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Abstract
Scania CV AB is a leading company within development and production of buses, trucks
as well as industrial and marine engines.

New environmental and safety legislations continuously demand higher quality from
the products. An upcoming European legislation, Euro 6, implies that gas leakages from
truck engines should be detected while driving. If the source of the leakage is not only
detected, but also isolated, that is separated from other faults, the adjustments in the work-
shop goes faster since there is no need for leakage localisation. A faster reparation in-
creases the up-time, i.e. the amount of time that the truck can be used.

This master thesis work uses current methods developed at Scania for residual genera-
tion to perform model-based leakage diagnosis. In this work, measurements are gathered
for different sensor faults and two leakages. The measurements are used to evaluate the
actual performance of the resulting diagnosis system.

The result, based on the residuals generated by the method, shows that leakages on
the boost-side and the exhaust-side can be detected, and isolated from faults in the pres-
sure sensors on the boost-side and the exhaust-side. The isolation of these four faults is
considered the hardest to achieve among sensor faults and leakages why the full isola-
tion performance is promising. Further measurements are needed to determine the full
isolation performance of the diagnosis system.

The resulting system is reasoned to be suitable for execution in real time on-board the
truck.
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Sammanfattning
Scania CV AB är en ledande koncern inom utveckling och produktion av bussar, lastbilar
samt industri- och marinmotorer.

Nya lagkrav för miljö och säkerhet ställer ständigt högre krav på de tillverkade pro-
dukterna. Ett nära förestående lagkrav för lastbilar, Euro 6, innebär att gasläckage från
motorn ska detekteras under körning. Om läckaget förutom att detekteras också kan iso-
leras, det vill säga särskiljas från andra fel, går reparationen i verkstaden snabbare då man
slipper lokalisera läckaget. En snabbare reparation ökar up-time, det vill säga tiden som
lastbilen kan användas på åkeriet.

I detta exjobb används befintliga metoder för residualgenerering framtagna på Scania
för att åstadkomma modelbaserad läckagediagnos. Arbetet tar även fram mätdata för oli-
ka givarfel samt för två läckage i motorn. Denna mätdata används för att utvärdera det
erhållna diagnossystemets faktiska prestanda.

Resultatet, som bygger på residualerna som metoden genererat, visar att läckage går
att detektera, och att läckagen går att isolera från fel på tryckgivarsensorer på laddlufts-
sidan och avgassidan. Denna isolering anses vara den svåraste att uppnå av alla sensorfel
samt läckage varvid övrig isoleringsprestande verkar lovande. Däremot behövs mer mät-
data för att säkert kunna fastställa övrig isoleringsprestanda. Diagnosmetoden lämpar sig
troligen för exekvering i realtid ombord på lastbilen.
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Chapter 1

Introduction

This thesis was performed at Scania CV AB in Södertälje in cooperation with the depart-
ment of Electrical Engineering ISY, division of Vehicular Systems, at Linköping Uni-
versity. The work was carried out at NESD, a department responsible for On-Board Di-
agnosis (OBD) at Scania, during fall 2008 to early spring 2009. Scania develops and
manufactures trucks, buses and engines for marine and industrial use.

1.1 Background

There are many components in a truck that provide the engine with air, and additional
ones used to purify the exhausts. These components are connected through pipes. A hole
or a loose joint, both resulting in a leakage, can occur somewhere in the air or exhaust
path, here after called the gas path. This might lead to reduced engine performance and/or
increased exhaust levels. Legislative demands has been introduced during the last years
requiring continuous supervision of sensors and actuators in order to gradually lower the
emission levels. The next European standard, Euro 6, is expected to contain such limits
that even the presence of leakages will have to be monitored. If the leakage could not
only be detected, but also isolated, the adjustments in the workshop would go faster since
there is no need for leakage localisation. A faster reparation would increase the up-time,
i.e. the amount of time that the truck can be used.

With the wish to perform better diagnosis, and with legal demands from Euro 6, ex-
pected to contain restrictions to the gas leakage, this work became a current issue.

1.2 System Overview

The truck engine treated in this thesis is a diesel engine with both exhaust gas recircula-
tion, EGR, and variable geometry turbine, VGT. The ambient air is taken in, filtered and
then enters a compressor that increases the pressure before the cylinders, referred to as
boost pressure, Pboost. Since the compressor not only increase the pressure, but also the
temperature, there is an intercooler, I.C. , after the compressor to lower the temperature

1



2 Introduction

and thus the volume. This increases the amount of air that enters the cylinders, which
increases engine performance.

Before the air enters the cylinders, it is mixed in the intake manifold with exhaust
gases that are recycled through the EGR. The reason for adding exhaust gases to the air,
is to lower the combustion temperature and by doing so lower the emissions. The air and
exhaust mixture is blended with fuel, the amount is regulated by Uδ, and combusted in
the cylinders. The exhaust gas leaves the cylinders and continues to the exhaust manifold
where one part recycles to the intake manifold. The amount of recirculated gas is regu-
lated by the EGR-valve, controled by UEGR. The rest of the gas continues to the turbine
that runs the compressor. The variable geometry turbine, VGT, controled by UVGT , makes
it possible to vary the amount of air through the compressor independently, to some lim-
its, of the pressure difference over the turbine. The detailed usage of the valves in engine
control can be found in [8]. An exhaust after treatment system is not considered in this
thesis.

There are several sensors in the system, measuring temperatures, T , pressures, P,
rotational speeds, N and ω, and air mass flow, W. For an overview of the gas flow and the
sensors and actuators in the system, see Figure 1.1.

Figure 1.1. Sketch of the gas path in a diesel engine with EGR and VGT but without a catalytic
converter or a particle filter. Sensors and actuators present in the system are marked with dots.
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Though the figure might give the impression of a rather simple and straight forward
system the recirculation in the EGR and the connection from the turbine to the compressor
provides two feedback loops resulting in a more complex system then at first glance. The
system also contains non-linear dynamics.

1.3 Existing Work
Some previous works treating leakages, such as [21], [27] and [1], already exist. But
they deal with cars, not trucks, and the first two with gasoline SI-engines and not diesel
engines. The third one uses statistical methods which requires knowledge about how often
faults occur in different components and the behaviour of each considered fault that might
occur in the respective components.

1.4 Purpose
The purpose of this thesis is to develop methodology for leakage diagnosis on a diesel
engine with EGR and VGT in order to meet future Euro 6 legislative demands.

More concretely, this will be done by creating a diagnosis system with the developed
method, and answering some of the following questions:

• Which methods can be used to perform leakage diagnosis on the engine?

• Is a model-based approach preferable compared to a non-model-based approach?

• In the case of a model based approach, is it necessary to model a leakage in detail
in order to detect and isolate it?

• How well can leakages be detected and isolated from sensor faults?

• Would the result of the created diagnosis system be improved by the introduction
of extra sensors, and in that case where?

• Is the created diagnosis system suitable for on-board usage?

1.5 Limitations
Due to time constraints, some limitations will be considered.

Uniformed Trucks Dispersion among analogous components in different trucks will not
be specifically taken into account.

No System Failure Investigation Which fault types and sizes that leads to system fail-
ure, i.e. degradation of engine performance or exhaust levels violating legislative
demands, will not be investigated. This is due to both time constraints and uncer-
tainties considering Euro 6 contents. Instead the thesis will focus on finding as
small faults, particularly leakages, as possible.
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Single Faults Only single faults will be treated. The event that a sensor or actuator fault
occurs at the same time as a leakage is not very likely why this is a reasonable
restriction. Further, from a legislative point of view, the only double fault that risk
to cause a problem is a fault leading to degraded combustion in combination with a
malfunctioning particle filter, according to expert engineers at Scania. This would
increase the rate of emissions. Since the particle filter is not considered in this work
the problem is avoided.

Existing Engine Models Existing models will be used and, when needed, modified. Since
the existing engine models have been created and refined for a much longer time
than what is available for this thesis, focus will to be on leakage detection, not
engine modelling.

Two Leakage Areas Two potential leakage areas will be treated. The areas are repre-
sentative and covers the places where leakages are most likely to occur, and most
desirable to detect.

Diagnosis System Dependabilities The diagnosis system will be considered as a sepa-
rate system without treating it together with the control system, [7], [20] and [27],
which possibly could prove advantageous. The influence of the control system is
still taken into account since the measurements in the thesis are from a controlled
system.

1.6 Method and References
The working process for the thesis is to seek information about the system, different
diagnosis methods and previous related works. The information is primarily looked for in
published works such as books, official reports, patent registrations etc.

A general method, applicable to the system in question, is chosen to generate the di-
agnosis system. Some new functionality is implemented and some prior implementations
of which some are improved, is used in this task. The resulting diagnosis system is tested
and evaluated with real measurements gathered from a truck.

1.7 Contributions
The main contributions of this work are:

• One approach to detect leakages in the gas path of a truck, see Figure 5.1 in Chap-
ter 5.

• Creation of hardware and equipment to acquire measurement data from leakages,
Section 4.1.

• Combining and improving implementations of existing methods for residual gener-
ation, see Chapter 5, Section 6.3.1 and Section 6.3.2.

• Evaluation of the created diagnostic tests with real measurements, Section 6.5.
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1.8 Structure
Chapter 2 - Background Theory This chapter gives a basal knowledge about diagnosis

in general and consistency based diagnosis in particular. The theories behind the
methods used in this work are presented. The chapter gives a reader without a solid
diagnosis background the possibility to understand the rest of this work.

Chapter 3 - Engine Model The engine model as well as fault models are introduced and
validated in this chapter. Here it is also explained which behavioural modes that are
considered in this thesis.

Chapter 4 - Experimental Setup and Data Acquisition The experimental setup needed
to acquire fault free measurements, as well as measurements when different faults
are present, is displayed in this chapter. The way that the setup is used in is also
shown.

Chapter 5 - Test Quantity Generation Methods using theories in Chapter 2 are pre-
sented in this chapter. Some implementations of the methods are presented and
exemplified. Finally it is explained how the different methods are combined.

Chapter 6 - Results The findings relevant for this thesis as well as the context in which
they belong are presented here.

Chapter 7 - Analysis and Discussion This chapter is dedicated to a discussions about
some of the results and to how they can be used.

Chapter 8 - Concluding Words A summary and some suggestions about possible future
work are presented here.

Appendix Some bulky material that does not fit in the floating text of the other chapters
are here presented for the interested reader.





Chapter 2

Background Theory

This chapter starts by giving the reader some prerequisites followed by a short introduc-
tion to different ways of performing diagnosis. After that a deeper presentation of the
elements that are used by the approach in this thesis is carried out.

The last parts of this chapter are dedicated to theory that will come in handy when
dealing with large complex models that can not be exhaustively treated by hand and with-
out a systematic method.

2.1 Preliminaries
A fault, according to [22], is an unpermitted deviation of at least one characteristic prop-
erty or variable of the system from acceptable/usual/standard/nominal behaviour. A fault
can be further divided into an actuator, process or sensor fault, depending on what part of
the system it affects.

A residual is a signal that, in the absence of faults, deviate from zero only due to
modeling uncertainties. The nominal value is zero or close to zero under actual working
conditions. In order for the residual to be useful within diagnosis applications, it is desir-
able that the residual diverges from zero for certain faults, the monitored faults, while not
reacting to other faults, the unmonitored faults.

Fault detection is the act of deciding whether a fault has occurred or not, sometimes
including the determination of when the eventual fault occurred. To determine where the
fault has occurred, i.e. to conclude in what component(s) of the system a fault is present
is called fault isolation. The determination of the size and time-variant behaviour of the
fault is called fault identification [22].

Fault accommodation, according to [22], is the procedure of reconfiguring the system
and/or the controller so that the desired system operation can be maintained in spite of a
present fault.

Sensor faults can be detected by a residual subtracting an estimation of the sensor
value with the actual sensor value. In order to achieve fault accommodation in the case
of residuals constructed this way, the sensor reading from a faulty sensor can be replaced
with its estimate and thus it is sufficient to detect and isolate the faulty sensor in this
case. In case of an actuator fault which do not cause a complete loss of command, a

7



8 Background Theory

solution would be to compute a new control signal to the actuator in a way that the fault
is compensated. Hence an estimate of the fault characteristics is also needed in order to
reach fault accommodation in this case i.e fault identification is also needed.

The procedure of fault detection, isolation and identifications is in [12] defined as fault
diagnosis. Different definitions exists and in this thesis the term is considered to include
fault detection, isolation and if needed, identification. Fault diagnosis is sometimes re-
ferred to as diagnosis but the term is not to be confused with a diagnosis, also called a
diagnosis statement, which is the outcome after having diagnosed a system.

If diagnosis is performed without affecting the system it is called passive diagnosis. If
the system is actively exited in order to reveal possible faults (that might not show clearly
otherwise) it is called active diagnosis.

2.2 Methods for Diagnosis

In this section some of the approaches used today for automated diagnosis are presented.
These methods have become available with the increased computational capacity follow-
ing the birth of computers [22].

2.2.1 Limit Checking Approach

In this method operating ranges are assigned to for example the sensors of a system. As
long as the sensor readings are within their predefined ranges the behaviour of the system
is considered faultless. This approach has traditionally been the choice for automated
diagnosis [22]. In this thesis limit checking of sensors and actuators will be regarded as
something implemented in the trucks by default for electrical diagnosis, i.e. by checking
voltages and/or currents, and thus as something of less interest.

2.2.2 Hardware Redundancy Approach

Another approach to automated diagnosis is duplication (or triplication or more) of hard-
ware. This is called hardware redundancy. A normal piece of hardware to duplicate is
the sensor, e.g. put two sensors at the same place in a system. The faultless behaviour in
that case is that the sensors readings do not differ much. If a significant difference exists,
the conclusion would be that one of the sensors are broken. By introducing a third sensor
it would also be possible isolate the broken sensor. Consider for example the sensors y1,
y2 and y3. The following three residuals can be formed r1 = y1 − y2 , r2 = y1 − y3 and
r3 = y2 − y3. Two of the residuals would give a significant divergence from zero in the
case of one sensor being faulty. The third residual would ideally be zero but due to mea-
surement disturbances it is normally said to be close to zero. The faulty sensor would be
the one that is included in the two residuals that are further from zero than the third one.
Hardware redundancy is used in safety critical applications but is often avoided in other
cases and also in this thesis due to cost, space or weight considerations [22].
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2.2.3 Relational and Pattern Recognition Approach

These approaches need information about the faulty behaviour of the system [6]. Realistic
information about how often components get faulty, the fault nature and size needs to be
available or collected. Considering that trucks are designed to work without faults even
in extreme conditions for a very long time, it would probably require constant logging of
data during many years in the trucks out in the field to collect the information needed.
This approach is thus considered out of scope for this thesis. The interested reader is
referred to [23] and [25] for information about the relational approach and the pattern
recognition approach respectively.

2.2.4 Consistency-Based Approach

There are many diagnosis methods in this category. Another name for diagnosis using
this approach would be model-based diagnosis since all consistency-based methods use a
model of the system that is diagnosed. The model, simply put a description of a system,
is used to provide redundancy instead of additional hardware. Sometimes the notion
analytical model is used, when dealing with a mathematical model. When diagnosing
a system, the model is used together with system observations, e.g. measurements, to
calculate a so called diagnosis statement S . More precisely the model is used to form so
called diagnostic tests λk(z). The information from all the tests is then evaluated by an
isolation logic in order to form the diagnosis statement S . The principle is illustrated in
Figure 2.1 [22].

Figure 2.1. Structure of a consistency based diagnosis system.
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2.3 Consistency-Based Diagnosis Systems
In the first part of this section the fundamentals of a consistency based diagnosis system
are described. As can be seen in Figure 2.1, the diagnosis system is constructed of diag-
nostic tests and an isolation logic. These elements are demonstrated in the two last parts
of this section. For a more exhaustive exposition, please refer to [4] or [22].

Most of the examples in this section are based on continuous variable models. These
models are normally used by a community within consistency-based diagnosis called
Fault Detection and Isolation (FDI) . This community has evolved in the field of auto-
matic control from the seventies and uses control and statistical theory techniques [6].
Another community that has emerged more recently within consistency-based diagnosis
is the Diagnostic (DX) community, which is based on the field of computer science and
artificial intelligence. The terms and notations in this section is consistent with the pre-
sentation in [4] and comes from both the FDI and the DX communities. The interested
reader is referred to [6] for a comparative analysis of FDI and DX.

Recently a lot of work has been put into developing a common terminology for fault
diagnosis, and to identify the similarities and the complementary features in the problem
definitions and problem solutions developed by the two communities. The goal is to con-
tribute toward a unifying framework, which will enable researchers and practitioners to
take advantage of the synergy in the complementary techniques employed in engineering
and computer science in order to be able to solve even more complex diagnostic tasks [3].

2.3.1 General Principles
Some concepts needed for the understanding of consistency-based diagnosis are now ex-
plained. In order to describe faults that might occur in a system, the term component is
used. The idea of a component is that it is something that can brake. Normally, one can
consider a component as either faulty or non-faulty. In general, however, there are many
ways in which a component can break or become faulty. For this reason, it is convenient
to talk about the behavioural mode of the component. Normally the behavioural modes
of a component are no fault and one or more fault modes. No fault is often abbreviated
as NF and some examples of fault modes that can be used for different fault behaviours
of, for instance, a sensor, are bias fault, BF, and gain fault, GF. A component is only
in one behavioural mode at each time instant. The Example 2.1 is a modification of an
example in [22] and gives an idea of how behavioural modes are used in the context of
consistency-based diagnosis.

Example 2.1: Bicycle Diagnosis
Consider for instance a bicycle. Let the observations be the forward speed and the ped-
alling speed, and let the chain be the diagnosed component. If the pedalling speed is non
zero and the bicycle is moving, one can assign the behavioural modes NF or BROKEN
to the chain (considering that we could be in a slope). However, if the pedals are moving
while the bike is not,the chain is assigned the behavioural mode BROKEN since it is the
only behavioural mode assignment to the chain that is consistent with the observations
and with our knowledge of how the bike works (the model).
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It is often convenient to refer to all behavioural modes of all components in the sys-
tem. Hence the concept of system behavioural modes is introduced. Consider a system
consisting of a pipe and a pressure sensor. The component behavioural modes studied
are NF and LF, leakage fault, for the pipe and NF and PSF, pressure sensor fault, for the
pressure sensor. A consistency based diagnosis system might then be used to assign any
of the following system behavioural modes: NF, LF, PS F or LF & PS F given system
observations.

In order to be able to assign fault modes given observations, i.e. to isolate the faults,
the faults must be modeled [4]. A fault model is the representation of where in the sys-
tem a fault can occur, e.g. which component that can become faulty, and how the fault
behaves. Complex fault models leads to a more complex model in total but augments the
possibility to isolate between faults [22]. If no prior knowledge is available on how a fault
behaves, a general fault model can be applied. The disadvantage with general fault repre-
sentation is that in a system with many faults represented by general fault models, it can
be difficult or even impossible to isolate between the faults [22]. Fault modelling is thus a
trade-off between model complexity and diagnosis performance. The Example 2.2 shows
some different kinds of fault models such as general fault, gain fault and bias fault. See
Example 2.3 for how fault models and behavioural modes are used in consistency-based
diagnosis.

Example 2.2: Fault Models

Consider the measurement yP of a pressure P. Some different fault models are:

yP =


P + f general fault model
P × fg, ḟg = 0 gain fault
P + fb, ḟb = 0 bias fault

Example 2.3: Fault Representation

Consider the sensors yW and yP measuring the mass flow W and the pressure P in a tank,
and the model Ṗ = K × W where K is a constant. Let the diagnosed components be
the sensors. The model can be used to estimate for example P using yW and vice verse.
Assume that prior knowledge shows that a constant bias fault, fib with ḟib = 0 where
i ∈ {P,W}, is added to the sensors when faulty. The estimated and the measured values
can then be compared for instance by forming the residual r.

r = (yP + fPb ) −
∫ (

K × (yW + fWb ))

= yP −

∫
(K × yW ) + fPb −

∫
(K × fWb )

= fPb − K
∫

fWb
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The restrictive fault modelling is in this case a prerequisite for isolating faults in both
sensors from each other since both sensor faults will affect the residual. Let FWS and
FPS be the bias fault mode for the mass flow sensor and the pressure sensor respectively.
If r deviates from zero by a constant value, the only assignment of a system behavioural
mode consistent with the model and the observation would be FPS . If r increases linearly,
the only consistent system behavioural mode assignment would be FWS . Note that no
model uncertainties or measurement noise is assumed in this example.

Having acquired the basic knowledge of the concepts of consistency-based diagnosis, it is
time for a more precise definition. Let a model used for diagnosis be called a diagnostic
model. Consistency-based diagnosis systems might use different kinds of models and
have different assumptions concerning what measurement information that is available,
but they all work according to the following definition [4].

Definition 2.1 (Consistency-Based Diagnosis System) Given a set of observations and
a diagnostic model, the task of a consistency based diagnosis system is to generate a set S
of diagnoses, the diagnosis statement, which contains the system behavioural modes that
can explain the observations (i.e. that are consistent with the observations and the model).

Fault detection and isolation performance in a consistency-based diagnosis system is,
as indicated earlier, directly dependant on the model used. The terms detectability and
isolability are model properties and will now be formally defined with the help of the
notion of an observation set.

Definition 2.2 (Observation Set) Given a diagnostic model M together with the assign-
ments of the system behavioural mode to b, the observation set Ob is the set of all possible
values of the observation vector z such that the model M is consistent [22].

Definition 2.3 (Isolability) A system behavioural mode b1 is isolable from the system
behavioural mode b2, in model M, if Ob1 * Ob2 [22].

Definition 2.4 (Detectability) A system behavioural mode b is detectable in model M if
b is isolable from the system behavioural mode NF in the model M [22].

The Definitions 2.2, 2.3 and 2.4 are illustrated by Figure 2.2 in the six following
situations.

a) The observation set ONF is shown.

b) Fault mode Ob is not detectable since all the observations of z that are consistent with
Ob are also consistent with ONF .

c) Fault mode Ob is detectable since at least some observations of z can only be explained
by Ob.

d) The fault mode Ob is detectable.

e) The fault modes Ob1 and Ob2 are detectable. Ob2 is isolable from Ob1 but not vice verse.

f) Both fault modes are detectable and isolable from each other.
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Figure 2.2. Isolability and detectability illustrated by observation sets.
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2.3.2 Diagnostic Tests
This section treats diagnostic tests, a major component in a consistency-based diagnosis
system, see Figure 2.1.

The structure of a diagnostic test λk(z) is shown in Figure 2.3. The output from each
diagnostic test is binary. Other approaches than thresholding exists in order to generate
a binary output from an often continuous test quantity Tk, but thresholding is the most
common way [22]. The test quantities Tk can be constructed using different models and

Figure 2.3. A diagnostic test.

different methods. No matter how they are constructed the idea is to make different tests
quantities that reacts to faults belonging to different system behavioural modes. This can
be illustrated by an influence structure. See Example 2.4.

Influence Structure

The influence structure is a representation of how test quantities ideally are affected by
faults in different system behavioural modes [22]. The meaning of ideally in this case is
that no unmodelled disturbances exists as well as no measurement noise. The influence
structure is a matrix where each row corresponds to a test quantity Ti and each column
to a system behavioural mode, NF or some F j. Sometimes when the NF-column only
contains zeros, it is not included in the matrix. The position Ai j in the matrix is defined as

Ai j =


1 if Ti always reacts to all faults in fault mode F j

x if Ti reacts under some operating points to some faults in fault mode F j

0 if Ti never reacts to any faults in fault mode F j

Example 2.4: Influence Structure
Consider a situation with two test quantities, T1 and T2. The test quantity T1 = y1 − u is
sensitive to faults in sensor one and actuator u and reacts to some faults in F1 and some
faults in Fu. The test quantity T2 = y2−y1 is sensitive to faults in sensor one F1 and sensor
two F2 and reacts to all faults in F2 but only some faults in F1. The influence structure
for T1 and T2 is

F1 F2 Fu

T1 x 0 x
T2 x 1 0
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Sensitivity Matrix

In order to be able to rate test quantities subject to real measurements before having
created thresholds, the notion sensitivity matrix is introduced. It is defined in the same
way as the influence structure but instead of assigning the 0s, xs and the 1s in the matrix
analytically, the assignment is done according to measurements of the system subject to
as many different faults as possible. Model uncertainties and measurement noise is thus
taken into consideration. See Example 2.5.

Example 2.5: Sensitivity Matrix

Consider the same situation as in Example 2.4. Now let’s say that some faults in fault
mode F2 due to model errors actually effects the test quantity T1. The zero will be turned
into an x. The sensitivity matrix is thus

F1 F2 Fu

T1 x x x
T2 x 1 0

Test Quantity Creation

In order to construct test quantities it is necessary and sufficient that the model over the
system in question contains analytical redundancy [22], which can be defined as follows:

Definition 2.5 (Analytical Redundancy) There exists analytical redundancy if there are
two or more different ways to determine a variable x by only using the observations z and
the model, i.e. x = f1(z) and x = f2(z) where f1(z) . f2(z).

In the case of a linear model there are many methods that, given a specification of the
wanted diagnosis performance, can be used to create a set of test quantities which will
match the performance in question, providing that the model is sufficiently redundant. An
example of how analytical redundancy is used to create a detection system can be found
in [5], where the starting point is a state space model, and an approach called Parity Space
[22] is used.

When dealing with a system that contains non-linear behaviour, a non linear model
is needed to describe the behaviour. The model can be linearized around certain oper-
ating points [27] of the system whereupon linear methods can be used for each chosen
operating point. However, linearisation always induces errors to the test quantities which
has to be taken into account during the design process. These errors can be reduced by
introducing more operating points but for a highly dynamical system it might prove that
an unmanageable number of operating points has to be treated in order to achieve wanted
diagnostic performance.

In the general non-linear case where linearisation is not used there is no specific
method that given some specifications generates the best set of test quantities that match
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the criteria. There are however methods for some special kinds of non-linear models, see
for example [9] where polynomial differential-algebraic systems is treated or [16] in the
case of Lipschitz non-linearities.

If the model contains analytical redundancy it is possible to form Analytical Redun-
dancy Relations (ARR) which are consistent in the absence of faults and can thus be used
to form residuals. The residuals can be used directly as test quantities or after having been
filtered, typically with a low pass filter.

2.3.3 Isolation Logic
With a multitude of diagnostic tests, see Figure 2.1, the information from each diagnostic
test can be combined to form a diagnosis statement S . This is the task of the isolation
logic. There are different approaches to do this: column matching approach, structured
hypothesis tests approach and minimal hitting set approach. For more details on the meth-
ods see [22]. The column matching approach is used in this thesis.

One way of presenting the information from the diagnostic tests is with a decision
structure. The decision structure can be used by, for example, the column matching ap-
proach to perform isolation. The resulting performance of the isolation logic, i.e. which
fault modes that can be isolated, is presented in an isolation structure.

Decision Structure

An influence structure is practical and easy to use since it is based on ideal conditions.
In reality, ideal conditions seldom exists and thus an influence structure can not be relied
upon. Instead a decision structure [22] is used. The decision structure is based on the
same formulation as the influence structure but uses thresholded test quantities, i.e. the
outcome from the diagnostic tests λk(z). The definition of the position Ai j in the decision
structure is defined as

Ai j =


1 if λi always reacts to all faults in fault mode F j

x if λi reacts under some operating points to some faults in fault mode F j

0 if λi never reacts to any faults in fault mode F j

For an example of a decision structure, see Example 2.6.

Example 2.6: Decision Structure
Consider the same situation as in Example 2.4. Let’s say that the threshold J2 for the
diagnostic test T2 has to be chosen high in order to totally avoid false detection due to
model uncertainties or measurement noise. This may lead to that some faults in fault
mode F2 never makes the test quantity T2 exceed its threshold. Thus, λ2 will no longer
react to all faults in fault mode F2. This will result in the 1 turning into an x. The decision
structure is thus

F1 F2 Fu

λ1 x 0 x
λ2 x x 0



2.3 Consistency-Based Diagnosis Systems 17

Column Matching Approach

The column matching approach use the information in the decision structure to form
one diagnosis statement conform with the result from all diagnostic tests. One way of
constructing an isolation logic from a decision structure is to find the intersection of all
the different diagnostic substatements. An example of an decision structure is

F1 F2 Fu

λ1 x 0 x
λ2 x 1 0
λ3 0 x x

Assume that λ1 and λ3 has reacted, but that λ2 has not. The three diagnostic substatements
are: {F1, Fu}, {¬F2} and {F2, Fu}. The intersection of these three statements is Fu, and the
diagnosis statement S would in this case be S = {Fu}.

Isolation Structure

In order to isolate one fault mode from an other, the modes needs to be isolable, see
Definition 2.3. So to isolate fault mode Fi from fault mode F j, i , j, some test quantities
are needed that reacts to the different fault modes. More concretely, Fi can be isolated
from F j if there exists a test quantity T such that T is sensitive to Fi but not to F j.

The information about which fault modes that can be isolated from each other is gath-
ered in an isolation structure. The isolation structure is a matrix with a fault mode asso-
ciated to each row and column. Each element in the matrix indicates if the fault mode on
row i can be isolated from the fault mode in column j or not. A ’0’ indicates that the fault
mode on row i can be isolated from the fault mode in column j, a ’1’ that it can not. See
Example 2.7.

Example 2.7: Isolation Structure

In the isolation structure below it can be seen that fault mode F1 can be isolated from fault
mode F2 but not from F1 or Fu. In other words, F1 can be isolated from F2 but not from
Fu. With the same reasoning, Fu can be isolated from F1 but not from F2. Note that Fu

can be isolated from F1, but F1 can not be isolated from Fu.

F1 F2 Fu

F1 1 0 1
F2 1 1 0
Fu 0 1 1

For perfect isolation a unity matrix is required, i.e. 1 on the diagonal and 0 every
where else, which implies that each fault mode can only be taken for it self.
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Minimal Hitting Set

The minimal hitting set is defined in Definition 2.6. The minimal hitting set method can
be used in isolation purposes to find a minimal diagnosis statement among a multitude of
diagnostic substatements. This application of the minimal hitting set method is presented
in [22]. But, the same technique can also be used to find a minimal set of diagnostic tests
with a specific isolation performance from an original, usually bigger, set of tests.

Definition 2.6 (Minimal Hitting Set) Let C be a collection of subsets of S . A hitting set
of C is a subset S ′ ⊆ S so that S ′ contains at least one element from each subset in C. A
minimal hitting set, MHS, is a set S ′ that contains as few elements as possible.

A minimal hitting set can be found in the following way. Start with a given influence
structure, and an empty set of tests, mhs = {}. Then create a set, isol, of all tests that
isolate fault mode k from fault mode l, l , k. Form the cross product of mhs and isol, and
eliminate all non-minimal sets. If mhs is empty, the new set is identical to isol. If isol is
empty, fault mode k can not be isolated from fault mode l. Update mhs to only contain
the new minimal sets. Repeat this process until all fault modes have been treated. Then
mhs contains all minimal hitting sets found.

The finding of a minimal hitting set is illustrated in Example 2.8.

Example 2.8: Minimal Hitting Set for Selection of Diagnostic Tests

Consider a number of diagnostic tests, λ1 - λ6, with in the influence structure:

F1 F2 F3

λ1 : x x
λ2 : x x
λ3 : x x
λ4 : x
λ5 : x x
λ6 : x

Start by finding all tests that isolate fault mode F1 from F2: {{λ2}, {λ4}}. Since mhs is
empty, the new set is the same as isol. Update mhs with these sets.

Next, find tests that isolate fault mode F1 from F3: {{λ1}, {λ4}}. The cross product
of mhs and isol does after elimination of non-minimal sets result in the minimal sets:
{{λ1, λ2}, {λ4}}.

The set of tests that isolate F2 from F1 are: {{λ3}, {λ5}}, resulting in the minimal sets:
{{λ1, λ2, λ3}, {λ1, λ2, λ5}, {λ3, λ4}, {λ4, λ5}}.

And so on, until all three fault modes have been treated. The resulting minimal hitting
sets are: {{λ1, λ2, λ3}, {λ1, λ2, λ5}, {λ1, λ4, λ5, λ6}, {λ1, λ3, λ4, λ6}}. Since λ3 and λ5
have the same sensitivity, they are interchangeable in the final sets, which is visible.
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2.4 Structural Analysis
Structural analysis is a tool that enables to work with large and complex non-linear dif-
ferential and algebraic equation systems in an efficient way [19]. By looking merely at
the structure, there are often ways to draw conclusions on the properties of the original
system.

Some different steps and concepts within structural analysis will be illustrated in ex-
amples, building on each other, with the start in the model described by (2.1) that has the
corresponding Simulink implementation in Figure 2.4.

x2 x1

y2

y Sensor2

y1

y Sensor1

1
s

Integrator

A

Gain

u

Actuator

Figure 2.4. A Simulink implementation of the system described by (2.1).

e1 : ẋ1 = x2
e2 : x2 = −Ax1 + u
e3 : y1 = x1
e4 : y2 = x2

(2.1)

2.4.1 Structural Model
A structural model, SM, is created from model equations describing the system. There
are different approaches to how derivatives are treated when creating the SM, see for
example [18]. In this thesis, the appearance of signs, constants, computation, exponents
and derivatives will be ignored in the SM, only the presence of the variables in an equation
will be taken into account, i.e. if the variable is contained in the equation or not. So
structurally, ẋ and x are equivalent.

The structural model is a matrix with each line corresponding to an equation, ei, and
each column corresponding to a variable, x j. The position Ai j in the matrix is defined as:

Ai j =

{
1 if x j is contained in equation ei

0 otherwise
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Equation e in (2.2) is represented by the structural model presented in Table 2.1, since
x1, x2, x4 and u are contained in the equation but not x3.

e : ẋ1 = 10 −
1
2

x2
√

x4 + 5u (2.2)

x1 x2 x3 x4 u
e: 1 1 0 1 1

Table 2.1. Structural representation of e in (2.2).

Example 2.9: Transition from Model Equations to Structural Model
Consider the model described by (2.1). It can be transformed into a corresponding SM
seen in Table 2.2. The variables x1 and x2 are contained in e1 in (2.1), and their presence
in that equation is marked with a ’1’. The variables u, y1 and y2 are not contained in e1 and
their absence is marked by a ’0’. The same reasoning is applied to the other equations.

x1 x2 u y1 y2

e1 : 1 1 0 0 0
e2 : 1 1 1 0 0
e3 : 1 0 0 1 0
e4 : 0 1 0 0 1

Table 2.2. Structural model for the exemplifying model (2.1).

2.4.2 Minimal Structurally Over-determined
In order to create diagnostic tests, analytical redundancy is needed, recall Section 2.3.2.
For analytical redundancy to exist, a system must be structurally over-determined or con-
sist of a least one structurally over-determined subsystem. A system of equations is struc-
turally over-determined if it contains more equations than unknown variables, and struc-
turally under-determined if it contains more unknown variables than equations. If a sys-
tem contains as many equations as variables, it is said to be structurally just-determined.
It is necessary but not always sufficient that the system is structurally over-determined in
order for analytical redundancy to exist, as the following equation system demonstrates.

e1 : x1 + x2 = 0
e2 : 2x1 + 2x2 = 0
e3 : 3x1 + 3x2 = 0

(2.3)

After applying simple multiplicative operations to the equations it can be seen that the
equations are equal. The equation system is thus structurally over-determined, containing
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three equations and two unknown variables, but analytically under-determined since the
equations are identical. This problem is usually avoided though by simply not introducing
different equations containing the same information.

The structural determinedness of a system can be indicated by the number of equations
compared to the number of variables. A system having 4 more equations than unknowns
is a ’+4 system’. A structurally over-determined system is a minimal structurally over-
determined, MSO , system if no proper subset is a structurally over-determined set. For
exemplification see Example 2.10. MSOs can be used for residual creation by removing
one equation, using it as the residual equation, and solving the just-determined system
that is left. One efficient way of finding MSOs has been suggested in [18].

Example 2.10: Illustration of MSOs
The system described by the SM in Table 2.2 is overdetermined since it contains four
equations and only two unknown variables, x1 and x2. Equation e1, e2 and e3 forms one
MSO, with three equations and two unknown variables. Equation e1, e2 and e4 forms
an other MSO with three equations and two unknown. In total there are four MSOs;
{e1, e2, e3}, {e1, e2, e4}, {e1, e3, e4} and {e2, e3, e4}.

2.5 Computation Sequence
A computation sequence, CS, is an ordered set of pairs, each consisting of a set of equa-
tions and a set of variables. It specifies in which order variables X in a just-determined
system can be computed, and from which equations E they should be computed. For a
formal definition see [24], in which also an algorithm for finding computation sequences
is given. First structural information is used to find the order in which the variables should
be computed, then the variables are tried to be computed with the available solving tools.
If all variables can be computed, the ordered set of pairs is saved as a computation se-
quence.

2.5.1 Finding Computation Sequences
Since the order in which the variables should be computed is formed from a structural
model, there is no guarantee that a variable x can in fact be computed from an equation
e. There might be non-invertable equations, like y = max(0, x). The equation can also be
so complex that no explicit solution can be found with the used solving tool. In either of
these cases, no computation sequence is created.
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Example 2.11: Computation Sequence
Consider MS O1 found in Exemple 2.10. Remove equation e1, leaving the equations e2
and e3 that form a just-determined system, with two equations and two unknown variables.

x1 x2 u y1 y2

e2 : 1 1 1 0 0
e3 : 1 0 0 1 0

An order in which to compute {x1, x2} is C1 = ((x1, e3), (x2, e2)) , i.e. compute

1. x1 from e3

2. x2 from e2

Using algebraic solving tools, the variables can be computed as

x1 = y1
x2 = −Ax1 + u

Since all variables can be computed, the ordered set of pairs is saved as the computation
sequence C1.

In Example 2.12, where equations e1 and e2 are considered for the generation of a
computation sequence, a complication in the form of strongly connected component is
present since there are alternative ways of computing the unknown variables.

Example 2.12: Strongly Connected Component
Consider the equations e1 and e2 in the exemplifying model (2.1). These equations form
a just-determined system. Here however, the computation order can not be uniquely de-
cided due to an algebraic loop. An algebraic loop is a set of two or more variables that has
to be solved simultaneously. The block formed by equation e1 and e2 and the variables x1
and x2 is a strongly connected component, SCC, of size 2. The size is a measurement of
how many variables that are represented in the SCC.

x1 x2 u y1 y2

e1 : 1 1 0 0 0
e2 : 1 1 1 0 0

Table 2.3. Structural model for e1 and e2 in the model (2.1).

Using existing tools, the SCCs can be solved analytically or numerically and a computa-
tion sequence might be found.

In this thesis, tools for solving algebraic (non differential) equation, tools for solving
ordinary differential equations and differentiation tools are considered. How differential
equations are handled is a special case in the step to compute a variable and is based on
causality.
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2.5.2 Integral and Derivative Causality
In this context, causality is a concept defining how variables can be computed from dif-
ferential equations. There are two kinds of causalities, derivative causality and integral
causality [4]. For a differential equation like ẋ1 = x2 there are two different ways to
compute the variables.

With derivative causality, x2 is the only variable that can be computed and is found as

x2 =
d
dt

x1

In order to use derivative causality, time derivatives of variables are needed. In general
they are not known why an estimate of the derivatives needs to be calculated. Good time
derivative estimations are often considered difficult to obtain due to noisy signals.

With integral causality only x1 can be computed

x1 = x1(t0) +

t∫
t0

(x2(τ))dτ

In order to be able to use integral causality either the initial condition, x(t0), or global
stability is needed. This is due to the fact that global stability assures that the integrated
variable will always converge towards the correct value. An initial condition is needed
when global stability does not exist but it might not be sufficient due to stability issues.
When relying on global stability in the context of diagnosis one must assure that sufficient
time is admitted for the integrated variables to converge before the diagnosis system is
activated.

A mixed causality approach allows both integral and derivative causality in the same
computation sequence.

The method used in this thesis handles mixed causality.

2.6 Method for Residual Generation
There is a clear benefit of having an automatic method to generate residuals from a model.
For example, if minor changes are applied to the model, the residuals needs to be regen-
erated. There may also be an interest to find residuals for other models.The method for
residual generation that is used in this thesis is described in [24] and provides the means
to automatically regenerate the residuals if the model is changed. The method generates,
in the following four steps, a residual from a model.

1. Find an MSO set in the model.

2. Form a just-determind set from the MSO by removing an equation.

3. Find a computation sequence in the just-determined set of equations.

4. Use the removed redundant equation as a residual equation.

For the first step, many methods exists, for example [18]. It is in theory possible to
generate at least as many residuals from an MSO as the number of equations it consists of.
How residuals can be found from an MSO using this method is shown in Example 2.13.
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Example 2.13: Residual Generation
Take the first MSO found in Example 2.10, consisting of {e1, e2, e3}:

e1 : ẋ1 = x2
e2 : x2 = −Ax1 + u
e3 : y1 = x1

Removing one equation, for example e1, rebounds to Example 2.11 with the compu-
tation sequence C1 = ((x1, e3), (x2, e2)) corresponding to:

x1 = y1
x2 = −Ax1 + u

Now use the removed equation, e1 : ẋ1 = x2, to create a residual as r = x2 − ẋ1 or
r = ẋ1 − x2

In the same way equation e2 and e3 can be removed resulting in two other possible
residuals. All three residuals and the computation sequences that can be found in the
MSO are the following.

C1 C2 C3
x1 = y1 x1 = y1 ẋ1 = x2
x2 = −Ax1 + u x2 = ẋ1 x2 = −Ax1 + u
r1 = ẋ1 − x2 r2 = Ax1 + x2 − u r3 = x1 − y1

The three residuals are:

r1 = ẏ1 − u + Ay1 r2 = Ay1 + ẏ1 − u r3 = x1 − y1

Note that r1 and r2 are identical if the computed variables are substituted into the
residual equation. In order to use r1 and r2, derivative causality is needed. For r3, integral
causality is needed, since the residual results in a classical state space model [13] of a
system on the form: {

ẋ1 = −Ax1 + u
r3 = x1 − y1
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2.7 Signal Processing
There are different ways of processing signals in order to enhance or repress specific
behaviours. A very common process is low pass filtering [13] that reduces the impact of
rapid changes in the signal. In this thesis, two additional signal processing methods will
be used in particular, both are types of cumulative sums.

One cumulative sum, CumSum, adds to its previous value, S t−1, the value of the
current sample, ut and acquires thus the present value.

S t = S t−1 + ut

The initial value of the sum is zero, S 0 = 0. This method is particularly effective to detect
a change of sign of the mean value of the signal.

An other cumulative sum, CuSum [14], sums up the input and subtract a fix value to
compensate for disturbances. If the sum gets negative, it is reset to zero.

S t = S t−1 + ut − v

S t = 0 if S t < 0

The initial value of the sum is zero, S 0 = 0, and v is a design parameter to compensate
for disturbances. To detect a negative change in the input signal, a two-sided test can be
preformed or the input signal can be squared.





Chapter 3

Engine Model

In this chapter the whole engine model is introduced, some adaptations are presented,
fault models are created, behavioural modes are introduced whereupon the model is vali-
dated. Please refer to Appendix A for the resulting model. Figure 3.1 shows the Simulink
implementation of the resulting model.
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Figure 3.1. Overview of the Simulink implementation of the resulting engine model.
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3.1 Existing Model
In the beginning of this thesis, some models for subsystems of the engine was considered
as the basis for residual generation. But each submodel used at least one input signal that
does not exist as actual measurement. Those values would have to be calculated from
other measurements which would connect the submodels. Instead of using these models
with the risk of not fully knowing the origin of some signals, a whole engine model
presented in [26] was chosen as a base for this project. All submodels were still included
in the engine model giving the residual generation method described in Section 2.6 the
possibility to use any combination of the submodels.

Here follows a summary of the model, see [26] for the full model. The model is
described in a state space form (3.1), where the state vector xw contains the states (3.2),
the input vector um contains the input variables (3.3), the control vector uc contains the
actuators (3.4) and the output vector y contains the output variables.

xw = f (xw, um, uc)
y = g(xw, um, uc) (3.1)

The state vector contains the following states: boost and exhaust pressure, pim and
pem, oxygen mass fractions on the boost- and exhaust-side, XOim and XOem, rotational
speed for the turbocharger, ωt, and two states for the position of the EGR-vault and the
VGT, ũegr and ũvgt.

xw = (pim, pem, XOim, XOem, ωt, ũegr, ũvgt)T (3.2)

The input vector contains the following variables: ambient pressure, pamb, ambient
temperature, Tamb, boost temperature, Tim, and rotational engine speed, ne.

um = (pamb, Tamb, Tim, ne)T (3.3)

The control vector contains the following actuator variables: mass fuel injection, uδ,
EGR-vault position, uegr, and VGT-position, uvgt.

uc = (uδ, uegr, uvgt)T (3.4)

Finally, the output vector contains the following variables: the massflow through the
compressor, wcmp, the pressure at the boost- and exhaust-side, pim and pem, and the rota-
tional speed for the turbocharger, ωt

y = (wcmp, pim, pem, ntrb)T (3.5)

The states and variables of the state vector, the input vector, the control vector and the
output vector can be seen in Tabel 3.1.
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State or variable Explication
pim boost pressure
pem exhaust pressure
XOim boost oxygen mass fraction
XOem exhaust oxygen mass fraction
ωt rotational speed for the turbocharger
ũegr EGR-vault position
ũvgt VGT position
pamb ambient pressure
Tamb ambient temperature
Tim boost pressure
ne rotational engine speed
uδ mass fuel injection
uegr EGR-vault position control value
uvgt VGT position control value
wcmp massflow through the compressor

Table 3.1. The states and variables of the state vector, the input vector, the control vector and the
output vector.

3.2 Model Adaptation
Some changes were applied, partly to simplify the model, partly to adjust it for the toolbox
it was subject to. The two states for oxygen concentrations before and after the cylinders,
XOim and XOem, formed a subsystem that did not affect the other five states. The subsystem
did not contain any sensors thus it neither added any redundancy to the system. The
states were solely simulated values and were consequently removed. In future works the
oxygen concentrations might however be used for improved fault diagnosis if oxygen
mass fraction sensors are included in the engine. Additional subsystems that had neither
influence to the remaining five states nor connection to any sensor were also removed.

These simplifications could of course been left undone resulting in a bigger model
with equations that would serve no purpose for the final diagnosis system.

One modification that was not optional was the elimination of the iterative process
to find the exhaust gas temperature. The method that would be applied needed either a
continuous model or a discreet, not a mixture. By adding two new states representing
the temperature in a cylinder, T1, and the residual gas fraction, xr, and creating their
derivatives, the discrete model was made continuous the same way as in [17].

ẋr =
xr,k+1 − xr,k

∆t
=

Π
1/γa
e x−1/γa

p

rcxv
− xr

∆t
(3.6)

Ṫ1 =
T1,k+1 − T1,k

∆t
=

xrTe + (1 − xr)Tim − T1

∆t
(3.7)

with
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qin =
W f qHV

Wei + W f
(1 − xr) (3.8)

xp = 1 +
qinxcv

cvaT1rγa−1
c

(3.9)

xv = 1 +
qin(1 − xcv)

cpa

(
qinxcv

cva
+ T1rγa−1

c

) (3.10)

Te = ηscΠ
1−1/γa
e r1−γa

c x1/γa−1
p

(
qin

(
1 − xcv

cpa
+

xcv

cva

)
+ T1rγa−1

c

)
(3.11)

The calculation of T1,k+1 in the derivative of T1, (3.7), uses xr,k , not xr,k+1 as in the
iterative form. Looking at the equations from the Seliger cycle [8] that the iterative form
was derived from, this does not seem to present a problem, which is validated by the
mean relative error between xr,k and xr,k+1 being less then 10−4. In fact, xr was found to
be almost constant and to further simplify the model, this state was removed and xr was
replaced by a constant value that was found as the mean of xr in a simulation. As a result
xv was not needed and therefore removed. The cooling of the gas from the engine was
calculated using a constant temperature, Tw, instead of the ambient temperature.

Tem = Tw + (Te − Tw)e−
htotπdpipelpipenpipe

Weocpe (3.12)

The dynamic models for the EGR-vault and the VGT-position would serve to distin-
guish actuator faults from sensor faults. By removing the dynamics of the vaults from
the model and replacing the actuator values by the measured positions, the model was
further simplified. If it would be necessary to separate actuator faults from sensor faults
in these two cases, a simple test containing only these models could be preformed. This
modification enables neglection of the two states ũegr and ũvgt.

These modifications resulted in a system consisting of the four states

x = (pim, pem, ωt, T1)T (3.13)

All the equations describing the final model can be seen in Appendix A.

3.3 Fault Models

3.3.1 Leakage Fault Models
The leakages were modelled in two different ways in order to investigate the potential
benefits of a more complex leakage model over a general leakage model:

• As a general leakage fault, Wleak.

• As a leakage area causing a leakage flow, Aleak.
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General Fault

In this case the fault appears as in the pressure differential equations (A.1) and (A.2) as:

d
dt

p =
RT
V

(Win −Wout −Wleak) (3.14)

Leakage Area Causing a Leakage Flow

Here, the fault is modelled in the a similar way as for the general fault, but the leakage
flow, caused by a hole area, is modelled as a compressible flow through a restriction [15]

Wleak =
Ae f f pΨ
√

TR
, (3.15)

depending on the effective leakage area Ae f f corresponding to Aleak, the pressure p before

the restriction, a scaling function Ψ, depending on the pressure quotient Π =
pa f ter

pbe f ore
, the

temperature T before the restriction, and the gas constant R. The area of the leakage is
considered constant, i.e.

Ȧe f f = 0 (3.16)

It is assumed that the pressure inside the system is strictly higher than the pressure
outside the leakage,

pa f ter

pbe f ore
< 1, granting no back flow through the leakage into the

system. This is a rather reasonable assumption that simplifies simulations of the model
by setting a lower limit of the flow, equal to zero. The flow through a restriction can never
be higher then sonic flow, i.e. 1 Mach. This occurs for the pressure quotient Πopt that is
calculated as

Πopt =

(
2

γ + 1

) γ
γ−1

(3.17)

This gives the upper limit of the flow.
The final limitations for the pressure quotient Π is described as

Π =



Πopt if
pa f ter

pbe f ore
< Πopt

pa f ter

pbe f ore
if Πopt 6

pa f ter

pbe f ore
6 1

1 if 1 <
pa f ter

pbe f ore

(3.18)

On the boost-side the scaling function Ψli is calculated as

Ψli =

√
2γa

γa − 1

(
Π

2/γa
li − Π

1+1/γa
li

)
(3.19)

The scaling function (3.19) does not give enough accuracy for the flow through the
EGR-vault according to [26]. Instead a parabolic function is used. Since the leakage on
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the EGR-side in this thesis is modeled in the same environment (temperature, pressure and
pressure pulsations from the cylinders) and in the same way (compressible flow through
a restriction), the parabolic function is used in the leakage model at the exhaust-side.

Ψle = 1 −
(

1 − Πle

1 − Πle,opt
− 1

)2

(3.20)

Due to time limitations, only the second way of modelling the leakage was thoroughly
tested. It is thus this leakage model that is included in Appendix A.

3.3.2 Sensor and Actuator Fault Models
Actuator faults and sensor faults are both modeled as general faults: sensor reading =

actual value + sensor fault. All sensors (pamb, Tamb, Tim, ne, wcmp, pim, pem, ntrb) and
actuators (uδ, uegr, uvgt) are considered as potentially fautly.

3.4 Implementation
A Simulink implementation of the existing model, available at Scania, is used. By mod-
ifying the implementation, the adaptations in Section 3.2 are included in the Simulink
model, as well as the leakage models from Section 3.3.1.

3.5 Behavioural Modes
The behavioural modes considered in this thesis can be viewed in Table 3.2.

Notation Behaviour
NF No Fault
AD error in Actuator for Diesel injection
AE error in Actuator for EGR-vault
AV error in Actuator for VGT-vault
LB Leakage on Boost-side
LE Leakage on Exhaust-side
STA error in the Sensor measuring Temperature of Ambient air
SPA error in the Sensor measuring Pressure of Ambient air
SPB error in the Sensor measuring Pressure at Boost
STB error in the Sensor measuring Temperature at Boost
SPE error in the Sensor measuring Pressure at Exhaust
SRE error in Sensor for Rotation of Engine
SRT error in Sensor for Rotation of Turbine
SA error in the Sensor measuring Airmassflow

Table 3.2. All considered behavioural modes and their notations.
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3.6 Validation
The model provided in [26] was already validated in that work, having a mean relative
error smaller than 12%. The modified version of this model created in [17] where the
iterative parts were removed was verified in that work using simulations, and found to
have a mean relative error of less then 0.4% compared to the non-modified model. The
validation of the model including the additional modifications made in this work was
done using real measurements from a driving cycle without faults. A mean relative error
of 15% was found, to be compared with the original model in [26] having a mean relative
error of 12%. The hole models as separate systems were not validated in the end, since
too little measurement data was available.





Chapter 4

Experimental Setup and Data
Acquisition

In this chapter the experimental setup used to collect data for model validation and test
creation is shown whereupon the data acquisition principles are outlined.

4.1 Experimental Setup
In order to examine the system with a leakage compared to its normal condition, holes
needed to be implemented in the truck. Some additional sensors were also needed in order
to verify the fault models.

4.1.1 Hole Location
The airpaths in the engine were divided into groups, seen as dashed areas in Figure 4.1.
These areas were chosen because a leakage is reasoned to have the same impact on mea-
sured signals no matter where in the area it is present. The flow caused by the leakage
depends on the pressure on each side of the hole, the leakage area and the temperature
before the leakage as well as on some constants, as has been explained in more detail in
Section 3.3. At the exhaust-side, the pressure and temperature is more or less the same
within the whole dashed area. The boost-side, however, contains three coolers and hence
the temperature is more or less guaranteed to be different in different parts of the area.
This is nevertheless not a big problem since the pressure and the pressure quotient will
have a greater impact on the flow than the temperature, according to the model of the
leakage flow that is used in this thesis. Since the coolers are approximated as ideal with
no pressure fall over them, it is not unreasonable to model equal pressure in all pipes, in
each of the areas.

According to the argumentation above, one hole should be placed in each leakage area
and their exact location should not have a big influence. After a discussion with mechanics
and supervisors a decision was made to produce one hole at the boost-side between the
compressor and the intercooler and another hole in the beginning of the exhaust-side, right
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before the EGR-vault. The holes were constructed in the middle of the pipes due to space
considerations. A benefit with this hole location was that extra pipes could be brought
in and worked upon separately before replacing the corresponding existing pipes in the
truck in one single operation. This avoided the need to occupy the truck during a longer
period.

Figure 4.1. Sketch of the gas flow system in a diesel engine with EGR and VGT but without a
catalytic converter or a particle filter. Sensors and actuators present in the system are marked as
dots on the sketch as well. Leakage areas are marked with dashed lines.

4.1.2 Hole Implementation

Depending on how the leakage occurs in reality, the magnitude of the leakage might
vary and therefore it is desirable to be able to change the size of the hole. An approach
previously used in [21], with drilled holes in exchangeable bolts, was therefore used.
The next step was to decide which hole diameters that would be interesting to acquire
measurements from. Preferably the diameters should be in intervals from zero up to the
critical size causing the engine to perform so badly that it is noticeable for a driver. This
would give an overview of the engine behaviour when subject to leakages of different
sizes and provide measurements with which a smallest detectable hole diameter can be
decided. On the boost-side, the holes were chosen from 0 mm to 25 mm in diameter in
steps of 5 mm. On the exhaust-side, where the pressure is higher, holes from 0 mm to 15
mm in steps of 3 mm were used.
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Figure 4.2. Bolts used to create different sizes of leakages. The upper bolts are for the EGR leakage,
and have diameters from 3mm to 15mm in steps of 3mm. The lower bolts are for the boost leakages,
having diameters from 5mm to 25mm in steps of 5mm. For the largest leakage on the boost-side,
no bolt is used since the diameter of the bolt is as large as the desired hole diameter.

4.1.3 Additional Sensors and Tubes
With the possibility to change the size of the hole, the next challenge was to reroute the
gas from the leakages. This is particularly important for the exhaust gas coming from the
exhaust-side due to temperature reasons. The gas mixture at approximately 500 degrees
Celsius would otherwise escape through the leakage right under the cab. A longer tube
was therefore needed outside the bolt, to lead away the exhaust gas and letting it out
behind the cab. In the tube a mass flow meter was supposed to be mounted. A similar
tube for the boost-side was also needed for the implementation of extra sensors. The
sensors in the tubes were to be implemented in order to validate fault models for the
leakage areas or the leakage flows.

These sensors were not intended for diagnosis, but only for validational purposes. The
main idea was to pick local sensors that was already being used at Scania for low cost and
fast deliveries. A mass flow sensor based on the cooling of a platina wire was found,
the same kind used to measure the mass flow through the compressor. This sensor was
chosen for the boost-side but could however not be used on the exhaust-side due to high
temperatures and the composition of the gas. A turbine-like sensor would not work either
since it would clog due to soot according to an expert engineer at Scania with experience
in the field of EGR-measurements. The employee claimed that a differential pressure
sensor was the best way to measure the flow. Using this technique the volume flow would
be obtained. With additional sensors measuring the pressure and the temperature, the
mass flow could then be calculated.

The platina sensor was to be fitted in a tube and the differential pressure sensor comes
premounted in a tube. The dimensions of the tube on the boost-side needed to be chosen
wisely in order to keep the flow per area unit within a specified range. This was important



38 Experimental Setup and Data Acquisition

in order to get a certain measurement accuracy. The tubes would also serve to stabilise
the flow, which would augment the accuracy of the measuring but filter high frequency
changes in the flow. Generally the following applies: the higher the flow per area, the
better the measurement accuracy but the bigger the flow resistance. A high flow resistance
would affect the leakage flow and result in a less realistic implementation of the leakage.
Thus the choice of the tube dimensions was a trade off between measurement accuracy
and leakage flow model accuracy.

In order to choose the tube dimensions for the boost leakage, an estimate of the leak-
age flow rate was needed. For small leakage areas this was done by looking at max values
of the pressures at the intake- and the exhaust-side and then calculate the flow through
the leakages according to the leakage models. The measurement data was taken from
test drives in the mountains in Spain to assure extreme conditions. For bigger leakage
areas, the fact that a leakage will lower the pressures must be taken into consideration.
Actual measurements or simulations of the engine including the control algorithms in the
case of leakages would be needed. However, no leakage measurements were available at
this time. No Matlab implementations of the actual control algorithms in the truck were
found either. Some searching revealed that introductory simulations of leakages had been
carried out at one of the departments at Scania. Using their simulation results along with
calculated extream value approximations as well as expert knowledge, an approximation
of the flow rates could be done. The flow through the boost-side leakage was estimated to
be in the range of 0-15 kg/min and the exhaust-side leakage in the range of 0-5 kg/min.

Having estimated the max flow rate through the holes with the biggest area for the
boost- and the exhaust-side and the minimal flow rate for the respective holes with the
smallest area the tube dimensions could be calculated. Finally the dimensions were cho-
sen so that the tubes would have a diameter about twice the diameter of the biggest hole.
With these dimensions it was assumed that the pressure loss due to the tube would be a
neglectable error in comparison to the error caused by the leakage implementation. In
reality the leakages would hardly be perfectly circular and they normally occur at the
joints, not in the middle of the pipes as would be the case in this thesis. The platina wire
massflowmeter found at Scania, was considered appropriate to use and the specifications
for the differential pressure sensor could now be made.

The leakage at the boost-side would be implemented before the intercooler. The pres-
sure sensor that would be used to calculated the flow through the leakage is situated after
the intercooler. Ideally, there is no pressure loss in the dashed areas, see Figure 4.1, where
both the leakage and sensor are located. However it was considered interesting to add an
extra pressure sensor on the same side of the intercooler as the leakage to see how big the
difference really was. This sensor would also serve to validate the leakage model used in
the boost-side. Drawings of the tubes as well as the bolts for the holes were created in co-
operation with the mechanics that would build them after having measured the available
space under the cab.

In the end no differential pressure sensor was implemented since the price and the
delivery time was too considerable. The platina wire sensor and the pressure sensor was
however found locally at Scania and was handed to the mechanics together with the draw-
ings for the pipes. When the pipes were ready, they were assembled in a truck.
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Figure 4.3. Overwiev of the new hardware for the leakage implementation in a truck. The upper of
the two tubes in the middle of the photo is the tube for the gas from the boost-side leakage, and the
lower is the tube for the gas from the exhaust-side leakage. For closeups of the holes, see Figure 4.4
for the boost-side, located to the right in the photo, and Figure 4.5 for the exhaust-side, located in
the middle of the photo.

Figure 4.4. Closer view of the boost-side leakage implementation. The tube disappearing to the
left encloses the leakage bolt. The extra pressure sensor can be seen in the middle of the photo with
its rolled-up cable.
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Figure 4.5. Closer view of the EGR leakage implementation. The bent pipe in the middle of the
photo leads to the leakage bolt that is the splice between the two big screw nuts right after the bend.

4.1.4 Data Acquisition Hardware and Software
All sensor and actuator values in the truck could be accessed from the CAN-bus, an in-
ternal data bus, and logged with a standard laptop equipped with Vision, a measurement
software. The additional sensors for pressure and air massflow were connected to Vision
through Vision Electronic Data Acquisition (EDAQ) hardware, ensuring synchronised
data. Cables between the additional sensors and the EDAQ hardware were built as well
as cables and hubs ensuring power supply from the cigarette lighter of the truck.

The mechanics helped building an electronic device which could be used to introduce
a bias, gain or constant value fault to two arbitrary sensors or actuators. Unfortunately
there was no time to log data with this device in this thesis but it can come in handy in the
daily work of the diagnosis department at Scania.

4.2 Data Acquisition Procedure
The measurements used in this work were gathered on a test track at Scania. A driv-
ing cycle was planned which included many different operating points and accelera-
tions/decelerations. The truck was equipped with a ballast frame in order to mimic regular
operating conditions. The retarder, a hydralic braking system, was also used selectively as
a way of simulating heavy loads. At each driving cycle one fault was to be active. A fault
could be any of the different leakage areas at the boost- or the exhaust-side or a sensor or
actuator fault.

With the truck equipped with the leakages and the extra sensors, and the data acqui-
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sition hardware and software provided it was good to go. Despite rigid planning some
problems occurred during the test drives due to play in some contacts, USB-limitations
and icy roads. As a result of the current time considerations it was decided to concentrate
on acquiring measurements from three different hole sizes per leakage area and from one
general fault per pressure sensor. The decision to selectively log faults for the pressure
sensors was motivated by the fact that these faults are the ones believed to be the hardest
faults to isolate from leakage faults and vice verse.





Chapter 5

Test Quantity Generation

In the following sections there will be a brief presentation of the methods used in this
thesis for generating test quantities. The starting point is a model containing analytical
redundancy, see Section 2.3.2. The steps involved can be seen in Figure 5.1, with the new
functionality contributed by this thesis encircled with dashed lines. The implementation
of the steps from MSO to residual were heavily improved during the course of this thesis.

Figure 5.1. The process from a model to an evaluated residual. New functionality encircled with
dashed lines. Heavy improvements were made to the implementation of the steps between MSO to
residual.
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5.1 Extraction of Model Equations from Simulink Mod-
els

The model equations can be extracted from a Simulink model using a Matlab toolbox
called Dsame. This toolbox is described in [11] and is developed by Scania and Linköping
University. The extraction from a Simulink model is illustrated by Example 5.1.

Example 5.1: Simulink Model Extraction
The equations to the right in (5.1) is an example of how Dsamewould rewrite the Simulink
implementation, see Figure 5.2, of the equation to the left in (5.1). It can be seen that the
extracted equation system gets larger (more equations) than the original equation system
since Dsame creates "dummy equations", i.e. one equation is transformed to many.

Equation in Simulink Dsame representation
a1 = u
a2 = 2
a3 = a1a2
a4 = x1

y2 = 4 − Ax1 + 2u ⇐⇒ a5 = A
a6 = a4a5
a7 = 4
a8 = a7 − a6 + a3
y2 = a8

(5.1)

5.2 Structural Methods to find MSOs from Model Equa-
tions

Using the theory presented in Section 2.4 the equations extracted from a model can be
transformed into an SM where after all MSOs from the SM are generated. The process is
illustrated in Section 2.4 and is here recalled for readers convenience.

An extracted equation system

e1 : ẋ1 = x2
e2 : x2 = −Ax1 + u
e3 : y1 = x1
e4 : y2 = x2

is transformed to the structural model

x1 x2 u y1 y2

e1 : 1 1 0 0 0
e2 : 1 1 1 0 0
e3 : 1 0 0 1 0
e4 : 0 1 0 0 1
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Figure 5.2. Simulink implementation of the equation to the left in (5.1) that is extracted by Dsame
to the equations to the right in (5.1).

containing the four MSOs {e1, e2, e3}, {e1, e2, e4}, {e1, e3, e4} and {e2, e3, e4}.

5.2.1 Sorting of MSOs into Classes

After having found the MSOs, they are divided into classes. Each class is theoretically
sensitive to a unique combination of faults. It is thus in theory not necessary to use more
than one MSO from each class for test quantity generation. Example 5.2 illustrates the
sorting of MSOs, found in a previous model, into classes.

The toolbox Dsame is used to generate the SM and all MSOs, as well as sorting them
into classes.

Example 5.2: MSO classes

Assume that the only faults in the exemplifying Simulink model in Figure 2.4, are asso-
ciated with the actuator, fu, and the two sensors, f1 and f2 respectively. The first MSO
generated for this model, see Example 2.10, is formed out of the equations

ẋ1 = x2
x2 = −Ax1 + u
y1 = x1

(5.2)

and is sensitive to fu and f1 since sensor y1 and actuator u are present in these equations.
See Table 5.1 for the sensitivity for all MSOs generated from Example 2.10.
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fu f1 f2
MS O1 : x x
MS O2 : x x
MS O3 : x x
MS O4 : x x x

Table 5.1. A table showing which faults that effects the different MSOs found in the Simulink
model in Figure 2.4.

In this example, each MSO has a unique set of faults and therefore each MSO will
form its own class. If there would have been a fifth MSO, MS O5, sensitive to f1 and f2 it
would be in the same class as MS O3.

5.2.2 Selection of MSOclasses
In an MSO that does not contain many equations, like the one in Example 2.10, there
are few CS to try. Recall that there is one potential CS for each equation, as discussed in
Section 2.6. Since the equations in this particular example are rather simple, these compu-
tations do not take very long time to execute. The time to obtain a computation sequence
grows with the size of the equation system but more importantly with the complexity of
the equations. As a consequence, a large equation system with many complex equations
might take hours to solve, if a solution at all is found. This is of course dependent on the
solving tool used. In a situation where there are many more classes of MSOs than faults, a
well chosen subset of classes should still be enough to detect and isolate at least all single
faults from each other. But how to choose as few classes as possible and still have a big
enough selection to isolate all faults? The method choosen for this task in this thesis, is
the Minimal Hitting-Set method, explained in Section 2.3.3.

5.3 Residual Creation and Implementation
When a subset of classes is found, one MSO from each class in the subset is selected.
With the theory in Section 2.5, computation sequences are found. Recall the computation
sequence for {x1, x2} found in Example 2.11: C1 = ((x1, e3), (x2, e2)), i.e. compute x1 from
e3, then x2 from e2. The CS is used with a residual equation to create a residual. This
residual and all other residuals used in this thesis are found using a Matlab implementa-
tion of the residual generation approach outlined in [24]. Matlabs solver tool Maple is
used as solving tool for algebraic equations, and mixed causality is considered.

In order to be able to evaluate and choose residuals before introducing them in a diag-
nosis system in the truck, the residuals need to be implemented for offline testing. Three
different approaches are suggested in this work: an implementation in Simulink built with
blocks, an Matlab m-file function implementation or a C-code function implementation.
In all three cases the input data is observations and the value of the residual is the output.
Somewhere within the implementation the constants needed for the residual, as well as
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the computation sequence, is defined. In a first approach, all observations are given to all
residuals as well as all constants declared, not only the observations and constants that are
needed.

Some advantages/disadvangages with the different approaches are seen in Table 5.2.

Advantage Disadvantage
Simulink Easy to visualize. Complex to implement
implementation: All in one model. automaticly.

Matlab m-file Simple to implement and execute.
function: Measurements already

in Matlab format.

C-code Closer to final Import of Matlab data.
function: implementation in a truck.

Table 5.2. Some advantages and disadvantages with different three different methods proposed for
implementation of residuals.

Both the Simulink method and the m-file method are tested, but only the m-file ap-
proach is used due to implementation practical reasons.

To facilitate the implementation, a choice is made to use computation sequences with
integral causality or pure algebraic relations. Integral causality leads to a residual on a
state space form, which can easily be implemented using Euler forward approximation
with fixed step length of a sample period, 0.1 s.

5.4 Evaluation of Residuals

5.4.1 Stability

Just because a residual is found and can be generated, does not mean that it can be used.
It might be unstable even during normal driving conditions for fault free input data. Ear-
lier works [2] have suggested methods to examine and evaluate the stability of residuals.
These are considered if the stability of a large number of residuals need to be examined.

5.4.2 Operating Conditions

No model can perfectly describe the reality. It is common that a model, and as a con-
sequence the residuals based on that model, is more accurate under certain operating
conditions. For example, a pressure within a specific range, a temperature below a certain
level or during high engine torque. If favorable operating conditions can be found, the
residuals can be used solely during these and thus become more reliable. The accuracy of
the residual might also depend on a combination of different engine variables within cer-
tain limits. In this thesis only a search for single dependencies is made since dependencies
of every combination of variables is such a big task that it is considered unfeasable. The
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investigation of single dependencies is carried out for each residual, by studying its plot
against plots of specific variables.

5.5 Designing Test Quantities
Depending on the appearance of the residual, the signal processing methods presented
in Section 2.7 are applied. A noisy residual is primarily subject to lowpass filtering. If
the mean value changes with the fault, a sliding mean approach is tried. If the result is
not satisfying in the sense that fault detection becomes significantly easier, a recalibration
of the method or a different signal processing method is tried. This is in many ways an
iterative process. The processed residual is used as a test quantity.



Chapter 6

Results

6.1 Fault Measurements

New hardware has been created mainly in order to acquire real leakage measurements
under controlled forms. The main hardware contributions are tubes, bolts and cables.
This hardware as well as the method in which it was used can be employed in future
works when for instance leakage data is needed.

Leakage measurements were gathered for circular holes with diameters 5, 15 and 25
mm on the boost-side and 3, 9 and 15 mm on the exhaust-side. Measurements from a
negative bias fault in the boost pressure sensor as well as in the exhaust pressure sensor,
with the size of about 10 percent of the average pressures at the respective sides, were
also gathered.

6.2 Simulink Implementation

When the modified engine model, Section 3.2, was implemented in Simulink and a struc-
tural model was created with Dsame, the structural determindeness, Section 2.4.2, of the
system could be calculated. The modified model was a +2 system. This was very sur-
prising since the un-modified model was a +3 system. The source of the problem was
found to be the implementation of the exhaust-side leakage. This was even more surpris-
ing since the leakage model contained four unknown variables and four equations. Thus
the structural over- or under-determinedness of the system should remain the same. The
reason for this behaviour was that the Simulink implementation of the exhaust-side leak-
age used the same blocks as for the EGR-vault, which contained some blocks that Dsame
did not handle correctly. After having changed the blocks in question for the EGR-vault
model and for the leakage model on the exhaust-side, the system turned out to be a +4
system.
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6.3 Method for Residual Generation

6.3.1 Extraction of MSOs from Simulink Model

Using the toolbox and methods presented in Section 5.1, the model equations were ex-
tracted from the Simulink model. The extraction provided many dummy equations, see
Section 5.1, and the 52 equations describing the engine model became 267 after the ex-
traction. The variable names became very long since the names include all names of the
blocks that contains the variable.

To avoid the long variable names and the enlargement of the equation systems, some
new functionality was created to build model equations from a textfile-defined model.
This also avoided implementational faults since no blocks were used that might lead to
misinterpretation.

The change of blocks in the Simulink implementation increasing the determinedness,
see Section 6.2, resulted in the finding of about 600 MSOs, sorted in 300 MSO classes.
A significant difference compared with the previous 90 MSOs in [17] for the un-modified
model. It also made it theoretically possible to detect faults in the EGR-vault actuator,
which was not possible before the change of blocks.

6.3.2 Residual Generation from MSOs

Residual generation proved to be the major work in this thesis since a lot of debugging
and adaption of the Matlab implementation was needed.

The process of finding computation sequences could take very long time, especially
if it involved solving complex equation systems, generally connected to large SCCs, with
Maple. Sometimes the whole program froze. In an attempt to reduce the freezes and thus
avoid the need of restarting the program and the process, new functionality was introduced
allowing to abort the search for a computation sequence if SCCs above a certain size
was found. It was found that if allowing SCCs up to size 7 almost no freezes occured.
Other changes were also introduced to the Matlab implementation, saving the work more
continuously and allowing to track which SCC that causes the program to freeze.

Some equation systems proved to complex to find explicit solutions to, with the avail-
able tools for equation solving. In the case that implicit solutions were found, they were
discarded in this thesis.

In other equation systems there were explicit solutions, but not unique ones. In
quadratic equations, when solving for the squared variable, there are quite naturally two
solutions. Many of these variables have limitations making only one of the solutions phys-
ically correct. But which one? And if the solutions are used in another quadratic equation
there will be four different solutions, only one being correct. The proposed solution to
this problem was to present all roots, i.e. solutions, to the equations and notify the user
that the incorrect solution(s) should be removed.

6.3.3 Number of and Implementation of Residuals

Each of the 600 MSOs might produce approximately 45 residuals (an estimate of the
average number of equations per MSO) resulting in about 27 000 residuals in total. There
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was not enough time to find and evaluate all the possible residuals since this would have
taken weeks with the computation power available and with the stability issues outlined
in Section 6.3.2. Many MSOs proved to be so complex that no computation sequences
and thus no residuals could be found with the available solving tools. In spite of that,
residuals were found in more than 100 MSOs using mixed causality and a maximal SCC
size of 7. Out of those residuals, four residuals that did not use derivative causality were
implemented and evaluated. One of those residuals, an algebraic one, can be found in
Appendix B to illustrate the appearance of a residual.

The residuals were first implemented in Simulink as S-functions or embedded m-
files. This was rather time consuming and hard to implement automatically for every
residual. An easier way was to create m-file functions with the observations as input and
the value of the residual as output. Within the function was a declaration of constants, the
computation sequence and the residual equation.

These residual functions were created by another function and could therefore be
auto-generated for each found computation sequence. Another function was written to
calculate the values of the residuals given measurements.

The wish to automatically generate the residual code from a found computation se-
quence, see Section 6.3.2, lead to the creation of some new functionality. This functional-
ity only supports integral causality but could, without too much work, be modified to use
derivative causality and/or mixed causality.

6.4 Test Quantity Generation

When the first residuals were implemented and evaluated, it became clear that the resid-
uals did not behave according to the influence structure. It was shown that certain faults
affected residuals that should not be sensitive to the faults in question. Some faults that
should make the residual respond more strongly than in the fault free case, actually made
it diverge less from zero. See Figure 6.1 for an example of a residual that responds to a
fault it should not react to according to its influence structure.

One residual for example, gave a significant reaction to a leakage on the boost-side,
while it should not be sensitive to any leakages. A possible explanation is that this fault, a
boost-side leakage, has a similar effect on the system as a faulty massflow sensor affected
by a positive offset, the latter being a fault that the residual should be sensitive to. Simpli-
fied, the residual is based on the difference between massflow in, Win, and massflow out,
Wout. If Win shows a too big value, the flow in will be greater than the flow out. If there
is a leakage, the flow out will seem smaller than it is, and thus the flow in will be greater
than the flow out.

6.4.1 Residual Processing

After the residual signals were calculated, they were lowpass filtered [13]. A discussion
was held as to the need of filtering the measurement data before the residuals were cal-
culated. This did not seem necessary since the residuals gave a rather good result when
plotted. The residuals were plotted merging a fault free driving cycle and each of the
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Figure 6.1. A residual that should not react to a leakage on the exhaust-side according to the
influence structure, but does react to it. The first half is fault free measurements, the second half is
measurements with a leakage on the exhaust-side. The residual has been filtered in order to more
easily see the change of mean value betweeen the fault free case and the leakage.

driving cycles for the different fault respectively. That way, a virtual driving cycle was
produced that was fault free in the start whereupon a fault occurred midways.

Most residuals were too fluctuating to set reliable thresholds. This was due to model
uncertainties and disturbances. For some of the residuals it was clear that the mean value
changed with a fault, so a cumulative sum was tried as a signal processing method for
the residual, see Section 2.7. But first all residuals were adjusted with the mean value of
a representative fault free case, giving the residual a mean value of zero. This might be
tricky to do in reality since each truck and sensor set is individual.

The mean value of some residuals increased for certain faults, and decreased for other.
See for example Figure 6.2 where it can be seen that the mean value of the residual
decreases for an exhaust-side leakage or the sensor fault on the exhaust-side, and increases
for a boost-side leakage or the sensor fault on the boost-side.

With two tests from that residual, one that detects increased mean values and the
other detecting decreased mean values, faults can be located to either the exhaust-side or
the boost-side with the decision structure:
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LE LI SPE SPB
T1(resC up) 0 x 0 x
T2(resC down) x 0 x 0

where LE is a leakage on the exhaust-side, LI is a leakage on the boost-side, SPE is a fault
in the exhaust pressure sensor and SPB is a fault in the boost pressure sensor.
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Residual C for a 25 mm boost-side leakage.
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Residual C for a 15 mm exhaust-side
leakage.
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Residual C for a negative bias fault on the
boost pressure sensor.
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Residual C for a negative bias fault on the
exhaust pressure sensor.

Figure 6.2. The four plots show residual C for a leakage on the boost-side, a leakage on the exhaust-
side, a fault on the boost pressure sensor and a fault on the exhaust pressure sensor. It can be seen
that a problem originating from the boost-side increases the value of the residual, while a problem
originating from the exhaust-side decreases it.

Another residual, see Figure 6.3, did not only change mean value, but it was also
noticed that a fault on the boost pressure sensor caused the residual signal to take imagi-
nary values. The residual did also seem to have different dynamic properties for different
faults. This caused the residual to react more strongly during certain conditions.



54 Results

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−4

−2

0

2

4

6

8

10

x 10
4 res simEngine Leakage 7dsame 5, Felfri & Ladd25

time

re
s−

va
lu

e

Residual D for a 25 mm boost-side leakage.
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Residual D for a 15 mm exhaust-side
leakage.
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Residual D for a bias fault on the exhaust
pressure sensor.

Figure 6.3. The three plots show residual D for a leakage on the boost-side, a leakage on the
exhaust-side and a fault on the boost pressure sensor. A fault on the exhaust pressure sensor caused
the residual signal to take imaginary values and is therefore not shown.
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6.4.2 Operating Conditions
Not very surprisingly, there were situations when some residuals worked better. By choos-
ing to run the tests based on these residuals only during those conditions, the performance
of the diagnosis system could be improved. Using these conditions, the problem that
residuals did not react as foreseen to certain faults, could in some cases be handled and
compensated for. In some cases, the signal could be enhanced or attenuated which helped
the detection.
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Figure 6.4. A residual that reacts differently to a fault in a pressure sensor (dashed line) and a
leakage at the exhaust side (solid line). The first half is fault free measurement data, the second half
is from two corresponding driving cycles for the two different faults. Notice that the base value of
the leakage data seams to be zero with peaks during some periods, while the value for the pressure
sensor data changes its mean value.

The peaks in Figure 6.4 were likely caused by certain operating conditions, and some
work was done to find which. One particular operating condition was found for low
demands on engine torque, i.e. when just rolling, which can be seen in Figure 6.5.

For a high engine torque the residual reacted to a bias fault of the pressure sensor on
the exhaust-side, but not to a leakage. For low engine torque the residual hardly reacted
on the fault in the pressure sensor but gave peeks for the leakage. By designing two
tests based on the same residual, but only execute them during specific conditions, there
would be two tests that would be sensitive to two different faults instead of one test being
sensitive to all.
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Figure 6.5. A plot indicating a connection between low engine torque (solid line) and high residual
value (dashed line) for measurement data from a leakage on the exhaust-side.
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A sliding mean processing for the residual when the engine torque was higher then a
chosen percentage of its max value resulted in a small change for the leakage and a bigger
change for the fault in the sensor. Applying the same thinking but the other way around, a
CuSum for the residual when the engine torque was low would result in a significant value
for the leakage, but a much smaller for the sensor error. See Figure 6.6 for an example
of how the CuSum can be used to separate a fault in the exhaust pressure sensor and a
leakage on the exhaust-side.
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Figure 6.6. Graph showing the CuSum for a residual based on measurements for low engine torque.
The curves are from leakage measurement data on the exhaust-side (solid line) and from a constant
negative bias fault on the exhaust pressure sensor (dotted line).

Using these two tests, and a third test that used the knowledge of imaginary values of
the residual for faults in the boost pressure sensor, a decision structure can be formed as:

LE LI SPE SPB
T3(resD LowTq) 0 0 x 0
T4(resD HighTq) x x 0 0
T5(resD Complex) 0 0 0 x
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6.5 Diagnosis System Performance
By using the residuals that were implemented, a hole with diameter 15 mm could be
detected on the exhaust-side, and a hole of diameter 25 mm on the boost-side. A relatively
common fault among the faults that might sometimes occur, namely a tube coming lose
from its hold, should thus be easy to detect.

It is possible to detect smaller leakages, but to which extent is not clear. As can be
seen in Figure 6.7, a hole with diameter 15 mm on the boost-side still causes a significant
difference in the residual signal compared to the fault free case, which indicates that also
this size of leakage can be detected. The hole with diameter 5 mm is very similar to the
fault free case, indicating that this leakage is too small to be detected with this residual.
Analogous on the exhaust-side, a hole of diameter 9 mm is likely to be detectable, while
the leakage with diameter 3 mm is too small.
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Figure 6.7. First half of the two plots is fault free measurement data, the second half is measurement
data for a leakage on the boost-side. To the left, the leakage is from a hole of diameter 15 mm, to
the right from a hole of diameter 5 mm. The plots indicates that the hole with diameter 15 can be
detected, while the hole with diameter 5mm probably can not since it resembles the fault free case.

Using all MSO classes, each sensitive to a specific combination of faults, it was proven
that all single faults could be detected and perfectly isolated from each other in theory.
By using the MHS algorithm it was shown that a set of 12 residuals would be enough for
perfect isolation of all 13 single faults. By using the influence structure for those MSO
classes where a computation sequence was found, a more realistic theoretical isolability
was obtained, see Figure 6.8. There are two single faults that most of the other single
faults can not be isolated from. These faults are faults in the ambient pressure sensor,
fspa, and in the exhaust pressure sensor, fspe. The ambient pressure sensor is considered
one of the most robust sensors in the system, why this fault could be regarded as less
likely in the event that a single fault needs to be pointed out.
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Figure 6.8. Theoretical fault isolation for mixed causality based on the residuals for which a com-
putation sequence was found. A ring in the figure indicates that the fault on row i can not be
isolated from the fault on column j. As it can be seen, most faults can not be isolated from faults in
the ambient pressure sensor, fspa, and faults in the exhaust pressure sensor, fspe.
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6.5.1 Actual Fault Sensitivity and Isolation
For leakages, and faults on the pressure sensors on the boost-side and the exhaust-side,
faults could be implemented. However, other faults would be hard to implement and
might even cause damage to the truck if active while driving. As a consequence, only
measurements from faults in these pressure sensors and from the leakages were available
when creating the decision structure.

Due to this lack of representative fault measurements, the only faults for which real
detectability and isolability was investigated were a negative additive fault for the two
pressure sensors and the largest leakage areas for the two regions.

With the two tests based on residual C and the three tests based on residual D, Sec-
tion 6.4, the following decision structure was obtained:

LE LI SPE SPB
T1(resC up) 0 x 0 x
T2(resC down) x 0 x 0
T3(resD LowTq) 0 0 x 0
T4(resD HighTq) x x 0 0
T5(resD Complex) 0 0 0 x

The isolation structure generated from this decision structure is

LE LI SPE SPB
LE 1 0 0 0
LI 0 1 0 0
SPE 0 0 1 0
SPB 0 0 0 1

which shows that all these faults can be detected and isolated.
Since a leakage can be interpreted as a non constant bias on a presure sensor, these

four faults are considered the hardest to isolate from each other. With the knowledge that
this isolation is possible, the isolation structure for all the other single faults will probably
be found to be good, after having investigated more fault behaviours.



Chapter 7

Analysis and Discussion

7.1 Measurements

The measurements were gathered on a test track, not in a test-bed. As a consequence, the
measurements were generated in only remotely similar driving cycles compared to if they
had been gathered in a test-bed. Due to this, it became harder to compare the behavior
of residuals subject to different faults. However, there are two great advantages with the
out-on-the-track measurements. First the availability. There are many more trucks than
test-beds available which makes it easier to access equipment to generate measurements.
Second the realistic aspect. Collecting measurements with a truck gives more realistic
measurements, i.e. measurements more similar to actual driving conditions.

The hardware used for measurement acquisition, though mounted in the truck, could
easily be dissembled and reassembled in a test-bed.

Inspite of extensive work, it proved hard to get relevant measurement data from faulty
components. Some would be hard to implement, others might cause damage to the truck.
For those that could be implemented, a infinity of fault sizes could be chosen. A selection
of faults and fault sizes was therefore made. The selection was narrow, but a wider selec-
tion would have consumed more time than it would have improved the overall findings.

7.2 Evaluation of Method for Residual Generation

The method is thorough, generating all MSOs from the model and giving all possible
residuals that can be generated from the MSOs with the available tools in the implemen-
tation. The result depends strongly upon the model used, why great care should be taken
at the choice of model. The starting model and the resulting tests are things that the engi-
neer needs to work with in order to form a good diagnosis system. The intermediate steps
works more or less automatically with some minor special cases that needs to be taken
into account. It will be hard to automate the selection process of test quantities since many
special cases can be found, e.g. tests that proves unfavourable in one aspect might prove
useful in one other and/or in combination with some other tests.
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The implicit solutions found when solving equation system in order to find computa-
tion sequences, were discarded in this thesis. This was due to the fact that simple imple-
mentations of test quantities were desired and that there was no lack of found computation
sequences. Implicit solutions can however be used in a computation sequences if numer-
ical iteration, e.g. Newton-Raphson, is allowed in each time-step in the truck diagnosis
system. This might however be too demanding for the computer on-board the truck since
the solving time is non-deterministic for a specified accuracy. Investigation of worst case
execution time is thus needed if implicit solutions are desired to be used.

Another solving tool than Maplesoft’s Maple engine, which was in use in the Matlab
version available at the time of this thesis, might provide an alternative solution to the
problem with complex equations connected to large SCCs, and possibly increase the speed
of the process. According to Mathworks web page (acc. feb 2009), the Maple engine is
replaced with a MuPAD r engine from Matlab v5.0 (R2008a+). This solving tool has
not been tested in this thesis.

7.3 Evaluation of Diagnosis System Performance

It is possible to detect the two kinds of leakages. Theoretically all faults can be detected
and isolated. In reality the model is inaccurate to that degree that many residuals that
should not react to fault do in fact react to them and vice versa. That made the process
of choosing residuals in order to isolate faults much harder. Since most of the examined
residuals did not behave according to the influence structure, there was no way to tell what
the actual isolability would be without actually creating faults and finding the decision
structure empirically, and then the actual isolability. Exactly which faults that can be
isolated in reality is therefore unclear, but leakages and pressure sensor faults on exhaust-
and boost-side can be isolated from each other.

If smaller leakages are desired to be detectable, the threshold needs to be lowered.
This would increase the risk of false detection, and in some cases worsen the isolability.
One way to enhance the detection, but still keep the isolation, could be to combine tests in
specific ways. Take for example one test that has a very low risk for false detection and a
high detectability but low isolation, and another test that has high risk for false detection
but good isolability. The second test is not desirable to use due to the high risk of false
detection. But if it is only used when the first test has detected a fault, the problem can
be avoided. One other way could be to have two different thresholds for the same test, a
lower to detect faults, and a higher to improve the isolation. During the data acquisition no
warnings or fault codes were produced, indicating that the current tests are not influenced
by leakages. If the existing diagnosis system is combined with one or some of the found
residuals in this thesis, the combined diagnosis system would be able to detect leakages
too.

Though no investigation about the potential gain of new sensors was made, a method
was found treating this subject. The sensor placement method presented in [19] provides
the means to perform a theoretical analysis of the improvements of a diagnosis system
if additional sensor(s) would be introduced in the modeled system. Since the method is
based on structural information, it is well applicable to the complex non-linear model
used in this thesis. Another method [10], used on linear differential systems, performes
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analytical analysis of additional sensor(s). The benefit of analytical analysis of sensor
placement is that it might handle models where structural methods fail.

7.4 Real Time Analysis
The method used to detect leakages on a (slow) stationary PC can be performed in real
time in the Matlab environment. That is, the value of a residual can be calculated for a
series of measurements much faster then the time it takes to sample it. The question is of
course if the processor on-board the truck can perform the same diagnosis in real time,
knowing that it is slower than the stationary PC. To answer that question some additional
studies are needed, but the following reasoning suggests a positive answer to the question.

The generation of residuals and tests is extensive and rather time consuming but the
actual computation of a residual for a given observation is fast in comparison. One resid-
ual with integral causality needs about 200 lines of sequential code that could easily be
compressed and/or reduced. The computations are mostly elementary such as addition
and multiplication. The integration are treated with Euler forward with a fixed step length.
No equations need to be solved. All in all, it is just a set of variables that should be calcu-
lated from an already known set of variables.





Chapter 8

Concluding Words

8.1 Conclusions

The methods and model used in this thesis provide means to generate residuals capable
of detecting leakages, and some other faults, with measurements from the present set of
sensors and actuators. The leakages can be isolated from the investigated faults in both the
boost and exhaust pressure sensor, and vice versa. Further measurements are nevertheless
needed to create reliable thresholds and to determine exactly which faults that can be
detected and isolated. The resulting tests can probably be executed with the computation
power available in a truck and is in that case suitable for on-board diagnosis.

To recapitulate the results of this thesis against its purpose, see the following results
conclusions:

• In this work, a general method for model-based residual generation has been used
to perform gas leakage detection in a diesel engine.

• The diagnostic tests generated with the chosen method has been evaluated with real
measurement data, showing that leakages of a certain size can not only be detected,
but also isolated from the faults that that are considered hardest to isolate from.

• Hardware and equipments has been created to acquire measurement data from leak-
ages and some other faults.

• Improvements have been made to the implementation of the method, which speeds
up the working process.

• The improvement of the diagnosis performance, resulting from extra sensors is not
investigated, but propositions are made to how this could be investigated if wanted.

• Leakage diagnosis based on the methods in this thesis is probably suitable for im-
plementation and execution in real time in a truck.
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8.2 Future Work
This work has been done without active stimulation of the system. If forcing the EGR-
vault to close during diagnosis, a special model could be made where the gas recirculation
through the EGR was excluded, which would simplify the model and most likely the
detection and isolation. Short periods with the EGR-vault closed can be found in some
operating conditions while longer sequences probably need active control of the EGR-
vault. Examining the impact of active diagnosis is thus a possible field to explore.

Implementation of more kinds of fault behaviors and in more components would be
highly interesting in order to get a more accurate view of the actual detection and isolation
performance. It would also be interesting to try different fault sizes in each component.

Regarding the implementation of the method used to generate residuals, the following
topics can be looked into. One rather simple improvement would be a C/C++ function,
restarting Matlab automatically after each freeze, continuing the process from where it
froze. Another solving tool could be tested to examine the improvements of the solving
speed, the stability and the number of solutions. For a better overall speed the residual
generation method could be implemented in an other programming language.
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Appendix A

Summary of Model Equations

Manifolds
d
dt

pim =
RaTim

Vim

(
Wc + Wegr −Wei −Wli

)
(A.1)

d
dt

pem =
ReTem

Vem

(
Weo −Wt −Wegr −Wle

)
(A.2)

Leakages

Leakage intake

Wli =
Ali,e f f pimΨli
√

TimRa
(A.3)

Ψli =

√
2γa

γa − 1

(
Π

2/γa
li − Π

1+1/γa
li

)
(A.4)

Πli =



Πli,opt if
pamb

pim
< Πli,opt

pamb

pim
if Πli,opt 6

pamb

pim
6 1

1 if 1 <
pamb

pim

(A.5)

Leakage exhaust

Wle =
Ale,e f f pemΨle
√

TemRe
(A.6)

Ψle = 1 −
(

1 − Πle

1 − Πle,opt
− 1

)2

(A.7)
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Πle =



Πle,opt if
pamb

pem
< Πle,opt

pamb

pem
if Πle,opt 6

pamb

pem
6 1

1 if 1 <
pamb

pem

(A.8)

Cylinder flow

Wei =
ηvol pimneVd

120RaTim
(A.9)

ηvol = cvol1
√

pim + cvol2
√

ne + cvol3 (A.10)

W f =
10−6

120
uδnencyl (A.11)

Weo = W f + Wei (A.12)

Cylinder out temperature

Πe =
pem

pim
(A.13)

qin =
W f qHV

Wei + W f
(1 − xr) (A.14)

xp = 1 +
qinxcv

cvaT1rγa−1
c

(A.15)

Te = ηscΠ
1−1/γa
e r1−γa

c x1/γa−1
p

(
qin

(
1 − xcv

cpa
+

xcv

cva

)
+ T1rγa−1

c

)
(A.16)

Ṫ1 =
xrTe + (1 − xr)Tim − T1

∆t
(A.17)

Tem = Tw + (Te − Tw)e
−

htotπdpipelpipenpipe

Weocpe (A.18)
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Sensors

Measuring states
yωt = ωt (A.19)

yWc = Wc (A.20)

ypim = pim (A.21)

ypem = pem (A.22)

Measurements as inputs
ytamb = Tamb (A.23)

ypamb = pamb (A.24)

ytim = Tim (A.25)

yne = ne (A.26)

EGR-valve

Wegr =
Aegr pemΨegr
√

TemRe
(A.27)

Ψegr = 1 −
(

1 − Πegr

1 − Πegr,opt
− 1

)2

(A.28)

Πegr =



Πegr,opt if
pim

pem
< Πegr,opt

pim

pem
if Πegr,opt 6

pim

pem
6 1

1 if 1 <
pim

pem

(A.29)

Aegr = Aegr,max fegr(uegr) (A.30)

fegr(uegr) =


cegr1u2

egr + cegr2uegr + cegr3 if uegr 6 −
cegr2

2cegr1

cegr3 −
c2

egr2

4cegr1
if uegr > −

cegr2

2cegr1

(A.31)
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Turbo

Turbo inertia
d
dt
ωt =

Ptηm − Pc

Jtωt
(A.32)

Turbine efficiency

Πt =
pamb

pem
(A.33)

Ptηm = ηtmWtcpeTem

(
1 − Π

1−1/γe
t

)
(A.34)

ηtm = ηtm,max − cm(BS R − BS Ropt)2 (A.35)

BS R =
Rtωt√

2cpeTem

(
1 − Π

1−1/γe
t

) (A.36)

cm = cm1(ωt − cm2)cm3 (A.37)

Turbin mass flow

Wt =
Avgt,max pem fΠt (Πt) fvgt(uvgt)

√
Tem

(A.38)

fΠt (Πt) =

√
1 − Π

Kt
t (A.39)

fvgt(uvgt) = c f 2 + c f 1

√
1 −

(
uvgt − cvgt2

cvgt1

)2

(A.40)

Compressor

Compressor efficiency

Πc =
pim

pamb
(A.41)

Pc =
WccpaTamb

ηc

(
Π

1−1/γa
c − 1

)
(A.42)

ηc = ηc,max − χ
T Qcχ (A.43)

χ =

 Wc −Wc,opt

πc − πc,opt

 (A.44)
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πc = (Πc − 1)powπ (A.45)

Qc =

 a1 a3

a3 a2

 (A.46)

Compressor mass flow

Wc =
pambπR3

cωt

RaTamb
Φc (A.47)

Φc =

√
1 − cΨ1(Ψc − cΨ2)2

cΦ1
+ cΦ2 (A.48)

Ψc =
2cpaTamb

(
Π

1−1/γa
c − 1

)
R2

cω
2
t

(A.49)

cΨ1 = cωΨ1ω
2
t + cωΨ2ωt + cωΨ3 (A.50)

cΦ1 = cωΦ1ω
2
t + cωΦ2ωt + cωΦ3 (A.51)



Appendix B

Example of a Residual

f unction[residual, BM] = resEngineModelArea1(ustruct, BM)

% Variables
y_omegat=u_struct.y_omegat;
y_wc=u_struct.y_wc;
y_pim=u_struct.y_pim;
y_pem=u_struct.y_pem;
y_tamb=u_struct.y_tamb;
y_pamb=u_struct.y_pamb;
y_tim=u_struct.y_tim;
y_ne=u_struct.y_ne;
act_udelta=u_struct.act_udelta;
act_uegr=u_struct.act_uegr;
act_uvgt=u_struct.act_uvgt;

% Parameters used in the model (actual values replaced with ’x’)
R_A=x;
V_IM=x;
R_E=x;
V_EM=x;
GAMMA_A=x;
PI_LEOPT=x;
V_D=x;
C_VOL1=x;
C_VOL2=x;
C_VOL3=x;
N_CYL=x;
Q_HV=x;
X_R=x;
X_CV=x;
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C_VA=x;
R_C=x;
NY_SC=x;
C_PA=x;
TSTATE=x;
C_PE=x;
H_TOT=x;
PI=x;
D_PIPE=x;
L_PIPE=x;
N_PIPE=x;
PI_EGROPT=x;
A_EGRMAX=x;
C_EGR1=x;
C_EGR2=x;
C_EGR3=x;
J_T=x;
GAMMA_E=x;
NY_TMMAX=x:
BSROPT=x;
C_M1=x;
C_M2=x;
C_M3=x;
A_VGTMAX=x;
K_T=x;
C_VGT1=x;
C_VGT2=x;
NY_CMAX=x;
Q1=x;
Q2=x;
Q3=x;
W_COPT=x;
POWPI=x;
PI_COPT=x;
C_PSI2=x;
C_PHI2=x;
C_WPSI1=x;
C_WPSI2=x;
C_WPSI3=x;
C_WPHI1=x;
C_WPHI2=x;
C_WPHI3=x;
C_F1=x;
C_F2=x;
T_W=x;
R_T=x;
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% Computations sequence
t_amb = y_tamb;
omega_t = y_omegat;
c_phi1 = C_WPHI1*omega_tˆ2+C_WPHI2*omega_t+C_WPHI3;
c_psi1 = C_WPSI1*omega_tˆ2+C_WPSI2*omega_t+C_WPSI3;
p_amb = y_pamb;
p_im = y_pim;
pi_c = p_im/p_amb;
psi_c = 2*C_PA*t_amb*(pi_cˆ((GAMMA_A-1)/GAMMA_A)-1)/R_Cˆ2 . . .
/omega_tˆ2;
phi_c = (-(-1+c_psi1*psi_cˆ2-2*c_psi1*psi_c*C_PSI2+c_psi1*C_PSI2ˆ2) . . .
/c_phi1)ˆ(1/2)+C_PHI2;
w_c = p_amb*PI*R_Cˆ3*omega_t*phi_c/R_A/t_amb;

% Residual equation
residual=w_c-y_wc;



Appendix C

Abbreviations

Abbreviation Explanation
ARR Analytical Reduncancy Relations, p.16
CAN Controler Area Network, p.40
CS Computation Sequence, p.21
DX Diagnostic, p.10
EDAQ Electronic Data Acquisition, p.40
EGR Exhaust Gas Recirculation, p.2
FDI Fault Detection and Isolation, p.10
IC InterCooler, p.1
MHS Minimal Hitting-Set, p.18
MSO Minimal Structurally Overdetermined, p.21
SCC Strongly Connected Component, p.22
SM Structural Model, p.19
VGT Variable Geometry Turbine, p.2

Table C.1. Abbreviations and their full names.

81


