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Abstract

The concept driver distraction is diffuse and no clear definition exists, which
causes troubles when it comes to driver attention monitoring. This thesis takes
an approach where eye-tracking data from experienced drivers along with radar
data has been used and analysed in an attempt to set up adaptive rules of how
and how often the driver needs to attend to different objects in its surroundings,
which circumvents the issue of not having a clear definition of driver distraction.
In order to do this, a target tracking algorithm has been implemented that refines
the output from the radar, subsequently used together with the eye-tracking data
to in a statistical manner, in the long term, try to answer the question for how
long is the driver allowed to look away in different driving scenarios? The the-
sis presents a proof of concept of this approach, and the results look promising.
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1
Introduction

"Can more road signs be put up without impairing the driving ability among the
road users?" was the coarse question that funded a project at the Swedish Na-
tional Road and Transport Research Institute, VTI, on how to make quantitative,
unbiased assessments of driver distraction. Much effort has been put into trying
to define the concept distraction, but yet today there exists no general applica-
ble definition, and there are almost as many definitions as there are researchers.
Many distraction detection algorithms have been proposed, but due to the fact
that the notion itself is not well-defined, inconsistencies and validity issues are
commonplace among them.

Most of all, the so called hindsight problem needs to be solved, meaning that
the outcome of a certain situation should not need to be known in order to deter-
mine whether or not the driver was distracted. An accident might occur despite
driver attentiveness, and driver distraction does not necessarily imply an acci-
dent.

Researchers at VTI have proposed a new approach to this issue - instead of
focusing directly on driver distraction, one should start with a clear definition
of attention. In order to eliminate the hindsight problem, there is a need for
setting up rules on when and how often a driver is required to sample certain
information in different traffic situations, and as soon as these rules are broken,
the driver should considered distracted. However, if the requirements are ful-
filled, the driver should be allowed to use spare capacity to attend to secondary
tasks such as looking at navigational device or tuning the radio, without being
classified as distracted. They call this generic idea Minimum Required Attention,
MRA, presented in [Kircher and Ahlström, 2014].

Currently there is an algorithm developed at VTI called AttenD, which uses
eye-tracking data for driver attention monitoring. A Field Relevant for Driving,
FRD, is defined, and when the driver is looking outside FRD, a buffer counts
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2 1 Introduction

down. When the driver is looking inside, the buffer counts up. When the buffer
runs empty, the driver is considered distracted. The problem is that AttenD is
completely unaware of the current traffic situation and the exact same attention
requirements apply when, for instance, driving 5 km/h on an empty parking lot,
as when driving 80 km/h on a busy highway, which is of course unreasonable.

1.1 Objectives

The overall problem that is being studied and (partly) solved in this thesis is the
issue of how to make use of acquired data in order to incorporate situational
awareness into AttenD. After a start-up phase containing a brief investigation of
the available data, the thesis work was divided into the following tasks:

• Tracking improvement. The data received from the radar are not raw mea-
surements, but output from an internal filter. This means that the available
data from the radar consists of lateral and longitudinal position of each ob-
ject within the field of view of the radar, as well as relative longitudinal
velocity, accessed through making use of the Doppler effect. As it turned
out, the performance of the internal tracking is debatable. It uses up to 32
channels to store information on up to 32 objects - that is, one channel per
object visible to the radar at any given time. The rule determining which
object to be stored in which channel however seems obscure, and each track
is not stored in the same channel throughout its life time. Considering the
overall goal with this project - to set up adaptive rules of how often the
driver needs to attend to certain objects in the environment - this structure
of the data is insufficient. The objects need to be tracked individually with-
out the channel switching phenomenon. Only then is it possible to keep
track of whether or not the driver has attended to an object according to
the rules (the rules that this project aims to set up, that is). Figure 1.1 illus-
trates the channel switching issue, and the goal with this task is to develop
an algorithm that solves the channel switching phenomenon.

• Conduct eye-tracking analysis. The eye-tracking data is delivered as an an-
gle at each time step, giving the gaze direction of the driver, and an interest-
ing question is how well that direction can be matched with the situational
awareness data provided by the radar.

• Propose a novel method for setting up attentional demands in certain traffic
situations. The outcome of the previous tasks will obviously set the founda-
tion for the possible complexity of the model.

1.2 VTI and MFT

VTI is an independent and internationally prominent research institute within
the transport sector, with offices located in several cities in Sweden. Their main
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Figure 1.1: Illustration of the target association issue. The plot of the longi-
tudinal distance (uppermost) most clearly demonstrates the problem of how
the signals make numerous jumps between the the targets.

objective is to conduct research and development of infrastructure, traffic and
transport. Areas included among others are road and rail engineering, mainte-
nance, vehicle technology, road safety, traffic analysis, environment and transport
economy.

This thesis was carried out at the Human, Vehicle, Transport System Interac-
tion unit, MFT, which aims to conduct research concerning road users and their
interaction with the transport system with main focus on questions concerning
road user’s limitations and possibilities in their interaction with other road users.

1.3 Thesis Outline

Chapter 2 briefly describes the system that was used for data acquisition, and
presents the available data. It also provides background to different methods of
assessment of driver capacity. Chapter 3 presents the theoretical framework for
target tracking including filter theory and a representation of the Kalman filter,
while Chapter 4 describes how the tracking concept was applied to this specific
problem and presents the results. The possibilities to improve the performance
of the target tracking was investigated in the final phase of the thesis work - Chap-
ter 5 presents the conclusion on this. In Chapter 6 it is being theorised around
how the data and the results so far can be used to define situational demands in
different traffic situations and derive, in some sense, a proof of concept. Finally,
Chapter 7 states concluding remarks and proposes future work.





2
Data Acquisition

The vast majority of the data used in this thesis was collected prior to its start
(towards the end of the project more data was collected using a camera sensor,
which was not used during the first effort of collecting data), but the course of
action will still be described. This chapter will start off with a quick review of
the project background in order to provide context to the description of different
methods for assessment of driver capacity, which is provided afterwards. A brief
description of the system setup and finally a detailed description of the acquired
data follows.

2.1 Background

As already been mentioned, the project that this thesis is a part of centralises
around a new approach for monitoring driver attention: the outcome of a situ-
ation should not have to be used in order to determine whether the driver was
distracted or not. Instead, attentional demands for any given situation should be
defined. If the driver’s spare capacity also could be determined at any given time,
then these two could be compared and a decision on attentiveness could then
be stated. The idea is that as long as the attentional demands are fulfilled, the
driver can use any spare capacity for other tasks, such as looking at navigational
device or interacting with passengers, and can not be blamed for being distracted,
even if an accident should occur. On the other hand, as soon as the attentional
demands are not fulfilled the driver should be considered distracted.

The difficulties of course lie in identifying the attentional demands of any
given situation. They can be either model based or data driven. A few comments
on that:

• A model based approach would mean utilising physics and mathematics in

5



6 2 Data Acquisition

order to build a model representing how the driver gains and loses infor-
mation depending on if he or she attends to the road or not. Senders et al.
[1967] give this a try by considering a straight road carrying a uniform dis-
tribution of information while the host vehicle is pervaded at constant ve-
locity. They manage to obtain a parametrised model valid at that specific
situation. The parameters are then determined via test runs, and it turned
out that the parameters vary individually, suggesting that this approach is
not very suitable for the objective of setting up situational dependent at-
tentional demands. Not much more research has been conducted on this,
which reinforces that suggestion. Additionally, traffic rules are not formu-
lated in a way that would make them easily translated into mathematical
equations.

• The other approach would mean acquiring different data and utilise that in
some way to define the attentional demands. It can be assumed that experi-
enced drivers after years and years of driving have established internal ver-
sions of the traffic rules (with "traffic rules" we here mean partly the actual
written rules that state for instance what car that has priority at a highway
entrance, but also the more vague rules that stem from common sense and
mutual respect), and hence can be used as benchmarks when it comes to ob-
taining successful attention allocation patterns in different situations. This
means that an experienced driver should "feel" that he or she should pay
more frequent attention the less predictable the situation is. Driving just
behind a heavy truck being overtaken by another heavy truck why self be-
ing overtaken by another vehicle requires a completely different attention
allocation pattern than when driving solo on the road, and it is these "rules"
that experienced drivers are assumed to have internalised.

2.1.1 Driver Capacity Assessment

Well before this master thesis was announced it was decided to use a data driven
approach. The data acquisition will be described later in this chapter but first,
a few well-known methods for assessment of driver capacity will be described
below.

Eye-Tracking

Several cameras mounted on the dashboard record a video of the movement of
the driver’s head and eyes, from which the gaze direction can be estimated in real-
time. The concept is well-established and commercial alternatives are available,
but they are relatively expensive, and it requires frame-by-frame evaluation of
the surrounding. In order to catch saccades the sample frequency must be high,
which makes the evaluation possibly tedious. Furthermore, only the foveal vision
is considered, and the peripheral impressions are left out. On the opposite, all tar-
gets that are glanced at are not necessarily attended to - so called vacant staring
or looking without noticing might occur. Also, it is hard to in real-time deter-
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mine whether or not the glanced targets is relevant for safety. This is a problem
since the project aims to set up rules that do not require hindsight knowledge.

Self-Paced Visual Occlusion

Whenever the driver feels that the current traffic situation is predictable, he
or she activates occlusion goggles, preventing him or her from seeing the road,
which in real-time gives access to how the driver assesses its spare capacity. Driv-
ing fast with occluded sight may strike the driver as uncomfortable or scary, con-
sequently leading to conservative handling.

Verbal Protocol

Whilst driving, the driver reports what he or she pays attention to, giving access
to not only gaze allocation but also to attention allocation. Due to the issue of
vacant staring described previously, this is a good complement to eye-tracking.
This does however require a certain effort from the driver, and people may or may
not be proficient enough at simultaneously driving and reporting as the reporting
might interfere with other cognitive tasks. Also, fast sequences of events will not
be consummately retold.

Expert Judgement

An experienced driver identifies necessary gaze targets based on a film or a situa-
tion description, that may provide information that motivates certain behaviour
patterns. It is however obviously not a real-time method, and there is no guaran-
tee that the expert judgement agrees with the behaviour intended by the driver.

The methods are summarised in Table 2.1.

2.2 System Setup

The test vehicle was, in addition to conventional sensors measuring e.g. wheel
speed, yaw rate etc. (see Table 2.2 for a complete list of available data), equipped
with a radar sensor mounted in front of the vehicle, and a number of cameras
shooting out through the front and rear windshield. For eye-tracking, the com-
mercial system SmartEye Pro 6.1 was used, with hardware consisting of 5 cam-
eras mounted on the dashboard along with a PC, IR lights, external processors,
and a chessboard for camera calibration.

2.2.1 CAN-Bus

CAN, Controller Area Network, is a bus standard devised to allow for serial and
asynchronous communication between micro controllers without the use of a
host computer. Its main application is the automotive industry where it is used
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Table 2.1: Methods for driver distraction assessment.
Method Advantages Disadvantages
eye-tracking • real-time • no explicit consideration of peripheral

vision
• well established • requires hindsight judgement whether

glance target is traffic relevant or not
• unintrusive to mod-
erately intrusive

• expensive apparatus and cumbersome
evaluation
• not all targets that are fixated are neces-
sarily attended to

self-paced visual oc-
clusion

• real-time • somewhat cumbersome apparatus

• direct assessment
of spare capacity

• only allows assessment of spare capacity,
not of glance targets
• may lead to conservative handling

verbal protocol • access to attention
allocation, not only
gaze allocation

• might interfere with other cognitive tasks

• simple and cheap • fast sequences of events will not be re-
ported completely
• people might be more or less proficient
at verbal reporting

expert judgement • may provide
background informa-
tion to motivate cer-
tain behaviours

• not real-time

• simple and cheap • rather remote from actual behaviour
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Figure 2.1: Local coordinate system used by the radar, c.f. [Smartmicro,
2012].

by the control units in vehicles that need to exchange information and it is well
fitted for e.g. logging sensor data.

2.2.2 Radar

The radar sensor was a Smartmicro UMMR Automotive Type 29, which was via a
CAN-bus connected to a power supply and a visualisation module. The CAN-bus
gives the radar module access to the vehicle dynamic data in Table 2.2. The radar
uses a Cartesian coordinate system as in Figure 2.1.

2.3 Experimental Design

A total of 12 test drivers, whereof the majority were driving instructors and thus
can be considered very experienced drivers, were involved during the data acqui-
sition. They each drove a path along the highway E4 outside Linköping, more pre-
cisely the path between the east and west exit. The whole driven path recorded
by the GPS, starting and ending at the parking lot at VTI, can be seen in Figure
2.2, where the highway part, which is where focus is in this project, has been
highlighted.
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Figure 2.2: The trajectory driven, with the highway part highlighted.

Most drivers did four runs, where each run consisted of three laps:

• One run during daylight.

• One run during night or dusk.

• One run during daylight where occlusion goggles were used.

• One run during daylight with verbal protocol.

Some drivers only did the daylight run and the occlusion goggles run. During
each run a large amount of data was collected, which will be described in more
detail in the following section.

2.4 Available Data

The nature of the collected data is diverse, although the vast majority is available
as standard numerical signals. Vehicle data is delivered from the CAN bus. Ta-
ble 2.2 states the majority of the data variables along with a description where
considered necessary.
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Table 2.2: The available data signals.
Variable Description Unit

Vehicle data

Brake Are brakes applied? 1/0
Steering wheel angle - degrees
Engine speed - rpm
Heading - degrees
Lateral acceleration - m/s2

Longitudinal acceleration - m/s2

Acceleration pedal position - degrees
Clutch pedal position - degrees
Velocity Host vehicle velocity m/s
Yaw rate - degrees/s
Gear Current gear {0 · · · 6}
Cruise Is cruise control active? 1/0
AC Is air conditioner active? 1/0
Outdoor temperature - ◦C
Indoor temperature - ◦C

Radar data

Range X Longitudinal distance to object m
Range Y Lateral distance to object m
Velocity X Longitudinal velocity of object m/s

Eye-tracking data

Gaze X Horizontal gaze angle rad
Gaze Y Vertical gaze angle rad

Other

Occlusion goggles Occlusion goggles active? 1/0
Latitude From GPS ◦N
Longitude From GPS ◦E
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Figure 2.3: Front view with overlay gaze allocation (blue dot).

Additional data that was acquired during the test runs:

• Verbal protocols and expert judgements (see Table 2.1).

• GoPro movies forward and backward.

• A front view movie where the gaze allocation delivered by the eye-tracker
has been overloaded. In other words, it shows the point where the driver
looks compared to ground truth. Figure 2.3 illustrates this. The image is in
black and white and of a lower quality than the GoPro movies that do not
have overloaded gaze allocation.



3
Target Tracking Theory

The target tracking objective is to make use of sensors to collect data of an en-
vironment containing one or several possible targets, and partition the data into
sets of observations, one set for each possible target. The channel switching phe-
nomenon inherent with the radar data hence is a suitable problem to apply target
tracking theory to. This chapter will first reproduce the problem and then pro-
vide a theoretical framework of target tracking based on different approaches in
literature.

3.1 Problem Formulation Revisited

Although a tracking module is integrated with the radar, that refines the raw
measurements and turns them into interpretable signals, the nature of the data
is not of desired character. As of now, a maximum of three objects are tracked. At
any given time, information of each object that is visible to the radar is stored in
one of three channels according to the nominal rule that channel #1 shall contain
information on the object within the shortest range to the host vehicle, although
ocular investigation has proved that this is not always the case. That is, there is
no strict functioning rule of how the targets are partitioned, and this causes the
signals to appear as in Figure 1.1: the tracked objects are not persistent upon
which radar channel they are stored in. As explained in Chapter 1, the overall
goal with these project requires that each object can be tracked individually, so
records can be kept regarding whether or not an object has been attended to
according to the rules that this project aims to set up. Hence, there is a need of
improving the tracking with a formal target tracking algorithm to partition the
data into one signal per target present, and as mentioned in the introduction of
this chapter target tracking is a method that approaches this kind of problem. It
is a non-trivial task, due to e.g.

13



14 3 Target Tracking Theory

• multiple targets present

• false alarms

• multiple measurements close to target

• detection uncertainties

• hardware failure.

Techniques to tackle these problems will be presented in the following sections.

3.2 Tracking Approaches

Target tracking is a wide concept, and plenty of different approaches are de-
scribed in literature; [Blackman and Popoli, 1999] is a rigorous book on the topic,
and another one is [Bar-Shalom and Fortmann, 1988]. The general patterns how-
ever persist:

• The basic idea of tracking is to predict future states of the present targets
and associate them with available observations. It therefore requires a filter
for state prediction. Section 3.3 will cover this topic.

• Given a state prediction, it must be determined which measurements that
can be considered possible candidates to be associated with that particular
state. The theory behind this is called gating and is described in Section
3.4.

• When a gate has been set up, it must be decided which of the candidates
within the gate that actually should be associated to the state prediction.
Section 3.5 contains the theory behind two popular approaches for this.

• If there are observations that could not be associated to any current target, it
is possible that it means that a new target has appeared. As false alarm also
is a possible explanation, it requires a rule that separates false alarms from
new tracks. On opposite, there is also a need for a rule to determine when
a track should be deleted. Methods for track maintenance are described in
Section 3.6.

3.3 Filter Theory

A filter for state prediction is required in a target tracker, and the type being used
in this particular problem is described below.
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3.3.1 State-Space Model

A generic linear state-space model in continuous time, with random noise inputs,
is

ẋ(t) = Ax(t) + w(t)

y(t) = Cx(t) + e(t),
(3.1)

where A is the dynamic model determining how the states in the state vector x
propagate over time, and C is the measurement function describing how the mea-
surements y relate to the states. The process noise w(t) and measurement noise
e(t) are assumed to be uncorrelated zero mean Gaussian noise with covariance
matrices Cov(w(t)) = Q and Cov(e(t)) = R.

3.3.2 Discretisation

A discretised form of the state-space model,

xk+1 = Fxk + Gwk
yk = Hxk + ek ,

(3.2)

can be acquired accordingly using zero-order hold, see [Glad and Ljung, 2004]:

F = eAT (3.3)

G =

T∫
0

eAτdτ (3.4)

H = C. (3.5)

3.3.3 Kalman Filter

Given a linear system as in (3.2), the best linear unbiased filter is given by the
Kalman filter, presented in e.g. [Gustafsson, 2012]:

1. Measurement update:

x̂k|k = x̂k|k−1 + Pk|k−1H
T (HPk|k−1H

T + R)−1(yk − Hx̂k|k−1)

Pk|k = Pk|k−1 − Pk|k−1H
T (HPk|k−1H

T + R)−1HPk|k−1.

2. Time update:

x̂k+1|k = Fx̂k|k

Pk+1|k = FPk|kF
T + GQGT ,



16 3 Target Tracking Theory

Figure 3.1: A target along with an ellipsoidal gate and five available mea-
surements at a given scan. The measurement within the gate is accepted and
the ones outside the gate are neglected.

where P is the state covariance. Time index k for time-invariant matrices are
omitted for convenience.

By introducing the innovation εk , the innovation covariance Sk and the Kalman
gain Kk according to

εk =yk − Hx̂k|k−1 = yk − ŷk (3.6)

Sk =HPk|k−1H
T + R, (3.7)

Kk =Pk|k−1H
T (HPk|k−1H

T + R)−1, (3.8)

the measurement update can be written more concisely:

x̂k|k = x̂k|k−1 + Kkεk ,

Pk|k = Pk|k−1 − KkSkKTk .
(3.9)

The filter is assumed to have been initiated with

x̂1|0 = E(x0)

P1|0 = Cov(x0).
(3.10)

3.4 Gating

Gating is the issue of determining whether or not a measurement should be con-
sidered valid for a certain target. Each tracked target is given a region that defines
a subspace of the measurement space where measurements should be accepted,
referred to as the target’s gate. Figure 3.1 illustrates the concept where five mea-
surements are available for a target, among which only one is inside its gate and
therefore is the only one considered valid.
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The gate is formed from the predicted state of the target, and it is simply
only a matter of forming a distance measure between the measurement and the
predicted state.

The most frequently used gate in literature is an ellipsoidal one. Let the nor-
malised statistical distance of an observation-to-track assignment be

d2 = εTk S
−1
k εk . (3.11)

Constructing the gate then becomes an issue of finding the threshold γG such
that

P (d2 < γG) = αG, (3.12)

where αG is the desired confidence level of the test. Under assumptions of cor-
rectly chosen motion and measurement models, it holds that

εk ∼ N (0ny , Sk). (3.13)

If Sk can be Cholesky decomposed, that is, if Sk = UkU
T
k (see [Bar-Shalom and Li,

1993] for details), then

d2 = εTk S
−1
k εk = εTk U

−T
k U−1

k εk = ||U−1
k εk ||22. (3.14)

Let U−1
k εk , uk . It holds that

εk ∼ N (0ny , Sk)⇒ U−1
k εk ∼ N (0ny ,

=S−1
k︷      ︸︸      ︷

(UkU
T
k )−1 Sk), (3.15)

and thus,
uk ∼ N (0ny , Iny ). (3.16)

Since a sum of squares of n independent identically distributedN (0, 1)-variables
is χ2-distributed with n degrees of freedom, it can be concluded that

d2 = ||uk ||22 ∼ χ
2
ny , (3.17)

whereupon the gate threshold γG can be calculated using the cumulative distri-
bution function of the χ2 distribution. Measurements that should be accepted is
then the ones that lie within the elliptic disc d2 ≤ γG.

3.5 Data Association

A question that is naturally raised when implementing a target tracking algo-
rithm is that of how to associate measurements with tracks. Figure 3.2 illustrates
a scenario where a conflict has occurred. Each target has two measurements
within its gate, which of course means that there are two detections for each
object that both with high probability could be associated with it. Furthermore,
each measurement lies within more than one gate. Different approaches to ad-
dress this problem are presented below.
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Figure 3.2: Illustration of an association conflict. The dots represent the
predicted state of three different objects whereas the circles are their corre-
sponding gates. y1, y2 and y3 are three available measurements at the given
scan.

3.5.1 Nearest Neighbour Association

One approach, and possibly the simplest one, is the nearest-neighbour filter (see
[Aziz, 2013]). The nearest-neighbour measurement ỹ ik for target i at scan k is sim-
ply the measurement that lies closest to the predicted state, or mathematically,

ỹ ik = arg min
j

(d2)ij , j = 1, 2, · · · , nv , (3.18)

where nv is the number of measurements within the gate corresponding to tar-
get i, and (d2)ij is the distance between track i and measurement j. Using the
measure defined in (3.11), it becomes

(d2)ij = (εijk+1|k)
T (S ik+1|k)

−1ε
ij
k+1|k , (3.19)

where εij is the innovation due to measurement j and target i.
An obvious drawback is that there is a probability that the nearest neighbour

is not the correct measurement, meaning that this filter might use incorrect mea-
surements believing they are true.

3.5.2 Probabilistic Data Association

In contrast to the hard-decision based nearest-neighbour filter, a soft-decision ap-
proach is the probabilistic data association filter. Using N measurements within
the gate of track i, there are N + 1 hypotheses that can be formulated for that
track: H1, · · · ,Hj , · · · HN stating that measurement j is the valid one, and H0
stating that no observation within the gate is valid. The probability pij that obser-
vation j belongs to track i is calculated as

pij =


b

b+
∑N
l=1 ail

, j = 0 (no valid observation)

aij
b+

∑N
l=1 ail

, 1 ≤ j ≤ N,
(3.20)
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where

b = (1 − PDαG)(βNT + βFA)2π
√
|S i | (3.21)

aij = PDe
−(d2)ij /2. (3.22)

As previously, αG is the confidence level of the gate test and S i the innovation
covariance of track i. For a full description of the probabilistic data association
filter, see [Bar-Shalom et al., 2009].

3.6 Track Maintenance

The big initialisation issue is the decision on whether a new detection should be
accepted or not, as it could be a false alarm. Therefore, there is a demand of
having some sort of rule for making this decision. There are several well-known
approaches described in the literature, and a few are presented here.

3.6.1 M/N-Logic

The M/N -logic approach (see [Bar-Shalom et al., 1989]) is intuitive and straight-
forward and goes as following:

1. Following a first detection, that is, a detection that has not been associated
to any existing track (more on data association in Section 3.5), a gate is set
up. If a detection in the next sample is made within the gate, go to step 2.
If not, delete the initiator.

2. For each of the N following sample times, set up a new gate based on the
assumed motion model of the tracked object. A detection in the correspond-
ing gate has to be made inM samples in order for the sequence of detections
to be accepted.

An illustration of the method is shown in Figure 3.3, and an explanation to the
figure is provided in Table 3.1. Concerning track deletion, there are several pos-
sibilities. The simplest one is deleting a track when no measurement has been
available for a certain amount of consecutive samples, but one could also imple-
ment an M/N -logic in the exact same way as for track initiation.

Table 3.1: How to interpret Figure 3.3.
Box parameter Explanation

Square Initiator still tentative
Circle Confirmed initiator

Rhombus Deleted initiator
+ Detection within gate
- No detection within gate
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Figure 3.3: Illustration of the M/N -logic method for track initialisation with
M = 2 and N = 3. Two consecutive observations within the gate must first
be made, whereat two out of the three (or generally M out of N ) following
observations must also lie within the gate at each time.

3.6.2 Score Based Approach

Another method for track initiation is a score-based approach, for instance the
sequential probability ratio test. Consider the hypotheses

H0 : Measurements originate from false alarms

H1 : Measurements originate from a true target.
(3.23)

Using Bayes’ rule, the likelihood ratio LR is defined as

LR =
p(H1|y0:k)
p(H0|y0:k)

=
p(y0:k |H1)P0(H1)
p(y0:k |H0)P0(H0)

, (3.24)

where

• y0:k is a sequence of measurements up to time k

• p(y0:k |Hi) is the probability density function evaluated with the received
data under the assumptions of Hi being correct

• P0(Hi) is the a priori probability of Hi .

The score L is obtained from taking the natural logarithm of the likelihood ra-
tio. A new score is calculated recursively at each sample, and by forming the
thresholds

T1 = log
P (rejecting a true track)
P (rejecting a false track)

and

T2 = log
P (accepting a true track)
P (accepting a false track)

,
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the track maintenance test is as following:

L ≤ T1 : Accept H0.

L ≥ T2 : Accept H1.

T1 < L < T2 : continue monitoring.

(3.25)

The details regarding the derivations can be found in [Blackman and Popoli,
1999].

A drawback with this soft type of approach is that a target that has been
tracked for a long time will also take long time to be deleted, since the score
value becomes biased towards good measurements. Blackman and Popoli [1999]
suggest a solution to this issue that includes using the deviation from the maxi-
mum value of the score in the thresholding.





4
Radar Data Processing

The idea behind Chapter 3 was to provide a general theoretical framework for the
concept of target tracking, and different established approaches were presented.
This chapter will start off with a quick data analysis, as it early turned out that the
lateral values provided by the radar were inherent with some unrealistic proper-
ties. After that, motivations to chosen methods among those described in Section
3 will be provided, followed by results illustrating the performance of the tracker
in a few scenarios. The chapter will finish off with a discussion about limitations.

4.1 Data Analysis

A first survey of the radar data quickly reveals some potential issues. There are
recurring segments where the lateral distance appears to be larger than physi-
cally possible. By plotting the azimuth angle to the objects for all available data
points, Figure 4.1 is obtained. The manufacturer (Smartmicro [2012]) claims that
the radar has a field of view reaching from -18◦ to 18◦ (with the angle being
measure anti-clockwise against the longitudinal axis), which is also the interval
with the highest density of objects according to Figure 4.1. Without the knowl-
edge of the nominal value, the figure would suggest a field of view reaching from
approximately -40◦ to 40◦.

Correlation Analysis

In order to attempt to acquire a better perception of the phenomenon, a correla-
tion analysis was performed. The correlation ρ between two signals X and Y is
defined as

ρ =
Cov(X, Y )
σXσY

=
E[(X − µX )(Y − µY )]

σXσY
, (4.1)

23
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Figure 4.1: Calculated azimuth angle to objects based on the measurements
provided by the radar. The nominal field of view for the radar is [-18,18]
degrees. It is clear that the highest density of measurements is within that
interval, but there are allegedly suspiciously many objects outside the nom-
inal interval.

where σ denotes standard deviation, µ expected value and E is the expected value
operator. It holds that ρ ∈ [-1,1], where ρ = 1 would mean a perfect increasing
linear relationship, and ρ = −1 a perfect decreasing linear relationship. Also,
ρ = 0 would mean that there is no direct relationship between the signals.
Samples holding remarkable lateral distances, that is, an absolute value of the
lateral distance larger than some threshold T, were extracted, and correlated with
corresponding values in numerous other signals. The results are shown in Table
4.1. For assessment assistance, the number of data points that the correlation was
based on is also presented.

Discussion

A few comments on the results presented in Table 4.1:

• Firstly, lateral distances less than 5 metres should be considered normal
due to road curvature and knowledge of the lane width; a typical width of
a Swedish highway lane is 3.5 metres (Trafikverket [2004]).

• There appears to be practically no connection between the odd lateral mea-
surements and the variables brake, lateral acceleration and longitudinal ac-
celeration.

• A correlation with absolute longitudinal velocity of the host vehicle seems
to exist. However, it changes from being a negative correlation for T = 5,
to being practically non-existing at T = 10 to be a positive correlation at
T = 15 and T = 20, so no conclusions can probably be drawn from there.
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Table 4.1: Parts of the signal for lateral distance to objects that are claimed
to have an absolute value greater than T were correlated with other selected
signals to see if there was any relationship. The results for different values of
T are shown here. P denotes the number of data points the correlation was
based on. For reference, the total number of available data points is 500072.

T = 5 T = 10 T = 15 T = 20
P = 133641 P = 23353 P = 6303 P = 1378

Longitudinal distance to object 0.13 -0.22 -0.36 -0.41
Longitudinal velocity relative to object -0.23 -0.47 -0.58 -0.73
Longitudinal velocity -0.18 0.05 0.20 0.18
Longitudinal acceleration -0.01 -0.01 -0.07 -0.10
Acceleration pedal position -0.25 -0.32 -0.32 -0.24
Lateral acceleration 0.03 0.07 0.12 0.20
Yaw rate 0.15 0.30 0.38 0.41
Steering wheel angle -0.13 -0.26 -0.34 -0.37
Outdoor temperature 0.25 0.35 0.34 0.37
Brake 0.05 0.04 0.07 0.15
Time 0.16 0.22 0.13 0.01

• For yaw rate and steering wheel angle as well as longitudinal distance and
relative velocity to object, a higher correlation for a larger T value can be
noticed. This suggests that these signals may have something to do with
"ghost" lateral distances. On the other hand, large lateral distances rise
naturally in situations when exiting the highway while the front vehicle
remains on it so it is not very surprising that there is a correlation here.

• Outdoor temperature does indeed hold a significant correlation with the
odd lateral distances, but since it seems unaffected by increasing threshold
it is probably nothing there. Also, it is not really reasonable that the radar
should be affected by temperature, especially since the temperature is con-
stant during one run as it takes only about 40 minutes to complete.

• Looking at the acceleration pedal position, the correlation coefficient is
high, although it does not really increase with higher T value. What is also
odd is that the longitudinal acceleration does not hold a large correlation
while there is one for the acceleration pedal. What this stems from is not
clear.

To summarise, there is no doubt that there is some connection between the
odd lateral values and some of the other variables. However, Table 4.1 does not
immediately provide a clear explanation and hence a deeper survey is required
before any conclusions can be stated. As reverse engineering of the internal fil-
ter was outside the scope of this project, it was left out for future work and the
remaining of the work in this thesis is done with the knowledge that the lateral
distances are not trustworthy.
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4.2 Choices of Approaches

Chapter 3 presented the theory behind the use of a target tracker and described
a few basic ideas. The performance of the tracker depends on the choice of track
initiation and data association methods, as well as the filter type and motion
model. Justifications to the techniques selected to solve the problem in this thesis
are presented throughout this section.

4.2.1 Track Initiation

Using an M/N -logic initialisation method, the design parameters needed to be
tuned are M, N and Ndead, which is how many consecutive samples without ob-
servations are allowed to pass before deletion of the track is decided. In the case
of score based initiator on the other hand, the design parameters are the prob-
abilities which we can allow to confirm a false track and the probability which
we can allow to delete a true track. Besides, prior knowledge of the rates of new
targets and false alarms as well as the detection probability need to be known for
good performance. The M/N -logic approach is more intuitive and easier to im-
plement, requires lower computational power, the tuning parameters are fewer
and have an easier physical interpretation, and no prior knowledge of any rates or
probabilities are required. Furthermore, as stated when presenting the method,
the longer the track has lived, the longer it takes for the score to decrease to the
deletion threshold, which is a property that is not always desired. Based on these
facts, theM/N -logic initiator was chosen. As it turned out, satisfying results were
accomplished with this method which is why there was never a need for trying
out the score based approach, or any other track initiation method.

4.2.2 Data Association

As in the case of deciding on a track initiation method, the choice of data as-
sociation method came down to the decision of starting with the one easiest to
implement. Based on the theoretical description in Section 3.5, this is beyond
all reasonable doubt the nearest-neighbour filter as the association then only is
a matter of using the measurement being closest to each track. The nature of
this particular tracking problem, that is highway driving, is such that the plau-
sibility that this method would yield false association patterns can be assumed
fairly low as cars on the highway tend to keep a fair distance to one another.
Again, as in the choice of initiation approach, a simple choice gave results that
were satisfying enough. However, in situations were the data is available as raw
measurements (as oppose to this particular application were the measurements
are output from an internal tracking filter), with presence of clutter, a more so-
phisticated approach would possibly be required. In that case, the probabilistic
association method would have been the first-hand choice.
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4.2.3 Motion Model

When focusing on highway driving, the vast majority of the motion is in the lon-
gitudinal direction. Generally, people convey their cars with constant speed on
the highway and therefore, a (nearly) constant velocity model was first tried. As
it turned out, the assumption of a pervading constant velocity was not enough
as vehicles with a non-neglectable relative acceleration from time to time were
present. As a matter of fact, situations where even a third order model appeared
to be useful were found during the progress of this thesis work. Figure 4.2 illus-
trates this type of scenario. The longitudinal relative velocity of a vehicle takes
what seems to be a quadratic shape, which indicates a linear acceleration a(t)
and hence a constant jerk j(t) = da(t)

dt . Consequently, in order to catch the full
behaviour of this mode, and other holding the same properties, the longitudinal
model should be augmented with the jerk as a state. However, in literature this
seems to be extremely rare, not to say non-existent. Consensus appears to be that
a constant velocity model often is sufficient and is, to name one, utilised by Naes-
seth [2013] with what appears to be satisfactory results. An example of where a
constant acceleration is used to model the longitudinal dynamics is Möbus et al.
[2003]. In fact, all papers, articles, books and theses on target tracking that were
consumed during the progress of this thesis used either a constant velocity or con-
stant acceleration model and hence, it was decided that a more advanced model
should not be used here neither. As it turned out, after a bit of tuning this mode
actually could be caught with an acceleration model, not entirely or perfectly but
sufficiently. Figure 4.8 in Section 4.3 shows this.

Moreover, the lateral motion of a highway driving vehicle is practically ne-
glectable which is why an acceleration model in that direction was assumed to be
redundant. In fact, if the coordinate system would have been road-aligned (as in
e.g. Eidehall [1996]), the lateral dynamics would be simplified to vy = 0. For this
particular situation with car-aligned coordinates, there are however some lateral
dynamics present that need to be modelled since the road is not entirely straight
(see Figure 2.2) and so a constant velocity model was assumed in the lateral direc-
tion.

This means that to each confirmed track i, the state vector

xi =


r ix
r iy
vix
viy
aix


is introduced, where

• r ix is longitudinal distance

• r iy is lateral distance

• vix is longitudinal relative velocity
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Figure 4.2: A situation where constant acceleration model is not ideal as the
velocity takes a quadratic shape. A jerk model would be required to catch
the complete behaviour of this mode.

• viy is the lateral relative velocity

• aix is the longitudinal relative acceleration

with the coordinate system being aligned as in Figure 2.1. Then the following
linear state-space is obtained:

ẋi(t) =

=A︷                ︸︸                ︷
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 x
i(t) +

=B︷ ︸︸ ︷
0 0
0 0
0 0
0 1
1 0

w
i(t),

y i(t) =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

︸                ︷︷                ︸
=C

xi(t) + ei(t).

(4.2)

Discretisation subsequently yields the following discrete-time state-space model,
assuming the noise being constant between samples:
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xik+1 =


1 0 T 0 T 2/2
0 1 0 T 0
0 0 1 0 T
0 0 0 1 0
0 0 0 0 1

 x
i
k +


T 3/6 0

0 T 2/2
T 2/2 0

0 T
T 0

w
i
k ,

y ik+1 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 xik + eik .

(4.3)

T is the sample time of the sensor. The radar has a sample frequency of 10 Hz,
which means that T = 0.1 s.

4.2.4 Filter

The standard Kalman filter is by far the most frequently used filter in automotive
applications for tracking, and therefore it was a natural choice to apply to this
problem too. Another alternative would have been for instance the particle filter,
but no effort was put into investigating other options.

Filter Initialisation

As described in Chapter 3, the common way to initiate the Kalman filter is to use
the expected value and covariance of the state, if its distribution is known. To this
particular problem however, this is not the case since an object might appear very
close to the host vehicle during e.g. an overtaking situation, as well as very far
ahead. Mallick and La Scala [2008] propose that for a such problem, a so-called
single-point track initialisation algorithm can be used. It suggests that the first
state estimate shall consist of the first valid measurements, that is,

x̂1|1 =
(
y1,x y1,y y1,vx

0 0
)T
, (4.4)

whereas the corresponding covariance is given by

P1|1 =


σ2

x 0 0 0 0
0 σ2

y 0 0 0
0 0 σ2

vx
0 0

0 0 0
v2

y,max
3 0

0 0 0 0 1


, (4.5)

where v2
y,max is the maximum possible lateral speed of a target, which is provided

as an estimate by the user.

Filter Tuning

Tuning the filter to obtain good performance involves adjusting Q and R, that
is, the process and measurement noise covariance. Since the noise is assumed to
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be decoupled so that the matrices become diagonal, five parameters need to be
tuned: lateral and longitudinal process noise, and measurement noise for each of
the three measurable signals. Essentially, the tuning procedure is a trade-off be-
tween noise sensitivity and speed of the filter. A slightly more detailed exposition
on the impact of Q and R is presented below:

• The process noise w(t) determines how the confidence interval grows with
time, so its covarianceQ determines how much randomness is incorporated
in the states. As Q grows, the larger the covariance ellipse becomes and the
less can predicted about the future. In other words, the larger Q the less
the dynamic model is trusted in the filter.

• The measurement noise e(t) determines how the measurements should af-
fect the confidence intervals. The smaller R, the more trustworthy are
the measurements, and R = 0 means that the measurements are perfect,
whereas R→ ∞ means that the measurements do not add any information
at all. In other words, the larger R the less the measurements are trusted.

An initial guess was made based on the physical insight of the dynamics. On
highway driving, the motion is mainly in the longitudinal direction and the lat-
eral motion arises mostly from minor wheel corrections and during lane switches.
Therefore, the longitudinal motion was assumed to be fairly consistent with the
model, i.e. low value of Q, whilst the lateral motion was assumed to have more
inherent randomness, i.e. higher value of Q. There is a bit of a dilemma here
though. As mentioned before, the lateral measurements provided by the radar
appear strange and from time to time unreasonably large. This would indicate
that the measurements should not be trusted, and hence R should be large. How-
ever, this approach would not be consistent with the aim of the task which was
to reorganise the data to eliminate the phenomenon of objects switching chan-
nels randomly (see Figure 1.1 for a reminder). The task was not to do reverse
engineering of the internal filter in order to understand and improve the original
data. Hence, for the objective of this task, the measurements were considered
trustworthy in the filter tuning. Its measurement covariance was first set to the
identity matrix, whereupon semi-optimisations were made on both matrices un-
til satisfying performance was achieved. The tuning results are presented below:

Q =
(
0.05 0

0 1

)
, (4.6)

R =

1 0 0
0 1 0
0 0 0.5

 . (4.7)

4.2.5 Pre-Processing

Within the concept of MRA, a driver cannot be accused of being inattentive in
non-predictable situations, such as if an oncoming vehicle on the highway sud-



4.3 Results 31

Figure 4.3: Work flow of the tracking algorithm.

denly appears in the wrong lane due to loss of driver control. Therefore, de-
tections of vehicles driving in the opposite direction can be interpreted as false
alarms, and by removing these prior to applying the tracking algorithm, its per-
formance can be improved. In practise, this was done by ignoring all data points
holding a relative velocity greater than some threshold. Sweden has a maximum
allowed speed of 120 km/h on highways, whereas for a car with a trailer it is
limited to 80 km/h. Assuming people generally convey their vehicles at the max-
imum allowed speed, this would mean that relative speed should not exceed 40
km/h at any time. Accounting for e.g. speeding cars, the threshold was set to 55
km/h.

4.3 Results

Below, a few results produced by the target tracker illustrating the performance
are presented. The general work flow is as in Figure 4.3. Using the M/N -logic
M = 2 and N = 3, and a dead-reckoning time of Ndead 30 samples (that is, 3
seconds), examples of the tracker performance is presented in Figure 4.5 and 4.7.
Figure 4.4 and 4.6 show the original data. The improvements gained from the
designed filter is clearly proven.

What can be seen in the figures is that the results are satisfying. The tracking
algorithm has used the available samples and partitioned the data into one signal
per present vehicle. This now allows to keep track of how often each individual
vehicle is being attended to, which was the aim of this task.
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Figure 4.4: Original data. This is the same figure as Figure 1.1, but the
velocity plot has been omitted.
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Figure 4.5: Output from the target tracker on the segment in Figure 4.4. Es-
pecially in the longitudinal distance signal the results are clear; the present
vehicles are now separated, which was the aim of this task. Note that the
numbering of the vehicles in the legend is irrelevant outside the context of
this plot.
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Figure 4.6: Another set of the original data. Note the unreasonably large lat-
eral distances - the objects in the channels are in a steady-state mode at five
to ten metres to the right of the host vehicle, which is physically impossible
on a highway.
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Figure 4.7: Output from the target tracker from the data segment in Figure
4.6 again proving the performance.
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Figure 4.8: Here it can be seen how a constant acceleration model can catch
modes where a jerk is present (not perfectly but sufficiently).

4.4 Limitations

The motion model is chosen based in the prior information that the algorithm
will be applied to data collected on highway driving, on which the algorithm also
renders satisfying results. There is no guarantee for the algorithm performance
on other road types where the traffic flow and road shape differ.

Further, and perhaps more importantly, a major limitation of the general ac-
curacy of the tracked vehicles is due to the fact that only a radar sensor has been
used as a single-sensor system generally often lacks reliability and robustness. A
radar provides accurate measurements of range and range rate at far distances
while it is robust against bad weather conditions, but fails in providing good an-
gle measurements as they are subject to noise [Amditis et al., 2004] . This means
that the lateral position using radar only is not very trustworthy. The lack of ro-
bustness only applies when data measurements appear as raw data, that is, the
lateral uncertainties should be accounted for in the internal filter. The data pro-
vided by it, which is the data used as measurements here, are as said before the
results of a tracking performed by the radar module. To make a guess, the odd
lateral distances returned by the radar could (partially) stem from the filter being
badly tuned.

Another common sensor in automotive tracking applications is a camera. A
camera provides highly accurate lateral position of targets, but is in opposite to
the radar sensitive to weather such as rain and fog, and cannot provide accurate
longitudinal position estimates at distances exceeding 50-60 meters [Gern et al.,
2001].

The advantages and drawbacks described above suggest that a combination of
these two would be a possibly good idea. Amditis et al. [2004] for one, use sensor
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fusion of camera and radar information to create artificial angle measurements
(in that article they use polar coordinates for tracking) as θ = arctan(ycamera/xradar).
This obviously gives rise to issues regarding association between radar and cam-
era measurements, but the drawbacks from each individual sensor are circum-
vented.

The uncertainties in lateral position from radar only could play a role in ex-
plaining the large lateral distances described earlier in Section 4.1. It is however
doubtful that it is the only explanation. The angular errors that radar naturally
give rise to stem from the fact that cars lack well-defined reflection points such
as corner reflectors, and therefore the radar beam may slide from one side of the
vehicle to another (again, see [Gern et al., 2001]). The error therefore increases
with increasing angle to the tracked vehicle, and uncertainties of a few meters
due to the sliding behaviour of the radar is to be expected. As presented in Ta-
ble 4.1, lateral distances greater than 10 meters occur at over 20000 data points,
and distances greater than five meters at over 130000 data points. There is also a
noteworthy amount of samples that hold a lateral distance greater than 20 meters.
They constitute only approximately 0.03% of total number of collected samples,
but still: 1378 data points sampled at 10 Hz means roughly two minutes of accu-
mulated time. That is too much to be considered neglectable.

It should be emphasised that these seemingly bad lateral measurements do
not affect the tracking itself; the tracking filter performs well based on the avail-
able data and fulfils its purpose of refining the output from the internal filter to
create individual signals of each and every vehicle. The issue is that the output
from that the internal filter, that the tracking algorithm developed here considers
as input, apparently does not entirely resemble the truth.





5
Vision Data

The discussion carried out in Section 4.4 concerning the odd lateral distances
produced by the radar, drawbacks and benefits of different sensors and the im-
provements that theoretically could be gained from performing sensor fusion of
radar and vision data induced the idea that it should be tried out if this would
be the case here. Four months into this project a camera was installed in the test
vehicle and a test run was made where both radar and vision data was collected.
It was decided that if the data turned out to be good enough - that is, if the cam-
era and radar produced results that suggested that a sensor fusion of them both
would improve performance of the target tracker - an attempt would be made to
incorporate the vision data into the target tracker. The outcome of the test runs
will be described in this chapter.

5.1 Vision System

The vision system used was from the a Mobileye AWS-2000. As opposed to the
radar which delivers lateral distance, longitudinal distance and longitudinal rel-
ative velocity, the vision system delivers range and angle to each tracked object.
The range rate, that is the radial relative velocity, is not calculated. Note that no
image processing was required in this project as it was made by an internal filter
in the camera module.

5.2 Data Analysis

The radar and vision data were plotted together so that a naive survey could be
made by comparing the signals visually. Plots showing some typical behaviour
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modes of the signals are presented below, which illustrates the overall appear-
ance.

• Figure 5.1 depicts a typical situational in the longitudinal distance plot and
it is clear that the signals are inherent with mutual inconsistencies. The
camera is either late to capture an object that the radar already has detected,
oscillates vigorously or has a large offset.

• Figure 5.2 shows how extremely odd lateral values - well over 200 metres -
are occasionally provided by the camera.

• Figure 5.3 depicts a scenario where the radar does not at all match the cam-
era in the lateral distances. Furthermore, the camera tracks an object that
appears to slide up to 50 metres to the left while the radar instead tracks
two objects almost 10 metres to the right. The true scenario, from the front
view camera, is that the host vehicle is driving behind another vehicle in the
left lane, overtaking a vehicle in the right lane. This means that apparently
only camera channel #1 delivers reasonable data here. An object sliding 50
metres to the right is nowhere to be seen in the movie.

• Figure 5.4 depicts a rare scenario where the camera and the radar follow
the same trend with a clear offset in between them. The true scenario is
that the host vehicle is driving right begind another vehicle, that eventually
takes an exit to the right. That is, the camera appears to deliver the truth
here while there is an offset in the radar.

5.3 Conclusion

The figures in this chapter show typical behaviour modes, and these kind of in-
consistencies and abnormalities are commonplace throughout the entire data set,
and hence it was decided not to proceed to include the vision data into the track-
ing algorithm. The test with the vision system was done with the aim of hoping
to see whether it could provide a simple answer to the issues with the odd lateral
distances delivered by the radar; for example, if the data would be as in Figure
5.4 while longitudinal distances being consistent, it could have been concluded
that the radar is just inherent with an offset. That information could then be
fused into the target tracking algorithm enhancing its performance. Now, this
was not the case as the camera as well performed badly and so it was decided
that spending more time on the camera data would not be worthwhile.
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Figure 5.1: Typical scenario. Between 2310 and 2345 seconds it shows how
the camera data in principal follows the radar data, but it oscillates and there
is a clear offset. For instance, between 2320 and 2330 seconds, the offset is
around 20 metres which is extremely large in the context. Further, the radar
sees an object at 120 metres away at 2335 seconds, and starts tracking it (al-
though channel shifts occur). At first when the object is 80 metres away -
at 2345 seconds - the camera catches it. Thereafter, the radar-camera match
appears reasonably good for that object. However the object caught by the
radar at ∼2325 seconds and continuously tracks for over 20 seconds is ig-
nored by the camera. Note that the figure may strike the reader as intricate
and hard to interpret. This itself is an indication that the data is not very
good - if the radar and the camera had delivered consistent data, it would
have been easier to interpret the figures.
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Figure 5.2: Multiple extremely odd lateral values are occasionally delivered
by the camera. What they stem from is unclear.
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Figure 5.3: Scenario where the vision and radar data differ considerably. The
camera tracks an object ∼8 meters to the left with an exponentially growing
distance. The radar does not catch this object at all. The camera also tracks
an object that seems to be driving steady right in front of the host vehicle.
The radar on the other hand tracks two, and at times even three, objects,
that appear to be ∼8 meters or more to the right. True scenario: driving
right behind a vehicle in the left lane with another vehicle being in the right
lane.



42 5 Vision Data

Time [s]

2185 2190 2195 2200 2205

L
a

te
ra

l 
d

is
ta

n
c
e

 [
m

]

-20

-15

-10

-5

0

5 Camera channel #1

Camera channel #2

Camera channel #3

Radar channel #1

Radar channel #2

Radar channel #3

Figure 5.4: Scenario where radar and camera seem to track the same object.
The lateral distances adopt the same shape, but there is an offset between
them. The camera claims that the object is practically in front of the host
vehicle during the first 15 seconds - which is what to be expected on a high-
way - while the radar delivers a distance what is a couple of metres to the
right. True scenario: driving right behind a vehicle, that eventually exits the
highway to the right.



6
Modelling of Driver Behaviour

The initial main purpose of this thesis was to propose a novel attention moni-
toring algorithm based on the acquired data. VTI wanted a data driven method
rather than a result of physical modelling. The model should reflect how experi-
enced drivers behave while driving on highways, people tend to often drive close
to other vehicles, even though it is nominally dangerous. In case something hap-
pens, a close distance can cause severe damage as the driver will not have time
to react and brake or steer away. However, people do this anyway as they from
experience know that highway accidents are extremely rare according to Taieb-
Maimon and Shinar [2001]. This means that a physical model that would require
a theoretically safe distance in real life probably would warn all the time. This is
why a model based on how very experienced drivers behave in traffic is desired.
As it turned out, the reliability of the radar was debatable, which complicated
the task. In order to be able to proceed, limitations needed to be set. This chap-
ter will walk through the incitement of developing a context adaptive attention
monitoring algorithm. The limitations that were set will be presented along with
benefits and drawbacks induced by them. Next, it will be discussed how it might
be possible to utilise the data in a novel and efficient way. The possibilities are re-
stricted by the limited amount of good data (and time), so the chapter will mostly
revolve around theories and observations that can be concluded.

6.1 Background

Driving is a task where loads of different modes are inherent. Although highway
driving is the most simple case, there are still plenty of scenarios where the gaze
pattern nominally should differ:

• Depending on how many vehicles are present, the attentional demand dif-
fers.
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• During entrances and exits the driver needs to be extra attentive.

• If the maximum allowed speed limit is lowered, e.g. from 120 km/h to
100 km/h as the highways traverses a city, the driver needs to be pay extra
attention as the behaviour of other drivers will plausibly change within the
next seconds as they will lower their speed.

• Overtaking situations are inherent with other attentional demands than reg-
ular, monotonous driving.

More situations could be mentioned. All the attentional demands that differ be-
tween situations are purely cognitive. The driver - at least an experienced one
- identifies each unique situation and tailors his or her gaze pattern thereafter.
Catching all the different behaviour modes based on only physical modelling
would be a hard task, surely way outside the scope of a master thesis within elec-
trical engineering as it probably would require deep knowledge of psychology
and cognitive science.

Consequently, it was decided to analyse the gaze pattern of the test persons.
One possible drawback, apart from the fact that no person is obviously fully-
learned when it comes to driving, is that all glances may not stem from the fact
that they feel that they need to attend to a specific target at the given time. For
instance, assume a situation where a heavy truck is performing an overtaking
of another heavy truck far away from the host vehicle. As the distance is large,
the driver does not feel insecure about the situation, and hence does not feel the
urge to pay close attention to what is going on. However, the driver has been
driving monotonously for a long time, and hence joyfully observes the situation.
That is, the driver does not attend to the trucks because he or she feels that he
or she needs to, but because there is nothing else that demands the attention.
Conclusively, the natural behaviour of the driver implies that not all gazes stem
from attentional demands and it is hard to distinguish what the purpose of a gaze
is - a consequence of an attentional demand, or just natural behaviour. Verbal
protocols may help with this task, but it is impossible for a driver to explain each
and every gaze and saccade.

6.2 Eye-Tracking

A Matlab script for visualising the tracking results in the xy-plane was written;
a snapshot of the simulation view is presented in Figure 6.1, and the exact same
frame of the front view is provided in Figure 6.2. The simulation view claims that
the driver is looking at an object almost straight ahead, which agrees what is seen
in the front view film. However, the simulation view also claims that objects are
being present about seven and nine metres to the left of the host vehicle, which is
not agreed upon by the film. It has been suggested before that the radar delivers
non-robust data, and by doing this type of simultaneous survey of the simulation
and real view, there is no longer any doubt at all the lateral measurements are not
trustworthy enough to be used.
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Figure 6.1: The scenario in Figure 6.2 in a simulation view. The black square
at the origin represents the host vehicle and the blue straight line is the eye-
tracking vector i.e. the blue dot in Figure 6.2, but seen from an above per-
spective. The black crosses are the tracked targets along with a 90% confi-
dence interval (ellipses). A green dashed ellipse means that the eye-tracking
vector intersects with the covariance ellipse at the current sample, which
should be interpreted as that the target in question is being attended to. A
red, solid ellipse in oppose means that the target is not being attended to
at the current sample. The text strings are auxiliary information for syn-
chronisation purposes. As mentioned before, the large lateral distances are
doubtful when comparing to ground truth (that is Figure 6.2).

An initial part of this thesis was to analyse how well the eye-tracking data can
be matched with the radar data. The answer turned out to be that it is basically
impossible due to the lack of robustness in the radar.

Under the assumptions of trustworthy measurements, an intuitive approach
to determining if an object is being looked at is to use the covariance ellipse as
in Figure 6.1. Since there are uncertainties both in the state predictions and in
the eye-tracking data, this seemed like a natural way to address the problem; if
the eye-tracking vector intersects with the covariance ellipse, then the object in
question is being attended to. Obviously, as the radar lacks trustworthiness this
is not applicable.

6.3 Suggested Approach

In order to evade the problem with bad data, a major limitation had to be added;
instead of incorporating all available data to the method on modelling driver be-
haviour, it was decided to aim our focus towards situations with only one vehicle
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Figure 6.2: A screen shot of the film where the gaze location (blue dot) has
been overlayed to a front view film. The number in the upper left corner is
the frame number, which has been used in order to synchronise these films
with the simulation script.

present. Pros and cons with this restriction is presented below:

• If only one vehicle is present, its lateral position can be ignored. As op-
posed to the lateral measurements, the longitudinal ones seem to be per-
fectly fine. Additionally, the problem of determining whether or not an
object was payed attention to is far less sensitive to longitudinal than to
lateral errors; for example, if an object 60 metres straight ahead is being
attended to, then that object would also have been attended to if it would
have been 50 or 70 metres straight ahead (or with even larger margins than
so), while these numbers of course do not apply to lateral errors. With that
said, if only one vehicle is present, its longitudinal position can be used to
assume that it is located somewhere on the road at that longitudinal posi-
tion. This illustrated in Figure 6.3 (note that two vehicles are depicted in
the figure, but that is only to illustrate that a vehicle will be covered by
the triangle no matter what lane it is in). If the driver looks within that
triangle he or she also looks at the present vehicle. It is a simplification,
but it evades the issue with bad lateral measurements. On the other hand,
this approach implicitly accounts for peripheral vision, so the discussion
regarding fixated and peripheral objects is circumvented. Additionally it
covers possible minor uncertainties in the eye-tracking data.

• An argument in favour of using situations where only one vehicle is present
is the fact that this field is rather uncharted territory; physical models are
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Figure 6.3: When a vehicle is detected, a triangle as in this figure is set up.
Its angle θ such that the entire width of the road is precisely covered at the
longitudinal distance at which the vehicle is. If the eye-tracking vector is
within that cone, it is considered that the vehicle is looked at. Note that this
method works since only the scenario where one vehicle is present is studied.
The figure depicts a situation where two vehicles appear to be present, but
that is just for illustrational purposes, in order to show that it will not matter
what lane the detected or host vehicle is in, as it will always be within the
triangle.

widely used in e.g. threat assessment for advanced driver assistance sys-
tems where the safety margins need to be large enough to avoid presump-
tive collisions at any time, but the approach of consulting experienced drivers
and trying to concretise rules that based on their behaviour patterns in dif-
ferent situations is new. Therefore, one should start out simple, and by
initially focusing on situations where only one vehicle is present, conclu-
sions regarding whether or not it is worth investing time in continued work
with more complex scenarios could be drawn. That is, the work about to be
presented could be seen as an early-stage proof of concept of the approach.

• Delimiting the work to include one vehicle scenarios only will decrease the
number of available data points vigorously, which is always a drawback in
statistical context (as long as all data stem from the approximately same
distribution, that is). It turned out that excluding all scenarios with multi-
ple vehicles present reduced the data points by five sixths. More on this in
Section 6.4.
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6.4 Course of Action

In Section 2.3 it was stated that test runs were made during four different con-
ditions: regular driving during day time, regular driving during night time, day
driving with occlusion goggles and day driving with verbal protocols. The night
and verbal protocol runs were only carried out by six test persons out of the total
twelve. Therefore it was decided to focus towards regular day driving and driving
with occlusion goggles, from now on referred to simply as "day" and "occlusion".
The radar data, acquired at a sampling frequency of 10 Hz was up-sampled to 60
Hz to match the eye-tracking data and then data points from day- and occlusion
scenarios with one vehicle visible to the radar were cropped out. The work flow
was accordingly:

• The longitudinal distance to the vehicle was used to calculate a triangle
covering the entire road at that distance as in Figure 6.3

• It was investigated whether the eye-tracking vector fell inside the calcu-
lated triangle; if so, the vehicle was noted as being attended to at that data
point. Concerning the scenarios with occlusion goggles, it was also required
that the goggles were not active in order for the vehicle to be considered at-
tended to.

• Each time the driver looked away from the vehicle, the longitudinal dis-
tance and relative velocity at that time was noted. For the following con-
secutive samples that the driver did not attend to the vehicle, the relative
velocity was stored, and a counter was increased.

• When the driver eventually re-attended to the vehicle, the accumulated
look-away time was stored. Look-away times shorter than 150 ms were ig-
nored as those more plausibly were blinks than self-aware gaze drifts. Sim-
ilarly, if the driver after re-attending to the vehicle did not keep attending
for more than 100 ms, those gazes were also ignored.

By following this work flow for all one-vehicle scenarios for all twelve test
persons, the results were lots of data saying things like when a vehicle was 40
metres ahead with a relative velocity of 5 km/h, the driver looked away for 2
seconds. They idea was then to use this data to see if any patterns regarding how
different parameters affect the total time that a driver can look away (recall that
the behaviour patterns of these experienced drivers is to be considered "correct")
would emerge. The number of one-vehicle scenarios for the twelve test persons is
shown in Table 6.1. The reason that the number of one-vehicle scenarios differ is
simply that the runs were not performed at the same time of the day, and hence
at different traffic densities.

It is now assumed that the longitudinal distance and relative velocity are the
variables causing the most influence on driver’s gaze patterns during highway
driving, and hence only these will be considered from now on. Other variables
probably have a larger impact in more complex environments.
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Table 6.1: Number of one-vehicle scenarios for the test persons that the anal-
ysis is based on.

Test person No. one-vehicle scenarios (day, occlusion)
1 24, 0
2 15, 20
3 14, 21
4 0, 15
5 21, 13
6 12, 22
7 12, 15
8 18, 15
9 4, 19

10 4, 17
11 10, 18
12 4, 20

Regarding how distance and relative velocity to a vehicle affects the drivers
gaze behaviour, it is not obvious, and it is most certainly not some linear relation-
ship. A first thought is that it is obvious that the faster the host vehicle drives
compared to the other vehicle and the shorter longitudinal distance, the more
seldom we can allow ourselves to look away. By making more thorough inquiry
it can be realised that the word predictability plays a key role, and the follow-
ing discussion arises (note that this discussion applies to highway driving. Other
environments could raise a different discussion):

• The lowest possible relative velocity - that is, the maximum negative rela-
tive velocity - occurs in the event of another vehicle standing still on the
highway (if we assume that the risk of encountering a reversing vehicle on
a highway is non-existent). Depending on what has caused the event and
what the situation looks like, the action the driver performs will probably
either be a lane change and keep driving at the approximately same speed,
or start slowing down. In both scenarios, the future is fairly predictable -
the other vehicle is standing still, so it cannot do anything unpredictable
like a poorly signaled lane change.

• The smallest longitudinal distance occurs during overtakning situations. If
the host vehicle is the one being overtaken, it can be assumed that the over-
taking vehicle is fully aware of the situation, and hence will not to anything
unpredictable so it should be fine to look away even while the overtaking
vehicle is fairly close.

• On the other hand, in the event of the host vehicle approaching another ve-
hicle, it can not be guaranteed that the driver in the front vehicle is aware
of that is happening behind him or her. Hence, the host vehicle driver prob-
ably feels the urge to pay a little extra attention to the front vehicle as the
situation now is unpredictable.
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To summarise, the situational demands theoretically clearly differ depending
on longitudinal distance and relative velocity to other vehicles, but, again, the
relationship appears to be fairly complex. The discussion just previously suggests
that the sign of the relative velocity should have a large impact on the situational
demands - approaching another vehicle is a less predictable situation than one
where the front vehicle moves away. Therefore, a first step was to categorise the
one-vehicle scenarios into

• host vehicle approaching front vehicle

• front vehicle moving away from host vehicle

• host vehicle and front vehicle driving with the approximately same speed.

The motivation behind this partition was to see whether the actual gaze patterns
would agree with the theoretical attentional demands - that is, that shorter times
of gaze allocation outside the road are allowed when approaching another vehicle
than when the front vehicle moves away. This means that for each type of test run
- day and occlusion, there are data points saying things like when a vehicle was
40 metres away, moving farther away, the driver looked away for 2 seconds and
when a vehicle was 30 meters away, while being approached by the host vehicle,
the driver looked away for 0.9 seconds and so on.

It should now be emphasised that it is not theoretically motivated to merge
the data stemming from the two different types of test runs:

• During day, the driver is told to behave exactly as normally. This means
that the driver may, and probably will, attend to the road even though the
situational demands do not force him or her to do it, since looking straight
ahead simply is the most convenient thing to do while driving.

• During occlusion on the other hand, the driver is instructed to activate the
occlusion goggles as often as possible. Therefore it can be assumed that the
driver will only look straight ahead then the situational demands ask for
this.

Nominally, these two runs would provide different information: the day runs
should reflect normal behaviour, whereas the occlusion runs should (given enough
data) render information on what should be theoretically allowed regarding the
time allowed to look away in different situations. Merging the data from the two
runs would result in more data points, which under the assumptions of the data
stemming from the same distribution would render a more nuanced picture, but
since this assumptions cannot be made based on the premises, they were kept
distinguished.

Figure 6.4 shows an example of what the scatter plots look like. With a little
determination, some patterns can be recognised that support the discussion held
previously regarding how the situational demands theoretically should vary with
distance and relative speed; when front vehicle moves away from host vehicle,
the situation is predictable, and hence long gaze drops (that is, the time that the
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road is not being attended to) are "allowed" even when the other vehicle still is
close, while the opposite hold when approaching the front vehicle. The plots are
obviously not extremely convincing, but the patterns are there, and with plenty
of more data points the anticipation is that the patterns will evolve.

The midmost figure - when driving at the approximately same speed as the
front vehicle - is not very interesting as the individual gaze preferences of the
drivers override the "statistical patterns". Possibly, more data points could help
revealing some pattern. From now on, we omit this scenario and focus only to-
wards the other two.

6.5 Trend Estimation

As already been stated, the scatter plots in Figure 6.4 suggest that some pattern
exists of how the situational demands vary with distance and relative velocity. In
this section, different techniques for estimating these variations are proposed.

6.5.1 Regression

A first step to estimate how the variations of the situational demands would be to
estimate a regression curve that follows the longest gaze drops for the different
speed profiles That is, we try to fit a curve to the maximum gaze drop durations
at different speeds. The distances were categorised into bins of 5 metres, i.e. 0-4,
5-9, 10-14. 15-20 and so on. In each bin, the 95-percentile (to avoid extremely
long gaze drops having too much influence of the outcome of the regression) was
found and a regression curve was estimated on these data points. One might
raise the question on why only the long gaze drops are considered, and why a
regression of all data points is not computed. The reason is, as already been
mentioned, that we are interested in the extremes - that is, we are interested
in investigating how the longest gaze drops vary with the distance and relative
velocity to the vehicle, and more specifically, we are interested in whether or not
they agree with the intuition. A regression of all data points would show how the
general gaze behaviour varies with distance and relative speed, but that would
probably only be some line approximately parallel to the horizontal axis. We are
here interested in the maximum gaze drop durations in order to determine the
maximum allowed time to remove attention from the road, and hence include
only these in the regression computation. It was assumed that at some point the
distance to the vehicle no longer has an impact on the situational demands; for
instance, a vehicle 130 metres ahead and 150 metres ahead probably will not give
rise to different gaze behaviour. A brief look at Figure 6.4a and 6.4c indicates that
this distance occurs at somewhere between 100 and 150 metres. Therefore, the
data points with distances larger than 125 metres were not used when forming
the regressions curves. More effort could be put into this survey, but that is left
for future work.

Both a linear regression y = kx + m and a power regression y = axb + c, y
being and gaze drop duration and x being the distance when looking away, were
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(a) Front vehicle moving away from host
vehicle.
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ing with the approximately same speed.
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(c) Host vehicle approaching front vehi-
cle during day.

Figure 6.4: Scatter plots of distance to vehicle when looking away versus the
time looked away, for the three different relative speed profiles during day
run. FP means test person. With a slight determination, patterns resem-
bling the theoretical ones could be recognised: longer gaze drops at short
distances are more likely to be found when front vehicle moves away than
when approaching the front vehicle.
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estimated using the data up to 125 metres. The results are shown in Figure 6.5
and 6.6. A few remarks:

• The curves has been estimated on the maximum gaze drop durations in
each bin. That is, the curves aim to estimate the longest allowed time to
look away at different distances to front vehicle, for the different relative
speed profiles approaching host vehicle and host vehicle moving away. As
this is just an effort to derive a proof of concept, all data is considered es-
timation data, so that all data was used when estimating the curves. The
suggestion is not to just take this curves straight away and say that they
resemble the context adaptive situational demands. It is rather so, that if
these investigations agree with the intuition, it can be seen upon as a "proof"
that this approach may actually work, and then put more effort in exploit-
ing the concept and find more robust ways to compute these curves, and
also to incorporate more variables.

• Generally, the gaze drops are much longer in the occlusion runs. This stem
from the fact that during day run, the drivers should behave "normally",
and the gaze drops stem only from looking beside the road. During occlu-
sion run they were told to make the effort of using the occlusion goggles as
much as possible, and the gaze drops stem both from regular looks beside
the road and from occlusion data. This shows why the data from the two
runs should not be merged together in order to achieve more data points -
the data is simply collected during different conditions.

• The day plots (Figure 6.5) seem to agree with the intuition - the regres-
sion curves are much steeper when approaching front vehicle, which would
mean the attentional demands are higher there.

• The power regression in Figure 6.6a adopts a little different shape than the
other power regression curves since it is more eager to catch the early gaze
drop durations than the linear regression. After ∼20 metres it levels out
and remains constant.

To compile the results presented above, all four linear regression curves were
plotted in the same figure, and the same thing was done for the power regression
curves. They can be seen in Figure 6.7 and 6.8. It is clear that the same pattern
can be seen during occlusion as during day, but longer gaze drop durations occur
during occlusion. This is, as already been mentioned, since the test persons are
explicitly told to use the goggles as often and as long as they find safe, while the
day plots only resemble normal behaviour.

Including Velocity Measurements

The next natural step would be to exploit the velocity measurements as numer-
ical values instead of grouping them together in three different speed profiles,
and then visualise the gaze drop durations as a function of both distance and rel-
ative velocity. The most convenient way to display the results would be a level
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run, with regression curves estimated from the 95-percentile
of the gaze drop durations for data up to 125 metres.
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(b) Host vehicle approaching front vehicle during day run,
with regression curves estimated from the 95-percentile of the
gaze drop durations for data up to 125 metres.

Figure 6.5: Linear and power regression curves were estimated based on the
95-percentile of the gaze drop durations. They show that longer gaze drops
are allowed when the front vehicle moves away, than when approaching the
front vehicle. These figures are from the day runs.
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Figure 6.6: Linear and power regression curves were estimated based on the
95-percentile of the gaze drop durations. They show that longer gaze drops
are allowed then the front vehicle moves away, than when approaching the
front vehicle. These figures are from the occlusion runs.
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Figure 6.7: The linear regressions for each of the four scenarios in the figure
legends.
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Figure 6.8: The power regressions for each of the four scenarios in the figure
legends.
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Figure 6.9: Time of use of occlusion goggles (in seconds) plotted against
distance and relative velocity and illustrated by the colour scale. Also, the
bigger circles, the longer durations (the circle radii are proportional to the
duration squared). The fact that the density of large circles is higher for
short distances (up to ∼60 metres) for positive relative velocities, that is,
front vehicle moves away, agrees with what has been discussed concerning
the theroretical situational demands.

plot where the gaze drop durations are colour coded and plotted against the two
independent variables. Such a plot is provided in Figure 6.9. In this case only
occlusion data has been used, that is, the plot illustrates the use of occlusion gog-
gles while normal gaze drops (i.e. looking beside the road) have been ignored.
This is interesting since it depicts the longest durations that the test persons are
prepared to look away during driving. It is clear that for short distances (within
the black rectangle), the density of occlusion goggles being active is significantly
higher for positive relative velocities, that is, when the front vehicle moves away.
When approaching a front vehicle, use of occlusion is extremely rare. This agrees
with the intuition.

A regression plane could of course be estimated in the same way as the curves
for the two dimensional case, but if more dimensions were to be introduced that
would not be a good idea as visualisation would be impossible. Therefore, a more
sophisticated approach to distinguish "normal" gaze behaviour from occasional
longer gaze drops is desired. In the next subsection one such method will be
suggested and discussed, although it was never tested out so it should be seen
upon only as a suggestion of a method that could be investigated in the future.
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6.5.2 Support Vector Machines

Using a regression line as a "look-up table" for the maximum allowed gaze drop
durations during different conditions as described previously, would only be an
available option if the number of dependent variables does not exceed two since
higher dimensions cannot be visualised. A less heuristic approach would be to
consult the machine learning community and feed the data into an algorithm that
trains to recognise the patterns that may or may not be visible to the human eye.
The support vector machine is a popular technique for doing this. In its standard
use, it is used to separate data into one of two classes. More specifically, given a
training data set

D = {(xi , yi) : xi ∈ Rp, yi ∈ {−1, 1}}Ni=1,

with N being the number if samples and p the number of features (i.e. the di-
mension of xi), the aim is to find the hyperplane that most effectively separates
the points in D that belong to class +1 from the ones that belong to class -1. Test
data with unknown class belonging can then be categorised into either class -1 or
1 depending on where it is located in relation to the hyperplane generated by the
algorithm from the training set.

As seen in the figures, the distribution generally seems to be such that the
vast majority of the data points lie within a certain range, with occasional points
standing out. Put into physical context, most gaze drops are short, but with oc-
casional longer ones. If we consider a long gaze drop to be an "outlier", then
some method for outlier detection could perhaps be utilised in order to separate
"normal" data from outliers. Such a method is suggested in the following section.

One-Class Support Vector Machine

According to Manevits and Yousef [2001], a first introduction to the one-class sup-
port vector machine, from now on referred to as OCSVM, was made in Schölkopf
et al. [1999]. The abstract of this report provides a background for the adoption
of this classifier as following:

Suppose you are given some dataset drawn from an underlying
probability distribution P and you want to estimate a "simple" subset
S of input space such that the probability that a test point drawn from
P lies outside of S equals a priori specified value between 0 and 1.

We propose a method to approach this problem by trying to esti-
mate a function f which is positive on S and negative on its comple-
ment. [...].

The algorithm is a natural extension of the support vector machine
to the case of unlabelled data.

Consider a situation where we monitor some industrial machine that during
the vast majority of the time works as intended, but where abnormalities from
time to time occur. The abnormalities manifest themselves differently each time
and their origins are not necessarily known. Putting the system into the differ-
ent fault modes in order to collect training data of class both -1 and +1 (that is,
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class "normal" and class "abnormal") to train a standard two-class support vector
machine is hence difficult not to mention potentially dangerous, depending on
the result of a faulty behaviour. What is desired is a classifier that can be trained
only on data collected during normal conditions, and this is exactly what is being
introduced in [Schölkopf et al., 1999].

Available Software

The Statistics Toolbox for Matlab includes functionality for two-class classifica-
tion using support vector machines but as of now, it does not support OCSVM.
LIBSVM (see [Chang and Lin, 2011]) is a free library for support vector machines
available for a large number of programming languages including Java, Python,
C, C++, Lisp, Ruby, R and Matlab(1). It provides automated functions for training
different types of support vector machine classifiers, including OCSVM. The user
provides the training data set along with choice of kernel function and design pa-
rameters. LIBSVM then computes a model that can be used to classify data in a
test set.

6.6 Discussion

The one-vehicle scenario data was first partitioned into i) host vehicle approach-
ing front vehicle, ii) front vehicle moving away from host vehicle and iii) front
vehicle and host vehicle driving with the approximately same speed. It was dis-
cussed how the situational demands theoretically should differ within these sce-
narios, and by estimating a regression curve through the maximum gaze drop
durations it was found that the results agreed with the intuition. Then, the par-
titioning was skipped and the relative velocity was used explicitly so that the
gaze drop durations could be plotted against both distance and relative velocity.
The density of the gaze drop durations continued to agree with the theoretical
insights. No "regression plane" was attempted to be fitted to the data, but instead
it was suggested that a one-class support vector machine could perhaps be used
to identify "outliers" - that is, the longest gaze drop duration allowed at different
relative velocity and distance to object. Trying OCSVM out went outside the time
scope of this project, so it was left as a proposal for future work, with a motivation
to why it was found to be a well fitted method to solve the problem.

The work done in this chapter has aimed to derive a proof of concept regard-
ing a data driven attention monitoring algorithm. Further investigations and de-
velopment of this suggested method would exceed the time scope of this thesis,
but the results look quite promising as what has been produced so far agrees with
the intuition of how the driver should behave during different conditions. With
more data, the patterns found would most plausibly evolve even more, and then
other variables could be introduced as well. With more accurate tracking data,
more complex scenarios than one-vehicle situations could be investigated.

(1)A complete list can be found on the website http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.





7
Concluding Remarks and Future Work

As this thesis report now approaches its end, it is time to present some conclu-
sions that have been made, and to give some ideas on future work based on this
thesis:

• The tracking algorithm works well for highway driving, which is the sim-
plest type of driving in the sense that the roads are fairly straight and the
speed profiles among the cars are mostly easily predictable. It remains to be
seen how well it works when being applied to data collected on rural roads
as they tend to have more frequent curvature. On the other hand, they are
less trafficked and there is only one lane in each direction, which simplifies
the work for the tracking algorithm.

• As of now, the driver behaviour model only uses longitudinal distances due
to bad lateral data. Investing in new measurement instruments, i.e. a radar
and a camera that delivers consistent, robust data, would imply great possi-
bilities for improvements and further development.

• In this work, eye-tracking and radar data have been analysed for driving
scenarios with one front vehicle being present, with promising results. The
next step would be to given proper measurement instruments (as men-
tioned earlier) perform further tests in order to acquire more data. Then,
the algorithm could be extended to handle more complex driving scenar-
ios.

• Finally, another suggested proceeding of this work is to dig into the OCSVM
and investigate how well the proposal of that being a sophisticated method
for identifying abnormalities.

Conclusively, the results from this work provide a good basis for further develop-
ment of formulating the situational demands in different driving scenarios based
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on eye-tracking data from experienced drivers.
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Mathematical Formulation of the OCSVM

A comprehensible mathematical problem formulation can be found in e.g. Zhang
et al. [2012], which is briefly reproduced here.

Given a set of samples T = {xi}Ni=1, xi ∈ R
p where p is the dimension of x or

the number of features, the OCSVM maps T into a possibly infinite-dimensional
feature space F by a nonlinear function φ(x), and then constructs a hyperplane

f (x) = ω ·φ(x) − ρ, (A.1)

with ω being its normal vector and ρ its offset from the origin. The hyperplane f
aims to separate "normal" data from abnormalities and the parameters are found
by solving the optimisation problem

min
ω∈F , ξ∈RN , ρ∈R

1
2
||ω||2 +

1
νN

N∑
i=1

ξi − ρ

subject to ω ·φ(xi) ≥ ρ − ξi , ξi ≥ 0,

(A.2)

where the design parameter ν ∈ [0, 1] can be interpreted as an estimate of the
fraction of outliers in the training set and ζi are slack variables that penalise
error rejection of φ(x).

Omitting the details, the dual problem is obtained as

min
αi , αj

1
2

N∑
i,j=1

αiαjK(xi , xj )

subject to 0 ≤ αi ≤
1
νN

,
N∑
i=1

αi = 1,

(A.3)
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with αi and αj being Lagrange multipliers and K(xi , xj ) = φ(xj ) ·φ(xj ) the ker-
nel function that can e.g. linear, polynomial or Gaussian, whichever is found
most convenient for the specific application. Subsequently, the hyperplane f is
transformed into a decision function

f (x) = − log
∑
i αiK(xi , x)

ρ
. (A.4)

If f (x) > 0, then the sample x is outside the region defined by the hyperplane and
is hence to be considered an outlier.
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