model to verify that the calculations are correct as
well as if our proposed solution to the synchronization problem is correct. This
chapter describes our task model and the different experiments we have done.

4.1 Task Model

To be able to use the WCRT analysis we need to model our distributed system
by modeling the task model. The first thing we had to do was to find which tasks
that depend on each other and which messages that need to be delivered before
the next task can begin executing. These tasks and messages form transactions
where they are ordered in the sequence in which they will be executed. The tasks
on the computer nodes and the messages sent over the networks are modeled in
the same way except that tasks on the computer nodes can be preempted during
execution which messages can not be.

The next thing we had to do was to find the offset for each task in each
transaction and which tasks that originate from the same original task, to avoid
that a task preempts itself. This was done by creating an original matrix with
structures in Matlab containing the name of the original task so that one can ask
of which task τij originated from. For a system in which tasks are triggered, when
the task before in the same transaction has finished its execution, the offset of
task τij can be calculated as the best case response time of task τij−1 according
to (3.28)

Φij = Rbij−1 = max

∑

k=1..j−1

Cik,Φnode,ij

 (4.1)

The offset for the first task in each transaction is set to zero.

27

28 Experiments

In our model the nodes can not start executing as soon as the message arrive,
because the nodes only handle messages at the start of their execution, but instead
they have to get the message before the start of a new execution in order to send
the message further in the chain. This is shown in figure 4.1, where Task1 sends a
message to the other tasks. The dotted line shows when the message has been sent
from Task1 and the arrows show when the other tasks can compute the message.

Figure 4.1. Task offsets.

In this case the offsets will be a little bit harder to find. To calculate the offset,
Φij,min, for task τij we have to find the earliest starting time of a new execution
of τij that begins after the best case response-time of task τij−1 and use this value
as offset. This was done by comparing the starting time of each execution of τij
with the worst case time at which it could receive the message. If the message
arrives before the first execution of τij the offset will be equal to the offset of the
node, in other case the offset will be calculated as the offset of the node plus the
number of periods needed to cover the worst case response time of the message.

The last thing we had to do before calculating response-times was to deter-
mine the blocking times for messages sent over the network. The blocking time
for a message is equal to the longest time a lower priority message can preempt
the message and thereby equal to the longest transmission time of lower priority
messages. This is done for all the network nodes. All other data that we needed
for the response-time analysis, execution times and priorities, were already defined
in the Simulink models.

Figure 4.2 shows our task model for the brake system.

4.1 Task Model 29

Figure 4.2. The task model shows the transactions and how the tasks communicate
with each other.

The first 14 transactions model all messages that are being sent between nodes
in the system every period. The 15:th transaction model the communication path
from brake unit to the electrical brake actuators, for the messages that contain
the new information about the brake signal. Since all the tasks and messages in
transaction 15 can be described by the tasks and messages in the other transac-
tions, we have assigned the same name in the original matrix to avoid preemption.
The deadline of each task, Dij , is set equal to its period, Tij .

With this task model we could now perform the experiments needed to analyze
the system performance under different working conditions.

30 Experiments

4.2 Results

The purpose with our experiments was to find which frequencies that are needed
on the nodes to meet the timing constraints on the response times of the system.
When we have found the desired response times, we can later use them to syn-
chronize different messages or signals in the system. For the first model that we
developed, the warning lights model, we had to keep in mind that the lights should
blink synchronously with a variance under 0.01 [s] in order to fulfill the requirement
given by BAE Systems Hägglunds. We would of course want to have an even bet-
ter synchronized model and if our assumptions are correct we will have just that.
For the brake system our goal was to get a response time under 0.6 seconds, from
a change in pedal position to the activation signals from the brake actuator nodes.
We will begin to study the systems without any disturbances and when we have
found proper frequencies on the nodes we will study how disturbances affect the
system response.

Warning Lights Experiments

Here we have not tried to calculate the exact WCRT in order to get the best
possible synchronization but instead tried to verify that one could synchronize a
distributed system by telling every node to blink at a predefined time that is longer
than the worst time it could possibly take for the message to be sent through the
system. This was done by simulating many different input signals and use the
worst one of the response times after adding a bit more time to be sure that we
get a time that is bigger than the WCRT but not too big. At 50 [Hz] we get the
behavior given in figure 4.3.

We see that the lights are not synchronized and the demand of a maximum
variance of 0.01 [s] is not satisfied. When we introduce the synchronization time
that was given by simulating the system we get the synchronized behaviour as
shown in figure 4.4. Here we have managed to make the lights synchronized and
with a less variation than we needed to clear the 0.01 [s] demand.

Brake System Experiments

In order to find the requested response times for the brake system it was not
necessary to take all nodes into account. Since the nodes E3 and E5 controls the
brake light and therefore only receives messages from VDU, we could ignore them
when calculating the response time for the brake signal. The data rate on all buses
was set to 500 kbits/s in every experiment. In the first experiment we used the
settings stated in Table B.1, in the appendix, for the task model shown in Figure
4.2. To calculate a WCRT of the system we run the digits in the analysis program.
The result of the longest calculated WCRT is 0.030887. This time is well under
the law given requirement of 0.6[s] as well as our desired time of 0.1[s]. The WCRT
of the system is a bit to optimistic since it is the time from which BU knows the
change in pedal position and is able to run directly. However, there is a possibility
that the change in pedal happened after BU’s reading phase so that BU needs to

4.2 Results 31

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

Model behaviour, 50[Hz], Without Synchronization

S
ta

rt
 B

ut
to

n

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1
O

n/
O

ff

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

F
ro

nt
 L

ef
t

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

F
ro

nt
 R

ig
ht

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

R
ea

r
Le

ft

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

R
ea

r
R

ig
ht

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

P
an

el
1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

P
an

el
2

Figure 4.3. Unsynchronized Warning lights model

wait a whole period until it can use the information and hence send it further.
Even with this time, 0.01[s], added we are clearly below both requirements.

Now we try to lower the frequency to 50[Hz] and run the simulation again. We
get the value of 0.07887 which when adding the period of the system gives us the
true WCET of 0.09887. This time is very close to our desired maximum WCRT
so we can compare the results given by simulating the model with different signal
inputs. In our model it is quite easy to simulate the WCRT because of the fixed
execution time of the tasks on the nodes. We get the results in Figure 4.5 where we
see that our calculated value exceed the simulated one. We continue to decrease
the frequencies down to 10[Hz]. In Table 4.1 we can see the data describing our
simulated response times together with the calculated ones. The table shows that
a frequency of 50[Hz] is the lowest frequency where we can still manage our desired
time of 0.1[s] and 10[Hz] is the lowest frequency with which we can still manage
the law given requirement.

32 Experiments

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

Model behaviour, 50[Hz], With Synchronization

S
ta

rt
 B

ut
to

n

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

O
n/

O
ff

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

F
ro

nt
 L

ef
t

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

F
ro

nt
 R

ig
ht

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

R
ea

r
Le

ft

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

R
ea

r
R

ig
ht

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

P
an

el
1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

P
an

el
2

Figure 4.4. Synchronized Warning lights model

Frequency [Hz] Simulated WCRT [s] Calculated WCRT [s]
100 0.0358 0.04887
50 0.0725 0.09887
10 0.3658 0.49887
2 1.8325 2.49887

Table 4.1. Simulated and calculated response times

We can see in figure 4.6 what happens to the system when we do not include our
synchronization algorithm in the system. The mechanical brake signal is activated
before the electrical brake signal and thus we need to apply the synchronization
algorithm to the system. We can also see that the electrical brake signal appears
a bit fluctuating. This is because the electrical brake signal in figure 4.6 shows the
total electrical brake force. The electrical brake actuators are thus not activated
at the same time either and the wheels will not brake att the exact same time.

4.2 Results 33

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1
Response−Times, 50[Hz], No Synchronization

P
ed

al

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1

2
E

B
A

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1

2

E
B

A
2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1

2

E
B

A
3

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1

2

E
B

A
4

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1

2

E
B

A
5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1

2

E
B

A
6

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

50

B
ra

ke
S

ig
na

l

Figure 4.5. Plot of the signal responses to a change in the pedal position

Further we can see that the vehicle slows down monotonic anyway so the fact
that the signal aren’t perfectly synchronized does not affect the braking capability
of the vehicle that much. One can only speculate how it would effect the real
vehicle since we have done some simplifications but one get the sense that it would
probably not be that much.

When we use the synchronization algorithm we get the results shown in figure
4.7. All the wheels brake at the same time and the mechanical and electrical brake
signals are activated concurrently.

The Response To Disturbances

To simulate disturbances on the network we simply added two more nodes in our
model, one node that sends disturbance messages to the CAN buses and one that
recieves the messages. Since the messages sent on the buses can not be preempmted
and the time it takes to send a message is so short (ca 0.1ms) it will require very
many disturbance messages (about 100 messages) to see any effect on the response
times.

Disturbances on the nodes, for example tasks with another application on the
same nodes, can be simulated with periodic tasks which only take time on the

34 Experiments

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1
Model behaviour, 10[Hz], Without Synchronization

P
ed

al
 P

os
iti

on

0 0.5 1 1.5 2 2.5 3 3.5 4
60

80

100

V
el

oc
ity

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5
x 10

5

M
ec

ha
ni

ca
l B

ra
ke

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1
x 10

4

E
le

ct
ric

al
 B

ra
ke

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2
x 10

5

T
ot

al
 B

ra
ke

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

B
ra

ke
 L

ig
ht

Figure 4.6. Brake system without synchronization

nodes. These disturbanses can have a larger impact on the response times and
need to be considered, if present in the real system.

With the disturbances added in the system one have to update the task model
with tasks and transactions describing the disturbances.

4.2 Results 35

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1
Model behaviour, 10[Hz], With Synchronization

P
ed

al
 P

os
iti

on

0 0.5 1 1.5 2 2.5 3 3.5 4
70

80

90

V
el

oc
ity

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5
x 10

5

M
ec

ha
ni

ca
l B

ra
ke

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1
x 10

4

E
le

ct
ric

al
 B

ra
ke

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2
x 10

5

T
ot

al
 B

ra
ke

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

B
ra

ke
 L

ig
ht

Figure 4.7. Brake system with synchronization

Chapter 5

Methodology Summary

5.1 True-Time Implementation

The Matlab/Simulink toolbox TrueTime is well suited for Simulating real-time
systems and we chose to use this toolbox together with Stateflow to build our
models. Since True-Time is able to use one input parameter, we decided to send
in Matlab structures into all the nodes with the necessary information. The structs
are stored in an initiation file in Matlab. In order to make the handling of the
program as smooth as possible, we have divided the initiation file in two. One is
where the different design variables that the user should be able to change lie, such
as period on the nodes, node offsets, synchronization time and vehicle speed. The
other one contains initiation parameters for the nodes to be able to communicate
with each other such as network connections.

All the nodes have two unique True-Time files, one initiation file and one code
file. In the initiation file we use the standard True-Time approach of defining a
function with an input that we call "data". This input is used when we define the
tasks on the node with either "ttCreatePeriodicTask" for the periodic tasks on the
node or "ttCreateTask" for tasks that are triggered. Since our nodes only contain
one task that runs periodically, we use one "ttCreatePeriodicTask" for each "init"
file with inputs from the "data" input as well as the respective "code" name.

In order to handle the network we need to use "ttCreateInterruptHandler" and
the "ttInitNetwork" functions. There have to be one combination of these for each
outgoing channel to the network, you can read more in the True-Time manual [11].
To make the network act in a way so that all messages are saved and queued as soon
as they arrive at the node but not taken cared of until the periodic task starts its
periodic execution, we used the "ttCreateTask" to create one task for each network
that take the incoming message and puts it in a queue without taking any time
(exectime = 0). This message is later read by the periodic task and depending on
the amount of messages in the queue it will take an increasingly amount of time to
read them by the periodic task. To make the code general we have used "Reciever"
files that invoke "ttCreateJob" with the name of the "ttCreateTask" that is used
to put the network’s messages in a queue. We need to have different names of the

37

38 Methodology Summary

Figure 5.1. The Matlab code for BU-Init file

"Reciever" files because every "ttCreateInterruptHandler" needs different names
of every internal "ttcreateTask". This means that we need a maximum of three
"Reciever" files in total because there will never be a node that is attached to more
than three networks.

The other file that is needed for every node is the "code" file. This is a function
that returns [exectime data] and is divided into different cases. In the SEP, every
node is working in the same fashion with CAN, I/O read, application and last I/O-
write. Every node starts with calling the same function "MessageHandler", see A.2
in the appendix, which, depending on the node calling it, reads messages from the
message queue and returns exectime depending on the number of messages.

When the reading is done, the node needs to send messages to the nodes in its
presence. Here it is important to divide messages that will be sent over the same
line in to different cases. Hence, we divide every message so that every message
takes the same amount of time so that the solver doesn’t need to be using to small

5.1 True-Time Implementation 39

Figure 5.2. The Matlab code for the reciever file

Figure 5.3. The Matlab code for the CANcode file

steps. More info on how messages are sent over network in True-Time can be read
in the True-Time manual [11].

Now we come to the stage where we use our developed method with True-
Time, Stateflow and Simulink in collaboration. We start by sending data to the
enabled Stateflow model and at the same time we enable it. The exectime is put
to period/4 or period/3 depending on how big we can put it without overriding
the period with execution time. Now it is important that the enabled Stateflow
model has the same setting so that the time of the enabling will coincide with the
True-Time signal, making the model do one "tick". In the next case following we
simply read the outputs of the model and disable it. This case needs exectime =
0!

The last case is where we do I/O-out which means that the simulated analog
signals are sent, this can for instance be blinking or braking.

40 Methodology Summary

5.2 Task Model

To be able to use the analysis made in [5] one have to model the system in a way
so that the analysis in Chapter 3 will give satisfying results. This is described in
Chapter 3 and Section 4.1. Also, we need to create the task model for the system,
including all tasks and transactions. This is done by looking at every message sent
between nodes and creating transactions of the relation. Every node is marked
as a ring and every CAN connection is marked by an arrow. When one has done
every message in this way one must also do the same thing for the entire chain
that the message travels from start to finish. Figure 4.2 shows how we created the
taskmodel for the brake system.

5.3 Syncronization

The solution to this problem is quite intuitive. We want to know the longest
time for a message to arrive from the BU. This was done in Chapter 3. When
we know the longest time for a message to arrive to all nodes, we can use this
time by including it in the message that is sent so that the receiver knows when
the blinking system should blink or the brake system should brake in order to be
synchronized. This means that when BU gets the message from the brake pedal it
sends a message over the network so that both the mechanical brake node and the
electrical node knows at what time they are going to brake and how hard. The
same thing happens for every change in pedal position which means that all nodes
will be synchronized at every change.

It will however be impossible to exactly synchronize the nodes because of the
way they are built. The nodes are given different internal offsets which means that
they are a bit different in time so that they will not be able to execute the signal at
a specific time. This problem could be solved by including some kind of continuous
check in the nodes instead of having fixed functionality in them that execute in a
predefined order and time so that they can be completely synchronized.

Chapter 6

Conclusions

We have investigated how to model a distributed system and how to synchronize
its nodes. Early in the development of a complex system it is important to be
able to test the communication between nodes. By testing in an early stage in the
development one can save money by finding faults so that one doesn’t need to go
back and fix them later on in the process, when the errors can be hard to trace
and correct.

The main conclusion of this thesis is that one can use TrueTime and Stateflow
at the same time to model distributed systems. This enables the programmer to
reuse large Stateflow models and test them when considering real-time aspects
as well as network aspects while communicating with other models. Another
application of a distributed system model is to find where the bottle necks lie in
the communication. This means that one can find at which frequencies the nodes
are working and at which frequencies they are not. Also, this could be used to
decide the hardware architecture.

One way to synchronize distributed systems is to calculate the WCRT and let
the faster nodes wait until the slowest node is ready. By calculating the WCRT
one knows the longest response time possible for all nodes in the entire system
which makes it possible to synchronize the system without first building a large
model of the system. This means that for simply synchronizing a system one does
not need to build a model but instead calculating the WCRT and let faster nodes
wait this time before doing the desired application.

41

Chapter 7

Future Work

• In this thesis we have limited ourselves not to include redundancy. In a
distributed system one would like to know how the system responds when
one node (or more) malfunctions and what to do about it. It would be
possible to let nodes cooperate and take over other nodes calculations if a
node brakes or sending information a different route. There has been a lot
of research on the subject and one can find a lot of books and other thesis’s
dealing with the issue.

• Another interesting issue is to be able to handle other schedulers than fixed
priority. In [6] one can read how J.Palencia develops an analysis for handling
Earliest deadline first, EDF. This scheduling is optimal when one wants
all the task to execute before its given deadline but it is more difficult to
analyze and can behave strangely when tasks start to miss their deadlines.
This approach is not used in the current SEP but it would be possible to
implement in a future version or in a subsystem in the SEP.

• The fact that by having non periodic tasks one could optimize the utilization
and get a more dynamic system. There have been articles written on the
subject so it would be possible. One article concerning the subject is [9].
This would probably require more than just a dynamic scheduling but also
a new approach in the overall modeling of the system.

• We have not been able to test the simulated results on actual hardware in the
SEP. One would like to be able to verify the results in this thesis with the real
hardware, thus verifying even further the simulated results. This should be
possible to examine in a future thesis at BAE-Systems Hägglunds where the
execution, network, and receiving times are measured on hardware and then
tested on the actual SEP hardware and later evaluate with the simulated
results.

• The simplifications done in this thesis such as the vehicle model and the
braking system could be expanded. There are many ways of getting a more
sophisticated vehicle model that interacts with the weights in a more dynamic

43

44 Future Work

and natural way. One really need to take into consideration that when the
vehicle turns the weight will shift from the center to the side as well as the
shifts in weights when riding a bumpy road.

Bibliography

[1] Electric Brakes. http://www.messier-bugattiusa.com/img/pdf/elecbrake.pdf.

[2] Hydraulic Brakes. http://library.thinkquest.org/c007574/data/hydraulic.htm.

[3] Jukka Mäki-Turja Hans Hansson Henrik Thane Jan Gustafsson Chris-
ter Norström, Kristian Sandström. Robusta realtidssystem. Addison-Wesley,
2001.

[4] J.J Gutiérrez Garcia and M. Gonza´les Harbour. Increasing schedulability
in hard real-time systems. Proceedings of the 7th Euromicro Workshop on

Real-Time Systems, pages 99–106, June 1995.

[5] M.G. Harbour J. Palencia. Schedulability analysis for tasks with static and
dynamic offsets. in: Proceedings of the 19th IEEE Real-Time Systems Sym-

posium, Madrid, Spain, 1998.

[6] M.Gonzalez Harbour J.C. Palencia. Response time analysis of edf distributed
real-time systems. 2005.

[7] J. Clark K. Tindell. Holistic schedulability analysis for distributed hard real-
time systems. Microproc. Microprog. 50, 14(3):342–351, 1994.

[8] J.J. Gutiérrez García Palencia Gutiérrez and M.González Harbour. On the
schedulability analysis for distributed hard real-time systems.

[9] Alfons Crespo Sergi Saez, Joan Vila. On accepting aperiodic transactions in
distributed systems. 2000.

[10] Stateflow. http://www.mathworks.com/products/stateflow/.

[11] TrueTime. http://www.control.lth.se/truetime/.

45

47

48 Matlab Code

Appendix A

Matlab Code

A.1 The TU-Code File

A.2 The Messagehandler File 49

A.2 The Messagehandler File

50

B.1 Simulation Parameters 51

Appendix B

Tables

B.1 Simulation Parameters

Transaction Task Original C B T D Priority Offset

Γ1

τ11 task1 0.005 0
0.01 0.01

3 0
τ12 task6 0.00013 0.00013 1 0.005
τ13 task2 0 0 1 0.00513

Γ2

τ21 task1 0.0075 0
0.01 0.01

3 0
τ22 task6 0.00013 0 4 0.0075
τ23 task2 0 0 1 0.00763

Γ3

τ31 task2 0.005 0
0.01 0.01

3 0
τ32 task15 0.00013 0.00013 2 0.005
τ33 task1 0 0 1 0.00513

Γ4

τ41 task2 0.0075 0
0.01 0.01

3 0
τ42 task15 0.00013 0.00013 3 0.0075
τ43 task1 0 0 1 0.00763

Γ5

τ51 task2 0.005 0
0.01 0.01

3 0
τ52 task7 0.00013 0.00013 1 0.005
τ53 task3 0 0 1 0.00513

Γ6

τ61 task3 0.006667 0
0.01 0.01

3 0
τ62 task8 0.00013 0 2 0.006667
τ63 task2 0 0 1 0.006796667

Γ7

τ71 task3 0.006667 0
0.01 0.01

3 0
τ72 task9 0.00013 0.00013 1 0.006667
τ73 task4 0 0 1 0.006796667

Γ8

τ81 task3 0.006667 0
0.01 0.01

3 0
τ82 task9 0.00013 0.00013 1 0.006667
τ83 task13 0 0 1 0.006796667

Γ9

τ91 task4 0.006667 0
0.01 0.01

3 0
τ92 task17 0.00013 0 2 0.006667
τ93 task3 0 0 1 0.006796667

Γ10

τ101 task10 0.006667 0
0.01 0.01

3 0
τ102 task18 0.00013 0 2 0.006667
τ103 task3 0 0 1 0.006796667

Γ11

τ111 task11 0.006667 0
0.01 0.01

3 0
τ112 task19 0.00013 0 2 0.006667
τ113 task3 0 0 1 0.006796667

Γ12

τ121 task5 0.006667 0
0.01 0.01

3 0
τ122 task20 0.00013 0 2 0.006667
τ123 task3 0 0 1 0.006796667

Γ13

τ131 task12 0.006667 0
0.01 0.01

3 0
τ132 task21 0.00013 0 2 0.006667
τ133 task3 0 0 1 0.006796667

Γ14

τ141 task13 0.006667 0
0.01 0.01

3 0
τ142 task22 0.00013 0 2 0.006667
τ143 task3 0 0 1 0.006796667

Γ15

τ151 task1 0.005 0

0.01 0.01

3 0
τ152 task6 0.00013 0.00013 1 0.005
τ153 task2 0.005 0 3 0.009
τ154 task7 0.00013 0.00013 1 0.014
τ155 task3 0.006667 0 3 0.021
τ156 task9 0.00013 0.00013 1 0.0276667
τ157 task13 0.00987 0 3 0.029
τ158 task14 0 0 1 0.03887

