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Abstract
Diagnosis and Supervision of technical systems is used to detect faults when they
occur. To make a diagnosis, tests based on residuals can be used. Residuals are
used to compare observations of the system with a model of the system, to detect
inconsistencies.

There are often many different types of faults which affects the state of the
system. These states are modeled as fault modes. The difference between fault
modes are the presence of faults in the model. For each fault mode a different set
of model equations is used to describe the behaviour of the real system. When
doing fault diagnosis in real time it is good, and sometimes vital, to be able to
change fault mode of the model, when a fault suddenly occurs in the real system.
If multiple faults can occur the number of combinations of faults is often so big,
even for relatively small systems, that residuals for all fault modes can not be
prepared. To handle this problem, the residuals are to be generated when they
are needed.

The main task in this thesis has been to investigate how residuals can be
automatically generated, given a fault mode with a corresponding model. An
algorithm has been developed and to verify the algorithm a model of a satellite
power system, called ADAPT-Lite, has been used. The algorithm has been made in
two versions. One is focusing on numerical calculations and the other is allowing
algebraical calculations. A numerical algorithm is preferred in an automatized
process because of generally shorter calculation times and the possibility to apply
it to systems which can not be solved algebraically but the algebraical algorithm
gives slightly more accurate results in some cases.

Sammanfattning
Diagnos och övervakning av tekniska system används för att upptäcka fel när de
inträffar. För att ställa en diagnos kan tester baserade på residualer användas.
Residualer används för att jämföra observationer av ett system med en model av
system för att upptäcka inkonsistens.

Det finns ofta många typer av fel som påverkar ett systems tillstånd. Dessa
tillstånd modelleras med olika felmoder. För varje felmod används olika uppsätt-
ningar av modellekvationer för att beskriva systemets beteende. När diagnoser ska
ställas i realtid är det ofta bra och ibland avgörande att kunna byta felmod när
ett fel plötsligt inträffar i systemet. Om multipelfel kan inträffa blir antalet kom-
binationer av fel ofta så stort att residualekvationerna för alla felmoder inte kan
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förberedas. Detta gäller även för relativt små system. För att hantera problemet
bör residualerna kunna genereras vid den tidpunkt då de behövs.

Examensarbetets huvuduppgift handlar om att undersöka hur residualerna kan
genereras automatiskt, givet en felmod och en modell. En algoritm har utvecklats
och verifierats med en model av ett kraftsystem för en satellit, kallad ADAPT-Lite.
Algoritmen har gjorts i två versioner. Den ena tillåts göra algebraiska beräkningar
men den andra, i så stor utsträckning som möjligt, tillåts endast göra numeriska
beräkningar. En numerisk algoritm föredras i en automatiserad process p.g.a. ge-
nerellt sett kortare beräkningstid och dess egenskap att kunna lösa vissa problem
som inte kan lösas algebraiskt. Den algebraiska algoritmen har dock visats sig ge
aningen noggrannare resultat i många fall.
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Chapter 1

Introduction

This work has been carried out at the division of Vehicular Systems, which is a part
of the department of Electrical Engineering at Linköping University. The purpose
has been to design and implement an algorithm to automatically generate tests,
to detect possible faults in a system, based on theory of model based diagnosis.

In Section 1.1 there is an overview of model based diagnosis followed by an
introductory explanation of automatic residual generation in Section 1.2. In Sec-
tion 1.3 the ADAPT-Lite system, which will be used for the evaluation of the resid-
ual generator, is introduced. A problem description is formulated in Section 1.4.
Finally an overview of the structure and content of the report is presented in
Section 1.5.

1.1 Diagnosis and Supervision
Diagnosis and supervision of technical systems is in general about detecting and
isolating faults occurring in the system. In many industrial systems it is important
to have correct knowledge about the condition of the system and to be able to find
and handle faults systematically. The reason for this can be many but often it is
a safety and an economical issue, see e.g., [9]. When an industrial machine breaks
down it can be dangerous for the operators working close to the machine. Using
diagnosis to detect faults can prevent many hazardous situations. If left alone, a
fault in a system can grow from minor to severe and cause additional faults. If a
fault can be detected and corrected in an early stage, lots of money can be saved
by preventing long production stops or more expensive repairs.

There are many different methods within the field of diagnosis. When the
examined system can be described with mathematical models it may be possible
to use model based diagnosis.

1.1.1 Model Based Diagnosis

In model based diagnosis a mathematical model, describing the observed system,
is used to make a diagnosis. A diagnosis is, according to [9], a conclusion of
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2 Introduction

which combinations of faults that can explain the process behavior. Faults can
be discovered by detecting inconsistencies between the model and the real system.
With an accurate model and well placed sensors it may sometimes be possible to
not only say that a fault has occurred but also where in the system it is situated
and what kind of fault it is.

One type of test to detect the inconsistencies between a model and a real system
can be created by using a residual together with a criteria for when the residual
show the inconsistencies. A residual can be written as

r(t) = f(y(t)) (1.1)

where r(t) is the residual, y(t) are measurements and f(y(t)) is the residual gen-
erator, which is constructed out of model equations. When there are no model
uncertainties in f and no measurement noise in y(t), the following is true

r(t) = 0.

Example 1.1: Making residuals of a model

A model, where two sensors, y1(t) and y2(t), are measuring an unknown signal
x(t), is given as

y1(t) = x(t)
y2(t) = x(t).

(1.2)

Using a variable substitution of x(t) gives

y1(t)− y2(t) = 0 (1.3)

which is a consistency relation. A residual generator f(y(t)) is made of the left
hand side in (1.3) which is then written as

y1(t)− y2(t) = f(y(t)) (1.4)

and the residual is the resulting signal when input is put into the residual generator
as

r(t) = f(y(t)), (1.5)

where r(t) is the residual.

The model, which the residual generator f is made of, is seldom perfect and
measured signals often contain noise. Therefore the residuals in most cases slightly
deviate from zero even when the real system has no faults. Because of this the
residuals are often filtered and thresholded. The thresholds are chosen to separate
the deviation in the fault free case from the bigger deviation caused by faults in
the system. In other words, the threshold makes the criteria for when there is an
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inconsistency between the model and the real system. An example of this can be
seen in Figure 1.1, where a residual is affected by a fault after 50 seconds. Despite
the signal being noisy, it is possible to detected the fault with a threshold, drawn
with a dashed line in the figure. Understanding the use of thresholds is important
for this thesis but no thresholds will be designed. The focus in this work is on
generating residuals.
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Figure 1.1. Example of a residual with a fault occurring at 50s. With a threshold at
0.5 on the y-axis the fault will be detected.

With information from several residuals it is often possible to make use of fault
isolation algorithms which will say more precisely where in the system the faults
have occured. Fault isolation is not in the scope of the thesis and will therefore
not be further explained here but examples of fault isolation algorithms can be
found in [3] and [8].

1.1.2 Fault Modes

To describe what state the system is in, in regard to what faults that are present
in the system, the term fault mode is used, see [9]. The fault mode is used to tell
which faults are present or if the system is free of faults. To be able to describe
the behavior of the system when the system is in a certain state the equations
which describe the corresponding fault mode are needed. Different fault modes
are described by different sets of model equations. If one component in a system
breaks it may however be that only the equations for that component changes
in the set in the transition between the fault modes. The fault mode only says
how the system is currently modelled, i.e., which equations are used. It does not
necessarily tell the truth about what faults are actually present in the system.

With the nomenclature used in this thesis the fault free case is a fault mode.
Only ”component one” broken in the model is also a fault mode and only ”com-
ponent two” broken is another fault mode. A multiple fault of ”component one”
and ”component two” broken in the model is yet another fault mode and so on.
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Example 1.2: Fault Modes
The model equations

y(t) = x(t) [ fault free mode ]
y(t) = x(t) + k [ fault mode 1 ]
y(t) = 0 [ fault mode 2 ]

(1.6)

represent three different fault modes for a sensor y measureing a variable x. The
first fault mode represents the fault free case, the second when there is a bias error
present, and the third fault mode represents when the sensor is ”dead”. The three
equations in (1.6) will never be used at the same time.

1.2 Automatic Generation of Residual Equations
Designing residuals for a diagnosis algorithm can be made by hand for small sys-
tems which have few measured signals. In bigger and more complex systems with
a larger amount of measured signals, the number of possible residuals that can be
made grows rapidly. To be able to get good fault isolation, that is to tell different
faults apart when they are detected, more then a handful of the possible residuals
might be needed for a large system. In this case it can be hard and time con-
suming to create all these by hand. Therefore to create residuals automatically
would have several advantages. One is to save development time. Another is to
avoid mistakes during development that are easy to make in a manual procedure,
especially for large systems.

One important aspect is that even for relatively small systems, the number of
possible residuals needed to detect and isolate faults in all possible fault modes
is too large to be precalculated and prepared. Thus it is not only important but
necessary to be able to automatically generate new residuals while the system is
running and goes from one fault mode into another. This is especially true when
there is a need to use different sets of model equations for different fault modes
of the system. During simulation in this thesis it is however assumed that the
fault mode is constant and does not do a transition into another fault mode. It is
still however a background and motivation for generating the residual equations
automatically.

1.3 ADAPT-Lite
During the past two years NASA has organized a diagnosis competition which in
2010 ran under the name ’Second International Diagnostic Competition (DXC’10),
see [11]. In the competition there were three different entry categories. The
competition category of interest for this thesis concerns the so called ADAPT-Lite
system. What is given is the following:



1.4 Problem Formulation 5

Abbreviation Component
BAT2 battery
INV2 inverter
FAN fan
CB circuit breaker
IT current sensor
EY relay
AC load
ST, TE, position sensor
ISH, ESH

Table 1.1. The components and their abbreviations in the ADAPT-Lite system.

• A sketch of the system, shown in Figure 1.2, which shows how all the com-
ponents are connected.

• All fault modes for each component.

• Measurement data from the sensors in the real system from a number of
different fault scenarios.

What is not given are models for the components and model parameter values.
The models have to be made and the parameters, e.g., resistance of resistors, have
to be estimated with the use of the data series.

The ADAPT-Lite system is a suitable platform for evaluating a diagnosis al-
gorithm and is therefore used for this in the thesis.

Figure 1.2. Schematic over the ADAPT-Lite satellite system. The figure comes from
[11]. In Table 1.1 the abbreviations are explained.

1.4 Problem Formulation

The purpose of this thesis is to develop an algorithm which automatically generates
tests from model equations to detect faults. This includes modeling of the system,



6 Introduction

developing an algorithm which automatically generates residuals and observer re-
lations and creating a simulator to simulate the generated tests. The residuals
are to be generated numerically. To evaluate the method it will be applied to the
ADAPT-Lite system and the results from this will be analyzed.

The problem can be summed up in the following bullets:

• An algorithm to automatically generate residual generators from model equa-
tions shall be made.

• The algorithm shall handle equations that contain first order derivatives.

• If possible the algorithm shall operate completely numerical without assis-
tance from algebraic solvers so that in the future an online implementation
is made possible.

• The algorithm shall be evaluated on the ADAPT-Lite system.

• All the components in the ADAPT-Lite system that have not yet been mod-
eled at the start of the thesis project need to be modeled.

The work does not need to consider the following:

• The algorithm does not have to work online in real time which also means
that the simulation time can be long.

• To make or use a fault isolation algorithm is not in the scope of this thesis.

1.5 Thesis Outline

The thesis includes the following chapters:

Chapter 2, Theory The chapter presents a state space model and differential
algebraic equations (DAE) and what a DAE’s index is. It shows how numer-
ical linearization can be made which is needed for the creation of a Kalman
Filter observer. It is also discussed why a Kalman Filter is used when gen-
erating residuals and how it can be made.

Chapter 3, Modeling In this chapter it is presented how a bigger model can
be built with smaller models of components. It is shown what equations
are needed to be generated to complete the model and it also shows how
unknown parameters can be estimated.

Chapter 4, Algorithm The chapter presents an algorithm that is used for gen-
erating the needed residuals. It shows how the model equations are restruc-
tured for the creation of the residual generators, how the Kalman Filter is
made in the algorithm and how a simulation is done to estimate unmeasured
signals in order to make residuals.
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Chapter 5, Application on ADAPT-Lite In this chapter it is shown how the
algorithm is applied to the system ADAPT-Lite for evaluation. The results
of the simulations are shown in this chapter.

Chapter 6, Conclusions The chapter presents the conclusions from the evalu-
ation of the application on the ADAPT-Lite system. It discusses the gener-
ation of the residual equations, the simulation method, algebraical shortcuts
used for the numerical procedure, the estimation of the variances for the
Kalman filter and approximations made in a linearization procedure.

Chapter 7, Future Work discusses future work that can be done that has not
been addressed or completed in this master thesis. Topics addressed in this
chapter are improved model, multiple faults, automatic parameter estima-
tion, automatic estimation of λ, improved numerical simulation method and
real time implementation.

Appendix A The appendix contain models of the ADAPT-Lite system.





Chapter 2

Theory

In this chapter the theory of mathematical models in the form of state space models
and differential algebraic equations (DAE) are introducedv and an index of a DAE
is described. This chapter also explains what a residual is and how observers can
be created with a Kalman filter, then how to create a Kalman filter and how to
do the required linearization is described. A technique for parameter estimation
for model parameters is also described.

2.1 Models
There are two types of models which are used in this thesis, state space models, and
models described by differential algebraic equations (DAE). These are presented
in this section as well as theory for linearization of models.

2.1.1 State Space Models
A state space model

ẋ = f(x, y)
r = g(x, y),

(2.1)

represents a dynamic system where y = y(t) are the inputs, r = r(t) are the
outputs and x = x(t) are internal states. A linear state space model is written as

ẋ = Ax + By

r = Cx + Dy,
(2.2)

where the dimension of the matrices are

A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n, D ∈ Rq×p.

In this thesis, the non linear form in (2.1) is used in the simulation of the
system and the linearized form in (2.2) is used when designing observers using a
Kalman filter.

9
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2.1.2 Differential Algebraic Equations
A system of differential algebraic equations (DAE), contains both dynamic and
algebraic constraints, see [1]. A DAE is written as

g(ẋ, x, y, t) = 0

where x are internal states, y contain measured signals, and t is the time. Some
DAE’s can be written on a semi-explicit form

ẋ = f(x, y, t)
0 = g(x, y, t).

(2.3)

where the dynamic equations are separated from the algebraic constraints. The
algebraic constraints make the DAE harder to solve and simulate than a system
of Ordinary Differential Equations, ODE, which can be written as

ẋ = f(x, y, t),

and does not have algebraic constraints.

2.1.3 The Index of a DAE
To classify the complexity of a DAE an index is used. On page 36 in [2] it is said
that “From the point of view of the numerical solution, it is desirable for the DAE
to have an index which is as small as possible.”

The following definition of the DAE index comes from [1] where the notation
of z stands for both x and y:

Definition 2.1 For general DAE systems F (t, z, z′) = 0, the index along a solu-
tion z(t) is the minimum number of differentiations of the system which would be
required to solve for z′ uniquely in terms of z and t (i.e., to define an ODE for z).
Thus the index is defined in terms of the overdetermined system

F (t, z, z′) = 0
dF

dt
(t, z, z′, z′′) = 0

...
dpF

dtp
(t, z, z..., zp+1) = 0

to be the smallest integer p so that z′ can be solved for in terms of z and t.

To follow Definition 2.1 may not always be the most practical way of deter-
mining the index. Another way to check what index a DAE has can be found in
[2]. With the semi-explicit DAE in (2.3) it is possible to differentiate the algebraic
constraint with respect to t which gives

ẋ = f(x, y, t)
gx(x, y, t)ẋ + gy(x, y, t)ẏ = −gt(x, y, t).

(2.4)
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If gy is non singular, the system has index 1 and is called an implicit ODE. If gy is
singular and it is possible with algebraic manipulation and coordinate changes to
rewrite (2.4) on the form of (2.3) then one can continue with another differentiation
step. The number of steps required to get a non singular gy, in other words an
implicit ODE, is the index of the DAE. Note that in this thesis, systems of index
higher than one will not be handled so only one differentiation step is needed here.

2.1.4 Model Linearization
Given a dynamical system on the form ẋ = g(x, y), where x and y are vectors and
a linearization point (x0, y0), the system can be linearized as:

ẋ = g(x, y) = g(x0 + ∆x, y0 + ∆y) =

= g(x0, y0) +
∂g(x0, y0)

∂x︸ ︷︷ ︸
= A

∆x +
∂g(x0, y0)

∂y︸ ︷︷ ︸
= B

∆y +O(∆x2,∆y2) ≈

≈ g(x0, y0) + A∆x + B∆y,

(2.5)

where the matrices A and B are defined as

A =
∂g(x0, y0)

∂x

B =
∂g(x0, y0)

∂y
.

(2.6)

In order to compute the linearization in (2.5) numerically, the elements in the
matrices A and B need to be approximated. A and B are matrices with elements
consisting of derivatives as shown in (2.6). One way to compute this is by using
forward differentiation

Aij =
gi(x0 + εej , y0)− gi(x0, y0)

ε

Bij =
gi(x0, y0 + εej)− gi(x0, y0)

ε
,

where Aij and Bij is the element in the i:th row and the j:th column of matrix A
and B respectively, ε is a small number and vector ej is a zero vector except for
the element j which equals one.

2.2 Nonlinear Least Square Estimation of
Parameters

For the model to be of use, unknown parameters need to be estimated for the non
linear system. This can be made using nonlinear least square estimation, see [13].
Assume that the parameters in the vector θ in

r = g(x, θ)
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are to be estimated. The variables x are known and r is a residual that ideally is
zero and is therefore in the parameter estimation set to zero. The penalty function
fp is created as

fp(θ) =
N∑

i=1

(0− g(xi, θ))2,

where N is the number of data samples. The estimation θ̂ is calculated with

θ̂ = arg min
θ

fp(θ).

The better the parameters are estimated the smaller the value of the penalty
function. For the minimization procedure a simplex algorithm, see [7], can be
used.

2.3 Diagnosis
The purpose of fault diagnosis is to get information about what condition the
system is in and to discover when components break down. In a perfect world the
systems would never break or have faults and there would, in general, be little sense
in doing diagnosis. In reality however the systems does not work perfectly and the
need for diagnostics can for instance be a safety or quality control precaution.

2.3.1 Residuals
Residuals are the results of residual generators f(x, y), where the signals y are
measured and x are states. The residual generators are made from a model of the
real system, see Section 1.1.1. The model with the residuals can be written as

ẋ = g(x, y)
r = f(x, y).

The states x are unknown so estimations x̂ are used. A naive system is

˙̂x = g(x̂, y)
r = f(x̂, y).

(2.7)

For r to be a valid residual it has to be stable which may not be the case in (2.7).
To stabilise it, feedback is used

˙̂x = g(x̂, y) + h(r)
r = f(x̂, y).

(2.8)

One way to design the feedback function h is to use a Kalman filter. In order to
do that, (2.8) needs to be linearized as

ẋ = Ax + By

r = Cx + Dy.
(2.9)
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To linearize the system in (2.7) to get it on the form of (2.9), assumptions are
made which are discussed in Section 4.2.1. The linearized system in (2.9) is only
used to calculate h. For simulation, (2.8) is used.

2.3.2 Observers using Kalman Filters
To estimate non measured states in a state-space model the Kalman filter can
be used, see [5]. The Kalman filter is an optimal linear filter that works in two
alternating steps. First there is a time update where a first prediction of the
upcoming estimate is made that is based on the previous value of the state. The
second step is the measurement update. Here the information from the predicted
estimate is fusioned with measurements to create a likely better estimate. Both
the predicted values and the measured values have uncertainties or noise. The less
noisy a measurement is the more weight is put on it in the fusion and the more it
is going to show in the final estimate. The state space model with noise is written
as

ẋ = Ax + By + Gw

r̃ = Cx + Dy + v,
(2.10)

where v and w are noise that are assumed independent and identically distributed.
Residual r̃ is an ideal residual affected by true noise. The matrices

Cov(w) = Q

Cov(v) = R.
(2.11)

are covariance matrices that will decide how much weight is put on the predictions
relative the measurements of the states in the state estimation. When Q and R
are unknown they can be seen as tuning parameters.

The following is the observer

˙̂x = Ax̂ + By + K(−r)
r = Cx̂ + Dy,

(2.12)

where K is the Kalman gain and x̂ is the estimate of x.
If the noise vectors w and v are independent, the Kalman gain matrix K is

written as
K = PCT R−1

where P is the symmetrical positive semidefinite solution to the equation

AP + PAT − PCT R−1(PCT )T + GQGT = 0,

see [4].





Chapter 3

Modeling

In model based diagnosis a model of the system that is to be diagnosed is needed.
In this chapter some principles of how the model can be made are presented.
First it is explained how a system can be modeled componentwise and then it
is shown which equations that are needed to connect the components to build a
larger model. There is also a note on the parameter estimation that is done for
unknown parameters in the model.

3.1 Modeling of Components
The components of a system are here assumed to be modeled separately. The
system can for example be an electrical circuit with the components consisting
of batteries, resistors, relays, etc. The behavior of each component is described
by a set of equations. Depending on the fault mode, different sets of equations
are used. To identify which equations that describe the behavior of each fault
mode, the equations are tagged. The tag represents the fault mode for which the
equation is valid. Equations that are valid for all fault modes are untagged.

Example 3.1: Equations of a Real Load Component

A resistor in a DC circuit can be described by

V = (R + Rb)I (3.1a)
V = Vp − Vn (3.1b)
Rb = 0 [OK] (3.1c)
dRb

dt
= 0 [OS], (3.1d)

where I is the current through the resistor, V is the voltage over the resistor, Vp

and Vn are the potentials on either side of the resistor, R is the nominal resistance
and Rb is the resistance offset. The tag [OK] in (3.1c) marks that this equation is
only valid in the fault free case. The tag [OS] in (3.1d) indicates that this equation
is valid only in the case of a constant offset fault. The untagged equations (3.1a)

15
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and (3.1b) are always valid. If the current fault mode is fault free, [OK], the
following equations are used

V = (R + Rb)I
V = Vp − Vn

Rb = 0.

3.2 Equation Set Generation
For each fault mode of the system, a different set of equations defines the system.
A set of equations that describes a system is not only determined by the equations
describing the behaviour of each component but also of equations connecting the
component variables in different components. A set of equations includes the
following:

• Component Equations: Equations for each component in one fault mode.

• Connection Equations: Equations for connecting components.

For electrical systems the Connection Equations will connect the currents and the
potentials defined in the components using Kirchhoff’s Current Law so that all the
equations together define a circuit.

Example 3.2: Equation Generation of Real Load Components
Two fault free resistors are to be connected in a series. The component equations
are

Resistor 1


V1 = (R1 + Rb1)I1

V1 = Vp1 − Vn1

Rb1 = 0

Resistor 2


V2 = (R2 + Rb2)I2

V2 = Vp2 − Vn2

Rb2 = 0.

(3.2)

To make the serial connection of these two components, equations that connect
I1 with I2 and Vn1 with Vp2 are needed. The following equations are added to
complete the equation system

Vn1 = Vp2

I1 = I2.
(3.3)

Together the equations (3.2) and (3.3) describe two serially connected resistors.
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3.3 Parameter Estimation
When the equations have been generated and handled the unknown parameters
can be estimated by using a nonlinear least square estimation described in Section
2.2. This method can be used to estimate many parameters at once, when, e.g.,
estimating resistances of many resistors.





Chapter 4

The Algorithm

This chapter describes the algorithm that is used every time the system goes into a
new fault mode. In the thesis the fault mode is constant but the algorithm is made
with transitions in mind. An overview of the algorithm can be seen in Figure 4.1.

Figure 4.1. An overview of the algorithm.

The algorithm is divided into two parallel paths in the algorithm. The paths
are called the algebraical algorithm and the numerical algorithm. Ideally all calcu-
lations are done numerically because not all problems can be solved algebraically.
However the algebraical algorithm is easier to implement and better simulation
results can be expected from this algorithm in comparison with the numerical al-
gorithm. An algebracial algorithm comes at the cost of calculation efficiency and
an algebraical algorithm can not solve all the mathematical problems a numer-
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ical algorithm can. Therefore the algebraical algorithm is used to evaluate the
numerical algorithm. An important difference between the algorithms is that the
algebraical algorithm simulates a system of ordinary differential equations, ODE,
and the numerical algorithm simulates a system of differential-algebraic equations,
DAE. The two algorithms start off the same and are splitted later on. The split
is explained later in this chapter.

4.1 Equation Structuring

It is assumed that all the equations and conditions of the model of the system can
be written as

gi(ẋ, x, y) = 0,

gcond(x, y),

where x contains unknown variables and y contains measured signals, and gcond

contains relations of inequalities. The unknown x can be divided into x1 and x2

where x1 are dynamic variables which occurs time differentiated in some relations,
and x2 are variables which do not occur differentiated in any relations. This gives

gi(ẋ1, x1, x2, y) = 0
gcond(x1, x2, y).

The equations can be divided into dynamical and algebraical equations. It is
assumed that ẋ1 can be written explicitly which gives

gdyn(x1, x2, y) = ẋ1

galg(x1, x2, y) = 0
gcond(x1, x2, y).

It is assumed that galg is overdetermined with respect to x2. To be able to compute
the non dynamic variables x2, a subset that is exactly solvable of the equation
system galg is needed. The system galg is therefore divided into galg1 and galg2

gdyn(x1, x2, y) = ẋ1

galg1(x1, x2, y) = 0
galg2(x1, x2, y) = 0
gcond(x1, x2, y),

(4.1)

where galg1, given x1 and y, is an exactly solvable system and galg2 contains all the
rest of the equations in the overdetermined system galg. How this dividing process
is done is shown further in Section 4.1.1. The equations in galg2 and gcond will be
used for residuals.
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4.1.1 About dividing galg

The system of equations
galg = 0

is, in this thesis, assumed to be overdetermined with respect to x2. The equations
galg are split into galg1 and galg2 where galg1 is exactly solvable with respect to x2

and galg2 is the rest of the relations that are used for residuals.
To find the equations for galg1 a subset of the equations in galg = 0 is chosen

excluding one equation. The subset is then tested to see if it is underdetermined
with respect to x2. If the subset is underdetermined the equation is taken back into
the set but if the subset is not underdetermined the excluded equation remains
excluded. The steps are then repeated until all original equations in galg = 0
have been test-excluded. After this the remaining subset is perfectly solvable with
respect to x2. The remaining subset are the equations of galg1 and the excluded
equations are the equations of galg2.

To test if a system of equations, gsub(x1, x2, y), is underdetermined with respect
to x2, the system gsub(x1, x2, y) is differentiated with respect to x2

∂gsub(x1, x2, y)
∂x2

= M,

where x2 is a vector and M is a matrix. Since the system is overdetermined
initially, the column rank of M will be full at the start. If the column rank remains
unchanged after a row has been removed, the corresponding system gsub = 0 of
the changed matrix M is either still overdetermined or exactly solvable. When
the column rank drops by one, the system is underdetermined and the previous
corresponding gsub = 0 is then an exactly solvable system that has been searched
for.

Note that in order to fully test the column rank of M , the rank should be
computed for all operating points (x∗1, x

∗
2, y

∗) to see if there exist singularities.
The matrix M can lose its column rank for certain points causing singularity and
this could result in failed simulations. An analysis considering if the matrix M
becomes singular for certain operating points has not been performed.

This way of dealing with the dividing process of the equations is an algebraical
method. Another non algebraical way of dealing with the dividing process of the
equations is to use structural analysis. This has not been tested in the thesis but
more information can be found in [6].

4.1.2 Using Algebraic Part-Solution
One of the subsystems can sometimes be solved algebraically as

galg1(x1, x2, y) = 0 =⇒ x2 = Galg1(x1, y).

A variable substitution of x2 in the equations gives

g̃dyn(x1, y) = ẋ1

g̃alg2(x1, y) = 0
g̃cond(x1, y) = 0.

(4.2)
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Note that the dynamic equation in (4.2),

ẋ1 = ĝdyn(x1, y), (4.3)

is an ODE.

4.1.3 Using Non-Algebraic Part-Solution
In order to numerically find the estimations in the simulation the steps in Sec-
tion 4.1.2 are to be avoided because it calls for the use of algebraic solvers. In
order to resolve x2 the model has to be linearized first but this is done for the
design of the Kalman filter and not for the actual simulation where the non linear
model is used and x2 is simulated. The model so far is seen in (4.1). The next step
for the numerical algorithm is to linearize the system in order to make a Kalman
filter.

4.2 Observers
In order to make an observer a Kalman filter is used. The model of the system
is nonlinear and must therefore first be linearized before a Kalman filter can be
made. This section deals with both the linearization and the design of the Kalman
filter.

4.2.1 Linearization
In Section 4.1 the algorithm got splitted into two algorithms, the algebraical al-
gorithm and the numerical algorithm. These algorithms handle the linearization
similar but have some differences and are therefore divided into different subsec-
tions below. Both algorithms accomplishes a linear state space model

∆ẋ1 =A∆x1 + B∆y

r =C∆x1 + D∆y
(4.4)

so that the Kalman filter can be calculated.
The linearization of a function g(x, y) with the linearization point (x0, y0) gives

g(x, y) ≈ g(x0, y0) + M∆x + N∆y

where M and N are matrices. To get a linear state space model the constant term
g(x0, y0) must be small so that it can be neglected. This can be done by choosing
a stationary point as the linearization point. When the model is correct, the states
and residuals should then be small, which makes g(x0, y0) small.

In this thesis however it has not been convenient to choose a stationary point
because it has been very far from the operating point. An operating point has
instead been chosen as the linearization point. The term g(x0, y0) is still assumed
small as

g(x, y) ≈ g(x0, y0)︸ ︷︷ ︸
≈0

+M∆x + N∆y ≈ M∆x + N∆y.
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Note that this can be a very rough approximation. It is important to remember
that the linearized system is only used for computing the Kalman filter. The
linearized system is not used for simulation.

4.2.2 Linearization in the Algebraic Algorithm
The equations

g̃dyn(x1, y) = ẋ1

g̃alg2(x1, y) = 0.

extracted from (4.2) are linearized. This is done numerically, described in Section
2.1.4, and gives

g̃dyn(x1, y) ≈ g̃dyn(x0, y0)︸ ︷︷ ︸
≈ 0

+A∆x1 + B∆y

g̃alg2(x1, y) ≈ g̃alg2(x0, y0)︸ ︷︷ ︸
≈ 0

+C∆x1 + D∆y.

The result is the system

∆ẋ1 =A∆x1 + B∆y

r =C∆x1 + D∆y,
(4.5)

which is in a state space form suitable for the design of the Kalman filter.

4.2.3 Linearization in the Numerical Algorithm
The equations

gdyn(x1, x2, y) = ẋ1

galg1(x1, x2, y) = 0
galg2(x1, x2, y) = 0

extracted from (4.1) are to be linearized. This is done numerically, described in
Section 2.1.4, and gives

gdyn(x, y) ≈ gdyn(x0, y0)︸ ︷︷ ︸
≈ 0

+A1∆x1 + A2∆x2 + A3∆y

galg1(x, y) ≈ galg1(x0, y0)︸ ︷︷ ︸
≈ 0

+B1∆x1 + B2∆x2 + B3∆y

galg2(x, y) ≈ galg2(x0, y0)︸ ︷︷ ︸
≈ 0

+C1∆x1 + C2∆x2 + C3∆y.

The variable x2 needs to be eliminated to make a state space model. Under the
assumption that the model perfectly describes the reality then

galg1 = 0.
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It is possible to resolve ∆x2 and eliminate it from the expressions with

∆x2 = −(B2)†(B1∆x1 + B3∆y),

where † denotes the pseudoinverse, B†
2 = (BT

2 B2)−1BT
2 , see [10]. This gives

D1 = A1 + A2(B2)†(−B1)

D2 = A3 + A2(B2)†(−B3)

E1 = C1 + C2(B2)†(−B1)

E2 = C3 + C2(B2)†(−B3)

and the linearized system can be written as

∆ẋ1 = D1∆x1 + D2∆y

r = E1∆x1 + E2∆y.

which is the desired state space model.

4.2.4 Tuning the Kalman Filter

A Kalman filter is created as described in Section 2.3.2. A choice of the Q and R
matrices needs to be done. The relation between these matrices is important and
this can be tuned. The matrices are chosen as

Q = λ


1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 1



R =


1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 1


Q ∈ Rn×n R ∈ Rq×q,

(4.6)

where λ is a tuning parameter, n is the number of states and q is the number
of residuals. The matrices in (4.6) are a rough approximation of the covariance
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matrices. A more accurate approximation would be to use

Q = λ


Var(x1,1) 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 Var(x1,n)



R =


Var(r1) 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 Var(rq)

 ,

(4.7)

where Var(x1) are the variances of the states and Var(r) are variances of the
residuals. Note that the tuning parameter λ is used here as well. A problem
with calculating Var(r) is that the residuals r are unknown until the system has
been simulated. This means that another approximation method has to be used
first. The approximation in (4.6) is chosen in this thesis but a comparison of the
simulation results given with (4.6) and the simulation results given with (4.7) is
made in Section 5.7.

4.3 Simulation
The simulation is done using the MATLAB solver ode15s. Documentation for
this is found in [12]. This solver is a multistep solver. It is based on numerical
differentiation formulas. It optionally uses the backward differentiation formulas.
This solver can handle DAEs with index one and it also handles stiff equation
systems. For information on DAE and index, see Section 2.1.2.

Important parameters that are needed for the simulation are the error toler-
ances; RelTol for the relative tolerance and AbsTol for the absolute tolerance with
the same variable names as the MATLAB documentation.

The relative tolerance RelTol is the largest acceptable error relative the size
of the state during a time step. If the relative error is exceeded the time step size
is reduced.

The absolute tolerance AbsTol specifies the largest acceptable solver error as
the value approaches zero. If the value is exceeded the time step is reduced.

4.3.1 Simulation in the Algebraical Algorithm
The algebraical algorithm is made as a reference to the numerical algorithm to
better judge how well the numerical algorithm simulates.

The system to simulate is

˙̂x1 = g̃dyn(x̂1, y)−Kr

r = g̃alg2(x̂1, y),

which is an implicit ODE.
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Simulation Initialization Point

A simulation initialization point needs to be approximated. The same point that
is used as the linearization point is also used here as the simulation initialization
point.

4.3.2 Simulation in the Numerical Algorithm
The system to simulate is

˙̂x1 = gdyn(x̂1, x̂2, y)−Kr

0 = galg1(x̂1, x̂2, y)
r = galg2(x̂1, x̂2, y),

which is a DAE with the algebraic constraints in galg1(x̂1, x̂2, y) = 0.

Simulation Initialization Point

As with the algebraical algorithm, the linearization point is also used as a ini-
tialization point for the numerical algorithm. It can be worth noting that the
points for the numerical algorithm have a larger dimension than the points for the
algebraical algorithm, because of how x2 is handled differently.



Chapter 5

Application on ADAPT-Lite

In this chapter the method presented in Chapter 4 is applied to the system
ADAPT-Lite and the generated residuals are analysed. The mathematical models
for the different components in ADAPT-Lite can be found in Appendix A.

5.1 ADAPT-Lite Overview
The ADAPT-Lite system is presented again in Figure 5.1. The abbreviations are
explained in Table 1.1 which also gives an overview of the components present
in the system. Some components exist in both a direct current, DC, version and
an alternating current, AC, version. All components connected to the left of the
inverter, INV2, in Figure 5.1 are DC components, and all components connected
to the right are AC components.

Figure 5.1. Schematic over the ADAPT-Lite satellite system. The picture comes from
[11].

5.2 Starting Point of the Project
At the start of the application of the method on ADAPT-Lite, some work had
already been done at the department. Models for most of the components al-
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Parameter Value Unit
Zr,fan 6.3 Ω
Zi,fan 51.3 Ω
k0,fan 158 -
kt,fan 4.3 -
Kbat 3.7× 10−3 -
Rbat 1.6× 10−5 Ω
R244 0.0027 Ω
R260 0.0027 Ω
R266 24.8 Ω
R272 109.6 Ω
R275 4.9 Ω
R280 0.2086 Ω
R284 2× 10−16 Ω
R483 625 Ω
R485 9.69 Ω
P0,inv 3.2× 102 W

Table 5.1. The table shows values of the model parameters that have been estimated
for the ADAPT-Lite system.

ready existed and a program in Mathematica, to build a model and to generate
MATLAB files, already existed and worked. What the Mathematica program has
been complemented with is a battery model, a fan model and the equation han-
dling described in Section 4.1. The subsequent steps explained in Chapter 4 have
been programmed in MATLAB. Functions for easier handling of the reading of
the measured indata was already prepared for the MATLAB program but the rest
has been done in this thesis.

5.3 Estimated Model Parameters

The values of the estimated model parameters are presented in Table 5.1. The
values are presented for the interested reader but it is not necessary to analyze the
values in order to understand the rest of the report.

5.4 Generated Equations

The number of equations that are generated varies depending on fault mode but
in this project the number of equations are very similar between the fault modes.
The number of equations generated for the fault mode NF , No Fault, is shown in
Table 5.2. Two equations contain dynamics, which means there will be two states.
Out of 103 algebraic equations 94 are sorted into galg1 and 9 into galg2. There is
also one conditional relation which is also used as a residual.
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System of Equations Number of Equations
gdyn = 0 2
galg1 = 0 94
galg2 = 0 9

gcond 1

Table 5.2. The number of equations in the fault mode NF , i.e., no fault.

5.4.1 Dynamic Equations
In the fault mode NF , No Fault, the dynamic equations, for which the observers
are made, are

dVbat

dt
= KbatI, (5.1)

dωfan

dt
= kt(k0

√
max(0, P )− ωfan). (5.2)

Equation (5.1) comes from the battery model and describes how the time derivative
of the internal battery voltage is proportional with the current from the battery.
More information on the battery model can be found in Appendix A.1.

Equation (5.2) comes from the fan model and models how the fan speed varies.
Note that in the implementation a max function has been added in the square
root expression as seen in (5.2) to avoid imaginary answers. More information on
the fan model can be found in Appendix A.4.

5.4.2 The Residual Equations
The resulting residuals constructed out of galg2 = 0 are

r1 = iEY275,Im − iFAN416,Im

r2 = iEY275,Re − iFAN416,Re

r3 = IDC485 − IEY284

r4 = VEY260,n − VCB280,p

r5 = IEY260 − IEY244

r6 = ICB236 − IBAT2

r7 = x24

r8 = ESH244A− x3

r9 = ISH236− x2,

(5.3)

where subscript n respectively p denotes the components NPin and PPin, subscript
Re respectively Im denotes the real and imaginary part of a complex value. I and
V are DC currents and voltages or potentials and i and v are AC currents and
voltages or potentials. The other variables are explained in Table 5.3. The location
of the residuals in the system are visualized in Figure 5.2, which shows which parts
of the system that are covered by residuals.
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x2 position of the circuit breaker CB236
x3 position of the relay EY244
x24 offset in the measurement of the fan speed

ESH244A sensor measurement of x3

ISH236 sensor measurement of x2

Table 5.3. Explanations of variables in the residual equations.

Figure 5.2. Schematic over the ADAPT-Lite satellite system with the location of the
residuals visualized. The circles show which connections or components the residuals
are centered around but they do however not show all components the residuals are
dependent on.

5.4.3 The Conditional Relation

The single generated conditional relation is

(Vp,Inverter > 22) == (vn,Re,Inverter > 120)

where, ==, denotes a logical test to see if the left hand side equals the right hand
side. The relation comes from the model of the inverter; see Appendix A.5 for
more details about the model.

The relation is reformulated with the logical operator XOR, exclusive or, and
made into a residual rcond,

rcond = XOR
(
(Vp,Inverter > 22), (vn,Re,Inverter > 120)

)
,

which means rcond = 0 if both conditions in the operation exclusive or are true or
false. If only one condition is true then rcond = 1. The discrete answer rcond = 0
means that it is possible, but not certain, that the inverter is OK and rcond = 1
means that there is a fault.

5.4.4 The Kalman Gain

A choice of the tuning parameters λ described in Section 4.2.4 must be made in
the design of the Kalman filter.
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The Kalman gain matrices for the algebraical and the numerical algorithm with
λ = 10−1 has been computed in the fault free mode as

Kalg =
(

0 0 0 0 0 320 0 0 0
0 0 0 0 0 0 310 0 0

)
Knum =

(
0.067 −0.050 0 0 −0.28 0 −0.13 0 0
−3.8 2.8 0 0 16 0 21 0 0

)
.

(5.4)

The number of columns are the same as the number of residual equations r = galg2.
The gain matrices do not look the same for all fault modes and data sets. What
residuals are used in the feedback varies and is not only residual r6 and r7 as in
(5.4). The magnitude of λ do affect the magnitude of the gain which but since it is
here set to the same value, this is not the reason for the difference. One reason may
be that the R matrices are slightly different. This is because galg2 differs for the
two algorithms. The linearization point also has a different number of coordinate
elements in the two algorithms because x2 is algebraically solved in one algorithm
but not in the other. If using the R matrix from the algebraically algorithm in
the numerical algorithm instead of the one calculated in that algorithm the values
in the K matrix becomes much more similar between the two algorithms. This is
however not done in the presented simulations in this report.

5.5 Algebraical Shortcuts for Numerical Algorithm
Two shortcuts in the numerical algorithm, which include algebraical solving, have
been used even though it would have been preferred to only use numerical solving
for this algorithm. The shortcuts used are explained in this section.

5.5.1 Linearization Point and Initial Simulation Point
The calculation of the linearization point is done the same for the algebracial and
the numerical algorithm. This computation invovles using algebraical steps. For
the numerical algorithm this becomes an algebraical shortcut. The linearization
point is an operating point and the point is also used as an initial point for the
simulation.

To see the effect of this shortcut, the point is also approximated with a vector
with the value of 1 in every element position. In Figure 5.3 the two methods
are compared by plotting the simulated states for both algorithms, both with the
two different linearization points. It is possible to note that the curve shapes are
slightly different but also that the magnitudes are comparable and rather similar.

5.5.2 Reformulation of the Algebraic Constraints
The numerical algorithm only seem to simulate when the algebraic constraints of
the DAE are reformulated with algebraical calculations. Nominally the algebraic
constraints of the DAE are formulated as

0 = galg1(x1, x2, y).
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(a) states, algebraical algorithm,
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(b) states, numerical algorithm,
lin. point made of ”ones”
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(c) states, numerical algorithm,
lin. point made of operating point
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(d) states, numerical algorithm,
lin. point made of ”ones”

Figure 5.3. The algebraical and the numerical algorithm is simulated with a lineariza-
tion point and simulation start point consisting, in (a) and (c) of an operating point,
and in (b) and (d) of a vector made from only ones. Note that the jagged shape of state
ω in (a) and (b) are caused by discretizations in the sensor measurements. The states
are simulated in fault mode NF , with fault f1 introduced at 90.2 sec, dashed line. Fault
modes and faults are explained more in Section 5.6.2 but are not very important for
now. The curves with the different linearization points differs slightly for state ω with
the numerical alorithm but the main observation is that the linearization point has not
mattered very much.

This is modified by algebraically solving galg1 with respect to x2 as

galg1(x1, x2, y) = 0 =⇒ x2 = Galg1(x1, y).

Instead of substituting x2 in all the other model equations, as is done for the
algebraical algorithm, new relations are created,

0 = x2 −Galg1(x1, y),

which will be the new algebraic constraints used instead of the nominal ones. Note
that the system is basically the same but with a new form. Why this makes a
difference for the solver used for the simulation has not been successfully analysed
in the thesis but it has been a necessary step to get any results from the numerical
algorithm.
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5.6 Simulation

In this section the simulation tolerances are set, the fault modes and faults are
defined and simulations of different fault modes in combinations with faults are
simulated.

5.6.1 Simulation Tolerances

The simulation parameters, RelTol for the relative tolerance and AbsTol for the
absolute tolerance, must be set for the numerical algorithm. The algebraical al-
gorithm, is not as sensitive to the choice of the parameters as the numerical algo-
rithm and the default parameters can be used. If the parameters for the numerical
algorithm are set too large, the precision of the simulation will be low. If the tol-
erances are set to small the simulation may not converge or have to abort earlier
than supposed. Values of different sizes have been tested and manually iterated
until good values have been found. How good the parameter values are can be
evaluated with the simulated plots of the states. In MATLAB the default values
are RelTol = 10−3 and AbsTol = 10−6. These do however not work very well. In
Figure 5.4 two sets of parameters are tested. In Figure 5.4(b) the simulation is
aborted before simulation completion because the tolerances can not be met when
the parameters are set too small. The simulation in Figure 5.4(c) look more rea-
sonable and the parameters, RelTol = 101 and AbsTol = 100, are the simulation
tolerance parameters used in all the subsequent simulations in this chapter in the
numerical algorithm.

5.6.2 Defining the Fault Modes and the Faults

In this thesis only single faults are studied. This means that each fault mode,
except no fault, has one fault that corresponds to the fault mode. The faults and
fault modes are presented in Table 5.4. The magnitudes of the faults are unknown.
It is important to remember that the fault mode concerns what model equations
that are used and that the actual fault concerns what is happening to the real
system which may show in the measured signals.

Fault Mode Fault Description
NF - No fault
F1 f1 Resistance offset, in AC483.
F2 f2 Resistance offset in DC485
F3 f3 Drift in voltage sensor E242

Table 5.4. The table defines the fault modes and their corresponding faults, as well as
a brief description of the faults.
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(a) algebraical algorithm
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(b) RelTol = 10−1, AbsTol = 10−1
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(c) RelTol = 101, AbsTol = 100

Figure 5.4. Simulation of the states testing the tolerance parameters RelTol and AbsTol
for the numerical algorithm. The algebraical algorithm, in (a), is used as a reference. In
(b) the parameters are too strict and the simulation is therefore unintentionally aborted
at around 0.5 sec because the conditions can not be met. In (c) the simulation resembles
that of the reference (a) and the parameters can therefore be accepted.

5.6.3 Fault Mode NF without Faults

The system is tested with fault mode NF and with no fault occurring. The
simulation can be seen in Figure 5.5. The two algorithms look qualitatively rather
similar. Both algorithms show a slight offset in residual r2.

5.6.4 Fault Mode NF with Fault f1

The system is tested with fault mode NF in combination with the fault f1 defined
in Table 5.4. The simulated states and two residuals can be seen in Figure 5.6

The fault can be seen in the state Vbat. The residual r1 shows the fault quite
clearly. In Figure 5.2 it can be seen that residual r1 is one of the residual closest to
the faulty component AC483. Residual r2, which is also close and whose residual
is not shown here, does however not show the fault clearly.

5.6.5 Fault Mode F1 with Fault f1

The variables in x1 can not be algebraically solved in Mathematica for fault mode
F1. The linearization point is therefore calculated with an ”ad hoc” method for
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(a) states, algebraical algorithm
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(b) states, numerical algorithm
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(c) residuals, algebraical algorithm
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(d) residuals, numerical algorithm

Figure 5.5. The states and two residuals are simulated in fault mode NF , with no fault
introduced in the system. The two algorithms look similar but numerical algorithm has
a longer step length in the simulation. In (a) and (b) the battery voltage Vbat decreases
over time which is expected. The residual r2 in (c) and (d) have a slight offset from zero
which is not ideal to have.

both the algebraical and the numerical algorithm. As the linearization point a
vector with the value of one in every element is used. Plots from the simulation are
shown in Figure 5.7. The fault f1 is not compensated in residual r1 in Figure 5.7(b).

5.6.6 Fault Mode NF with Fault f2

The fault f2 is a fault in the component DC485. The residual that should and does
show the fault the most clearly is residual r3. This is expected because residual
r3 checks the currents going from component EYE284 to component DC485. The
simulation is plotted in Figure 5.8. In the plot the states are not very strongly
affected by the fault but the residual r3 shows very clearly when the fault is
occurring. It would be very easy to detect this fault with thresholding with both
the algebraical and the numerical algorithm.

5.6.7 Fault Mode F2 with Fault f2

The system is simulated in fault mode F2 with the related fault f2 occurring. f2 is
an offset fault of the resistance in component DC485 and the fault mode F2 shall
compensate for this kind of fault. The simulation is shown in Figure 5.9. The fault
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(a) states, algebraical algorithm
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(b) states, numerical algorithm
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(c) residual, algebraical algorithm

0 50 100 150 200
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

r1
nu

m

Time [sec]

(d) residual, numerical algorithm

Figure 5.6. The states and residual r1 are simulated in fault mode NF , with fault
f1 introduced at 90.2 sec, dashed line. The state Vbat shows clear signs of the fault,
especially with the algebraical algorithm, in (a). The residual r1 in (c) and (d) shows a
change in amplitude when the fault comes.

is compensated by assigning a state to the fault variable Rb which can be seen in
(a) and (b) in the figure. In (c) and (d) the residual r3, which is very sensitive to
the fault, is presented. Both the algorithms react to the fault in residual r3 but
with the algebraical algorithm this is compensated very quickly and only a narrow
spike is shown. With the numerical algorithm the compensation for the fault is
much slower. The difference in the results of the algorithms is also seen clearly in
the state Rb in (a) and (b) in the same figure.

5.6.8 Fault Mode NF with Fault f3

The system is simulated in fault mode NF , with fault f3 which is a sensor fault.
The simulations in Figure 5.10 show that the fault is visible for both algorithms.

5.6.9 Fault Mode F3 with fault f3

As with fault mode F1, with fault mode F3, x1 can not be algebraically solved. An
”ad hoc” linearization point is created with ones as coordinates. Plots from the
simulation are shown in Figure 5.11 and in 5.12. It is curious that in Figure 5.11
the numerical algorithm compensates for the fault better than the algebraical
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(a) states, algebraical algorithm
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(b) states, numerical algorithm
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(c) residual, algebraical algorithm
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(d) residual, numerical algorithm

Figure 5.7. The states and residual r1 are simulated in fault mode F1, with fault f1

introduced at 90.2 sec, dashed line. The state ω suffers from the choice λ, but the choice
is a compromise of overall getting good states. The state Vbat shows signs of the fault
in (a) and (b). Why the state Rb behaves differently in (a) and (b) is unknown. The
residual r1 in (c) and (d) shows a change in amplitude when the fault comes which shows
that the fault has not been fully compensated.

algorithm. Why this happens is unknown. The fault is however not compensated
in all residuals, which is shown in Figure 5.12.

5.7 Variance Estimations for the Kalman Filter

When the Kalman Filter is created, the variance estimations of the states and the
residuals are made and used in the matrices Q and R. In the other sections of this
chapter the rough estimation, by using absolute values of the signals together with
tuning of the parameter λ, has been used. In this section this method is compared
with a more accurate estimation of the variances. In this method the variances
are estimated by calculating the variances from simulated states and residuals.
The matrices Q and R are however still dependent on the tuning parameter λ.
The reason why this method has not been used previously, is that simulations are
required and a first estimation or guess is needed anyway.

In Figure 5.13 and Figure 5.14, a comparisons between the presented estimation
methods is made. A variance estimation of the states and residuals has been
calculated from simulations of the algebraical algorithm. In general, the plots
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(a) states, algebraical algorithm
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(b) states, numerical algorithm
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(c) residual, algebraical algorithm
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(d) residual, numerical algorithm

Figure 5.8. The states and two residuals simulated in fault mode NF , with fault f2

introduced at 59.5 sec, dashed line. The states are relatively unaffected but the residual
r3 shows the fault very clearly in both algorithms in (c) and (d). It is possible in (d) to
see that the reaction on the fault seem to happen just before the the fault time. This is
caused by that the fault occures between two model evaluations.

from the two methods look similar. Some differences may be caused by different
values of λ. The states from the numerical algorithm with the more accurate
variance estimation in Figure 5.13(d) need different values of λ and the chosen
value is a compromise which is why the state ωfan has a big variance.

It is interesting to note that the Kalman filters with the more accurate variance
estimation

Kalg =
(

0 0 0 0 0 0.01 0 0 0
0 0 0 0 0 0 65 0 0

)
Knum =

(
0.034 −0.0011 0 0 0 0 −0.002 0 0
−18.194 0.618 0 0 0.110 0 1.170 0 0

) (5.5)

which is in (5.5) shown for the fault free fault mode, have some similarities to that
of the of the Kalman filter shown in (5.4), with regards to what residuals are used
in the feedback.
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(a) states, algebraical algorithm
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(b) states, numerical algorithm
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(c) residuals, algebraical algorithm
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(d) residuals, numerical algorithm

Figure 5.9. The states and two residuals simulated in fault mode F2, with fault f2

introduced at 59.5 sec, dashed line. The offset variable Rb is now assigned a state and
the fault can be compensated. This is done successfully in both algorithms as can be
seen in the state Rb in (a) and (b) and on the residual in (c) and (d). Note the very
narrow spike in (c) at the time of the fault. In (d) the spike is shallower and broader.

5.8 The Numerical Algorithm’s Sensitivity to λ

In the simulations the parameter λ has been adjusted for the numerical algorithm
to give simulation results similar to those of the the algebraical algorithm. In many
cases it seems vital to make careful adjustment of λ to not get very distorted signals
in the simulation. This is shown in Figure 5.15. Examples of values that have been
used for the numerical algorithm are presented in Table 5.5 where the spread of
the values is noteworthy. The algebraical algorithm is not as sensitive to λ and
λ = 105 has been used as a standard value for this algorithm with the exceptions
λ = 10−4 for fault mode F1 and λ = 1010 for fault mode F3.

5.9 About Approximation in the Linearization

In the linearization in Section 4.2.1 an approximation is made as

g(x, y) ≈ g(x0, y0)︸ ︷︷ ︸
≈0

+M∆x + N∆y ≈ M∆x + N∆y
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(a) states, algebraical algorithm
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(b) states, numerical algorithm
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(c) residuals, algebraical algorithm
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(d) residuals, numerical algorithm

Figure 5.10. The states and residual r3 simulated in fault mode NF , with fault f3

introduced at 75 sec, dashed line. The states are fairly unaffected but the residual r3,
which is a residual for a sensor, clearly shows the expected drift in (c) and (d).

where the term g(x0, y0) is assumed insignificant and is neglected. To see if this
assumption is well made, a test quotient l is made as

l =
‖g(x, y)− g(x0, y0)‖

‖g(x, y)‖
(5.6)

Which compares the signals from approximated system with the nonlinear system.
When g(x0, y0) is insignificant, the quotient is close to one. There is a function
g(x, y) for every state and residual with which the quotient l can be made. His-
tograms of l from a few selected states and residuals l from a simulation of fault
mode NF without faults in the system are plotted in Figure 5.16. Many of the
samples are somewhat close to one for the quotient l but there are deviations with
values many times bigger than one.

In Figure 5.17 the quotient l is plotted over time. The signals do not show any
obvious pattern but look rather stochastic.

It seems that the decision to neglect the term g(x0, y0) works well in many
time steps in the simulation but not in all.
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(a) states, algebraical algorithm
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(b) states, numerical algorithm
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(c) residual, algebraical algorithm
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Figure 5.11. The states and residual r3 simulated in fault mode F3, with fault f3

introduced at 75 sec, dashed line. The third state in (a) and (b) should compensate for
the fault so that the residuals in (b) and (d), are constant. The numerical algorithm
compensates for the fault. The algebraical algorithm tries to compensate for the fault
but fails.
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(a) residual, numerical algorithm,
fault mode NF
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(b) residual, numerical algorithm,
fault mode F3

Figure 5.12. A residual in fault mode NF in (a) and fault mode F3 in (b) with fault
f3 introduced at 75 sec. Only the numerical algorithm is shown here but the algebraical
algorithm gives very similar results. The drift in residual r2 is more or less the same
despite the fault mode difference. In residual r6 however, the fault is compensated with
fault mode F3 and is not detectable.
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(a) states, algebraical algorithm
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(b) states, algebraical algorithm,
with the more accurate variance es-
timation
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(c) states, numerical algorithm
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(d) states, numerical algorithm, with
the more accurate variance estima-
tion
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(e) residual r3, numerical algorithm
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(f) residual r3, numerical algorithm,
with the more accurate variance esti-
mation

Figure 5.13. The states and a residual in fault mode F2 with fault f2 introduced at 59.5
sec. In (b), (d) and (f) the more accurate estimations of the variations of the states and
residuals have been used. Note that the different variance estimation methods overall
makes a small difference here. The ωfan in (d) however shows a big variance caused
by the choice of λ. The states need different values of λ and the chosen value in the
simulation in (d) and (f) is a compromise where the states Vbat and and Rb have been
prioritized. In the residuals (e) and (f) there is a noticeable difference where the more
accurate estimation of the variance shows a more accurate result. In both simulations the
effect from the fault is much smaller than it was without the fault compensation given
by the fault mode.
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(a) residual r3, algebraical algorithm
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(b) residual r3, algebraical algo-
rithm, with the more accurate vari-
ance estimation
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(c) residual r3, numerical algorithm

0 50 100 150 200
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

r3
nu

m

Time [sec]

(d) residual r3, numerical algorithm,
with the more accurate variance esti-
mation

Figure 5.14. The residual r3 in fault mode NF with fault f2 introduced at 59.5 sec. In
(b) and (d) the more accurate estimations of the variations of the states and residuals
have been used. Note that the variance estimation does not make a big difference here.

Fault Mode Fault λ-Value
NF - 10−1

NF f1 10−1

NF f2 10−1

NF f3 10−2

F1 f1 10−4

F2 f2 101

F3 f3 1010

Table 5.5. The table shows the values of λ for simulations of combinations of fault
modes and faults for the numerical algorithm. Note that the choice of λ also depends
on the measurement series of the signals. The values should only be seen as examples of
values used. It is interesting to note the spread.
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(a) algebraical algorithm
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(b) numerical algorithm, λ = 10−1
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(c) numerical algorithm, λ = 104

Figure 5.15. The plot shows simulated states for fault mode NF and with fault f1

introduced at 90.2 sec. The influence of λ to the numerical algorithm is tested in (b) and
(c) with the algebraical algorithm in (a) as a reference. Plot (b) looks similar to (a) but
in (c) with a higher λ, the state Vbat is very distorted.
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Figure 5.16. Histograms of test quotient l from selected states and residuals. In both
(c) and (d) the quotient is not clearly centered around the value one, but it is not far
away.
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(b) residual r3

Figure 5.17. Time plots of test quotient l from selected states and residuals. The
signals seem stochastic.





Chapter 6

Conclusions

From the results, presented in the previous chapter, a couple of conclusions can
be drawn which are presented in this chapter.

6.1 Generation of Residual Equations

The generation of the residuals works as it is supposed to in many cases. There
are problems with generating the equations for certain fault modes when x1 can
not be solved algebraically. The algorithms still work if the linearization points
can be estimated without the solved x1, as is the case in Section 5.6.5 and in
Section 5.6.9.

When the equations in galg are sorted into galg1 and galg2 there is a certain
randomness of what equations go where. The randomness is somewhat dependent
on the order of which the equations are sorted in galg. The user has no real control
over this in the current system. This do however affect where in the system the
residuals will be located. When faults are to be isolated it can be important to
have control over the choice of which equations are sorted into galg1 and which are
sorted into galg2. This has however not been focused upon in the project but is
important to take note of.

6.2 Simulation Method

Both the algebraical and the numerical algorithm have worked quite satisfactory
and some of the tested faults have been clearly visible for the bare eye. The
algebraical algorithm shows the faults slightly more clearly than the numerical
algorithm but both algorithms work pretty well at the simulation stage.

As shown in Section 5.8 the simulations with the numerical algorithm are in
some cases quite sensitive to the parameter λ which may need to be retuned for
each fault mode and/or in-data set. This can be a hindrance for the automatization
of a diagnosis system because it needs to be tuned manually unless there is a way
to automatize the tuning.
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6.3 Algebraical Shortcuts
The algebraical shortcuts for the numerical algorithm makes the algorithm not
completely numerical and it is reasonable to believe that such an implementation
is slower in calculation time. There are two shortcuts that have been taken which
are discussed separately below.

6.3.1 Linearization and Simulation Initialization Point
The algebraical shortcut used with the numerical algorithm, to find the lineariza-
tion and simulation start point, described in Section 5.5.1, did affect the curves
of the simulated states. It did however not dramatically affect the magnitude and
the curve shapes had similarities. By using knowledge about the real system and
the expected magnitudes of the signals it should be possible to make a system to
automatically find good linearization points and simulation start points without
any algebraical shortcuts when the system is running.

6.3.2 Reformulation of the Algebraic Constraints
The second algebraical shortcut is the reformulation of algebraical constraints.
This problem might be hard to overcome. No other solution can be presented here
but other programs or solvers for simulating DAEs may be options to try.

6.4 Estimation of Variances for the Kalman Filter
The rough estimation of the variances that has been used in the design of the
Kalman filter seems to have worked. In the comparison with the more accurate
but less automatic way of estimating the variances, in Section 5.7, the rougher
method did well. Different estimations do however give slightly different results
for the numerical algorithm and an improved estimation may still be important
for achieving higher accuracy in the simulations.

6.5 Approximation in the Linearization
The approximation that is made in the algorithm in Section 4.2.1 has been evalu-
ated in Section 5.9. The evaluation shows that the approximation is not unfounded
but also that it is possible that it can be problematic for the simulations. To draw
a more precise conclusion about the consequences of the approximation would need
a deeper analyzation of the problem than has been made in the thesis.



Chapter 7

Future Work

During the course of the work new questions have arisen and some old question
have not been of priority, which are never the less of interest. These are left as
future work which are questions that can be analyzed in new projects.

7.1 Improved Model
How good the fault detection is depends on how good the models of the system
are. The work in this master thesis has not tried to get as good residuals as
possible but rather to get residuals that are good enough to see if the method of
automatic residual generation works. It would however be very interesting to see
how much better the residuals can get with more work put into the modeling of
the ADAPT-Lite system.

7.2 Multiple Faults
Only single faults have been tested. It would be interesting to see what happens
when there are multiple faults occurring and when fault modes for these multiple
faults are used. It would be interesting to see how well the faults are compensated
for by the fault modes, and too see what happens with the detectability of new
faults when the system is already in a fault mode for multiple faults. It would
be especially interesting to see how the detectability of faults is affected when
decoupling dynamic faults. It is possible to speculate that there may be a risk
that the states that compensates for a dynamic fault also compensates for other
faults unintentionally.

7.3 Automatic Model Parameter Estimation
In this master thesis the process for estimating model parameters has been done
manually. It would be of great interest if this could be fully automated so that the
residual equations or the model equations, the unknown parameters and sample
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data work as in-parameters in a program that automatically calculates the un-
known parameters. This would save a lot of time when the analyzed system is
changed.

7.4 Automatic Estimation of λ

The tuning parameter λ, used for the design of the matrices Q and R in the Kalman
filter design, has been tuned manually while looking at the resulting plots. The
spread in the λ values for different simulations has been big. This is a hindrance
for an automatic process. It would be very good if an estimation of λ could be
made automatic.

7.5 Improved Numerical Simulation Method
The numerical simulations of the system have given results but are there other
simulation tools that can simulate more efficient and better? The simulations
have been run in MATLAB but maybe another programming language or other
algorithms could be better suited for efficient simulations of DAE’s.

7.6 Real Time Implementation
In this thesis the results have only been simulated offline with pre-collected mea-
surement data from sensors. To do an implementation, that runs fully online in
real time, of the diagnostic program, demands for additional work to be done.
Other programming languages, for instance C, may be needed. It will also need
logic for handling the online switching between fault modes which must also be
executed in real time.
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Appendix A

Component Models of
ADAPT-Lite

In this chapter the component models used for the ADAPT-Lite circuit are shown.

To save space the definitions of currents, voltages and potentials that are used
through out this chapter are defined in Table A.1.

I DC current through the component
V voltage over the component
Vp potential at the PPin
Vn potential at the NPin

ip,Re real part of current through the PPin
ip,Im imaginary part of current through the PPin
in,Re real part of the current though the NPin
in,Im imaginary part of the current though NPin
vRe real part of the voltage over the component
vIm imaginary part of the voltage over the component
vp,Re real part of the potential at the PPin
vp,Im imaginary part of the potential at the PPin
vn,Re Real part of the potential at the NPin
vn,Re imaginary potential at the NPin

Table A.1. Definition of currents, voltages and potentials of the component models.
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A.1 Battery

The battery is modelled as

dVbat,int

dt
= KbatI,

Vn = Vint + RbatI,
(A.1)

where Vbat,int is the internal voltage, Rbat is the internal resistance and Kbat is a
proportionality constant. The connection points and constant parameters can be
seen in Table A.2.

PPin -
NPin I, Vn

constants Kbat, Rbat

Table A.2. The table shows connection points and the constant parameters of the
battery.

A.2 Circuit Breaker and Relay

The circuit breaker and the relay are modelled as

I = 0; [T, SO],
V = RI,

Vp = Vn + V,

(A.2)

where R is the resistance. The connection points and constant parameters can be
seen in Table A.3.

PPin I, Vp

NPin I, Vn

constants R

Table A.3. The table shows the connection points and the constant parameters of the
circuit breaker and the relay.



A.3 Complex Circuit Breaker and Complex Relay 55

A.3 Complex Circuit Breaker and Complex Re-
lay

The complex circuit breaker and the complex relay is modelled as

iRe = 0; [T, SO]
iIm = 0; [T, SO]
vRe = RiRe,

vIm = RiIm,

vRe = vp,Re − vn,Re,

vIm = vp,Im − vn,Im,

(A.3)

where R is the resistance through the component. The connection points and
constant parameters can be seen in Table A.4.

PPin ip,Re, ip,Im, vp,Re, vp,Im

NPin in,Re, in,Im, vn,Re, vn,Im

constants R

Table A.4. The table shows the connection points and constant parameters of the
complex circuit breaker and the complex relay.

A.4 Fan

The fan is modelled as

vRe = zReiRe − zImiIm; [OK],
vIm = zImiRe + zReiIm; [OK],
dω

dt
= kt(k0

√
P − ω); [OK],

P = vReiRe + vImiIm,

vRe = vp,Re − 0,

vIm = vp,Im − 0,

(A.4)

where zRe and zIm are the real and imaginary parts of the resistance, P is the
effect used, ω is the fan speed and k0 and kt are constants. The connection points
and constant parameters can be seen in Table A.5.
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PPin iRe, iIm, Vp,Re, Vp,Im

NPin -
constants zRe, zIm, k0, kt

Table A.5. The table shows the connection points and the constant parameters of the
fan.

A.5 Inverter

The inverter is modelled as

(Vp > 22) = (vn,Re > 120); [OK],
vn,Rein,Re = VpIp − P0; [OK],

Vp > 22; [FO],
vn,Re < 120; [FO],
vn,Im = 0.

(A.5)

where Ip is the DC current through the PPin and P0 is the effect used in the
inverter. The connection points and constant parameters can be seen in Table
A.6.

PPin Ip, Vp

NPin in,Re, in,Im, vn,Re, vn,Im

constants P0

Table A.6. The table shows the connection points and the constant parameters of the
inverter.

A.6 Real Load

The real load is modelled as

Rb = 0; [OK],
V = (R + Rb)I,

Vp = Vn + V,

Vn = 0,

(A.6)

where R is the nominal resistance, Rb is an offset resistance, Note that Vn = 0
because this component does not connect the NPin in the ADAPT-Lite circuit.
The connection points and constant parameters can be seen in Table A.7.
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PPin Vp, I
NPin -

constants R

Table A.7. The table shows the connection points and the constant parameters of the
real load.

A.7 Real AC Load
The real AC load is modelled as

Rb = 0; [OK],
dRb

dt
= 0; [OS],

vRe = (R + Rb)iRe,

vIm = (R + Rb)iIm,

vRe = vp,Re − 0,

vIm = vp,Im − 0,

(A.7)

where R is the nominal resistance, Rb is an offset resistance, Note that vRe =
vpRe − 0 and vIm = vp,Im − 0 because the NPin is not connected in the ADAPT-
Lite circuit. The connection points and constant parameters can be seen in Table
A.8. [OK] stands for no fault, [OS] for a offset fault.

PPin iRe, iIm, Vp,Re, Vp,Im

NPin -
constants R

Table A.8. the table shows the connection points and the constant parameters of the
real AC load.

A.8 Sensors
The sensors are modelled as

z = y + b [OK]
b = 0 [OK]

db

dt
= 0 [B]

(A.8)

where y is the measured signal without bias, b is the bias, and z is what the sensor
shows.

The sensors only have one pin that is connected to where the sensor is mea-
suring. [OK] stands for no fault, [B] for a bias fault.


