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Abstract

Stricter emission legislation for heavy trucks in combination with the customers
demand on low fuel consumption has resulted in intensive technical development
of engines and their control systems. To control all these new solutions it is
desirable to have reliable models for important control variables. One of them is
the air mass-flow, which is important when controlling the amount of recirculated
exhaust gases in the EGR system and to make sure that the air to fuel ratio is
correct in the cylinders.

The purpose with this thesis was to use system identification theory to develop
a model for the air mass-flow through the compressor. First linear black-box
models were developed without any knowledge of the physics behind. The collected
data was preprocessed to work in the modeling procedure and then models with
one or more inputs where built according to the ARX model structure.

To further improve the models performance, non-linear regressors was devel-
oped from physical relations for the air mass-flow and used to form grey-box models
of the air mass-flow.

In conclusion, the performance was evaluated through comparing the estimated
air mass-flow from the best model with the estimate that an extended Kalman filter
together with a physical model produced.

Sammanfattning

Hårdare utsläppskrav för tunga lastbilar i kombination med kundernas efterfrågan
på låg bränsleförbrukning har resulterat i en intensiv utveckling av motorer och
deras kontrollsystem. För att kunna styra alla dessa nya lösningar är det nöd-
vändigt att ha tillförlitliga modeller över viktiga kontrollvariabler. En av dessa
är luftmassflödet som är viktig när man ska kontrollera den mängd avgaser som
återcirkuleras i EGR-systemet och för att se till att kvoten mellan luft och bränsle
är korrekt i motorns cylindrar.

Syftet med det här examensarbetet var att använda systemidentifiering för
att ta fram en modell över luftmassflödet förbi kompressorn. Först togs linjära
svartboxmodeller fram utan att ta med någon kunskap om den bakomliggande
fysiken. Insamlade data förbehandlades för att passa in i modelleringsproceduren
och efter det skapades i enlighet med ARX-modellstrukturen modeller med en eller
flera insignaler.

För att ytterligare förbättra modellernas prestanda togs icke-linjära regres-
sorer fram med hjälp av fysikaliska relationer för luftmassflödet. Dessa användes
sedan för att skapa gråboxmodeller av luftmassflödet. Avslutningsvis utvärderades
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prestandan genom att det estimerade luftmassflödet från den bästa modellen jäm-
fördes med det estimat som ett utökat kalmanfilter tillsammans med fysikaliska
ekvationer genererade.
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Chapter 1

Introduction

This master’s thesis has been performed for Scania CV AB at the division of
Powertrain Control System Development - Engine Performance Software (NESE).
The purpose is to examine if it is possible to estimate the air mass-flow into
the engine without using a sensor measuring it. In earlier work at Scania, for
example in [19], physical models was developed and used to design an observer
that estimates the air mass-flow.

System identification is used in this thesis to develop a black-box model in
order to see how good the estimate becomes without use of the physics. One step
closer to the physical models is done if some physical relations are used to find
appropriate variables and regressors, resulting in grey-box models.

A concrete list of what this thesis will deal with is presented in Section 1.2.

1.1 Background

Stricter emission legislation for heavy trucks in combination with the customers
demand on low fuel consumption has resulted in intensive technical development
of engines and their control systems. New physical solutions have been introduced,
some of these are Exhaust Gas Recirculation (EGR) and Variable Geometry Turbo
(VGT) systems on diesel engines. These new solutions increase the system com-
plexity and the demand of new control variables that can be hard, or even impos-
sible, to measure with physical sensors. Because of that, it is desirable to develop
good and reliable system models, which can be used together with the physical
sensors or completely replace them. An example is the air mass-flow sensor that is
important when controlling the amount of recirculated exhaust gases in the EGR
system and to make sure that the air to fuel ratio is correct in the cylinders.

1



2 Introduction

1.2 Objectives

The main objectives in this thesis are to:

• Find the sensor signals that correlate well with the air mass-flow, determine
the bandwidth of the system in order to find a suitable sampling frequency
and examine what type of model structure that gives the best estimate of the
air mass-flow and use this to create a black-box model of the air mass-flow.

• Try to improve the black-box models using physical insight, so called grey-
box modeling.

• Compare the performance of the resulting models with the performance of
an observer based on a physical model, i.e. an extended Kalman filter (EKF).

1.3 Outline

Chapter 2 gives an overview of the engine system and introduces the air mass-
flow.

Chapter 3 presents system identification, the theory for black-box model devel-
opment.

Chapter 4 contains the preprocessing work, where the collected data is prepared
for model development, correlation between the inputs and the bandwidth of
the system are studied to find the most usable inputs respectively a suitable
sample frequency.

Chapter 5 contains the development and validation of linear black-box models.

Chapter 6 contains the development and validation of non-linear grey-box mod-
els.

Chapter 7 presents and discusses the resulting model and compares its results
to the results from an extended Kalman filter observer based on a physical
model.

Chapter 8 contains the conclusions and discuss difficulties and future work.



Chapter 2

The Engine System

This chapter describes the engine system and its main parts. It also contains a
short explanation about the sensor signals.

Turbine

Compressor

Exhaust

System

Ambient

EGR System

Intercooler

Intake

Manifold

Combustion

Exhaust

Manifold

pim pem

ntrb

neng

Tim

Wair

δ

UEGR

UVGT

Figure 2.1: Model of the engine system.

2.1 Engine Overview

Figure 2.1 shows the main parts of the engine system and how the air and gases
flows through the system.

Fresh air flows into the engine system from the ambient. The air mass-flow into
the intake system is measured by the air mass-flow sensor, Wair , before it passes
through the compressor. The compressor is driven by the turbine and increases

3



4 The Engine System

the density and temperature of the air. After that, the air passes the intercooler
where it is cooled down. This further increase the density of the air and the result
is a higher amount of air flowing into the cylinders which makes it possible to
inject more fuel and get higher power.

The intake manifold connects the inlet system with the Exhaust Gas Recircula-
tion (EGR) system and feeds the cylinders with a mixture of fresh air and exhaust
gases. Here are the intake manifold pressure and temperature sensors located.

A mixture of gases and fuel is injected in the combustion chamber and is burned
in the cylinders. Afterwards the exhaust gases flows into the exhaust manifold,
where the exhaust manifold pressure sensor is located.

The exhaust gases flows through the Variable Geometry Turbo (VGT) that is
connected to the compressor and the exhaust system. Part of the exhaust gases is
recirculated through the EGR system back to the intake manifold. This is done
in order to reduce NOx formation. An increased EGR flow also results in an
decreased fuel consumption [7]. The gases flowing through the EGR and the VGT
are controlled by valves and the control signals to these valves (UEGR and UV GT )
are measured.

A complete list of available sensor signals is presented in Table 2.1.

Table 2.1: Available sensor signals.

Sensor Description Unit

δ Injected fuel [mg/stroke]
neng Engine speed [rpm]
ntrb Turbine speed [rpm]
pim Intake manifold pressure [Pa]
pem Exhaust manifold pressure [Pa]
Tim Intake manifold temperature [K]
UEGR EGR control signal [−]
UV GT VGT control signal [−]
Wair Air mass-flow before compressor [kg/s]

2.2 The Air Mass-Flow

According to [5] the air mass-flow in a diesel engine is a very important quantity
that has a direct impact on many control and diagnosis functions.

The air mass-flow is used for computations of λ, the air to fuel ratio during
combustion,

λ =
Wair
Wfuel

. (2.1)

It is important to keep λ above a certain level. If the ratio becomes too low, smoke
is generated and the control law is forced to reduce the torque output.
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The air mass-flow is also used to calculate the EGR-fraction

EGRfrac =
Wtot −Wair
Wtot

, (2.2)

where Wtot is the total gas mass-flow into the engine and Wair is the part that
consists of fresh air, i.e. the air mass-flow. The EGR-fraction is used to control
the NOX emissions.

The performance of the air-mass flow sensor may change over time due to
sensor aging, differences in engine configurations or because of different operation
conditions caused by geographical location, for example pressure, temperature and
humidity of the surrounding air. In order to reduce the impact of these situations
it is desirable to find a model of the air mass-flow that can be used together with
or even replace the sensor.





Chapter 3

System Identification

System identification is a method to build a mathematical model of a real system
when it is not possible to construct it entirely from prior knowledge and physical
insight. It uses measured data, e.g. observed input and output signals, to estimate
a model. There are two general ways to use measured data to identify a whole
system or unknown parameters in it [10]:

1. Build a model, which describe the relation between input and output, with-
out physical insight. This could be done either by using nonparametric meth-
ods like frequency analysis and impulse responses or by building a parametric
black-box model wherein the parameters are determined to fit the data.

2. Use data to determine unknown system parameters in a physical model,
called a grey-box modeling.

A commonly used approach for system identification is to use some of the non-
parametric methods to determine a model of the system. Such methods can be
frequency analysis, impulse responses or looking at the correlation and covariance
between signals. According to [12] and [10] the frequency analysis do not give
reliable results when the system works with feedback, and this is the case for the
system in this thesis. It is not either possible to test the systems impulse or step
response because the data was pre-collected. Taking that into consideration, para-
metric methods are the way to go and therefore this thesis deal with linear and
nonlinear parametric methods. Mainly it deals with black-box modeling, where no
physical insight is used, but it is also of interest to see if some advantage can be
made from the physics and in addition some physical insight will be used to modify
the regressors in regard to improve the performance of the black-box models. This
is called grey-box modeling.

7



8 System Identification

3.1 Linear Black-Box Models

This chapter is a summary of the theory about system identification presented in
detail in [12].

Black-box models are a set of standard transfer function models that through
experience are known to handle many different kinds of system dynamics. The
most common among these standard models are linear. Normally these models
are derived in discrete time, since the data used is sampled and therefore discrete.
If a time continuous model is desired the time discrete model is transformed.

3.1.1 General Structure for Linear Black-Box Models

A general linear model in discrete time can be written as

y(t) = η(t) + w(t), (3.1)

where w(t) is a disturbance term and η(t) is the output without disturbance. This
output can be written as

η(t) = G(q, θ)u(t). (3.2)

G(q, θ) is a rational function of the displacement operator q,

G(q, θ) =
B(q)

F (q)
=
b1q
−nk + b2q

−nk−1 + . . .+ bnbq
−nk−nb+1

1 + f1q−1 + . . .+ fnfq−nf
. (3.3)

The disturbance term can be treated in the same way with

w(t) = H(q, θ)e(t) (3.4)

and

H(q, θ) =
C(q)

D(q)
=

1 + c1q
−1 + . . .+ cncq

−nc

1 + d1q−1 + . . .+ dndq−nd
(3.5)

where e(t) is white noise.
Now model (3.1) can be written as

y(t) = G(q, θ)u(t) +H(q, θ)e(t) (3.6)

where θ is the parameter vector that contains the coefficients ai, bi, ci and fi in the
transfer functions. The parameters nb, nc, nd and nf are called structural param-
eters and represent the order of their respective polynomial. The fifth parameter,
nk, represent the time delay in the system.

3.1.2 The Most Common Models

The most general case is when all polynomials are present in (3.6), i.e.

y(t) =
B(q)

F (q)
u(t) +

C(q)

D(q)
e(t). (3.7)
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This model is known as the Box-Jenkins (BJ) model. This model can be simplified
in a numerous of different ways to suit other more specific systems. If the noise
signal is not modeled at all, i.e. H(q) ≡ 1 (nc = nd = 0), the model is an Output
Error (OE) model,

y(t) =
B(q)

F (q)
u(t) + e(t). (3.8)

If the denominators in G and H are equal, i.e.

F (q) = D(q) = A(q) = 1 + a1q
−1 + . . .+ anaq

−na (3.9)

the model is called an ARMAX model and can be written as

A(q)y(t) = B(q)u(t) + C(q)e(t). (3.10)

The last model described in this thesis is the commonly used ARX model which
is a simplification of the ARMAX model with C(q) ≡ 1,

A(q)y(t) = B(q)u(t) + e(t). (3.11)

In Figure 3.1 the different model structures are represented in block diagrams.

3.2 Model Order Selection

If the structure parameters, na, nb, nc, nd, nf and nk, are choosen, a computer can
calculate the parameters in θ corresponding to the chosen model structure. The
obtained model gives a prediction,

ŷ(t, θ), (3.12)

of y(t):s value for each value of θ in combination with old input and output values.
The following sections describe how to choose the structure parameters.

3.2.1 Loss Function

According to [12], the prediction ŷ(t, θ) can be evaluated at time t by calculating
the prediction error,

ε(t) = ε(t, θ) = y(t)− ŷ(t, θ). (3.13)

If there are N collected samples, the loss function can be formed as

VN (θ) =
1

N

N
∑

t=1

ε(t, θ)2. (3.14)

This scalar is a measure of how well the model with the parameter value θ can
describe the system.

It is natural to choose θ as the value which minimizes the loss function:

θ̂N = arg min
θ
VN (θ). (3.15)
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Figure 3.1: Linear Black-Box Model structures.
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3.2.2 Akaike’s Information Criterion

If the prediction error is calculated from the same data set used to estimate the
model some problems will occur. This is because of the fact that the loss function
(3.14) decreases when more parameters are added. However, if more parameters
are added when the model already describes the relevant properties of the system,
the only thing that happens is that the model is fitted to the specific disturbance
in the data set. This is called overfit and does not serve any purpose since the
model will be used when other disturbances affect the system. In fact, the model
will be worse because of the overfit.

To avoid the problem with overfit mentioned above it is desirable to have two
separate sets of data, one used to find the model of the system, i.e. estimation
data, and one used when validate the model, i.e. validation data. Preferable are
if these data is collected at different times, or runs, when different disturbances
affect the system, but if that is not possible it is a possibility to split the collected
data into two parts and use one part for estimation and the other for validation.

There are several methods to find the optimal number of parameters. The one
that will be used here is Akaike’s information criterion (AIC):

θ̂N = arg min
d,θ

(

1 +
2d

N

) N
∑

t=1

ε(t, θ)2, (3.16)

where (3.14) has been modified with θ’s dimension, d, i.e. the number of estimated
parameters. This will penalize models that contain many parameters.

3.3 Model Validation

When a model is built it is necessary to examine if it can be accepted for its
intended use. There are several ways to do this. Some of them are presented in
the following sections.

3.3.1 Model Fit

The first and most obvious validation technique is to see how well the model output
correspond to the measured. This is called fit:

fit = 100

(

1−
‖ŷ − y‖

‖y − ȳ‖

)

, (3.17)

where y is the output of the validation data, ŷ is the model output and ȳ is the
mean value of y. 100 % corresponds to a perfect fit and 0 % indicates that the
fit is no better than guessing the output to be a constant (i.e. ŷ = ȳ). A negative
value is worse than 0 % fit.
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3.3.2 Residual Analysis

Another way to validate the model is to look at the part of the data that the model
cannot reproduce. This part is called residual and is the same as the prediction
errors [12]:

ε(t) = ε(t, θ̂N ) = y(t)− ŷ(t|θ̂N ) (3.18)

The residuals should ideally be independent of the input. If the covariance between
the residuals and the past inputs (also called the cross correlation)

R̂Nεu(τ) =
1

N

N
∑

t=1

ε(t)u(t− τ) (3.19)

are calculated, this dependence can be investigated. If R̂Nεu is close enough to zero
for τ > 0, e.g. R̂Nεu is less than three standard deviations [12], it is likely that the
model will be good also when applied to other input data. If they are not, it is
an indication that components in the residual stem from past inputs and that the
model ŷ(t|θ̂N ) has not picked up all the system dynamics and it could be an idea
to recalculate the model with another model order or a different time delay. A rule
of thumb is that a slowly varying cross correlation function outside the confidence
region is an indication of too few poles, while sharper peaks indicate too few zeros
or an incorrect time delay. [11, p.1-17]

If calculating the auto correlation for the residuals,

R̂Nε (τ) =
1

N

N
∑

t=1

ε(t)ε(t− τ), (3.20)

it can be seen if the residuals themselves are correlated at different time delays.
The auto correlation should be small for all τ 6= 0. If not it is significant correla-
tion between the different residuals and it is an indication that part of ε(t) could
have been predicted from past data. This means that the disturbance model can
be improved.

3.4 Introduction to Regressors

Regressors are a transformation of past input and output signals and are used
to estimate the output. Typical regressors are simply delayed input and output
signals. This type of regressors will be used in Chapter 5 and are usually referred
to as standard regressors. It is also possible to use more advance regressors de-
fined by the user to fit the actual problem, usually called custom regressors. This
gives the possibility to consider, for example, non-linear behavior in the system
or known physical relations, for example quotients or products of two signals, and
use this modified regressors together with the theory in Section 3.1 when build-
ing black-box models. In fact, it can be more efficient to use appropriate defined
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custom regressors than to use standard regressors only. Custom regressors will
be used in Chapter 6, when physical relations are used to construct regressors for
grey-box models.

3.5 Model Nomenclature

A special nomenclature will be used to separate different models from each other.
All models will be represented as in the following example.

Mpem,arx3|4|2 (3.21)

M means that it is a model, pem represent the regressor that was used when es-
timating the model. One or more inputs can be used. arx3|4|2 means that the
model has an ARX structure and that the structure parameters have the value
na = 3, nb = 4 and nk = 2.

3.6 System Identification Toolbox

The System Identification Toolbox (SITB) is a toolbox in Matlab, that provide
tools for creating mathematical models of dynamic system based on observed input
and output data. It includes both linear and nonlinear standard models that can
be used for creating both black-box and grey-box models. With both its flexible
graphical user interface and the possibility to work at the command line it offers
a great help when creating models.

This tool will be used when estimate and validate the models in this thesis.





Chapter 4

Data Preprocessing

The measurement data used in this thesis is the same that was used in [6] and
was previously collected in a test cell at Scania CV AB in Södertälje. The data
is from a six cylinder Scania diesel engine with EGR and VGT and was collected
with a sample frequency of 100 Hz during a European Transient Cycle (ETC).
The figures in Appendix B.1 shows the collected data.

4.1 Dealing with Incorrect Data

It is known that the measurements contain some incorrect data. In several of the
signals the first sample differs a lot from the rest in the series, which likely depend
on the startup of the measurement equipment, and therefore it has been removed
from all signals. It is also known that the turbine speed (ntrb) is registered as
zero when it drops below 20 000 rpm. These inaccuracies are not desirable when
building a model of the system and therefore they need to be removed. Sometimes
it can be done by prediction or interpolation, but if possible, a good idea is to
choose a sequence without inaccuracies.

Figure 4.1 shows that there are two long segments of the turbine speed data
that contains the measured value without any visible inaccuracies. The second
one, that begins at 600 s and lasts to 1790 s, when the speed again drops below
20 000 rpm, ought to contain enough data for both estimation and validation of
the models in this work and will be used. It will be left for future work to find a
way to handle the inaccuracies, e.g. the loss of turbine speed below 20 000 rpm.

4.2 Removing Trends

Linear models cannot capture arbitrary differences between the input and output
signal levels [10]. Therefore, a linear trend is removed from each signal. Then the
estimated models focus on describing the relationship between the change in input
signals and the change in output signals.

15
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Figure 4.1: The signal ntrb. There are two main segments without visible inaccu-
racies, one between 234 s and 515 s and another between 600 s and 1790 s. The
latter is used for system identification and validation.

4.3 Resampling the Data

If looking at a short sequence of the intake manifold pressure (pim) shown in
Figure 4.2, it can be seen that the signal contains a lot of high-frequency variations
or noise. It is possible to let a good noise model handle this and estimate the high-
frequency disturbance, but instead it was decided to remove the disturbance by
filtering the signals with a low pass filter because it seems to simplify the modeling.
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Figure 4.2: A segment of the signal pim showing the high-frequency variation.

Not only low pass filtering is desirable, but rather downsampling is something
to consider. The data sequences contain much more samples than is required to
capture the variations in the signals. Resampling will reduce the data sequences to
a length that makes the modeling process smoother but, if done correctly, still con-
taining enough relevant information about the signal. An even bigger advantage
with a lower sample frequency is when the model is implemented in a real system.
If the signals are sampled faster than needed to capture the system dynamics the
extra data points are redundant and the process uses resources that can be better
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used of other purposes.

Low pass filtering not only remove the, above mentioned, high frequency com-
ponents of the signal which is desirable. It is also necessary to avoid aliasing and
get a correct resampling. Aliasing will be described in more detail in Section 4.3.1.

In the case of resampling, a rule of thumb is to use a sample frequency that is
10 times the bandwidth of the system which corresponds roughly to 4-8 samples
along the rise time of a step response [12, 13]. Because the data was pre-collected
it is not possible to do step responses in the data that could give an estimation of
the bandwidth, and it can be difficult anyway due to the complexity of the system
(it is not easy to do clean steps in most of the signals). Instead, looking at the
energy of the signal can give an idea of a suitable sampling frequency. But first
the alias effect will be explained.

4.3.1 The Sampling Theorem and Alias Effect

A well known term in signal processing is the Nyquist frequency [3], ωN , that is
of importance in the sampling theorem and is given by ωN = ωs/2, where ωs is
the sampling frequency.

According to the sampling theorem (or the Poisson’s summation formula) fre-
quencies higher than the Nyquist frequency will incorrectly be interpreted as lower
ones. This is called the alias effect and is not desirable. To avoid aliasing the sig-
nals can be filtered with a low-pass filter with the cut-off frequency just at the
Nyquist frequency before sampling.

4.4 Signal Energy and Periodogram

In [10] it is described that the total energy of a signal can be decomposed into en-
ergy contributions from different frequencies. The contributions from the discrete
frequencies ω = 2π

NT n, n = 0, 1, . . . , N − 1, could be represented in a periodogram
[3]:

ˆ̂
ΦN (2πn/NT ) =

T

N
|YN [n]|2, (4.1)

where N is the number of samples, T is the sampling interval and YN [n] is the
discrete Fourier transform (DFT) of the signal:

YN [n] =

N−1
∑

k=0

e−2πikn/Ny(kT ). (4.2)

In Appendix B.3, the energy distributions for the signals are represented in
periodograms. They look almost the same and all of them show that the main
part of the energies are concentrated at low frequencies which indicates that even
if the signals are resampled to a much lower frequency, most of the energy will
remain. As can be seen, the periodogram for the exhaust manifold pressure has
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a small top at about 20-30 Hz. Also the periodogram for the engine speed signal
shows this behavior. This can affect the frequency needed to get the remaining
signal energy above a desirable level. If looking at the case when 99 % of the signal
energy should remain, the cut of frequencies should be as listed in Table 4.1. As
can be seen the frequency for the engine speed signal does not differ from the
other ones, but the frequency for the exhaust manifold pressure does. Its value of
27.1303 Hz is very much higher than the second highest (0.9101 Hz for the VGT
control signal). This means that 8 of 9 signals had to be sampled much faster than
required if choosing a cut of frequency of 27 Hz that is required by pim to achieve
a 1 % signal energy loss, which may be a waste of resources.

Table 4.1: Cut of frequencies of low-pass filters where 99 % of the signal energy
remains.

Signal Frequency [Hz]

Air mass-flow before compressor 0.3471
Exhaust manifold pressure 27.1303
Turbine speed 0.2277
Intake manifold pressure 0.2563
Intake manifold temperature 0.0874
Engine speed 0.3269
Injected fuel 0.3555
EGR control signal 0.7067
VGT control signal 0.9101

If doing another calculation and keeping the ratio at a 95 % level the frequen-
cies become as listed in Table 4.2. The frequencies are now much closer together
and a new sample frequency can be chosen that is more suitable to all signals.

Table 4.2: Cut of frequencies of low-pass filters where 95 % of the signal energy
remains.

Signal Frequency [Hz]

Air mass-flow before compressor 0.1798
Exhaust manifold pressure 0.2992
Turbine speed 0.1328
Intake manifold pressure 0.1555
Intake manifold temperature 0.0395
Engine speed 0.1748
Injected fuel 0.1832
EGR control signal 0.3294
VGT control signal 0.3538

As mentioned above, a signal should be low-pass filtered with a cut-off fre-
quency just at the Nyquist frequency before sampling to avoid aliasing. In this
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case we want the Nyquist frequency to be higher than all the frequencies in Table
4.2 to keep 95 % of the signals energy. Because the Nyquist frequency is half the
sample frequency it means that the sample frequency had to be at least 0.7076 Hz
(then the Nyquist frequency are the same as the frequency for VGT control signal
in Table 4.2). This frequency will be rounded to a simpler frequency of 1 Hz.

If the air mass-flow is resampled at 1 Hz with an antialias filter the resulting
signal look likes in Figure 4.3.
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Figure 4.3: Comparison between the original 100 Hz signal (grey line) and the
resampled 1 Hz signal (black line). The lower graph shows a short segment of the
upper one.

With this sample frequency almost all dynamics is reproduced, only the sharpest
peaks are missed. To also include those peaks the sample frequency was increased
to 2 Hz and it seems to give a satisfying representation of all the signals. The
peaks missed with frequency 1 Hz are now completed, the sample frequency gives
a Nyquist frequency above the frequency where 95 % of the energy remains and
the data is heavily reduced. Appendix B.2 contains a comparison of the original
and the resampled signals and the remaining energies are listed in Table 4.3.
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Table 4.3: Signal energy remaining after low-pass filtering with cut of frequency
at 2 Hz.

Signal Energy [%]

Air mass-flow before compressor 99.94
Exhaust manifold pressure 97.82
Turbine speed 99.99
Intake manifold pressure 99.87
Intake manifold temperature 99.98
Engine speed 99.88
Injected fuel 99.97
EGR control signal 99.85
VGT control signal 99.68

4.5 Estimation and Validation Data

Before the identification the sequence is divided into two parts. The reason for
that is to get a fresh sequence that can be used for the model validation. The
first 1500 samples in the resampled sequence will be the estimation data and the
remaining 880 samples will be used for validation.



Chapter 5

Linear Regressor Models

This chapter contains the model development procedure. The models are built
according to the standard linear models and criterions presented in Chapter 3.
The models are validated on the basis of its fit and residual correlation analysis.

5.1 Modeling Strategy

One of the main goals is to find which signals that will be needed to get a good
model of the air mass-flow. It is possible to spend a lot of time by trial and
error before a good model is found and it is hard to know in advance if a new
set of parameters will increase or decrease the quality of the model. Therefore, a
modeling strategy is needed.

In [17] the principle “try simple things first” is used. Following this principle,
some simple models are built, and if it is needed, they can be extended to more
complex or advanced models. It is possible that a simpler model will give a good
enough description of the system in its sector of application.

To begin with, the inputs will be separated and one model will be built for
each of them. This is called a Single Input Single Output (SISO) model. This
will be very simple models and hopefully it will show if some signals will be better
than others to use in the model of the air mass-flow.

It is not obvious which of the model structures presented in Chapter 3 to use.
The ARX structure is a bit simpler than the ARMAX and the BJ model but it still
includes a noise model. Because of that, the ARX structure will be used at first. If
the results indicate that the ARX structure does not fulfill the requirements, the
auto- and cross-correlation of the residuals can be used to find out what the model
do not capture and then the model may be adjusted to capture these missing parts
or otherwise another model can be built accordingly to the other structures.

The ARX structure also has another small advantage towards the other struc-
tures, that is, in SITB there is several functions built specifically for estimating
ARX models.

21
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5.2 Single Input Single Output Models

SITB is used to develop all models. When developing the ARX models the es-
timation focus is set to prediction. This means that the model is determined by
minimizing the prediction error, [11, p.3-31], and it is optimized for predicting the
output.

To find the model order that results in the best model, 1000 models are com-
puted with all combinations of the structure parameters na, nb and nk, in the
range 1 to 10. The model with the best fit for each given number of parameters is
displayed in a diagram and the model with the overall best fit calculated from the
loss function and the best choice according to Akaike’s Information Criterion are
highlighted in dark grey and light grey respectively. Figure 5.1 shows the diagram
for the models with input pim as an example. The heights of the bars represent
the part of the output variance which is not explained by the model. In this input,
and for most of the others inputs too, the difference between the height of the bar
corresponding to best fit and AIC is almost negligible.
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Figure 5.1: The best fit to validation data for ARX-model with input pim and out-
put Wair . The light grey bar is the best choice according to Akaike’s Information
Criterion and the dark grey bar is the choice according to best fit.

The best set of structure parameters will be chosen accordingly to Akaike’s
Information Criterion. The procedure described above is used for all inputs and
the results become as in Table 5.1.

5.2.1 Fit Calculation

A first step of evaluating the models is to see how well they can re-create the
measured output. This is done by calculating the fit between the output provided
by the model and the measured output according to Equation (3.17) on page 11.
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Table 5.1: Numbers of parameters in the models with one input, that are optimal
according to Akaike’s Information Criterion.

Model Name Input Signal na nb nk

Mpem,arx9|1|5 Exhaust manifold pressure 9 1 5
Mntrb,arx2|10|1 Turbine speed 2 10 1
Mpim,arx4|4|2 Intake manifold pressure 4 4 2
MTim,arx5|3|1 Intake manifold temperature 5 3 1
Mneng,arx5|5|1 Engine speed 5 5 1
Mδ,arx7|2|1 Injected fuel 7 2 1
MUEGR,arx5|6|1 EGR control signal 5 6 1
MUVGT ,arx7|1|6 VGT control signal 7 1 6

There are some options when calculating the fit. It is possible to choose the
number of previous output values to include when predicting the next output
value. It is possible to include all previous outputs, some of them or completely
exclude them. This is referred to as k-step prediction of the output. The number k
specifies which outputs that are included in the prediction of the output at time t.
If k = 1, it means that all input values up to time t and all outputs up to time t−1
are used in the prediction. This is called 1-step-ahead prediction of the output.
Similarly, k-step-ahead prediction means that output values up to t − k are used
to estimate ŷk(t|θ) (the k-step-ahead prediction for the model with parameters θ).
If k =∞ it means that only the inputs are used in the prediction and this is equal
to a simulation of the output.

In Table 5.2 the fit for the computed models are listed for some different values
of k.

Table 5.2: Fit with different prediction horizons.

Name 1-Step 3-Step 5-Step 10-Step Simulation

Mpem,arx9|1|5 82.09% 53.60% 38.42% 28.71% 28.47%
Mntrb,arx2|10|1 82.59% 71.46% 68.77% 67.00% 66.90%
Mpim,arx4|4|2 82.21% 55.28% 49.05% 48.60% 48.63%
MTim,arx5|3|1 81.97% 52.95% 36.52% 22.73% 17.12%
Mneng,arx5|5|1 82.07% 52.71% 34.98% 17.00% -5.45%
Mδ,arx7|2|1 84.62% 70.11% 64.04% 59.51% 58.28%
MUEGR,arx5|6|1 82.80% 58.97% 47.31% 30.49% 7.02%
MUVGT ,arx7|1|6 82.04% 53.22% 37.38% 22.82% 9.77%

The question is what value k should have. Normally it should be bigger than
the system delay, but in Chapter 4 it emerged that it was not trivial to find the
system delay for this system and that will make it harder to correctly set the value
of k. Therefore the value of k had to be chosen another way.

In Table 5.2 the fit for different values of k was presented. Not surprising,
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the fit at 1-step-ahead prediction (where all previously outputs are known and
included in the calculation, is the overall best fit for the model. As can be seen,
this fit is about 82-84 % and that result returns in every test made. Using this
value of k seems to make it harder to discern which model that is better than
another because the difference between the fits are small. A bigger k-value results
in a bigger difference between the resulting fits and therefore it seems easier to
evaluate the models. In this thesis, k =∞ was chosen, which means the simulation
case where no previously outputs are used.

The result shows that the fit decreases for every model when the value of k
increases, but it decreases less for some models. If looking at the fit in the case of
simulation, three models are much better than the others, the one with regressor
ntrb, pim and δ. It seems to be a good idea to look deeper at models based on these
inputs. If models where the simulated fit is closer to the 1-step-ahead prediction
fit can be found, it means that the measured outputs do not contribute so much
to the model and therefore can be omitted.

According to the paragraph above, the fit will henceforth be calculated and
presented as the simulated fit.

5.3 Residual Analysis

To further validate a model, its residuals will be studied. The reason for this is
to see if the model is robust or if there are things that it could not describe, as
mentioned in Section 3.3.2.

The residuals for the model Mntrb are presented in Figure 5.2 and in Ap-
pendix B.4 the residuals for all models in Table 5.1 are presented.

The lower graph in these figures shows the cross-correlation between the input
and the output for the models. As can be seen in Appendix B.4, for positive delays
the cross-correlation is inside its confidence region (99%) for nearly all models and
according to Section 3.3.2 it is desirable that this criterion will be fulfilled. The
only model that does not fulfill this requirement is Mntrb which cross-correlation
slowly varying outside the confidence region. According to the rule of thumb in
Section 3.3.2 this is a indication of too few poles in this model. Section 5.3.1 will
further deal with this. For negative time lags, the cross-correlation vary outside
the confidence region for all models without Mntrb . When this happens it is an
indication of that the system worked with feedback when the data was collected.
According to [12] this can be disregarded when validating the model.

The upper one of the graphs in Figure 5.2 and the figures in Appendix B.4 shows
a models auto-correlation. As can be seen it is completely inside its confidence
region for all models and it change stochastically. This means that the disturbance
is correctly modeled as white noise, which means that the ARX-structures noise
model is satisfying and a more advanced noise model is not needed.
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Figure 5.2: Residuals for Mntrb .

5.3.1 Pole-Zero Diagram

The pole-zero diagram for the models is shown in Appendix B.5. They show that
all of the models have their poles inside the unit circle with means that they all are
stable. Looking at some of the diagram, it is obvious that poles and zeros could
cancel each other which results in the possibility to create smaller models that gives
similar results. There are several ways to reduce model order for linear systems
and avoiding cancellation. The most common is model reduction by balanced
truncation introduced in [14]. Unfortunately this was not known by me at this
moment and therefore it was not used.

The residuals forMntrb indicate that it could be too few poles. If the number of
poles increases, the model order also increases, but because the pole-zero diagram
for the model shows that it already is possible cancellations an increase of the
number of poles will only result in modeling the noise [10, p.524]. No way to deal
with this has been found.

The estimated models show that some signals are better than others to use
as regressors when building a black-box model. The question is if the best model
has been found. The residual analysis shows that the model with best fit do not
has completely satisfying residuals and the simulation fit for this model is much
smaller than for the 1-step-ahead prediction fit. It is possibly to use more than
one input regressor when creating a black-box model and usage of more collected
signal from the engine will probably be an advantage. To find out, models with
multiple inputs are built in the next section.
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5.4 Multiple Input Single Output Models

The next approach will be to combine the regressors used in Section 5.2 to form
models with more than one input regressor. Such a model is called Multiple Input
Single Output (MISO) Model. Hopefully, the use of more than one regressor
will give an advantage when creating the model because information is available
from different signals. The three regressors who gave the best result when it
was used as a single input regressor in Section 5.2 are combined to four different
models. As before, Akaike’s Information Criterion is used to find the optimal
set of parameters. The model name, its input regressors an the optimal numbers
of parameters are presented in Table 5.3. Because of the way the tool for AIC
calculations in SITB works, all input regressors to a model got the same structure
parameters. Therefore, the structure parameters is not the same as for the models
with one input regressor.

Table 5.3: Numbers of parameters in the models with multiple inputs, which are
optimal according to Akaike’s Information Criterion.

Model Name Input Signal na nb nk

Mntrb,pim
Turbine speed 1 9 1
Intake manifold pressure 1 9 1

Mntrb,δ
Turbine speed 7 2 1
Injected fuel 7 2 1

Mpim,δ
Intake manifold pressure 2 4 1
Injected fuel 2 4 1

Mntrb,pim,δ

Turbine speed 1 7 1
Intake manifold pressure 1 7 1
Injected fuel 1 7 1

When the fit are calculated for these models the result becomes as in Table
5.4.

Table 5.4: Fit for the models with multiple inputs.

Name Simulation Fit

Mntrb,pim 65.68%
Mntrb,δ 69.07%
Mpim,δ 49.54%
Mntrb,pim,δ 42.83%

The fit for Mntrb,pim and Mntrb,δ are in the same range as for the best of
the models in Section 5.2.1. Mntrb,δ shows an increase of just over 2 percentage
points (69.07%) whilst Mntrb,pim , with a 65.68% fit, is slightly behind the best
SISO model. There are no distinct increases in fit when adding another signal
to the input of the model. Maybe the structure parameters should not be the
same for all input regressors, but according to the reason above, this was not
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further analyzed. Another reason could be that the regressors do not contain
much additional information about the air-mass flow and then the fit does not
increase.

The residuals for all MISO models, attached in Appendix B.6, looks good and
are mainly inside their confidence interval of 99 %. Some of them touches the
edge of the confidence interval and the residuals for Mntrb,pim is slightly outside
the interval, but specially the residual connected to ntrb looks better than it does
for the SISO model Mntrb,arx2|10|1.

So far, it seems that the best results will be derived with a model that contains
regressors based on pim, ntrb, δ or combinations of these. In the next chapter,
models with non-linear regressors will be analyzed. Physical relations between the
air mass-flow and the other signals will be used to find these non-linear regressors,
i.e. the resulting models are grey-box models.





Chapter 6

Non-linear Regressor Models

Johan Wahlström presented a detailed description and physical relations between
parameters in a mean value diesel engine with VGT and EGR in [20] and this
model was later used in [1]. The relations for the air mass-flow will be used to
form custom regressors to use together with the linear black box models to see
if this can result in an improved fit for the models. The next section summa-
rizes the relations for the air mass-flow that will be used in this thesis. Related
model with another choice of regressors can be found in many other works, e.g. in
[9, 1, 18, 2, 15, 16].

6.1 Physical Relations for the Air Mass-Flow

The structure of the engine system used when developing the mean value model
of a diesel engine in [20] is basically the same as presented in Section 2.

The mass flow through the compressor, Wc, is the same as the air mass-flow
before compressor modeled in this thesis. The denomination Wc used in [20] will
be kept to separate the air mass-flow calculated from these equations from the
measured one, i.e. Wair. The mass-flow through the compressor is modeled using
two dimensionless variables. The first variable is the energy transfer coefficient

Ψc =
2cpaTamb(Π

1−1/γa
c − 1)

R2
cω

2
t

(6.1)

which is the quotient of the isentropic kinetic energy of the gas at the given pressure
ratio Πc and the kinetic energy of the compressor blade tip, where

Πc =
pim
pamb
. (6.2)

The second variable is the volumetric flow coefficient

Φc =
Wc/ρamb
πR3
cωt

=
RaTamb
pambπR3

cωt
Wc (6.3)

29
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which is the quotient of volume flow rate of air into the compressor and the rate
at which volume is displaced by the compressor blade. The relation between Ψc
and Φc can be described by a part of an ellipse

cΨ1(ωt)(Ψc − cΨ2)2 + cΦ1(ωt)(Φc − cΦ2)2 = 1 (6.4)

where cΨ1 and cΨ1 varies with compressor speed ωt and are modeled as polynomial
functions.

cΨ1(ωt) = cωΨ1ω
2
t + cωΨ2ωt + cωΨ3 (6.5)

cΦ1(ωt) = cωΦ1ω
2
t + cωΦ2ωt + cωΦ3 (6.6)

The air mass flow is modeled by solving Φc from Equation (6.4) and solving
Wc from Equation (6.3)

Φc =

√

1− cΨ1(Ψc − cΨ2)2

cΦ1
+ cΦ2 (6.7)

Wc =
pambπR

3
cωt

RaTamb
Φc. (6.8)

Table 6.1 and Table 6.2 presents a summary of the variables respective the
constants used in Equation (6.1) - (6.8).

Table 6.1: Summary of the variables.

Variables Description

pim Intake manifold pressure
ωt Rotational turbo speed
Wc Compressor mass flow
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Table 6.2: Summary of the constants.

Constants Description

ρamb Density of the ambient air
pamb Ambient pressure
Tamb Ambient temperature
Rc Compressor blade radius
Ra Ideal gas constant for air
γa Specific heat capacity ratio for air
cpa Specific heat capacity at constant

pressure, for air
cΨ2, cΦ2 Parameter in the ellipse model for

the compressor mass flow
cωΨ1, cωΨ2, cωΨ3, Coefficients in the polynomial
cωΦ1, cωΦ2, cωΦ3 equation (6.5) and (6.6)

6.2 Custom Regressors

The above equations show that two signals have a close connection to the air
mass-flow, the turbine speed and the intake manifold pressure. In these equations
both turbine speed and intake manifold pressure occur in nonlinear expressions
and these can be used as custom regressors. These two regressors both give good
results in Chapter 5. The injected fuel, δ, does not appear in the equations but
because it gives good results when creating models with one linear regressor and
also shows a slightly improved fit when it was combined with the turbine speed to
form a MISO model, it will be included further on.

These quite simple custom regressors can also be combined until they form the
complete expression of the air mass-flow. At first, models with only one input will
be made.

6.2.1 Turbine Speed Regressors

At first, the regressors based upon the turbine speed are examined. A closer look
at the equations shows that a square, an inverse and a squared inverse of the
turbine speed are locally represented in the equations. These expressions can be
used as regressors.

Table 6.3 holds the turbine speed regressors examined. The linear turbine
speed is used as a reference.

The models are estimated in the same way that before, the regressors are used
one by one as inputs, Akaike’s information criterion is used to obtain the best
combination of the structure parameters and the fit is calculated. The results is
presented in Table 6.4.

As can be seen, one of the models, MRtrb2,arx1|10|1, perform better than the
linear turbine speed regressor. The other two, with Rtrb3 and Rtrb4 as regressors,
give a clearly worse result.
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Table 6.3: Regressors based upon the turbine speed.

Name Regressor

Rtrb1 ωt
Rtrb2 ω2

t

Rtrb3 1/ωt
Rtrb4 1/ω2

t

Table 6.4: Fit for optimal ARX models based on turbine speed regressors, due to
Akaike’s information criterion.

Model Name Simulation Fit

MRtrb1,arx2|10|1 66.90%
MRtrb2,arx1|10|1 73.89%
MRtrb3,arx5|5|3 24.81%
MRtrb4,arx5|1|10 8.99%

The conclusion of this test is that a custom regressor based on the turbine
speed should contain the square of the turbine speed but due to the fit test it
should not be an inversed square of the turbine speed.

One remaining question is if the residuals of the model with the squared turbine
speed regressor,MRtrb2,arx1|10|1, are good. Figure 6.1 shows the residuals and they
seem to fulfill the requirement. The cross correlation is better than for the model
based only on turbine speed, i.e. Mntrb,arx2|10|1, and is now completely inside the
confidence interval.

6.2.2 Pressure Regressors

Whereas there were several possible turbine speed regressors, that is not the case
for regressors based on the intake manifold pressure. It is just one expression that
can be used and that is the non-linear pressure quotient listed in Table 6.5.

Table 6.5: Regressors based upon the intake manifold pressure.

Name Regressor

Rpres1 Π
1−1/γa
c

With the same procedure as in the case with turbine speed regressors, the
result becomes as in Table 6.6, where the result for the model based on just the
intake manifold pressure also is listed to make it easier to compare the result.

This custom regressor gives about 10 percentage points improvement of the fit.
This improvement is approximately as large as the one that the squared turbine
speed regressor gives. But because the starting fit is much lower the result cannot
match the results from the turbine speed regressor. However, the residuals fit
inside the confidence interval, just as for the linear regressor.
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Figure 6.1: The residuals for MRtrb2,arx1|10|1.

Table 6.6: Fit for optimal ARX models based on the intake manifold pressure
regressors, due to Akaike’s information criterion.

Model Name Simulation Fit

Mpim,arx4|4|2 48.63%
MRpres1,arx4|6|1 57.23%
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Figure 6.2: The residuals for MRpres1,arx4|6|1.

6.2.3 Combined Regressors

The question now is if the fit will improve if regressors that are even more like
the complete equations will be used. This will be tested and the regressors will be
equal to the three equations that form the air mass-flow, i.e. Equation (6.1), (6.7)
and the complete expression (6.8). The regressors are listed in Table 6.7.

Table 6.7: Regressors based upon both turbine speed and intake manifold pressure.

Name Regressor

Rcomb1 Ψc
Rcomb2 Φc
Rcomb3 Wc

The models are estimated exactly as before and the results are presented in
Table 6.8.

The first of these regressors gives a very bad result but the other two give a
fit that is among the best so far. The residuals for the good models looks almost
as in Figure 6.1 but some peaks are outside the confidence interval just like in the
case for the linear turbine speed regressor. For all residuals, see Appendix B.7.

If consider that the regressorRtrb2 is much simpler than Rcomb2 and Rcomb3 are,
it ought to be a better choice to use the first one. This gives less calculation and
contingent problems with the tuned parameters in the mean value diesel engine
model can be avoided.
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Table 6.8: Fit for optimal ARX models based on a combination of turbine speed
and intake manifold pressure regressors, due to Akaike’s information criterion.

Model Name Simulation Fit

MRcomb1,arx5|1|9 9.91%
MRcomb2,arx1|10|1 73.05%
MRcomb3,arx1|10|1 73.12%

6.3 Combination of Regressors and Signals

A last test will be done where the non-linear and linear, from Section 5.2, regressors
that give the best results will be combined to MISO models. Thus the regressors
will be kept separated to become multiple inputs to the system. The regressors
to use is the squared turbine speed, the pressure quotient, the turbine speed, the
intake manifold pressure and the injected fuel, where the last three are the ones
that give the best result in Section 5.2.

In Table 6.9 the models and their results are presented. As before, the regres-
sors and the model parameters can be read in the index for respective model.

Table 6.9: Fit for optimal ARX models based on a combination of standard and
custom regressors, due to Akaike’s information criterion.

Model Name Simulation Fit

MRtrb2,ntrb,arx1|8|1 72.91%
MRtrb2,pim,arx1|2|1 71.71%
MRtrb2,δ,arx1|10|1 69.76%
MRpres1,ntrb,arx10|4|1 66.65%
MRpres1,pim,arx5|2|1 45.27%
MRpres1,δ,arx3|7|1 61.50%
MRtrb2,Rpres1,arx1|10|1 74.57%

The result show that this combination of regressors works well and several
models give a relative good result, especially the ones that included the Rtrb2, It
seems that this regressor is the one that conduce the best results. But only one
model is actually better than before, namely the one where the two ’grey’ regres-
sors, Rtrb2 and Rpres1, are combined, i.e. MRtrb2,Rpres1,arx1|10|1. This results in a
fit of 74.57% and both the residuals and the pole-zero diagram looks satisfying,
see Figure 6.3 and Figure 6.4.

Even more advantages may be possible if this model are extended to include
more than two input regressors, i.e. to include one or more of the linear regressors
previously used in this section to form the two-input models in Table 6.9. If models
are created upon the possible combinations of these regressors the results become
as in Table 6.10.

The results for MRtrb2,Rpres1,δ,arx1|4|1 and MRtrb2,Rpres1,pim,δ,arx1|2|1 shows an
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Figure 6.3: The residuals for MRtrb2,Rpres1,arx1|10|1. Residuals for regressor Rtrb2
in (a) and for regressor Rpres1 in (b).
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Figure 6.4: The pole-zero diagram forMRtrb2,Rpres1,arx1|10|1. Diagram for regressor
Rtrb2 in (a) and for regressor Rpres1 in (b).

Table 6.10: Fit for optimal ARX models based on a combination of standard and
custom regressors, due to Akaike’s information criterion.

Model Name Simulation Fit

MRtrb2,Rpres1,ntrb,arx1|5|1 74.47%
MRtrb2,Rpres1,pim,arx1|2|1 70.04%
MRtrb2,Rpres1,δ,arx1|4|1 80.70%
MRtrb2,Rpres1,ntrb,pim,arx1|5|1 75.46%
MRtrb2,Rpres1,ntrb,δ,arx4|6|1 Undef.
MRtrb2,Rpres1,pim,δ,arx1|2|1 79.99%
MRtrb2,Rpres1,ntrb,pim,δ,arx3|3|1 Undef.
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unexpected increase in fit. These two models got a fit of about 80% and the
thing they have in common is that the injected fuel, δ, has been added. Two of
the models, also with δ as regressor, got an unreasonable result (an extremely
big negative value) and is therefore declared undefined. If the number of structure
parameters for these two models are slightly changed, this will be avoided. If doing
this, the fit will become high, but not as high as for two best ones mentioned above
and the model will not be optimal due to Akaike’s information criterion.

The two best models are now based on three different regressors, one based on
the turbine speed, one on the intake manifold pressure and one on the injected
fuel. Another combination of these signals was used in Section 5.4 in the model
Mntrb,pim,δ, but this time the result was not good. Yet again the use of the non-
linear regressors prove to be useful. And to point out, δ is not included in the
physical relations described in Section 6.1. However, the use of this regressor also
prove to be useful.

However, there are things that indicate that these models are not acceptable.
The residuals for the best model, MRtrb2,Rpres1,δ,arx1|4|1, are shown in Figure 6.5.
The residuals for MRtrb2,Rpres1,pim,δ,arx1|2|1 has the same fundamental look. Nei-
ther of the auto-correlation or the cross-correlation is satisfying. They are both
way outside its own confidence interval. This is also the case for the other models
in Table 6.10 that gives an improved fit. Thus, it seems to be a better choice to
use MRtrb2,Rpres1,arx1|10|1, which has the best fit and still has satisfying residuals
and pole-zero diagram.

In summary, the previous work has resulted in a model that gives a simulation
fit of nearly 75%. If looking at the resulting fit when old outputs are included
when building the model, see the discussion in Section 5.2.1 and the results in
Table 6.11, it can be seen that the results are close to each other even if the old
outputs are used. Certainly, the fit increases when more old outputs are used, but
the difference is approximately 4 percentage points between the case when k = 3
and no outputs are used. It is not a big difference.

Table 6.11: Fit for optimal ARX models, based on a combination of standard and
custom regressors as a MISO system, due to Akaike’s information criterion.

Model Name 1-Step 3-Step 5-Step 10-Step Simulation

MRtrb2,Rpres1,arx1|10|1 84.28% 78.27% 76.20% 74.83% 74.57%

In the following chapters, a summary of the results is done and the results is
compared to the results from an extended Kalman filter used to estimate the air
mass-flow. Then we get a measurement of how the solution created with system
identification will perform.
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Figure 6.5: The residuals for MRtrb2,Rpres1,δ,arx1|4|1. Residuals for regressor Rtrb2
in (a), for regressor Rpres1 in (b) and for regressor δ in (c).



Chapter 7

Results

In this chapter the best black-box model developed and its estimate of the air-mass
flow is presented. The estimate is also compared to the estimate from the extended
Kalman filter presented in Section 7.2 in order to evaluate its performance.

7.1 The Best Model

The work in this thesis to find a black-box model of the air mass-flow has result
in a model based upon the ARX structure. This model,MRtrb2,Rpres1,arx1|10|1, has
the structure parameters na = 1, nb = [10 10] och nk = [1 1] and has two input

regressors, the non-linear regressors ω2
t and Π

1−1/γa
c . There are two elements in

nb and nk because the model has two inputs, where each element relate to one
input regressor.

This model gives a fit of 74.57% and its residuals and pole-zero diagrams are
satisfying. If the sequence between 600 s and 1790 s, chosen in Section 4.1, is used
to simulate the model the estimated air mass-flow becomes as in Figure 7.1. It is
compared with the measured air mass-flow.
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Figure 7.1: Estimated air mass-flow (black line) compared to measured air mass-
flow (grey line) for the downsampled sequence between 600 s and 1790 s.

Figure 7.2 shows the part of sequence in Figure 7.1 that was used to validate

39
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the model. Here it is a little bit easier to see the difference between the estimate
and the measurement.
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Figure 7.2: Estimated air mass-flow (black line) compared to measured air mass-
flow (grey line) for the sequence used to validate the data.

If the difference between the estimated and the measured air mass-flow is cal-
culated the results become as in Figure 7.3. As could be seen, the maximum
absolute error is in the range of 0.1 kg/s which means the error is about 50 %
wrong comparing to the measured value. However, some errors with this size is
not a big deal and therefore it is better to look at the errors in another way, namely
looking at the root mean square error. This will be done in Section 7.4, where the
grey-box estimate also will be compared to the EKF estimate presented in Section
7.3.
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Figure 7.3: The absolute error between the estimated and the measured air mass-
flow.

7.2 Extended Kalman Filter

To find out how well the best black-box model actually performs, its estimate of
the air mass-flow will be compared to the estimate from an extended Kalman filter
(EKF) [8].
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7.2.1 Physical Model

The model used together with the extended Kalman filter is a modified version of
the model presented in [20]. This slightly simplified model is used in [4].

It is a third order non-linear state-space model of an inline six cylinder Scania
diesel engine with variable geometry turbo (VGT) and exhaust gas recirculation
(EGR). The model states are intake manifold pressure, pim, exhaust manifold
pressure, pem, and turbine speed, ntrb.

The basic structure of the model is

ẋ =





ṗim
ṗem
ṅtrb



 =





fpim(x)
fpem(x)
fntrb(x)





y =
(

pim pem ntrb hWc
)T
.
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7.2.2 Filter Design

The designed EKF is based on the continuous time model of the air mass-flow in
Section 7.2.1, and has feedback from all model states, that is pim, pem and ntrb.
The covariance matrices for the system and measurement noise, Q and R, were
used as tuning parameters. The EKF is designed as follows.

The continuous time model,

ẋ = f(x, u)

y = h(x),

is discretized with forward Euler and a sampling time of Ts seconds,

xt+1 = xt + Tsf(xt, ut) (7.1a)

yt = h(xt). (7.1b)

The time discrete EKF is designed on Equation (7.1b). The EKF equations for a
time discrete model look as follows, starting with the internal variables

St = HtPt|t−1H
T
t +Rt

Kt = Pt|t−1H
T
t S
−1
t

et = yt − h(x̂t|t−1)

that is the innovation covariance, the Kalman gain, and the estimation error re-
spectively. Continuing with the update equations

x̂t|t = x̂t|t−1 +Ktet

Pt|t = Pt|t−1 − Pt|t−1H
T
t S
−1
t HtPt|t−1

and the prediction equations

x̂t+1|t = x̂t|t + Tsf(x̂t|t, ut)

Pt+1|t = (I − TsAt)Pt|t(I − TsAt)
T +Qt

where

At =
∂f

∂x

∣

∣

∣

∣

x=x̂t|t−1

, Ht =
∂h

∂x

∣

∣

∣

∣

x=x̂t|t−1

.

Finally the estimator can be written

ŴEKF,t = hW (x̂t)

where hW is a nonlinear function of the states describing the air mass-flow through
the compressor, see [20, 4]. The resulting estimate can be compared to the black-
box estimate to evaluate its performance.
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7.3 EKF Estimate

Figure 7.4 and Figure 7.5 shows the EKF estimate compared to the measured air
mass-flow for the same sequences as in Figure 7.1 respectively Figure 7.2. This
estimate looks like the grey-box estimate. It is possible to see some differences
but it is hard to say if one is better than the other by just looking at the results.
Instead, the root mean square error will be used for this.
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Figure 7.4: EKF estimated air mass-flow (black line) compared to measured air
mass-flow (grey line) for the downsampled sequence between 600 s and 1790 s.
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Figure 7.5: EKF estimated air mass-flow (black line) compared to measured air
mass-flow (grey line) for the sequence used to validate the data.

7.4 Root Mean Square Error

The result from the grey-box model and from the extended Kalman filter can be
compared if the root mean square error (RMSE) is calculated. Root mean square
error is a frequently used measure of the difference between a measured and an
estimated signal and gives a measure of the specificity of the whole signal, in
contrast to the residuals who just gives the error in specific samples. The root
mean square error is calculated according to:

RMSE =

√

∑n
i=1(yi − ŷi)2

n
, (7.2)

where yi is the measured values, ŷi is the estimated values and n is the total
number of samples. When the root mean square error for these two signals are
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Table 7.1: The root mean square error for the grey-box estimate and the EKF
estimate, for both the validation sequence and for the downsampled sequence
between 600 s and 1790 s (called working sequence).

Estimate Sequence RMSE

Grey-Box
validate 0.0154
working 0.0254

EKF
validate 0.0147
working 0.0231

calculated the results become as in Table 7.1. It is calculated for both the validate
sequence and for the longer sequence mentioned above.

The performance of the grey-box ARX model seems to be nearly the same as
for the extended Kalman filter.



Chapter 8

Concluding Remarks

This chapter contains a summary of the conclusions made in this thesis. It also
discusses problems that occur during the work and raise some questions and things
to build future work on.

8.1 Conclusions

The purpose with this thesis was to use system identification theory to develop
a model for the air mass-flow through the compressor. The modeling data was
collected from nine different sensors on a six cylinder Scania diesel engine with
EGR and VGT.

All models were built according to the ARX model structure. The reason for
this was that this structure was a little bit simpler than others, but still includes
a noise model. The System Identification Toolbox used also has most functions
suited for ARX model development.

When first creating models with one single input regressor it turned out that
the models with the intake manifold pressure, the turbine speed and delta as input
regressor give clearly the best estimate of the air-mass flow through the compres-
sor. Therefore, the continuing modeling focus on these signals. The creation of
additional black-box models shows that the fit of the estimate was not improved
if these regressors were combined to form models with multiple inputs.

Because of the systems non-linearity, the models had to be expanded to include
some information about this. To achieve this, the non-linear regressor was used
together with the linear ARX model. These non-linear regressors were based upon
physical relations for the air-mass flow. It turned out that the use of these non-
linear regressors improved the prediction performance. Several non-linear expres-
sions with different complexity were tested, but it turned out that the performance
of these models mostly depend on if one non-linear regressor was included in the
model or not, namely the squared turbine speed.

The performance of the best model found, was compared to the estimate from
an extended Kalman filter observer based on a physical model. This comparison
shows that the best grey-box estimate performs just as well as the estimate from
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the observer. The conclusion is that this model does not contribute with some-
thing that could not been achieved with an observer and an already existing model
of the system.

8.2 Discussion of Problems

The use of this grey-box model has some restrictions. The fact is that the model is
heavily dependent of the turbine speed, but as mentioned before, there are faults
in the measured signal of the turbine speed (a registered zero when the turbine
speed drops below 20 000 rpm) and this model do not deal with that. The effect
of using an input signal that contains this error is still unknown. The work in this
thesis shows that the usage of a model which does not contain the turbine speed
based regressor provides a considerable lower fit and is probably no alternative.
An option is to build a model that deal with the loss of turbine speed, but how to
do that and the difficulties has not been dealt with.

Because of the fact that the best model in this thesis do not perform better
than the physical model with the extended Kalman filter, the conclusion is that
a lot more work has to be done before a grey-box model can be properly used
to estimate the air mass-flow. This thesis has only dealt with a small part of
the system identification research area and there is a lot more approaches, model
structures and ways to choose the regressors to study.

8.3 Future Work

To directly proceed with the results in this thesis the problem with the loss of
turbine speed had to be dealt with. It can possibly be done if finding a way to
always measure a correct turbine speed or let the model itself deal with that.

Another important thing is to do more specific data collections that make it
easier to describe the dynamics of the system. Run separate parts of the system
to acquire step responses, time constants and easier find the bandwidth of the
system to simplify the preprocessing of the data. If these methods to analyze the
system could be more reliable than they become in this thesis, it would likely be
an advantage. A lot of additional work can also be done when the models are
derived. Instead of an ARX model, some of the other can be thorough analyzed
and there are a lot of ways to find non-linear models, that not just use non-linear
regressors, for example usage of wavelets and neural networks.
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Appendix A

Notation

Table A.1: Regressors used in this thesis.

Name Regressor(s)

pem Exhaust manifold pressure
ntrb Turbine speed
pim Intake manifold pressure
Tim Intake manifold temperature
neng Engine speed
δ Injected fuel
UEGR EGR control signal
UV GT VGT control signal
Rtrb1 ωt
Rtrb2 ω2

t

Rtrb3 1/ωt
Rtrb4 1/ω2

t

Rpres1 Π
1−1/γa
c

Rcomb1 Ψc
Rcomb2 Φc
Rcomb3 Wc

49



Appendix B

Figures

B.1 Measured Signals
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Figure B.1: The measured signals Wair , pem, ntrb and pim.
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Figure B.2: The measured signals Tim, neng, δ, UEGR and UV GT .
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B.2 Resampled Signals
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Figure B.3: Comparison between the original 100 Hz signal (grey line) and the
resampled 2 Hz signal (black line) for signal Wair , pem, ntrb and pim.
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Figure B.4: Comparison between the original 100 Hz signal (grey line) and the
resampled 2 Hz signal (black line) for signal Tim, neng, δ, UEGR and UV GT .
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Figure B.5: Periodogram for all signals
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B.4 Residuals for Linear SISO Models
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Figure B.6: Residuals for linear single input single output models.
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Figure B.7: Residuals for linear single input single output models.
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B.5 Pole-Zero Diagram for Linear SISO Models
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Figure B.8: Pole-zero diagram for linear single input single output models.
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Figure B.9: Pole-zero diagram for linear single input single output models.
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B.6 Residuals for Linear MISO Models
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Figure B.10: Residuals for respective regressor for the MISO models in Section
5.4.
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Figure B.11: Residuals for respective regressor for the MISO models in Section
5.4.
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B.7 Residuals for Non-linear MISO Models
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Figure B.12: Residuals for the combined models in Section 6.2.3.
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