
Institutionen för systemteknik
Department of Electrical Engineering

Examensarbete

Closed Loop System Identification of a Torsion
System

Master Thesis in Vehicular Systems
at The Institute of Technology in Linköping

Andreas Myklebust

LITH-ISY-EX--09/4223--SE

Linköping 2009

Department of Electrical Engineering Linköpings tekniska högskola
Linköpings universitet Linköpings universitet
SE-581 83 Linköping, Sweden 581 83 Linköping





Closed Loop System Identification of a Torsion
System

Master Thesis in Vehicular Systems
at The Institute of Technology in Linköping

Andreas Myklebust

LITH-ISY-EX--09/4223--SE

Handledare: David Banjerdpongchai
Dept. of Electrical Engineering, Chulalongkorn University

Examinator: Lars Eriksson
isy, Linköpings University

Linköping, 27 March, 2009





Avdelning, Institution
Division, Department

Division of Vehicular Systems
Department of Electrical Engineering
Linköpings universitet
SE-581 83 Linköping, Sweden

Datum
Date

2009-03-27

Språk
Language

� Svenska/Swedish
� Engelska/English

�

�

Rapporttyp
Report category

� Licentiatavhandling
� Examensarbete
� C-uppsats
� D-uppsats
� Övrig rapport
�

�

URL för elektronisk version
http://www.vehicular.isy.liu.se

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-17531

ISBN
—

ISRN
LITH-ISY-EX--09/4223--SE

Serietitel och serienummer
Title of series, numbering

ISSN
—

Titel
Title

Systemidentifiering av ett återkopplat torsionssystem
Closed Loop System Identification of a Torsion System

Författare
Author

Andreas Myklebust

Sammanfattning
Abstract

A model is developed for the Quanser torsion system available at Control Systems
Research Laboratory at Chulalongkorn University. The torsion system is a labora-
tory equipment that is designed for the study of position control. It consists of a
DC motor that drives three inertial loads that are coupled in series with the motor,
and where all components are coupled to each other through torsional springs.

Several nonlinearities are observed and the most significant one is an offset in
the input signal, which is compensated for. Experiments are carried out under
feedback as the system is marginally stable. Different input signals are tested
and used for system identification. Linear black-box state-space models are then
identified using PEM, N4SID and a subspace method made for closed-loop identi-
fication, where the last two are the most successful ones. PEM is used in a second
step and successfully enhances the parameter estimates from the other algorithms.

Nyckelord
Keywords nonlinear compensation, subspace, PEM





Abstract
A model is developed for the Quanser torsion system available at Control Systems
Research Laboratory at Chulalongkorn University. The torsion system is a labo-
ratory equipment that is designed for the study of position control. It consists of a
DC motor that drives three inertial loads that are coupled in series with the motor,
and where all components are coupled to each other through torsional springs.

Several nonlinearities are observed and the most significant one is an offset in
the input signal, which is compensated for. Experiments are carried out under
feedback as the system is marginally stable. Different input signals are tested
and used for system identification. Linear black-box state-space models are then
identified using PEM, N4SID and a subspace method made for closed-loop identi-
fication, where the last two are the most successful ones. PEM is used in a second
step and successfully enhances the parameter estimates from the other algorithms.

v





Acknowledgments

This master thesis work was examined at the Division of Vehicular Systems under
Department of Electrical Engineering at Linköping University. Whereas it has
been carried out at the Division of Control Systems under the Department of
Electrical Engineering at Chulalongkorn University in Bangkok.

I would like to thank Leif Johansson for informing me about and granting me
the scholarship to go to Chulalongkorn. I also like to thank David Banjerdpongchai
for taking me under his wings and making this thesis possible. I also have to thank
Lars "Lasse" Eriksson for examining my thesis and valuable feedback. I want to
thank all the funny moose at Suksit-Nives International House for taking my mind
of the studies, sometimes a bit too much and often. More thanks go to my girlfriend
Elin Julin for making me want to go back home to Sweden, otherwise I might still
be working on the thesis. At last I like to thank anyone who feels forgotten.

vii





Contents

1 Introduction 1
1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Earlier work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Torsion System 7
2.1 Physical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Hardware Interface . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Software Interface . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Quanser Physical Model . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Nonlinearities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Simulink Control Signal vs Real Input . . . . . . . . . . . . 10
2.3.2 Coulomb Friction . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Asymmetric Sliprings . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Motor/load slip . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.5 Saturations . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Identification Algorithms 15
3.1 Stability and Closed Loop . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Prediction Error Method . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Numerical Algorithms for Subspace State Space System Identification 16
3.4 closed-loop Identification Algorithm . . . . . . . . . . . . . . . . . 16

3.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 LQ-decomposition . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Experiment Setup and Identification Process 23
4.1 Input Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Nonlinear Compensation . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Controller and Saturation . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 PID controller . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Control Signal Saturation . . . . . . . . . . . . . . . . . . . 25

4.4 Identification Process . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.1 Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.2 Identification Algorithm Verification . . . . . . . . . . . . . 26

ix



x Contents

4.4.3 Input Determination . . . . . . . . . . . . . . . . . . . . . . 26
4.4.4 Parameter Determination . . . . . . . . . . . . . . . . . . . 27

5 Experimental Results 29
5.1 Open Loop or Closed Loop . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Nonlinear Compensation . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Signal Type and Frequency . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Magnitude of Input Signal . . . . . . . . . . . . . . . . . . . . . . . 31
5.5 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6 Sample Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.7 Number of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.8 VODMA Parameter i . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.9 Algorithm Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Discussion and Conclusions 41
6.1 Identified Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.2 Number of States . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Magnitude of Input Signal . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.1 Small Magnitudes . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography 47

A Torsion System Specifications 49

B Algorithm Verification 51
B.1 Simulation and Results . . . . . . . . . . . . . . . . . . . . . . . . . 51
B.2 Singular Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C Model for Torsion System with Increased Inertia 55
C.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



Chapter 1

Introduction

A torsion system is a system where a motor of some kind creates torque, which in
turn is used to rotate a load that is attached to the motor via an axle. The torsion
system is called a flexible torsion system if any part, usually the axle, cannot be
considered stiff, e.g. behaves like a torsion spring. With enough torque any axle
will become flexible.

One example of this is found between the car engine and the tires of the car,
the driveline. It consists of several parts which all are more or less flexible. For a
sketch of a car driveline see figure 1.1. In fig 1.2 the flexibilities of the driveline
can be seen as the differences in engine speed versus transmission speed and wheel
speed. Moreover the driveline can be modeled in a similar fashion to that presented
in section 2.2, where drive shafts, propeller shaft and transmission stands for the
flexibilities, inertias and frictions. More reading concerning driveline modeling can
be found in [3].

1.1 Objective
Since models are far from always accurate and system wear changes the system
with time, controllers are required to be robust against model errors. With higher
demands on controller performance more advanced controllers, that use as much
system information as possible, are desirable. In order to develop new robust
controllers and verify their robustness there must exist a model which can be used
and altered. The aim of this thesis is to find sufficient models for a flexible torsion
system test bench from Quanser, available at Control System Research Laboratory.

This particular system is meant for position control with relatively small angles,
in other words when the angles are below ±90◦ but still clearly visible to the
human eye. This has, of course, been kept in mind while carrying out the system
identification.

As part of the work some different identification methods will be tested for their
capabilities to correctly identify the torsion system, with a subsequent comparison
of the different methods.
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2 Introduction

Figure 1.1. The different parts of a driveline and how they are built into a rear-wheel-
drive car. The driveline is an example of a torsion system. All marked parts have inertia
and friction. The parts between the engine and the wheels are flexible. Courtesy Beau
and Alan Daniels, [2], explaining texts have been added afterwards.

1.2 Earlier work
Most work concerning closed-loop system identification were made in the late
1990’s, where some of the big names were Lennart Ljung, Bart de Moor, Peter
Van Overschee and Michel Verhaegen. In this thesis extensive use has been made
of Van Overschee and De Moor’s paper of 1997, [12], on system identification of
closed-loop systems as one of the algorithms has been implemented. Apart from
the just mentioned paper, Van Overschee and De Moor’s earlier work of 1994,
[10], about the same algorithms but this time for open-loop identification, has
been used to increase the understanding of the algorithms. More technical details
related to the methods presented in [10] and [12] can be found in the technical
reports [9] and [11].

Other algorithms have been considered before the implementation of Van Over-
schee and De Moor’s algorithm. For instance, there is Jitendra Tugnait and Yi
Zhou’s, [8], polyspectral solution of the closed-loop identification problem from
1998. Yet another solution by creating modified Output-Error and Box-Jenkins
models were proposed in a paper by Urban Forssell and Lennart Ljung, [4], in year
2000.

Besides, the above mentioned papers some of the problems with closed-loop
identification and how they affect earlier algorithms are described in Lennart Ljung
and Tomas McKelvey’s paper of 1996, [5].

In addition to all the earlier work made in the general area of closed-loop system
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Figure 1.2. Logged data on the CAN-bus during tests with a Scania 144L truck. The
transmission speed (dashed) and the wheel speed (dash- dotted) are scaled to engine speed
in solid. The differences in speed indicates torsional effects in the driveline. Courtesy
Eriksson and Nielsen, [3].



4 Introduction

Figure 1.3. The model fit of the Quanser physical model when the system is fed with
a random input signal. θm through θ3 are the measured angles. For a perfect fit the
simulated curve should match the measured angle and the fit value should be 100%. The
negative fit obtained here indicates that the model is a worse approximation than the
average value.
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identification, there has been some work done for the specific torsion system used
in this thesis. The torsion system is supplied by Quanser who also has made a
linear physical state-space model of the system. The supplied model is however far
from satisfactory. As can be seen in figure 1.3, the Quanser model has a very poor
fit to measured data. θm through θ3 are the system outputs and are illustrated in
figure 2.2. An explanation of the fit values is found in section 4.4.1. In short, the
higher fit value the better and 100% is a perfect fit.

Furthermore, the torsion system hardware and software interface have already
been setup together with an LQ and a PID controller. However, the PID controller
seems to be the only controller capable of keeping the system stable.

At last, much of the practical programming has made extensive use of MATLAB
and its Systems Identification Toolbox, which comes with plenty of useful system
identification functions. For documentation concerning the toolbox it is referred
to MathWorks homepage, [7].

1.3 Outline
In chapter 2 the torsion system is introduced together with the Quanser physical
model and observed nonlinearities. Followed by chapter 3 that presents the differ-
ent identification algorithms that have been used in this thesis. In addition their
advantages and drawbacks are discussed. Exactly how to apply these algorithms
and how to determine all necessary parameters are outlined in chapter 4 and the
results are presented in chapter 5. The results are discussed and summarized in
chapter 6 and the thesis is ended with some possible ways to continue on the work
done in this thesis.





Chapter 2

Torsion System

In this chapter the torsion system from Quanser will be presented, what parts it
consist of, how it is controlled and the signals that can be measured. Then the
model of the torsion system will be described, starting with the linear model given
by Quanser and continuing with discussion of the nonlinearities in the system,
some of which have been dealt with and some of which have only been observed.

2.1 Physical System
The lab equipment will here be briefly explained, for further reading see the
Quanser Manual [6]. Also see appendix A for table of system constants.

The torsion system consists of one rotary DC motor and three rotary torsion
modules as can be seen in figure 2.1. The DC motor (SRV03) is the actuator of the
system and its angle can also be measured by an optical sensor. The motor has
two slipring encoders, however they are not in use during these experiments. The
motor is connected to the first rotational load via a flexible coupling. Subsequently
the first rotational load is flexibly coupled to the second load that in turn is flexibly
coupled to the third load. The actual load in a rotary torsion module is created by
putting two masses on a support bar attached to the rotary axle. The masses can
be placed at two different anchor points on the support bar and thereby increase
or decrease the inertia of the torsion module. Throughout this thesis the modules
will be set to the smallest inertia, unless otherwise stated. The position (angle) of
all three loads can be measured using optical sensors.

2.1.1 Hardware Interface
An ordinary PC is connected to a Q8 Hardware-In-the-Loop (HIL) board that
receives angular measurements from the torsion system and forwards the control
signal to the Quanser PWM Current Amplifier Package (AMPAQ). The AMPAQ
converts the control signal into a current, which is fed into the SRV03. The applied
control signal is also measured and send back to the Q8 HIL. All necessary AD/DA

7



8 Torsion System

Figure 2.1. The torsion system without cabling. To the left the DC motor is housed
inside the black box. Outside the black box are the slipring encoders seen, followed by
the three torsion modules. The blank metal nobs on the torsion modules are the weights
that can be set to two different positions. Here in the wide position.

conversions between sensors, actuators and computer are taken care of by the Q8
HIL.

2.1.2 Software Interface

The controller PC has to be equipped with MATLAB/Simulink, Real-Time Work-
shop and the Quanser WinCon software. The communication is then simply han-
dled by special Simulink blocks in the Quanser toolbox. Constants in the Simulink
block diagram and MATLAB workspace can be modified in real time.

2.2 Quanser Physical Model

The model given by Quanser is a linear state-space model, which has been derived
from the first principals. It is originally presented in the Quanser Manual [6]
and is also brought forward in this section. The model is based upon Newton’s
second law with inertia and viscous friction (proportional to speed) for the motor
as well as for all the loads. Moreover springs are used to model the effect of
the flexible couplings. This is all very similar to the torsion system (driveline)
model presented in [3]. The motor is assumed to produce a torque proportional
to the current through it. A sketch of the system can be seen in figure 2.2 and
nomenclature can be found in table 2.1. The just mentioned modeling approach
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Figure 2.2. A sketch of the principe of the system.

can be expressed in equations as,

Jθ̈ =
∑

T (2.1a)

Tfriction = −Bθ̇ (2.1b)
Tcoupling = −k ∆θ (2.1c)

Tm = ktIm (2.1d)

Let index m denote the motor and indexes 1,2 and 3 the first, second and third
rotational load counted from the motor. Choose the states to angular positions
and velocities, then the state vector can be written as,

x =
[
θm θ1 θ2 θ3 θ̇m θ̇1 θ̇2 θ̇3

]T (2.2)

and with the input u = Im the state-space equations follow.

ẋ = Ax+Bu
y = Cx

(2.3)
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where,

A =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−km,1Jm
km,1
Jm

0 0 −BmJm 0 0 0
km,1
J1

−km,1+k1,2
J1

k1,2
J1

0 0 −B1
J1

0 0
0 k1,2

J2
−k1,2+k2,3

J2

k2,3
J2

0 0 −B2
J2

0
0 0 k2,3

J3
−k2,3
J3

0 0 0 −B3
J3



B =



0
0
0
0
Kt
Jm
0
0
0


C =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


(2.4)

2.3 Nonlinearities
As with all physical systems also this torsion system contains nonlinearities that
make life hard for engineers. In this section the observed nonlinearities will be
described. Most nonlinearities and their effects have only been observed, not
modeled in any way, and are brought up just to bring more understanding of the
system and why it can be hard to fit a linear model to it.

2.3.1 Simulink Control Signal vs Real Input
The control signal that Simulink feeds into the AMPAQ controls the current.
However it is not equal to the current fed to the motor. An ampere meter has been
connected in between the SRV03 motor and the power cord in order to measure
the motor current. The result indicates that the current can be expressed as an
linear function of the control signal. This has been done using the least-square
method, which can be seen in figure 2.3. The points of measurement have been
concentrated around small control signals to reduce wear on the system, hence
using a large control signal, for a time period long enough to get a reading, will
result in very high rotational speed and vibrations. However a few measurements
have been made with larger control signals to confirm the linearity.
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Symbol Description Units

Im SRV03 Motor Current A
Kt SRV03 Torque Constant Nm/A
Tm Torque Produced by SRV03 Nm
θm SRV03 Angular Position rad
θ̇m SRV03 Angular Velocity rad/s
Jm SRV03 Moment of Inertia kgm2

Bm SRV03 Viscous Damping Coefficient Nms/rad
km,1 Stiffness For the Flexible Coupling Between SRV03

and First Rotational Load
Nm/rad

θ1 First Rotational Load Angular Position rad
θ̇1 First Rotational Load Angular Velocity rad/s
J1 First Rotational Load Moment of Inertia kgm2

B1 First Rotational Load Viscous Damping Coefficient Nms/rad
k1,2 Stiffness For the Flexible Coupling Between First

and Second Rotational Load
Nm/rad

θ2 Second Rotational Load Angular Position rad
θ̇2 Second Rotational Load Angular Velocity rad/s
J2 Second Rotational Load Moment of Inertia kgm2

B2 Second Rotational Load Viscous Damping Coeffi-
cient

Nms/rad

k2,3 Stiffness For the Flexible Coupling Between Second
and Third Rotational Load

Nm/rad

θ3 Third Rotational Load Angular Position rad
θ̇3 Third Rotational Load Angular Velocity rad/s
J3 Third Rotational Load Moment of Inertia kgm2

B3 Third Rotational Load Viscous Damping Coefficient Nms/rad

Table 2.1. Nomenclature
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Figure 2.3. Measurement and model of the relation between control signal and motor
current

Furthermore it is worth mentioning that the current measurement, available
from the AMPAQ, matches the Simulink control signal, not the motor current
measured with the ampere meter. In addition the AMPAQ measurement seems
noisy in comparison with both the Simulink control signal and the measurement
from the Amperemeter.

2.3.2 Coulomb Friction
As common with friction, the static coefficient of friction is higher than the kinetic
coefficient of friction. This property of the torsion system has been observed but
not modeled. This can be observed through feeding the system with an input
(torque) too small to get the system in motion. Then the system is put in motion
by applying an external force (poking) on one of the loads. Instead of stopping
due to friction the system starts to accelerate since the dynamic friction coefficient
is lower than the static coefficient.

2.3.3 Asymmetric Sliprings
On the output shaft of the SRV03 motor, two slipring encoders are attached. These
are both attached on the same side of the slipring, creating an asymmetry. It has
been observed that the system prefers to stop with the encoder in a downward
position, see figure 2.4. It has also been observed that greater magnitudes of torque
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Figure 2.4. The slipring encoders in downward position

are required to get the motor moving if started with the encoders in downward
position compared to the upwards position. The angle of the downward position
depends on the start position since the start position always is angle zero.

There has been no modeling attempt of this nonlinearity.

2.3.4 Motor/load slip
At large steps in torque there is a slip between the motor and the first torsional
load that results in an angular difference. This difference will only be changed if
another slip occurs. No modeling attempt of this nonlinearity has been made as
those large torque steps do not occur during normal mode of operation.

2.3.5 Saturations
Voltage Saturation

There is a voltage saturation in the motor that occurs at ±23 V. The limit has
been obtained experimentally by repeatedly reaching the limit with various control
signals of various amplitudes. When the voltage is saturated it affects the current,
it can no longer follow the control signal as described in section 2.3.1. However the
voltage does not reach the saturation without great rotational speed of the loads.
This can be realized through recalling that voltage and current in the electrical
domain roughly converts into rotational velocity and torque, respectively, in the
mechanical domain. Thus if the voltage is high the rotational speed has to be high
too.

In a system meant for position control the loads go from stand still to stand
still and do not have time to reach very high speeds. Therefore there is no need
to model the voltage saturation as it will never be reached.
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Other Saturations

There are limits for the current and power in both the amplifier and motor, see
appendix A.



Chapter 3

Identification Algorithms

To identify the torsion system a set of different algorithms have been used. They
are all introduced in this chapter but, firstly there will be a brief discussion about
some system properties and how they affect the choice of algorithm. The applica-
tion and evaluation of the algorithms are left to the following chapters.

3.1 Stability and Closed Loop
The first thing that has to be realized about the system, from input current to
output angle, is that it is only marginally stable. This can be realized through
recalling that the control signal is current, which corresponds to the motor output
torque, while the output of the torsion system is position. A limited constant
input (torque) will, when Newton’s second equation is in equilibrium, result in a
terminal velocity e.g. an ever growing output (angular position) and hence the
system is not stable. This shows up as the pure integrations in the state-space
model presented in section 2.2.

Since the system is unstable, care has to be taken while collecting open-loop
identification data. There is no guarantee that the system will stay stable for a
random signal. Therefore identification from a closed-loop system is of high inter-
est, in addition this automatically keeps the control signal within the operating
range of interest. However there are a few problems with system identification of
closed-loop systems (see [5] or [8]). On one hand, direct identification, treating
the data as open-loop data, might not give accurate results, while on the other
hand, indirect identification is more complicated.

3.2 Prediction Error Method
The Prediction Error Method (PEM) is the classical method within system iden-
tification. It has the advantage of being able to use the structure of an existing
model and only estimate the values of user decided parameters. This way the
physical understanding of the model is kept while the parameters are tuned to

15



16 Identification Algorithms

correct values or to compensate for non modeled effects. The drawbacks are that
it needs a good initial model to converge to a "correct" model. PEM is an iterative
optimization algorithm and can get stuck on local minimum, [1]. Furthermore its
predictors will become unstable if the system is unstable and sometimes even if
the system is just close to unstable, [4]. Moreover, to adopt PEM to closed-loop
identification, it requires a complete noise model, [5]. As a consequence PEM will
only be used for direct identification.

One known way to use PEM is to start by making an initial model with an
other identification algorithm and then enhance it with PEM. The upside with
this is that PEM for certain gets a good initial model and compared to using only
the other algorithm the result is improved. This other algorithm can be any of the
other algorithms presented in this chapter. Moreover those algorithms produce
black-box models and therefore it will be open for PEM to refine all parameters,
in contrast to when PEM is used to reparameterize the Quanser model. Then all
parameters will not be open to change. The parameters, in equation 2.4, with a
value of either 0 or 1 will keep their value as they define the model structure, with
exception for the noise model that is estimated as a black-box model.

The PEM implementation used in this thesis is the one available in the System
Identification Toolbox in MATLAB, [7], through the command pem.

3.3 Numerical Algorithms for Subspace State Space
System Identification

Numerical Algorithms for Subspace State Space System Identification (N4SID1)
begins with estimating the state vector and from there the state-space matrices
are calculated using least-square methods. This makes N4SID convergent at all
times and numerically efficient, especially for MIMO systems, which is good as
the torsion system is of SIMO type. On the other hand N4SID does not solve
an optimization problem and therefore the obtained model is not necessarily an
optimal solution. Moreover the major drawback with N4SID is that it requires
the input signal to be uncorrelated with the noise, so it might not work when
the system is subjected to feedback as the noise is fed back to the control signal
through the controller. Nevertheless, N4SID does not need an initial model and
will result in a black-box state-space model. The order of the model is a trade off
between using all non-zero singular values and and keeping the order of the model
low. For further reading see, for example, [5] and [10].

The implementation in use in this thesis is the n4sid command available in
the System Identification Toolbox in MATLAB .

3.4 closed-loop Identification Algorithm
There are several methods available for closed-loop indirect identification. As
mentioned above, PEM will only be used for direct identification and therefore a

1Read; Enforce it.
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subspace method reworked for closed-loop identification will be used. A summary
of earlier work that result in a general framework for subspace closed-loop iden-
tification can be found in [12]. This Van Overschee and De Moor Algorithm will
be referred to as VODMA throughout this report. It is general from the point of
view that if the controller is set to zero the indirect algorithm reduces to the direct
N4SID. In addition VODMA has very few limitations.

Actually three different algorithms are presented in [12] and the first has been
used in this thesis, because it was evaluated as the best in [12].

There will now follow a brief description of the algorithm, merely enough to
implement it in MATLAB , see [12] for more detail.

3.4.1 Notation
The input is denoted by uk ∈ Rm, the output by yk ∈ Rl and the reference signal
by rk ∈ Rm. In the case examined in this thesis m = 1 and l = 4. The plant to
be identified is characterized by the state-space equations,

xk+1 = Axk +Buk + wk

yk = Cxk +Duk + vk
(3.1)

where A is an n×n-matrix while wk and vk are white noise disturbances. The ma-
trices B, C and D all have dimensions that are consistent with the other variables.
In a similar fashion the controller equations are,

xck+1 = Acx
c
k +Bcyk

uk = rk − Ccxck −Dcyk
(3.2)

where Ac is an nc × nc-matrix and the other matrices have dimensions that are
consistent with the other variables.

The constant j, which should have a large value, is calculated from,

j + 2i− 1 = number of data points (3.3)

where i is user defined and should be larger than the number of states in the plant.
The gathered data used in the algorithm is represented in a block Hankel matrix
as shown here,

U0|i−1 =


u0 u1 u2 · · · uj−1
u1 u2 u3 · · · uj
...

...
... . . . ...

ui−1 ui ui+1 · · · ui+j−2

 ∈ Rmi×j (3.4)

the matrix Y0|i−1 is defined in the same way. The controller information is stacked
in a lower triangular block-Toeplitz matrix,

Hci =


Dc 0 · · · 0
CcBc Dc · · · 0

...
... . . . ...

CcA
i−2
c Bc CcA

i−3
c Bc · · · Dc

 ∈ Rmi×li (3.5)
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It is also practical to use the following data matrix,

Mp|q = Up|q +Hcq−p+1Yp|q (3.6)

where 0 ≤ p ≤ q ≤ 2i− 1.
The algorithm is based upon two projections. In both cases A,B and C are

matrices with equal number of columns. The orthogonal projection,

A/B = ABT (BBT )†B/j2 (3.7)

and the oblique projection,

A/BC = A
(
CT BT

)(CCT CBT

BCT BBT
)†(

Ic
0

)
C/j2 (3.8)

where Ic is an identity matrix with the same number of rows as the C matrix.

3.4.2 LQ-decomposition
As recommended in [12] the data matrix,

H =
(
U0|2i−1
Y0|2i−1

)
(3.9)

should be LQ-decomposed and not used directly in order to obtain a data re-
duction. This is not only wise but also necessary for MATLAB to handle the
calculations. LQ-decomposition means the decomposition of matrix A into lower
triangular matrix L and unitary matrix Q (i.e. QQT = I and QTQ = I) so that
L ∗Q = A. The LQ-decomposition can be obtained from QR-decomposition (R is
an upper triangular matrix) of AT , which is easily calculated in MATLAB using
the qr command. Consider the following,

L ∗QLQ = A = (AT )T = (QQR ∗R)T = RT ∗QTQR (3.10)

and hence the transpose of an upper triangular matrix becomes a lower triangular
matrix the LQ-decomposition is simply obtained via,

L = RT

QLQ = QTQR
(3.11)

The H matrix, which contains all the data and is of the size 2(m + l)i × j, is
subjected to the LQ-decomposition. The resulting Q matrix will not be needed
in the final expressions while the L matrix will have the mere size of 2(m+ l)i×
2(m+ l)i. This is a remarkable data reduction since 2(m+ l)i ≈ 100 in comparison
with the large, at least 104, value of j. To easier derive the new equations that
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take use of the LQ-decomposition, the following notation will be used,

j
mi
m

m(i− 1)
li
l

l(i− 1)


U0|i−1
Ui|i

Ui+1|2i−1
Y0|i−1
Yi|i

Yi+1|2i−1


︸ ︷︷ ︸

H

=

mi m m(i− 1) li l l(i− 1)
L11
L21
L31
L41
L51
L61

0
L22
L32
L42
L52
L62

0
0
L33
L43
L53
L63

0
0
0
L44
L54
L64

0
0
0
0
L55
L65

0
0
0
0
0
L66



j
Q1
Q2
Q3
Q4
Q5
Q6


(3.12)

and in addition, let L32:44 denotes the submatrix
(
L32 L33 0
L42 L43 L44

)
of L. With

this notation Mi|2i−1 can be expressed as,

Mi|2i−1 =
(

0 I 0 0 Hci0 0 I 0

)
∗ LQ (3.13)

Before proceeding with the derivation of new equations in the next section, please
note that the unitary property of Q also holds for Qx since,

Q ∗QT =


Q1
Q2
Q3
Q4
Q5
Q6

 ∗
(
QT1 QT2 QT3 QT4 QT5 QT6

)
=

=


Q1 ∗QT1 Q1 ∗QT2 Q1 ∗QT3 Q1 ∗QT4 Q1 ∗QT5 Q1 ∗QT6
Q2 ∗QT1 Q2 ∗QT2 Q2 ∗QT3 Q2 ∗QT4 Q2 ∗QT5 Q2 ∗QT6
Q3 ∗QT1 Q3 ∗QT2 Q3 ∗QT3 Q3 ∗QT4 Q3 ∗QT5 Q3 ∗QT6
Q4 ∗QT1 Q4 ∗QT2 Q4 ∗QT3 Q4 ∗QT4 Q4 ∗QT5 Q4 ∗QT6
Q5 ∗QT1 Q5 ∗QT2 Q5 ∗QT3 Q5 ∗QT4 Q5 ∗QT5 Q5 ∗QT6
Q6 ∗QT1 Q6 ∗QT2 Q6 ∗QT3 Q6 ∗QT4 Q6 ∗QT5 Q6 ∗QT6

 =

=


I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 (3.14)

where the last equality comes from the unitary property of Q. From this it can be
concluded that,

Qp ∗Qq =
{
I if p = q

0 otherwise
(3.15)
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3.4.3 Algorithm

Next after the LQ-decomposition the first step of the algorithm is to calculate the
orthogonal projections, Zi and Zi+1, together with the oblique projection, Oi.

Zi ≡ Yi|2i−1/

 U0|i−1
Y0|i−1
Mi|2i−1

 = L51:66Q/



F1︷ ︸︸ ︷
I 0 0 0 0 0
0 0 0 I 0 0
0 I 0 0 Hci0 0 I 0

LQ


=

= L51:66Q(F1LQ)T
[
F1LQ(F1LQ)T

]†
F1LQ/j

2 =

= L51:66QQ
TLTFT1

[
F1LQQ

TLTFT1
]†
F1LQ/j

2 =

= L51:66(F1L)T
[
F1L(F1L)T

]†
F1LQ/j

2 (3.16)

Zi+1 ≡ Yi+1|2i−1/

 U0|i
Y0|i

Mi+1|2i−1

 =

= L61:66Q/



F2︷ ︸︸ ︷
I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 I 0 0 0 Hci−1

LQ


=

= / In the same manner as equation 3.16 / =

= L61:66(F2L)T
[
F2L(F2L)T

]†
F2LQ/j

2 (3.17)
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Oi ≡ Yi|2i−1/Mi|2i−1

(
U0|i−1
Y0|i−1

)
=

= L51:66Q/(0 I 0 0
Hci0 0 I 0

)
︸ ︷︷ ︸

F4

LQ


F3︷ ︸︸ ︷(

I 0 0 0
0 0 0 I

)
L11:44Q1:4

 =

= L51:66Q
[
(F3L11:44Q1:4)T (F4LQ)T

]
[
F3L11:44(F3L11:44)T F3L11:44(F4L11:64)T
F4L11:64(F3L11:44)T F4L(F4L)T

]† [
F3L11:44Q1:4

0

]
/j2 =

=
[
L51:64(F3L11:44)T L51:66(F4L)T

]
[
F3L11:44(F3L11:44)T F3L11:44(F4L11:64)T
F4L11:64(F3L11:44)T F4L(F4L)T

]† [
F3L11:44Q1:4

0

]
/j2 (3.18)

The second step is to calculate the Singular Value Decomposition (SVD) of
the oblique projection, Oi = USV T . As stated in [10], the SVD can be calculated
without the trailing Q1:4 in expression 3.18. It will not affect the U and S matrices
that are the ones of interest. After the SVD has been carried out the following
partition of the matrices is obtained.

Oi =
(
U1 U2

)(S1 0
0 0

)(
V T1
V T2

)
(3.19)

where S1 in theory contains all the non-zero singular values along the diagonal.
However in practise it only contains the relatively large singular values, hence the
length of the diagonal decides the number of states, which is desired to be kept
low. This is a point at which the user has to make a trade off. The next step is to
calculate G = U1S

1/2
1 and then K by solving the equation,

UT2 Zi = UT2 KMi|2i−1 (3.20)

The (scalar) equation system can be multiplied by QT from the right in order to
get rid of the Q matrices in 3.13 and 3.16. This leads to a significant decrease
in the number of equations. Moreover this is where MATLAB might get stuck
because of the otherwise too large equation system.

In order to solve the equation system, without the need of calculating M†i|2i−1
that might be ill-conditioned, it is suggested in [12] to use the following theorem.

If ⊗ denotes the Kronecker product and vec(A) the vectorization of A, i.e.
stacking all of A’s columns on top of each other, the following holds true.

vec(AXB) = (BT ⊗A)vec(X) (3.21)

Applied to equation 3.20 together with the multiplication of QT the resulting
equation system is,

vec(UT2 ZiQT ) =
(
(Mi|2i−1Q

T )T ⊗ UT2
)
vec(K) (3.22)
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In the next step it is time to determine the states and this is done as follows

X̂i = G†
[
Zi −KMi|2i−1

]
X̂i+1 = G†

[
Zi+1 −K|Mi+1|2i−1

] (3.23)

where G means G without the last block row and K| means K without the last
block row and block column. It is wise to calculate X̂iQT and X̂i+1Q

T instead
of X̂i and X̂i+1, as the matrices are kept smaller and not needed explicitly if the
next equation also is multiplied by QT .

Go on by solving for S (and the residuals T ) from the subsequent set of equa-
tions. (

X̂i+1
Yi|i

)
=
(
S11 S12
S21 S22

)(
X̂i
Mi|i

)
+ T (3.24)

where Mi|i = Ui|i+DcYi|i. This equation might as well be multiplied by QT from
the right, to reduce the sizes of the matrices.

Finally, to obtain the state-space matrices,

B = S12(Im −DcS22)−1

D = S22(Im −DcS22)−1

A = S11 +BDcS21

C = (Il +DDc)−1S21

(3.25)



Chapter 4

Experiment Setup and
Identification Process

In order to identify the system a number of experiments have to be performed
for the data acquisition. For each experiment an input signal has to prepared.
If the system needs feedback a controller has to be chosen too. The available
measurements are controller input and output, system input and output, in other
words, reference signal, control signal, measured control signal and all four angles.
The control signal and the measured control signal can differ because of saturations
and noise.

After acquiring the data it has to be checked for errors, an identification algo-
rithm chosen as well as the number of states/initial model and sample time. In
addition for VODMA there is a design variable i that has to be chosen.

It is quite common that the measurements are out of bounds in the beginning,
probably because sensors and computer are not perfectly timed and it therefore
takes some time to synchronize. There is a similar phenomenon when the system is
shutting down at the end of a measurement series. This has not been investigated
as the problem is easily solved by omitting the first and last second of measurement.

The sample time during measurement is always 0.001 s, well below the time
constants of the system. However when the data is used for identification it should
be down sampled to heavily reduce the computational time. The effects of this
can be read about in section 5.6.

In this chapter, only a few results will be presented. The focus is instead at
the identification methodology and data acquisition. How have the experiments
been carried out and why? Which are the different settings that have been tested?
The actual result will be presented in its own designated chapter, see chapter 5.

4.1 Input Signal
For successful system identification a well made input signal is of high importance.
The algorithms in use in this thesis are made for random signals that are ranging

23
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over the entire frequency band of interest. The input signals should be random
to lessen the impact of the noise and cover all the frequencies so all aspects of
the system are excited. To create the random signals the idinput MATLAB
command has been used. It has been used to create both Random Gaussian
Signals (RGS) and Pseudo-Random Binary Signals (PRBS).

With some reasoning around the system and its properties a couple of bench-
mark signals have been made. These benchmark signals have later on been ad-
justed in both frequency and magnitude in order to obtain the best model. How-
ever as benchmark signals they will still be used to describe the new signals. For
instance, "The new signal has 80% magnitude." where it is implied that it means
". . . 80% of the magnitude of the benchmark signal."

As benchmark the reference signals are made to contain frequencies between
0-10 Hz and values alternating between ±36◦, for the PRBS, or have two standard
deviations in between ±60◦, for the RGS. When conducting experiments on the
open-loop system the maximum frequency can be doubled as the control signal
varies faster than the reference signal. The magnitude should be divided by 60◦
(input now without unit) to end up on a more reasonable level. The frequency
range has been experimentally obtained as (around) the highest one the system is
able to respond to. The reference signal magnitude range is chosen as the largest
range that does not saturate the control signal, see section 4.3.2 for explanation of
the saturation. Despite the approach for the closed-loop case, the control-signal
range for open loop is kept fairly small compared to the saturation limit to avoid
unstability. This is due to the fact that a directly applied RGS or PRBS has no
sharp peaks and therefore causes trouble at high magnitudes. On the contrary,
when the system is subjected to feedback, the control signal can peak and give
high values for very short periods .

The signals are made 80 s in length for the 0-10 Hz range and the length
is inversely proportional against the frequency scaling. One signal can be used
for identification and a completely different signal for validation. Although it is
possible to split the signal in two and only use half for identification and half
for validation, without any noticeable loss in accuracy. The latter approach has
mostly been used throughout the thesis.

4.2 Nonlinear Compensation

There is one of the nonlinearities that is known, namely the offset in input signal.
Moreover it can be modeled with great accuracy as described in section 2.3.1.
Since it can be modeled it also can be compensated for. This is done by applying
the inverse model before the control signal is fed into the system and by doing so
the nonlinear compensation together with the real system becomes (more) linear,
hence the control signal can be seen as the actual motor current. Experiments
have been conducted both with and without this linearization.

If u denotes the control signal fed into the real system and ũ the control signal
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before linearization, the inverse of the linear function found in figure 2.3 becomes,

u = ũ− 0.0397
2.44 (4.1)

4.3 Controller and Saturation
Some experiments have been carried out under feedback. The controller that has
been used is a PID controller, made by earlier users. It was simply an already exist-
ing well working controller. For identification purposes there are no requirements
on reference tracking, robustness, etc. Just keep the system stable. Therefore no
time has been spent controller design.

4.3.1 PID controller
The PID controller implemented for use with the torsion system has a modified
D-part. It only depends on the system output, not the error that is formed as
the difference between reference and output signal. The controller equation can
be seen in equation 4.2 and the used parameter values are found in table 4.1.
Experiments have been carried out where various parts of the controller have been
removed. The only alternative that resulted in a sufficient controller was the PD
controller.

u = Kp(r − y) +Ki

∫
(r − y) dt−Kd

dy
dt (4.2)

Parameter Value
Kp 8.3867
Ki 0.3255
Kd 0.8

Table 4.1. Controller parameters. The parameters are calculated from a MATLAB script
supplied with the system and have been rounded in the table

4.3.2 Control Signal Saturation
There is a saturation of ±2.95 for the controller in order to avoid damaging the
system. The saturation limits can also be found in the Quanser manual. This
saturation has not been tampered with since it exist for safety reasons.

4.4 Identification Process
For the identification purpose there are mainly three algorithms to disposal, PEM,
N4SID, VODMA. As stated in section 3.2, PEM will be used with different initial
models, the Quanser model as well as the resulting models from the subspace
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methods. However sometimes VODMA result in an unstable model which can
not be enhanced with PEM, in this case no enhancement will be made, naturally.
Furthermore VODMA will be tried out through direct identification, i.e. setting
the controller equations equal to zero inside the algorithm. This was from the
beginning done to verify the function of VODMA but proved interesting in other
ways too.

To summarize there are seven different ways of applying the algorithms, VODMA
and PEM, only VODMA, VODMA simplified to Direct Identification (DI) and en-
hanced with PEM, only VODMA DI, N4SID and PEM, N4SID and lastly PEM
using the Quanser model as initial model.

4.4.1 Model Fit
To compare different identification experiments with each other and being able to
rank the resulting models, some kind of quality measure is required. Extensive
use has been made of the Systems Identification toolbox in MATLAB that in turn
uses the so called fit value. The fit value is calculated by

FIT = 1− ||ŷ − y||2
||y − ȳ||2

(4.3)

where y is a vector containing all the samples from one measured output (e.g.
θm), ŷ the simulated output and ȳ the average of y. With this definition 100% fit
means a perfect fit and 0% fit corresponds to the fit obtained by simply using the
average value as model, ŷ = ȳ. Note that every measured output get a separate
fit value. When needed to weight them together the average has been used.

4.4.2 Identification Algorithm Verification
To verify that the identification algorithms are working properly they have been
tested with data created from simulation. It is the Quanser model that has been
simulated when subjected to the same input as in some of the real-life experi-
ments. A bandwidth limited white noise has been added to all the outputs. The
amplitudes range from ±4◦, a considerably amount of noise. There have been
simulations of as well open-loop as closed-loop system, where the closed loop has
been constructed with the same PD controller used in real life.

No results from the algorithm verification will be presented in the results chap-
ter (5), instead they are found in Appendix B. In summary, all the algorithms pass
the test with fit values around 90%. This is sufficient considering that the noise
can cause the fit for the true model to drop some 10%. Also worth mentioning is
that a significant drop in fit occurs if the input is saturated. Saturation should be
avoided, even in small doses.

4.4.3 Input Determination
Without good input the identification is useless. Due to this fact different inputs
are tested before parameters in the algorithms are fine tuned. However, the param-
eters need to be assigned some values for it to be possible to run the algorithms.
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A few quick experiments together with some reasoning can sort this matter out.
The physical model indicates that the system would have eight states, adding one
state for some unmodeled dynamics and nine states it is. Experiments can also
confirm, via the singular values, that it is plausible with nine states. Letting the
sample time be 0.01 s has proved good results and i is set to 28, clearly higher
than the number of states.

The first thing to answer is whether open-loop identification is possible to use,
start with the simplest thing first and perhaps the next step is not necessary.
Secondly the linearization is validated, it should be tested early since it has good
precision and removing a nonlinearity is a huge advantage when working with
linear methods. Thirdly the type of signal should be determined, starting with
RGS or PRBS, hence it is the most characteristic signal property.

Now the major choices have been made and fine tuning is up next for the input.
It is wise to start by tuning the frequency since it is the easiest to check. It should
be as high as possible to excite every frequency response of the system but not
contain frequencies too high for the system to respond to. The benchmark signal
is already set in such way that an increase is bad, although a decrease might help.
Therefore the frequency is lowered until worse results are obtained. Continue the
evaluation by changing the input magnitude and lastly, the controller (if closed
loop).

4.4.4 Parameter Determination
As the input has been tuned, the algorithms should too. A good beginning is to
set the sample time hence it is a property that depends on the system, data and
algorithm. When the sample time has been found the number of states and value
of i can be varied. These three algorithm parameters are harder to assign a best
value to than the signal properties, since they are a trade off between on one hand,
model complexity and computational time, and on the other hand, precision.





Chapter 5

Experimental Results

This chapter will follow the identification process outlined in section 4.4. Since the
identification process has already been outlined no further discussion about the
process will follow, merely establish which result is proven best and continue there-
after. It is recommended that the reader is familiar with the chosen identification
process before proceeding with this chapter.

The results are presented in tables throughout the chapter. In these tables a
cross, ’x’, represents a poor fit value, less then 0%. A bar, ’-’, indicates that no
data is available for that certain post. Moreover some charts will be presented in
order to demonstrate different fit values. They consist of four graphs, each showing
the data and simulated value for one output, with the fit values right next to them.

All experiments have been conducted with one data set for identification and
one separate set for validation. If not otherwise stated, the identification set and
validation set comes from different parts of the same input signal. Throughout
the chapter all the presented fit values are from validation, hence it is validation
that indicates how good the model will work when simulating with a new input.

In the underlying experiments to this chapter the masses in the torsion modules
are all set to the narrow distance. The masses have later on, in additional experi-
ments, been set to the wide distance but those results are found in appendix C

5.1 Open Loop or Closed Loop
An RGS is applied to the open-loop system and as a result it drifts away to
large outputs, see figure 5.1, compared to those of interest that are clearly within
±90◦ (≈ 1.5 rad). To change the input to a better signal is not trivial. Lowering
the frequency makes the drift worse or even unstable while increasing the frequency
makes the torsion system shudder. Open-loop identification has to be dismissed
due to the instability of the system.

When the RGS instead is applied to the closed-loop system it indicates a po-
tential of identifying the system even though it has to be processed further. In
figure 5.2 the result from direct identification with VODMA enhanced with PEM is
shown and in figure 5.3 it can be confirmed that the control signal is not saturated.
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Figure 5.1. Open-loop experiment with RGS input. The four angles have been plotted
on top of each other. They are too close to each other to tell apart. Nonetheless, the
important observation is in the magnitudes. The angles are pending between ±20 rad,
approximately 1200◦ or three complete rotations, far from the operating range. This
demonstrates the problem with open-loop identification.

Figure 5.2. Fit obtained from closed-loop experiment with RGS input and model esti-
mated with direct identification VODMA enhanced with PEM. The fit is descent which
suggests that it is feasible to identify a satisfactory model when the system subjected to
feedback.
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Figure 5.3. The Simulink control signal and measured control signal from the closed-
loop experiment. There are no saturations in the control signal. The negative peak
that can be seen after 35 s is in measured control signal, which is measured after the
saturation.

5.2 Nonlinear Compensation
The nonlinear compensation has strong roots in theory and, according to sec-
tion 2.3.1, the nonlinearity is well known. It is quite expected that it improves the
fit as a more linear system is subject to the linear system identification algorithms.
The fit values of the RGS, both with and without linearization, can be found in
table 5.1.

5.3 Signal Type and Frequency
A PRBS is set against the RGS in various tests. All the results can be found
in table 5.1. Both signals (unmodified) have approximately the same frequency
spectra and are very close to amplitude saturation, see figure 5.4, consequently
the results are practically the same. Nevertheless, if the frequency of both signals
are decreased in steps, the PRBS with 80% frequency stands out as the winner.
Notice that the low frequency PRBSs have been scaled to 90% magnitude. This
is due to saturations in the control signal that occurs if there is no scaling. Even
lower frequencies are not of interest as the 67% frequency signal already reaches
steady state during the longer steps, see figure 5.5.

5.4 Magnitude of Input Signal
The magnitude has been altered in order to obtain the best fit, accordingly with
equation 4.3. It has already been decreased to 90% to avoid saturation but it
might give even better results if it is further decreased. Firstly it was decreased
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Figure 5.4. The actual signal and its power spectrum for both the RGS and the PRBS.
Neither of the signals saturate but they almost do. The frequency power spectrums are
highly similar with most of the power below 10 Hz.

Figure 5.5. During one of the longer pulses of the 67% frequency PRBS the system
reaches steady state.
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to 83% with slightly worse result. Secondly it was lowered to 20%, it is common
the systems behave more linearly at small magnitudes, but still with worse result.
Therefore the 90% magnitude was kept for future experiments. Results can be
found in table 5.1.

Figure 5.6. The identification has been performed with a 20% magnitude, 80% fre-
quency PRBS. Validation has been performed with both 20% and 90% magnitude. The
different validation plots for θ2 are shown above. The result is significantly better when
the amplitudes are equal during both identification and validation.

For the results in the table the validation and identification data come from
different parts of the same input. When the experiments with the large and small
magnitudes instead were validated against data from the other signal, results were
poor. The case when identification has been performed at small magnitudes can be
seen in figure 5.6. This could be due to the larger signal-to-noise ratio for smaller
signals or simply different system behavior at different magnitudes. A discussion
favoring the latter can be found in section 6.2.1. No matter what is the reason for
this phenomenon, the identification signal should be chosen with the controllers
desired operating range in mind.

5.5 Controller
Only two controller configurations have been tried out as removing the D part
of the controller makes the system oscillate too much and the control signal gets
saturated. The comparison between the PD and PID controller can be found in
table 5.1. The result favored the PID controller.

5.6 Sample Time
Various sample rates have been tried out. The nominal sample time of 0.01 s can
be increased to cut the computational time without significant losses in fit. The
fit values start to slide when the sample time is increased up to and beyond 0.06 s.
The other way around, if the sample time is decreased to 0.05 s an almost zero
improvement is obtained whereas the computational time is massively increased.
Results are found in figure 5.7 and 5.8.
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Figure 5.7. The average of the fit values over different sample times for different algo-
rithms. The algorithms start to drop in fit for sample times of 0.06 s or more.

Figure 5.8. The computational time over different sample times for different algorithms.
There is a clear correlation between low sample time and high computational time.
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Even though the sample time safely can be reduced it has not in continued
tests. This is in order to make new tests comparable with old tests. Since the
computational time is acceptable for the old sample time, there exists no real
drawback with keeping it.

5.7 Number of States

Figure 5.9. The average of the fit values over different number of states for different
algorithms. With exception for the irregularity at six states for VODMA, the fits level
out above five states. Only VODMA DI can handle two states. The PEM line (with
Quanser initial model) is constant as the number of states can not be set for the Quanser
model.

In theory the number of states can be determined from the singular values of
the system. In the ideal case the number of nonzero singular values equals the
number of states, but in practise this would make the number of states way too
high. Therefore some singular values have to be approximated to zero. Which
values to neglect can be chosen by examining a plot that shows the singular values
sorted in decreasing order.

The singular-value plot for the torsion system, figure 5.10, indicate that the
number of states is around five, hence the curve levels out after that. Exactly where
the curve levels out is a bit subjective, the plot could be interpreted differently.
In addition the plot looks slightly different for the different subspace methods.
Moreover it has been proven in appendix B that a singular-value plot does not
need to be correct. Furthermore the physical model indicates eight states, but it
clearly has some errors. Consequently the physical model is a bad indicator for
the number of states. Due to all the these reasons the algorithms have been swept
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Figure 5.10. Singular-value plot from direct identification VODMA. The experiment
setup is PRBS signal with 80% frequency and 90% magnitude. The singular values can
be neglected for more than five states hence the curve stabilizes.

from one state up to eleven states. The resulting average fits are presented in
figure 5.9.

As can be seen not much happens to the fit in the interval 5-11 states, in agree-
ment with the singular values. For some unknown reason the indirect identification
with VODMA does not work very well for six states. The PEM line is constant
as it uses the physical model where the number of states is fixed to eight. PEM
is merely included in the graph to get all identification algorithms together in one
graph. Yet another remark is that more states do not necessary increase the fit
values. With less than five states the effect of decreasing the number of states is
still limited. With three states all algorithms work fine while with two states no
algorithms are sufficient besides direct identification with VODMA and one state
simply will not do.

5.8 VODMA Parameter i

Not much has been said about how to choose the integer parameter i in the
VODMA. In [12] it is only stated that i should be greater than the number of
states. Different values of i have been tested at a high number of states, 9, and a
low number of states, 3. The parameter’s effect on the fit values can be found in
figure 5.11 and the effect on the computational time can be found in figure 5.12.
The fit values are quite steady when i is above six, at lower values the identification
collapses for nine states. Remarkably the collapse does not occur until i is 3, well
under nine.

As it comes down to the computational time, it steadily increases, as i increases.
This is owning to the fact that many matrices in VODMA are sized with i.
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Figure 5.11. The average of the fit values over different values of design parameter i.
The fits are stable above six and below they slowly decline for the threes states models
whereas for the six states models they do not plunge until threes states.

Figure 5.12. The computational time over different values of design parameter i. The
computational time steadily increases together with i.



5.9 Algorithm Comparison 39

VODMA + PEM VODMA VODMA DI + PEM
Average Fit [%] 77.10 68.13 75.76
Best No. Of Times 8 1 10

VODMA DI N4SID + PEM N4SID PEM
71.01 75.91 73.66 51.05
1 7 1 0

Table 5.2. The average of all the average fit values for each method together with the
number of times the method proved to be the best

5.9 Algorithm Comparison
In order to compare the different identification algorithms with each other the
averages of the average validation fits, throughout all the tests conducted, have
been studied. In addition it has been counted how many times an algorithm has
come out with the best validation from each experiment. The results have been
summarized in table 5.2.

It is a close call between the different algorithms but it can be said that en-
hancement with PEM gives an improvement. Moreover to use PEM with the
physical model is a major improvement compared to the physical model. Never-
theless the performance of PEM is significantly worse when the physical model is
used as initial model. When enhancing with PEM indirect identification VODMA
has a slightly higher average fit while direct identification gave the best fit more
times. Without PEM it is the other way around and N4SID is the most successful.
However none of the algorithms are outstanding.





Chapter 6

Discussion and Conclusions

In this chapter conclusions will be drawn from the results in the preceding chapter.
Which algorithm to use and why, how about the magnitudes, what is the resulting
model, how many states, use linearization or not and which experiment setup?
The chapter will be rounded off with some ideas about future work.

6.1 Identified Model
It has already been concluded in chapter 5 that closed-loop identification has to
be used due to that the plant is marginally stable. Furthermore there is no reason
to change the supplied PID controller as it gives adequate control over the system
without preventing identification. In addition the sample time, Ts, of 0.01 s and
a value of 28 for the VODMA parameter i are kept since they give good results
without a significant increase in computational time. Moreover the best fit is
obtained if the input is a PRBS with ±32.4◦ magnitude and a frequency range
of 0-8 Hz. Whether this magnitude is the best for identification will be discussed
later and below it will follow a more thorough reasoning concerning some other
possibilities that are worth more attention than the just mentioned ones.

6.1.1 Linearization
It is of great importance to apply the nonlinear compensation to the system as it
makes the system more linear by removing one of the nonlinearities. By considering
the linearization as a part of the system a linear model can be obtained for the
system. In further calculations on the system it can also be considered linear as
long as the linearization is kept, this is a huge advantage since most mathematical
tools are made for linear systems.

6.1.2 Number of States
To avoid unnecessary high computational times and give simpler results it is de-
sired to have the lowest possible system order that does not compromise the model

41
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fit too much. As shown in figure 5.9, there is hardly any reduction in fit down
until five states. Five is a quite low number and hence the recommended number
of states to use. That is for simulation, for controller design the model is not
required to be as accurate since a feedback controller usually has at least some
robustness against model errors. Therefore the recommendation is to try if the
two-state model is accurate enough for controller design.

6.1.3 Model
For the experiment described in section 6.1 N4SID with PEM yields the best fit.
The resulting equations follow beneath while graphs showing the fits can be found
in figure 6.1.

Figure 6.1. The fit values for the model of choice. A five state model estimated with
N4SID and enhanced with PEM.

y =
[
θm θ1 θ2 θ3

]T
e(t) is white noise

u is the simulink control signal

x(t+ Ts) = Ax(t) +Bũ(t) +Ke(t)
y(t) = Cx(t) +Dũ(t) + e(t)
ũ(t) = 2.44u(t) + 0.0397

A =


0.98625 −0.088859 0.018178 −0.011338 0.0060056
0.067406 0.99302 −0.095223 −0.069741 0.037538
0.18323 0.035865 0.71091 −0.37252 0.15316
−0.094799 0.16618 0.43111 0.93454 −0.14788
−0.0014655 −0.023699 −0.077026 0.16783 0.96445
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B =


−3.7319 ∗ 10−5

−0.00091545
0.0021908
−0.015816
0.0059062



C =


21.632 −0.53214 1.189 −0.27991 0.21151
22.159 −0.90058 0.36038 −0.28709 −0.31406
22.645 −1.4813 −0.66776 0.041256 −0.11099
22.762 −1.7469 −0.98825 0.19018 0.032384


D = 0

K =


0.037197 0.0063496 0.010479 0.01299
0.0441 −0.11378 −0.14457 −0.30301
0.69956 0.077472 −0.069649 −0.32686
−0.058394 −1.3051 0.55654 1.7211

3.1179 −2.2402 0.07179 0.33551


When estimating the two state model there is a clear advantage in using direct

identification VODMA with PEM enhancement. The equations become as follow,

y =
[
θm θ1 θ2 θ3

]T
e(t) is white noise

u is the simulink control signal

x(t+ Ts) = Ax(t) +Bũ(t)
y(t) = Cx(t) +Dũ(t) + e(t)
ũ(t) = 2.44u(t) + 0.0397

A =
(

1.0278 −0.053976
0.064834 0.9477

)
B =

(
−110.27
18.013

)

C =


−0.00013521 −0.00061628
−0.00013181 −0.00063565
−0.00012196 −0.00065227
−0.00011971 −0.00065568



D =


0.053703
0.023234
−0.023235
−0.039438


A set of models has also been calculated for the system when the torsion module

masses are set to the wide distance, these models and the accompanying results
are found in appendix C.
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6.2 Magnitude of Input Signal
In the chosen model an input magnitude of ±32.4◦ has been used, which is the
largest amplitude that does not saturate the control signal. However it has been
proven that the model agreement is worse at amplitudes that differ from the iden-
tification signal. Therefore the identification signal should, in magnitude, match
the desired operating range. The wider spectrum of magnitudes the operating
range contains, the more difficult it is to identify a model with good fit values.
This is very natural since the more specialized something is, the more details it
can care for. To keep the model application in mind while identifying the model
is one of the rules of thumb within system identification.

6.2.1 Small Magnitudes
The identification results with the linear methods deteriorates as the magnitudes
are decreased. This is interpreted as that the system behaves less linear at small
magnitudes. An other possible thought is that the signal-to-noise ratio is higher
when the signal is smaller. It is therefore harder to identify a good model at low
magnitudes. On the other hand the system seems to have very little noise, see for
example figure 5.5. However even though the system does not suffer from an easy
seen high frequency output noise it might suffer from some kind of disturbance
earlier in the chain. What makes the signal-to-noise explanation less plausible
is the fact that a low magnitude identification with high magnitude validation
gives a worse result than validation with low magnitudes. If the same model
would work for both low and high magnitudes, only with different noise ratios,
the model identified at low magnitudes should validate at similar levels for the
different magnitudes, even a bit better for the large magnitudes as the noise ratio
is lower. Hence the results are the opposite, the signal-to-noise-ratio theory is
dismissed.

The different, less linear, behavior at small magnitudes is probably owning
to the coulomb friction that acts nonlinearly on the system when it is leaving
stand still. In addition, the effect of the asymmetric sliprings should be worse
at a certain, quite small, amplitude when the system is just about to leave the
downward position, or the upward.

6.3 Algorithms
The most obvious conclusion is that PEM should be used to enhance the results
from the other algorithms, while on the other hand it should not be used by itself
as it is heavily dependent on a good initial model. One remark is that it is not
always possible to enhance with PEM, for example if the model is unstable.

VODMA is the algorithm that has support from the theory and it produces
the best average fit value. Although it sometimes produces better fits through
direct identification. Moreover it sometimes fail to identify the system but this
fact as well as the long computational time, compared to N4SID, might be due
to the implementation. The implementation of VODMA has been developed for
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this thesis whereas N4SID is part of a commercial MATLAB toolbox that has had
years of time for development and optimization.

When MATLAB is available the implementation of N4SID is very simple, only
one command. Furthermore it has been proven the N4SID can give sufficient
results even though the system is subjected to feedback. It only has slightly less
fit than VODMA and has never failed completely. In the spirit of try the simplest
thing first, N4SID (perhaps enhanced with PEM) is the recommended way to go.
If a VODMA implementation is available one might as well try it too, but it is not
worth the work of the implementation if N4SID can deliver sufficient results. It is
possible that for a system that suffers from more noise and has a more advanced
controller the theoretical advantage of VODMA, not needing the input and noise
to be uncorrelated, will turn out in favor of VODMA.

6.4 Summary
In short, when the nonlinear compensation for the input signal is applied, a good
model can be estimated for a desired, not too wide, operating range. The identifi-
cation can be carried out with either VODMA or N4SID and then enhanced with
PEM. Furthermore models of different complexity can be estimated for different
applications.

6.5 Future Work
The most natural follow up for this work is to start developing model-based (or)
robust controllers for torsion systems since this was the reason for developing the
system model. In order to design robust controllers a model of uncertainties could
be useful, it depends on the design method.

Of course it is also possible to develop the model further. More of the nonlin-
earities can be modeled and a complete physical model can be sought. Although it
is sometimes too much hard work to acquire a physical model, it is always prefer-
able as it gives more understanding about the system and how it will change when
some parameters are altered.

Jumping back to the black-box research area, a model that works well for
different magnitudes would be desirable. One solution to this problem is to have
two models that transits into each other when the magnitudes change. Moreover
several other identification algorithms could be evaluated using the torsion system.
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Appendix A

Torsion System
Specifications

The following table is a direct reprint of the one found in the Quanser Manual [6].
It includes all given system specifications.
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Description Value Unit
SRV03 DC Motor
Motor Maximum Continuous Torque 0.219 Nm
Motor Peak Torque 1.6 Nm
Motor Maximum Continuous Current 2.95 A
Motor Torque Constant 0.0742 A
Motor Peak Current 21.4 A
Motor Armature Resistance 1.11 Ω
Motor Armature Inductance 1.81 mH
Moment of Inertia of Motor Rotor 3.11E-005 kg m2

Motor Mechanical Time Constant 6.27 ms
PWM Current Amplifier (Each Channel):
PWM Amplifier Maximum Continuous Current 10 A
PWM Amplifier Peak Current 20 A
PWM Amplifier Maximum Continuous Power 800 W
PWM Amplifier Peak Power 1600 W
PWM Amplifier Bandwidth (Current Mode) 3 kHz
PWM Amplifier Gain 1.0 A/V
Rotary Torsion Module (Each):
Disc Weight Mass 0.123 kg
Disc Weight Diameter 0.038 m
Load Support Bar Length 0.044 m
Load Support Bar Mass 0.021 kg
Flexible Coupling Torsional Stiffness Constant 1.0 Nm/rad
Equivalent Moment of Inertia, 5.46E-004 kg m2

as seen at the Torsion Module Load Shaft
SRV03 Optical Encoder:
Encoder Line Count 2048 lines/rev
Encoder Resolution (In Quadrature) 8192 counts/rev
Encoder Sensitivity (In Quadrature) 7.67E-004 rad/count
Encoder Type TTL
Encoder Signals A, B, Index
Torsion Module Optical Encoder:
Encoder Line Count 1024 lines/rev
Encoder Resolution (In Quadrature) 4096 counts/rev
Encoder Sensitivity (In Quadrature) 15.34E-004 rad/count
Encoder Type TTL
Encoder Signals A, B, Index
Current Sense:
Current Sense Calibration at ±10% 0.5 V/A

Table A.1. The specifications of the torsion system parameters



Appendix B

Algorithm Verification

To verify that the identification algorithms are working properly they have been
tested with data created from simulation. It is the Quanser model that has been
simulated when subjected to the same RGS input as in some of the real-life ex-
periments. A bandwidth limited white noise has been added to all the outputs.
The amplitudes are ranging from ±4◦, a considerably amount of noise. There have
been simulations of as well open-loop as closed-loop system, where the closed loop
has been constructed with the same PD controller that is used in real life.

Figure B.1. The saturated control signal used for identification in the fourth experiment

B.1 Simulation and Results
Firstly the algorithms undertake an open-loop experiment where they give almost
flawless results. Then they are subjected to a closed-loop experiment where the
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fit values only have a slight dip from the open-loop experiments. In conclusion
all algorithms seems plausible for closed-loop identification. However since all real
systems suffer from noise, the interesting case is if the algorithms still can identify
the system when a disturbance exists. While the real system gives quite stable
output, or in other words, is short on noise, an added ±4◦ white noise disturbance
will clearly do for verification. The fit values naturally decrease, but important
to notice is that in an open-loop simulation, the Quanser model, the true system,
falls almost equally much in fit. Much better results can not be asked for.

As a final experiment a saturation of the control signal is replacing the noise.
The result was significantly worse than with the noise as the system no longer is
linear. This means that it is of great importance to avoid saturation of the control
signal when conducting the real-life experiments. The saturation of the control
signal can be seen in figure B.1 and the model fits resulting from the simulations
are shown in table B.1.

Figure B.2. The logarithms of the singular values obtained from VODMA during open-
loop simulation without noise. The correct number of eight states is a sensible choice.

B.2 Singular Values
The subspace methods examine the singular values to decide the model order. The
model order should equal the number of non-zero singular values but to keep the
order within reasonable limits some singular values have to be approximated to
zero. This done by manual inspection of a plot with the singular values sorted
in descending order. In figure B.2 the singular-value plot, from VODMA1 in the
open-loop simulation, is found. The plot clearly shows that eight states is a sensible
choice. A perfect match with the true model. However when noise is added in
the closed-loop case the plot changes into figure B.3, where it is more difficult to
read out a suitable number of states. As a consequence several different number

1The singular-value plot generated by N4SID is highly similar and using the N4SID plots
instead of the VODMA plots would in no way affect the conclusions
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Figure B.3. The logarithms of the singular values obtained from VODMA during
closed-loop simulation with noise. It is not so clear how many states the system has.

of states are tried out for the real-life experiments as the singular-value plots have
proven untrustworthy.



Appendix C

Model for Torsion System
with Increased Inertia

The masses on the torsion modules can be shifted to a wider distance and thereby
increase the inertia of the torsion module. This is interesting hence, when the
system will be used to develop robust controllers, the torsion system should be
altered to test the robustness. Of course it is of interest to verify the robustness
already at the simulation stage. This means that a model for the wide-spaced
masses is needed.

All torsion modules can be altered separately but only the case when all mod-
ules are set to wide distance has been identified. The identification approach is
built upon that the new system is highly similar to the old system and thereby
can be identified in the same way. Even though increased inertia increases the
sluggishness of the system and thereby, in accordance with Newton’s second equa-
tion, more torque (higher input) is required to change the motion of the discs,
the control signal still dodge the saturation. This is a very satisfying result hence
the identification signal should not be altered too much when identifying the new
system because the desired operating range still is unchanged. It is unchanged
even though the system has changed hence the system change is thought of as a
modeling error, not a new application.

C.1 Model

In contrast to when identifying the system with narrow mass spacing, direct iden-
tification through VODMA with PEM yields the best fit. The resulting equations
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Figure C.1. The fit values for the model of choice. Five state model estimated with
direct identification VODMA and enhanced with PEM.

follow beneath while graphs showing the fits can be found in figure C.1.

y =
[
θm θ1 θ2 θ3

]T
e(t) is white noise

u is the simulink control signal

x(t+ Ts) = Ax(t) +Bũ(t)
y(t) = Cx(t) +Dũ(t) + e(t)
ũ(t) = 2.44u(t) + 0.0397

A =


1.0294 −0.053416 0.00077334 −0.001887 −0.0022221
0.05224 0.95104 0.0015586 0.001363 0.02468

0.0016215 −0.074788 0.82245 −0.22456 0.11306
0.038584 0.13612 0.40111 0.88703 0.10991
0.010985 −0.022959 0.0053411 −0.18381 0.83922



B =


−73.276
15.205
34.589
−54.536
7.9447
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C =


−0.0001027 −0.0004661 0.00073895 5.3693 ∗ 10−5 −0.00060132
−0.00011601 −0.00054262 0.00052594 5.7563 ∗ 10−5 −0.00037542
−0.00013117 −0.00070143 0.00012638 −3.0326 ∗ 10−5 −0.00025135
−0.00013764 −0.00076339 −2.2118 ∗ 10−5 −7.0494 ∗ 10−5 −0.00024277



D =


−0.015261
−0.028516
−0.025851
−0.021586



Figure C.2. The fit values for the two states model. Estimated with direct identification
VODMA and enhanced with PEM

When estimating the two state model there is a clear advantage in using direct
identification VODMA with PEM enhancement. The fit value graphs are found
in figure C.2 and the equations becomes as follow,

y =
[
θm θ1 θ2 θ3

]T
e(t) is white noise

u is the simulink control signal

x(t+ Ts) = Ax(t) +Bũ(t)
y(t) = Cx(t) +Dũ(t) + e(t)
ũ(t) = 2.44u(t) + 0.0397

A =
(

1.0301 −0.055162
0.052002 0.94723

)
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B =
(
−72.089
15.499

)

C =


−0.00016506 −0.00066832
−0.00015897 −0.00069919
−0.00014327 −0.00071396
−0.00013888 −0.00071526



D =


0.072638
0.0036687
−0.023006
−0.04417
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