
Institutionen för systemteknik
Department of Electrical Engineering

Examensarbete

Automated Fault Tree Generation from Requirement
Structures

Examensarbete utfört i Fordonssystem
vid Tekniska högskolan vid Linköpings universitet

av

Johan Andersson

LiTH-ISY-EX--15/4900--SE

Linköping 2015

Department of Electrical Engineering Linköpings tekniska högskola
Linköpings universitet Linköpings universitet
SE-581 83 Linköping, Sweden 581 83 Linköping

Automated Fault Tree Generation from Requirement
Structures

Examensarbete utfört i Fordonssystem
vid Tekniska högskolan vid Linköpings universitet

av

Johan Andersson

LiTH-ISY-EX--15/4900--SE

Handledare: Daniel Jung
ISY, Linköpings universitet

Mattias Nyberg
Scania

Examinator: Erik Frisk
ISY, Linköpings universitet

Linköping, 23 oktober 2015

Avdelning, Institution
Division, Department

Vehicular Systems
Department of Electrical Engineering
SE-581 83 Linköping

Datum
Date

2015-10-23

Språk
Language

� Svenska/Swedish

� Engelska/English

�

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

�

URL för elektronisk version

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-XXXXX

ISBN
—

ISRN
LiTH-ISY-EX--15/4900--SE

Serietitel och serienummer
Title of series, numbering

ISSN
—

Titel
Title

Automatisk felträdsgenerering från kravstrukturer

Automated Fault Tree Generation from Requirement Structures

Författare
Author

Johan Andersson

Sammanfattning
Abstract

The increasing complexity of today’s vehicles gives drivers help with everything from adaptive cruise
control to warning lights for low fuel level. But the increasing functionality also increases the risk of
failures in the system. To prevent system failures, different safety analytic methods can be used, e.g.,
fault trees and/or FMEA-tables. These methods are generally performed manually, and due to the
growing system size the time spent on safety analysis is growing with increased risk of human errors.
If the safety analysis can be automated, lots of time can be saved.

This thesis investigates the possibility to generate fault trees from safety requirements as well
as which additional information, if any, that is needed for the generation. Safety requirements are
requirements on the systems functionality that has to be fulfilled for the safety of the system to be
guaranteed. This means that the safety of the truck, the driver, and the surroundings, depend on the
fulfillment of those requirements. The requirements describing the system are structured in a graph
using contract theory. Contract theory defines the dependencies between requirements and connects
them in a contract structure.

To be able to automatically generate the fault tree for a system, information about the system’s
failure propagation is needed. For this a Bayesian network is used. The network is built from the
contract structure and stores the propagation information in all the nodes of the network. This will
result in a failure propagation network, which the fault tree generation will be generated from. The
failure propagation network is used to see which combinations of faults in the system can violate the
safety goal, i.e., causing one or several hazards. The result of this will be the base of the fault tree.

The automatic generation was tested on two different Scania systems, the fuel level display
and the dual circuit steering. Validation was done by comparing the automatically generated trees with
manually generated trees for the two systems showing that the proposed method works as intended.
The case studies show that the automated fault tree generation works if the failure propagation
information exists and can save a lot of time and also minimize the errors made by manually
generating the fault trees. The generated fault trees can also be used to validate written requirements
to by analyzing the fault trees created from them.

Nyckelord
Keywords fault tree, Scania, safety analysis, bayesian network, requirement structure

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-XXXXX

Abstract

The increasing complexity of today’s vehicles gives drivers help with everything from
adaptive cruise control to warning lights for low fuel level. But the increasing functional-
ity also increases the risk of failures in the system. To prevent system failures, different
safety analytic methods can be used, e.g., fault trees and/or FMEA-tables. These methods
are generally performed manually, and due to the growing system size the time spent on
safety analysis is growing with increased risk of human errors. If the safety analysis can
be automated, lots of time can be saved.

This thesis investigates the possibility to generate fault trees from safety requirements
as well as which additional information, if any, that is needed for the generation. Safety
requirements are requirements on the systems functionality that has to be fulfilled for the
safety of the system to be guaranteed. This means that the safety of the truck, the driver,
and the surroundings, depend on the fulfillment of those requirements. The requirements
describing the system are structured in a graph using contract theory. Contract theory
defines the dependencies between requirements and connects them in a contract structure.

To be able to automatically generate the fault tree for a system, information about the
system’s failure propagation is needed. For this a Bayesian network is used. The network
is built from the contract structure and stores the propagation information in all the nodes
of the network. This will result in a failure propagation network, which the fault tree
generation will be generated from. The failure propagation network is used to see which
combinations of faults in the system can violate the safety goal, i.e., causing one or sev-
eral hazards. The result of this will be the base of the fault tree.

The automatic generation was tested on two different Scania systems, the fuel level dis-
play and the dual circuit steering. Validation was done by comparing the automatically
generated trees with manually generated trees for the two systems showing that the pro-
posed method works as intended. The case studies show that the automated fault tree
generation works if the failure propagation information exists and can save a lot of time
and also minimize the errors made by manually generating the fault trees. The generated
fault trees can also be used to validate written requirements to by analyzing the fault trees
created from them.

iii

Acknowledgments

I would like to start by thanking Scania for giving me the opportunity to do my master
thesis at their department RESA in Södertälje, it has really been a great experience. Next
I would like to thank my supervisor at Scania, Mattias Nyberg, as well as Anton Einarson,
for all their invaluable support and feedback during the master thesis project. I also want
to thank the other master thesis student in the project, Oscar Thydén, for always having
someone to discuss the thesis with. At LiU I would really like to thank Daniel Jung for
the support during the whole thesis, especially with all the help with the report. Last I
would like to thank my examiner, Erik Frisk, for all the feedback and help to steer the
thesis in the right direction.

Linköping, October 2015
Johan Andersson

v

Contents

Notation ix

1 Introduction 1
1.1 Background and problem formulation 1
1.2 Introduction to safety engineering concepts 3

1.2.1 Fault tree analysis . 3
1.2.2 FMEA . 3
1.2.3 ISO26262 . 3

1.3 Purpose and goal . 4
1.4 Limitations . 5
1.5 Related research . 5
1.6 Methodology . 6
1.7 Report outline . 7

2 Theory 9
2.1 General terminology . 9
2.2 Contract theory . 10

2.2.1 Background . 10
2.2.2 Definitions . 12

2.3 Bayesian networks . 15
2.3.1 Conditional probability tables 15
2.3.2 Conditional probability tables size 17

2.4 Fault tree analysis . 17
2.4.1 GeNIe and Smile . 17
2.4.2 Fault trees . 18
2.4.3 Creating fault trees . 19
2.4.4 Analysis . 19

3 System overview 21
3.1 Fuel level display . 21

3.1.1 Fuel level display system description 21
3.1.2 Fuel level display system difficulties 22

3.2 Dual circuit steering . 23

vii

viii Contents

3.2.1 Dual circuit steering system description 23
3.2.2 Dual circuit steering system difficulties 23

3.3 Requirement structure . 24
3.3.1 Requirement structure FLD 27
3.3.2 Requirement structure DCS 32

3.4 Database . 34

4 Fault tree generation 39
4.1 Premises . 40
4.2 Failure mode propagation network . 41

4.2.1 Defining failure mode propagation 43
4.3 Bayesian network generation . 44

4.3.1 Generating Bayesian networks 44
4.4 Automated fault tree generation . 45

4.4.1 Generating fault trees . 45
4.5 Meta model extension . 49

5 Case study 53
5.1 Results evaluation: Fuel level display 53

5.1.1 Fuel level display manual fault tree generation 53
5.2 Results evaluation: Dual circuit steering 61

5.2.1 Dual circuit steering manual fault tree generation 61

6 Results 67
6.1 Bayesian network evaluation . 67
6.2 Fault tree generation evaluation . 70

6.2.1 Results evaluation: Fault tree comparison 70
6.2.2 General discussion . 74

7 Conclusion 79
7.1 Conclusion . 79
7.2 Future work . 81

Bibliography 83

Notation

Abbreviations

Abbreviation Description
AE Allocation Element

APPL Application Layer
ASIL Automotive Safety Integrity Level
BIOS Basic Input/Output System
BN Bayesian Network

CAN Controller Area Network
CCF Common Cause Failure
CMS Chassis Management System
COO Coordinator
CPT Conditional Probability Table
DAG Directed Acyclic Graph
DCS Dual Circuit Steering
ECU Electronic Control Unit
E/E Electronic/Electrical

EMS Engine Management System
FLD Fuel Level Display
FM Failure Mode

FMEA Failure Modes and Effects Analysis
FSR Functional Safety Requirements
FTA Fault Tree Analysis

HWSR/SSR Hardware and Software Safety Requirements
ICL Instrument Cluster
NF No Fault (failure mode)

SESAMM Scania Electrical System Architecture Made for Modulariza-
tion and Maintenance

SG Safety Goal
TSR Technical Safety Requirements

ix

1
Introduction

1.1 Background and problem formulation

The vehicles of today are very complex and contain a lot of electronics and electrical de-
vices. A modern truck can contain over fifty Electronic Control Units (ECU). Also, every
ECU has a lot of electronic components connected to them which results in a large sys-
tem. The system can fail and components can break. Therefore, a documentation of the
failure propagation in such a system is required. Failure propagation means how a fault
in a faulty component can effect the functionality of other parts of the systems which can
cause failures in other parts of the system, e.g., a sensor sending wrong information can re-
sult in faulty results in systems using the sensor data. The fault propagation risks causing
a failure on the vehicular level, i.e. failures affecting the whole vehicle, which can cause
harm to both people and equipment. However, to manually generate the documentation
of such a large system is very complicated and time consuming. Since the systems are
constantly evolving, the procedure has to be done over and over again. If fault propaga-
tion analysis could be done automatically a lot of time could be saved.

Knowledge about failure propagation in the system is important for several reasons. First
of all, it is used in workshops for troubleshooting after a failure has been detected when
it is up to a mechanic to locate and fix the problem. More importantly well documented
failure propagation is also needed for the safety analysis of a vehicle, where probabilities
and effects of possible failures are fundamentally important to prevent hazards, i.e., un-
wanted events that can cause accidents. Lastly, failure propagation can be used to create
FMEA (Failure Modes and Effects Analysis) and fault trees, which are required to fulfil
new automotive standards, ISO26262 [2]. A method for describing failure propagation as
well as an method for automatically use that information, to create fault trees and FMEA,
will assist the safety engineers at Scania.

1

2 1 Introduction

The research project ESPRESSO at Scania have created underlying architectural mod-
els and safety requirements describing the electronic/electrical (E/E) systems and made
them available in a database. Safety requirements describe the intended functionality of
safety critical components or systems. The functionality is guaranteed to be fulfilled if a
group of assumptions on the behaviour of the environment of the component/system are
fulfilled.

Each E/E system’s main functionality is described by a set of top level safety require-
ments called safety goals. A safety goal specifies the intended functionality of the system
and has to be fulfilled to guarantee that the truck is in a safe state. The safety goal is then
further broken down into lower level requirements. The system will be described using a
network of connected requirements which is called a requirement structure. An example
of a safety requirement from the system dual circuit steering is described in Example 1.1.
Dual circuit steering is the system which handles the hydraulic steering system.

Example 1.1
A safety goal (SG) of the system dual circuit steering is as follows:

"If nominal driving, then steering wheel torque applied must make vehicle turn."

The SG has the following assumptions:
SubGoal1 and MechSteeringReq1. SubGoal1 promises that "If nominal driving, then
there must be sufficient hydraulic flow" and MechSteeringReq1 guarantees that "If there
is sufficient hydraulic flow, then steering wheel torque applied must make vehicle turn".

The requirement (SG) guarantees that if driving in a nominal way the steering wheel
will make the truck turn if its assumptions are fulfilled. The assumptions are in turn re-
quirements with assumptions of their own. The breakdown of the assumptions will give
requirements on smaller parts of the system, which all has to be fulfilled to guarantee the
safety goals behaviour. All requirements broken down from the SG is together building a
requirement structure.

One task in the thesis is to use the requirements and their structure to find out what
additional information that is needed to describe the failure propagation in E/E systems.
A method to automatically generate failure propagation networks from that information
will be developed. Also, a method to use the failure propagation network to automatically
generate fault trees as well as FMEA tables will be developed.

To complete the failure propagation network it is needed to describe how failure modes
in one requirement depends on the failure mode in its parents (the no fault mode is also
considered a failure mode). In a directed graph the parent is the start point of a directed
arc and the child is its destination.

The methods shall be evaluated against two real Scania systems, the fuel level display
and the dual circuit steering which, is the systems handling the display showing the fuel
volume and the hydraulic steering system.

1.2 Introduction to safety engineering concepts 3

1.2 Introduction to safety engineering concepts

This section will briefly describe fault trees and FMEA and what purpose they fill in many
safety applications. The focus on the thesis is on fault trees, but a short introduction to
FMEA will be included as well.

1.2.1 Fault tree analysis

Fault tree analysis is about understanding how unwanted events, called hazards, can oc-
cur [20]. Possible hazards are broken down into possible causes, e.g., which failing sys-
tems or hardware components that can cause the hazard. The result of an analysis of how
faults in the different components will propagate and eventually causing a hazard can be
represented as a fault tree. The causes are connected with logical gates that in a compact
way will describe what combinations of faults that can cause the hazard. The logical gates
are either OR or AND. If it is an OR gate it is enough that one component fails for that
part of the tree to fail, while if it is an AND gate all the inputs to the gate must fail for that
part of the system to fail.

Fault tree analysis is a top-down process because it starts from a hazard on the top level
and is broken down to more basic causes of the hazard [20].

1.2.2 FMEA

Failure Mode and Effect Analysis (FMEA) and is used to find out which hazards a fault in
a single component can cause, and which possible effects they can have [19]. The FMEA
is a table which will describes which hazardous events, effects on the system, and failure
modes the component has. The FMEA also includes information about the probability,
severity and detection of the fault, which will give a classification about the quality of the
component. The probability states how likely the failure is while the severity states how
dangerous the hazards caused by the failure are. The detection tells how likely it is to
detect a failure before it causes the hazard.

The FMEA generation is called a bottom-up process since it starts on a low level and
goes upwards to the hazards it can cause.

1.2.3 ISO26262

ISO is the International Organization for Standardization and is a federation for stan-
dards that stretches worldwide. ISO26262 is, according to [1] an adaptation of Func-
tional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems
(IEC 61508) applied to the electrical and/or electronic (E/E) system within road vehi-
cles. This adaptation of IEC 61508 applies to all activities during the safety life cycle of
safety-related systems comprised of electrical, electronic and software components.

The need for an international safety standard started to to rise when new functionality
in automobile development increasingly begin to enter the domain of safety engineering.

4 1 Introduction

With more complex systems, the risk for system failures or random hardware failures
grows. Guidance to avoid these risks is included in the ISO26262 standard by providing
standardized processes and requirements.

The goal is to reach a high level of functional safety which is defined as "absence of
unreasonable risk due to hazards caused by malfunctioning behaviour of E/E systems".
The functional safety is dependent on the the development process such as design, imple-
mentation, integration, specification of requirements, etc.

This thesis is based on the upcoming need for the truck industry to comply with this
new standard and therefore much of the terminology used in the thesis is taken directly
from the ISO26262 standard [1].

For every system an ASIL (Automotive Safety Integrity Level) is defined for all haz-
ards. Depending on how dangerous the hazards are they, are classified from A to D on the
ASIL scale, where A dictates the lowest integrity requirements while ASIL D dictates the
highest [1]. To fulfill ISO26262 fault trees are needed in systems with hazards of ASIL C
or D. Figure 1.1 describes the need for inductive (FMEA etc.) as well as deductive (FTA
etc.) safety analysis methods depending on different ASIL levels.

“o” indicates that the method has no recommendation for or against its usage for the iden-
tified ASIL while “+” indicates that the method is recommended for the identified ASIL.
“++” indicates that the method is highly recommended for the identified ASIL.

Figure 1.1: Table describing when deductive and inductive methods are needed to
fulfill ISO26262[2]

.

1.3 Purpose and goal

The primary goal of this master thesis project is to develop a method that automatically
generates fault trees (FT) based on the available requirement structure stored in a database.
The requirement structure will be transformed into a Bayesian network describing the re-
quirement structure as well as an additional layer that describes what failure mode the
requirements will be in depending on which fault/faults that occurred in the system. The
fault trees might need more information than the requirement structure, and one goal is to
investigate what that information is, e.g., failure mode propagation.

1.4 Limitations 5

The fault tree generation tool shall also be evaluated. The evaluation is conducted partly
by interviewing Scania employees responsible for the systems that are modeled by the
generated fault trees. Evaluation is also done by manually creating the fault trees from
the requirements and comparing the results to the generated trees. The accuracy as well
as the usefulness of fault trees at Scania will also be investigated, e.g., to fulfil the auto-
motive standard ISO26262. Finally the fault tree generation shall be integrated into an
existing tool chain at Scania.
The goals of the thesis in conclusion are:

1. Develop a method to automatically generate fault trees based on data describing
systems, called requirement structures.

2. Investigate what information is needed to generate a failure propagation network
and use it to generate a fault tree.

3. Investigate how to automatically generate the failure propagation network.

4. Evaluate the generated fault trees on two systems together with Scania experts.

This thesis focuses on generating fault trees and is done in collaboration with another
master thesis project about generating FMEA from the same information. Parts that are
used in both theses are the generation of Bayesian networks that will be used to modulate
the failure propagation in systems, as well as the method made for designing the failure
propagation in every requirement node.

1.4 Limitations

A big limitation for the thesis is that there didn’t exist requirements for more then two
Scania electronic/electrical systems, which limit the possibility to test and verify the fault
tree generation method.

Another limitation is that Scania currently doesn’t use any deductive methods mentioned
in [3], i.e. fault trees in the safety analysis. This limits the possibilities to verify the re-
sults since there exists no other fault trees to compare with. Instead the generated fault
trees will be validated with help from people at Scania who are experts of the analyzed
subsystems.

Also, in this thesis project , the investigation consider static fault trees, i.e., they do not
include dynamic gates which are used to model more complex system behaviour [6]. As
well as all events in the fault trees are assumed to be statistically independent.

1.5 Related research

The first intended part of the master thesis project will focus on how to use safety require-
ments to create Bayesian Networks (BN) containing failure propagation. The article [17]

6 1 Introduction

mentions how to generate a Causal BN containing failure propagation from safety require-
ments.

The article [25] gives an understanding how the requirements are defined and structured
using contract theory. The requirement structure described here is the foundation that this
thesis is based on.

Paper [24] explains how to apply the ISO26262 standard to break down a safety goal
into software and hardware requirements as well as introducing the concept of contracts.

One approach how to create Bayesian networks from fault trees is mentioned in [4]. The
inverse method is used in this thesis and it is interesting to compare the usage to see how
the different parts of the fault tree is transformed into nodes in the Bayesian network. This
transformation can be partly reversed when creating fault trees from Bayesian networks.

Faults in a system and how the failure mode can change when propagating through a
system is described in [21]. However, the system structure in this article is built around sig-
nals and components instead of requirements. Differences in structure makes the method-
ology hard to translate, but it is still interesting to see examples of how different faults
can translate or propagate. [5] is another article about how to transform a fault tree into a
Bayesian network.

Paper [15] describes a way to modulate failure propagation in a complex system. This ar-
ticle focus on how the increased load from a failing part of the system propagates and risk
causing more failures, instead this thesis focus more on how failure propagation through-
out the system can affect the safety.

A way of automatically generating fault trees is presented in [14]. The difference between
this thesis and the article is that in the article the model of the fault tree is taken from a
technical process description in this thesis the fault trees are modelled from requirements
and the structure they form. The system model in [14] is injected with failures and the
fault tree is generated from that data.

The part of this master thesis project that is new compared to other found research, is
in the way that the automatic creation of fault trees is based on requirement architecture
and requirements. With respect to previous works, the goal here is to automatically gen-
erate fault trees from safety requirements.

1.6 Methodology

This master thesis is made as a case study to investigate if it is possible to generate fault
trees solely from a requirement structure and if not investigate what additional informa-
tion that is needed to do so.

The first part of the thesis concerning the implementation, is based on the articles [17]

1.7 Report outline 7

concerning using a Bayesian network to create a failure propagation network. The data
of the fuel level display system to be used, is based on a requirement structure described
in [25]. The requirement data used for dual circuit steering is taken from a example used
in a demonstration [23]. The mentioned data is computerized and put into a database, fur-
ther described in Section 3.4. The data is then used to create a failure propagation network
together with some assumed information about how failure modes propagate between re-
quirements, which then was used to create fault trees. Validation of the generated fault
trees is done by manually generating trees and comparing them to the automatically gen-
erated trees. The fault tree for the system fuel level display is also validated by creating a
fault tree of the system together with Scania experts.

1.7 Report outline

The outline of this master thesis report is as follows:

In Chapter 2, the basic theory and information behind the project is presented. In Chap-
ter 3 a system overview for the two systems, fuel level display and dual circuit steering,
are described as well as a short information about the database is presented.

Chapter 4 describes the method that is used to generate failure propagation networks
presented in the form of a Bayesian network. Chapter 4 also describes the method for
automatic fault tree generation.

Evaluation of the generated trees are done in Chapter 5 by comparing the generated fault
trees to manually created trees. In Chapter 6 the results of the thesis are presented, i.e.
the created propagation graph and the fault trees are discusses and their quality is veri-
fied. In Chapter 7 a discussion about the thesis and conclusions are from it are drawn and
described. A couple of future works are also suggested to continue this work.

2
Theory

The theory chapter starts with a short description on the ISO26262 standard which mo-
tivates this thesis. The chapter mentions some general terminology which will be used
throughout the report.

The theory behind the requirements is presented in Section 2.2 followed by theory about
Bayesian networks as well as Boolean algebra. Section 2.4.2 describes how fault trees are
created and analysed.

2.1 General terminology

In this section, general terminology that will be used throughout the report is defined. The
definitions are taken directly from [1].

Definition 2.1 (Element). System or part of a system including components, hardware,
software, hardware parts and software units.
[1, p. 6]

Definition 2.2 (System). Set of elements that relates at least a sensor, a controller and
an actuator with one another.
[1, p. 17]

Definition 2.3 (Item). System or array of systems to implement a function at the vehicle
level, to which ISO 26262 is applied.
[1, p. 10]

Definition 2.4 (Fault). Abnormal condition that can cause an element or an item to fail.
[1, p. 7]

Definition 2.5 (Failure). Termination of the ability of an element to perform a function
as required.

9

10 2 Theory

[1, p. 7]

Definition 2.6 (Failure mode). Manner in which an element or an item fails.
[1, p. 7]

Definition 2.7 ((Functional) Safety requirement). Specification of implementation-
independent safety behaviour, or implementation-independent safety measure, including
its safety-related attributes.
[1, p. 8]

Definition 2.8 (Hazard). Potential source of harm (physical injury or damage to the
health of persons) caused by malfunctioning behaviour of the item.
[1, p. 9]

Definition 2.9 (Safety goal). Top-level safety requirement as a result of the hazard anal-
ysis and risk assessment.
NOTE: One safety goal can be related to several hazards, and several safety goals can be
related to a single hazard.
[1, p. 14]

Definition 2.10 (ASIL). One of four levels to specify the item’s or element’s necessary
requirements of ISO 26262 and safety measures to apply for avoiding an unreasonable
residual risk with D representing the most stringent and A the least stringent level.
[1, p. 2]

2.2 Contract theory

Contract theory is used to create the requirement structure that is the data that the failure
mode propagation network is based on. The theory in this chapter is mainly based on the
works presented in [22] and [25].

2.2.1 Background

The concept of contracts were first introduced in formal specification of software inter-
faces were it was specified as pre- and post-conditions. The concept later developed to
work as a design philosophy when designing Cyber-Physical Systems. Cyber-Physical
Systems embody the interactions between physical objects and computers according to
[10]. Typically Cyber-Physical Systems consists of a system of devices that performs
physical actions as well as the computers that controls them.

Contract theory is used in ESPRESSO, a Scania project, in a case study to structure and
specify safety requirements in ISO26262, which is described in the article [26]. A con-
tract is defined as a guarantee as well as a set of assumptions. The guarantee promise a
specified result or behaviour if the assumptions are fulfilled. This can be used when struc-
turing ISO26262 safety requirements, since a safety requirement is a intended behaviour
of an element in a system. If the safety requirement is set as a guarantee of a contract

2.2 Contract theory 11

some conditions can be set which has to be fulfilled for the safety requirement to hold.
In ISO26262 a safety requirement has to be allocated to an element in the system, and
therefore the contract will be allocated to an element in structure, meaning that nominal
behaviour of the element is a requirement for the contract to be fulfilled. Also a set of
assumptions can be connected to the contract where the assumptions can be that other
safety requirements in the surroundings are fulfilled, i.e., other guarantees has to be ful-
filled. Safety requirements can be connected to each other in this way. This is shown in
Figure 2.1. In the figure G is the guarantee of contract 2 and A1, A2 as well as G are Gs
assumptions. G is also the guarantee of contract 1, which has the assumptions A1, A2
and A3.

Figure 2.1: An example of two contracts, in which G stands for guarantee and A for
assumption. Here, the guarantee of the first contract is an assumption in the second
contract.

If an assumption is not fulfilled neither can the guarantee be fulfilled. If the guaran-
tee is an assumption of another contract, it will result in another broken contract. This
behaviour means that connected contracts are depending on each other. If starting from a
safety goal, see Definition 2.9, a system can be broken down to lower level requirements
and using contract theory the whole system can be connected in a so called requirement

12 2 Theory

(contract) structure. A requirement structure of the system fuel level display is shown in
Figure 2.2.

2.2.2 Definitions

In this section the contract theory definitions that are used, when creating the structur-
ing the safety requirement, is presented. The definitions are taken from the articles [25]
and [22].

Definition 2.11 (Run). Let X = {x1, ...,xN} be a set of variables. Consider a pair (xi,ξi)
of a variable xi and a trajectory ξi of values of xi over a time window of possibly infinite
length, starting at a certain time t0. A set of such pairs, one for each variable in X is called
a run for X, denoted ωX .
[25, p. 3].

A run for a set of variables is a trajectory in each of the variables. The trajectories of
the variables can be limited by using assertions, see Definition 2.12, on the variable set.

Definition 2.12 (Assertion). Given a set of variables X’ and a time window, an assertion
W over X’ is a possibly empty set of runs for X’. An assertion W can be specified by a set
of constraints, e.g., equations, inequalities etc.
[25, p. 4]

A set of constraints, e.g., equations, inequalities etc. can be used to specify an asser-
tion. This means that an assertion can, for example, be the set of all possible runs that
fulfill a specified inequality or equation.

Definition 2.13 (Element). An element E is an ordered pair (X,B) where:
a) X is a non-empty set of variables, called the interface of E and where each x ∈ X is
called a port variable; and
b) B is an assertion over X, called the behaviour of E.
[25, p. 5]

An element is a model of things such as software, hardware, or physical entities. Can
be compared to Definition 2.1 in ISO26262.

Definition 2.14 (Architecture). An architecture A is a set of elements organized into a
rooted tree. [25, p. 7]

The architecture is a way to structure elements in order to model a Cyber-Physical
system as well as it’s surroundings.

Definition 2.15 (Contract). A contract is a pair (A,G), where i) G is an assertion, called
guarantee; and
ii) A is a set of assertions {Ai}N

i=1 where each Ai is called an assumption.

In the context of an architecture, a guarantee of a contract for an element expresses an
intended property under the responsibility of the element, given that the environment of
the element fulfills the assumptions. [25, p. 8]

Definition 2.16 (Requirement). A requirement is an assumption or a guarantee
[25, p. 16]

2.2 Contract theory 13

The guarantee of a contract, allocated to an element E assures that the intended prop-
erty of the element is fulfilled, given that the assumptions on the element’s environment
as well as the behaviour of the element are fulfilled.

The guarantee gives the allocated element the responsibility for an intended behaviour
to be fulfilled, given that the assumptions, i.e., the environment, are fulfilled. [25]

Definition 2.17 (Requirement structure for architecture). Given an architecture A
and a set (Ak,l ,Gk,l)

N
j=1 where (Ak,l ,Gk,l) is a contract for an element Ei of A where

each assumption in each set A is either

a) a guarantee of a contract for a sibling of Ei;

b) an assumption of a contract for a proper ancestor of Ei;

c) an assumption of the contract for the root element in A ,

then a requirement structure C for A is an arc-labeled Directed Acyclic Graph
(DAG), such that:

i) the guarantees Gi, j and the assumptions of the contract for the root element in A
are the nodes in C ;

ii) each arc is uniquely labeled either ”Assumption of” or ”Fulfills”;

iii) there is an arc labeled ”Assumption of” from a node W to Gi, j , if and only if W is
in Ai, j;

iv) if there is an arc labeled ”Fulfills” from Gi, j to Gk,l , then Gk,l is a guarantee of a
contract for a proper ancestor of Ei and

v) if a guarantee Gk,l is reachable from an assumption A of a contract for a proper
ancestor Em of Ei, then A is also an assumption of any contract (Ak,l , Gk,l) where
Ek is a proper ancestor of Ei and a descendant of Em (including itself) and where
Gk,l is reachable from Gi, j.

v) if a guarantee Gi, j is reachable from an assumption A of a contract for a proper
ancestor of Em, then A is also an assumption of any contract (Ak,l ,Gk,l) where Ek
is a proper ancestor of Ei and a descendant of Em (including itself) and where Gk,l
is reachable from Gi, j.

[25, p. 15]

In Figure 2.2 a requirement structure for the system fuel level display is shown. In
the figure the nodes are contracts and incoming arcs denoted with an arrow or a black dot,
where arrows are the "Fulfills" relation and and black dots are assumptions to the contract.
In the subscript of the name the allocated element is mentioned, i.e., the contract FSRDriver
is allocated to the element Driver in the architecture. The requirements in the structure
are the guarantees of all contract nodes.

14 2 Theory

Figure 2.2: Requirement structure over the fuel level display. From the article [25].

Definition 2.2.2 gives restriction of how requirements can be structured, e.g. the na-
ture of assumptions and what the arc between requirements means. There are two relation-
ships between requirements. The one that says assumption means that the guarantee of a
contract only can be fulfilled if all the assumptions are fulfilled. The other relationship is
called Fulfills. If a requirement R* has the arc Fulfills to a requirement R it means that
the requirement R* is a proper subset of the requirement R. Example 2.18 describes the
relationship Fulfills further.

Example 2.18
If one requirement R has a lower level requirements, R*, which fulfills R. It means that

R* overtake the responsibility that a subset of R’s guarantee is fulfilled.

It can be seen as R* is a subsystem of R, e.g., if R is an ECU responsible for a behaviour
B then R* can be a software part of the ECU that is responsible for that specific behaviour.

Definition 2.19 (Goal in Requirement Structure). A node in a requirement structure
for an architecture is a goal if the node does not have any successors.
[25, p. 16]

A goal from Definition 2.19 is equivalent to the ISO26262 definition of safety goals,
see Section 2.1. When structuring safety requirements with ISO26262 [25] the safety goal
is set as the guarantee of the goal in the requirement structure.

Definition 2.20 (Extension of Requirement Structure). An extension of the require-
ment structure defined in Definition 2.2.2.

i) Each node is either a requirement Ri, j or an ’OR⊥’ node and each requirement Ri, j
is a node;

ii) If and only if Ri, j is an assumption of Rk,i,l then there exists an arc labeled ”as-
sumption of” from Ri, j to either: a) Rk,i,l ; or b) an ’OR⊥’ node that has exactly one
outgoing arc to Rk,i,l , labeled ”assumption of”;

2.3 Bayesian networks 15

iii) If an ’OR⊥’ node has an incoming arc labeled ”fulfills” from Ri, j , then the ’OR⊥’
node has exactly one outgoing arc to a requirement Rk,i,l on the parent of Ei;

iii) Each ’OR⊥’ node has at least two incoming arcs and where any two incoming arcs
to the ’OR⊥’ node, are requirements on different elements

[22, p. 6]

2.3 Bayesian networks

Information about Bayesian networks described in this section has been taken from [11].

Bayesian networks use the concept of conditional probability, and Bayes’ rule.

P(X |Y) = P(Y |X)P(X)

P(Y)
(2.1)

By using Bayes’ rule it is possible to update the beliefs of an event X given new in-
formation about the event Y has been observed. The updated probability of X , P(X |Y)
is called the posterior probability of X while P(X) is called the prior probability of X [11].

Bayes’ rule can be extended to

P(X |Y,Z) = P(Y |X ,Z)P(X |Z)
P(Y |Z)

(2.2)

It is also important to note that two events can be independent of each other, e.g., as
used in this thesis a fault and a hazard can be independent from each other if the fault can
not cause the hazard (or the hazard can not be caused by the fault, depending on direction).
Independence is written in the following way:

P(X |Y) = P(X) (2.3)

The Bayesian relations can also be described in a graphical way, where nodes has a
set of states as well as a probability of being in the different states. A node is connected
to other nodes with directed arcs that represent conditional probability. The network is
built up as a directed acyclic graph, which means that all arcs have a direction and there
exist no cycles in the graph. The direction of the arc says which node that is depending
on which. If a node X has an incoming arc from node Y, X is called a child of Y, and Y a
parent of X. It is possible for a node to have many parents as well as many children.

2.3.1 Conditional probability tables

The Bayesian networks in this thesis use so called conditional probability tables (CPT:s)
to describe the probability of an event given information of it’s connected nodes. An
example of a CPT is shown in Table 2.1. In the table, each row resemble a state of the
current node, in the example CPT every column is a combination of failure modes of the
parents of the node called Child. Every column defines the probability to be in that state

16 2 Theory

given the combination of states in the parent nodes, e.g., according to Table 2.1, if Parent2
has the failure mode FM1 and Parent1 has FM2 it is 50% probability of Child of having
the failure mode FM1 and a 50% chance of having FM2.

In this master thesis, the Bayesian network is used to describe what failure mode exists in
a requirement (a node) depending on the failure modes in the requirements assuming the
requirement (the nodes parent nodes), as well as the failure mode in the element allocated
to the requirement. Note that the failure mode in nodes can be the no fault failure mode
(NF) which resembles a fault free state.

An example of a requirement node(child node) with two parent nodes connected to it
is shown in Figure 2.3.

Example 2.21
The requirement node and the two parent nodes all have 3 failure modes, the no fault

failure mode (NF), failure mode 1 (FM1) and failure mode 2 (FM2). The conditional
probability table of the requirement node is shown in Table tabell 2.1.

Figure 2.3: An example of a Bayesian network with three nodes.

Table 2.1: Example of a conditional probability table that describes conditional
probabilities at a node in the Bayesian Network

Parent2 NF FM1 FM2
Child \ Parent1 NF FM1 FM2 NF FM1 FM2 NF FM1 FM2
NF 1 0 0 0 0 0 0 0 0
FM1 0 1 0 1 1 0.5 0 0.5 0
FM2 0 0 1 0 0 0.5 1 0.5 1

2.4 Fault tree analysis 17

2.3.2 Conditional probability tables size

A big downside with conditional probability tables is that they grow fast with the number
of states of the node as well as the number of parents and parent states.

Take an arbitrary conditional probability table describing failure mode propagation, A,
describing a node N. A has n rows and m columns, where n is the number of failure
modes of the node

n = #FM(N) (2.4)

and m are the number of failure mode combinations of the parents

m = ∏
i∈Nparents

#FM(i) (2.5)

This means that the number of elements in the matrix depends on the amount of failure
modes of the given node and the amount of combination of the states of the child nodes.

#ElementsCPT = n∗m (2.6)

If all nodes has the same amount of failure modes the equation can be written in the
following way

#ElementsCPT = nb+1 (2.7)

where n is the number failure modes and b is the number of parents connected to the node.
The matrix A is stochastic which means that the sum of all values in a column are equal
to one. Which can be seen in (2.8)

n

∑
i=1

Ai j = 1 ∀ j (2.8)

Each Ai j resembles the probability of propagation to failure mode i given the failure
modes combinations of the parents, represented in the column j.

2.4 Fault tree analysis

The concept of fault trees and what they consist of as well as the the method of creating
them is presented in this section. The section also describes how basic analysis of trees
are conducted as well as some limitation with fault tree analysis.

2.4.1 GeNIe and Smile

To create Bayesian networks, SMILE (Structural Modeling, Inference, and Learning En-
gine) is used [13]. SMILE is a library of C++ classes containing implementations of
decision-theoretic methods, e.g., Bayesian networks. GeNIe [13], which is SMILEs
graphical interface, can be used to visualize Bayesian networks created using SMILE.
SMILE is used to define conditional probability tables as well as calculate the inference
between nodes, while GeNIe can be used to visualize the failure propagation networks.

18 2 Theory

2.4.2 Fault trees

Fault tree analysis (FTA) is a deductive method used in safety, risk and reliability analysis.
FTA is used to try to describe how an undesired event can happen, and what the possible
combination of faults that can cause it.

A fault tree consist of following parts:

1. Top event. The undesired event that is analysed with FTA can be, e.g., a system
failure.

2. Basic events, basic causes of the top event, e.g., a broken sensor or actuator. Basic
events are atomic parts of the fault tree.

3. AND/OR-gates. Logical gates that connects basic events or branches of the tree
together.

4. Intermediate events. Intermediate events are located over each gate in the tree and
is the event describes by the gate beneath it. Can be, e.g., a cluster of components
or a subsystem.

An example of a fault tree, trying to explain why a laptop won’t start, can be seen
in Figure 2.4. The example system says that for the laptop not being able to start it
is sufficient that the operating system doesn’t work correctly, or that any of the listed
hardware components is broken. When it comes to not enough power to the laptop, both
the battery has to be discharged as well as the computer not being connected to the power
outlet.

Figure 2.4: This figure shows an example of a fault tree describing reasons why a
laptop wont start.

2.4 Fault tree analysis 19

2.4.3 Creating fault trees

FTA is a deductive method, which means that it starts from the top and goes down. The
first part is to start with an undesired event, often a failure on vehicular level, from the
failure deduces the possible causes for that event. The failure is then put in top of the fault
tree, and is called the top event [20].

The immediate causes of the top event are then identified. The immediate events are
then decomposed into causes of higher resolution by combining basic event or branches
with a logic gate. Higher resolution means that the elements are further broken down to
a lower level, e.g., instead of having a computer as a basic cause, the computer can be
decomposed into the parts the computer consists of. The process often continues until
a predetermined resolution of causes has been reached. The resolution of causes can be
everything from subsystem level to reaching functions within software components. The
next step is to find all basic events causing the top event and existing within the resolution
of the tree. When all basic events responsible of causing the top event has been found the
basic events are connected - together with logical nodes, e.g., AND and OR-gates - in a
graph.

A few assumptions, in accordance to the article [4], have been made when creating the
fault trees:

1. Basic events are binary e.g. faulty/not faulty.

2. All events are assumed to be statistically independent.

3. Events are connected using OR and AND gates.

Assumptions 1 and 3 are based on the fact that the contracts are binary, e.g., fulfilled/not
fulfilled and that contracts are depending on other contracts to be fulfilled. Which can be
described using AND/OR gates. The assumptions that all events are independent is made
according to the limitations of the thesis.

The different gates, OR and AND are used to define what different combinations of faults
will propagate further up in the net or not. If it is an OR-gate it is enough that one of the
incoming arcs, i.e., possible failure causes, is faulty for that part of the system to be faulty.
For an AND-gate all of the connected failures have to be faulty for the system to break
down. When it is an AND-gate it is said that that part has redundancy which means that,
e.g., one of the basic events/subsystems are sufficient for the given part of the system to
work as intended.

2.4.4 Analysis

The main reason for fault tree analysis is to find out which combinations of errors or faults
in the system that can cause a hazard. The fault tree is analysed to find the minimal set of
causes for the hazard, i.e. the minimal ways the top event in the tree can be reached.

20 2 Theory

Fault trees are mainly used to determine the reliability of a system, by for example point-
ing out all single-point failures (a failure that single-handed can cause the top event).
FTA can also be applied to both existing systems and systems under design. Identifying
weaknesses in the system design can be used to help redesigning a system and preventing
hazardous events.

Instead of a fault tree, a so called success tree can be created [20]. The success tree
is an optimistic version of a fault tree and describes which components has to work for
the system to work as intended. Because success and failure are complementary the trans-
formation between the different trees is simple. A first step is to complement the top
event, i.e., describing reasons for the undesired event NOT to occur. The basic events are
also replaced with their complementary events, i.e., fault free components. Last step is
turning all OR-gates into AND-gates and all AND-gates into OR-gates. The complement
to a minimal cut set (in a fault tree) is a minimal path set, which describes minimal sets of
which basic events that has to work for the system to be failure free, i.e., all the possible
ways to assure the top event to not occur [20].

It is often more practical to see a system from a failure perspective in safety analysis.
The main reason for using the failure perspective is that it is easier to define a failure state
then a success state, e.g., the engine breaks down compared to defining the engine works
successfully which can be viewed a little bit more subjectively.

Fault trees are qualitative models of systems and gives information about causes of un-
desired events, but fault trees can also be used as a quantitative tool if probabilities are
introduced. If the probabilities of faults in the basic events are known then the tree can be
used to calculate the probability of the top event [20]

3
System overview

The first part of this chapter describes the Scania systems used in this thesis. This is
followed by sections describing the existing requirement structures and is finished with
how the requirement data is stored in a database as well as an introduction to the software
used to generate Bayesian networks.

3.1 Fuel level display

The fuel level display is described in this section. First the system is described then
difficulties, when it comes to generate fault trees, with the system are mentioned.

3.1.1 Fuel level display system description

The system information is taken from the chapter in Computer Safety, Reliability, and
Security in [25]. The fuel level display (FLD) is the system that estimate the fuel volume
and shows it to the driver on a display. It also shows a warning if the fuel volume drops
below a certain value. The FLD consists of a few ECU-systems. An ECU-system con-
tains the ECU as well as sensors and actuator connected to it.

The ECU-systems that FLD consists of are the Chassis Management System (CMS), the
Engine Management System (EMS) and the Instrument Cluster (ICL). A description of
the item of fuel level display, the CMS ECU-system, can be seen in Figure 3.1. The figure
is found in the article [25].

The CMS, estimates the current fuel volume in the tank using a Kalman filter. For the
Kalman filter to work properly it relies on the measurement signal from the tank as well
as an estimation of the current fuel consumption rate from the EMS. The measurement
signal is calculated from a floater in the fuel tanks position. A CAN signal containing the

21

22 3 System overview

estimated fuel volume is sent to the ICL where it together with a low fuel warning, if the
fuel level is below 10 %, is displayed to the driver.

The system has two hazards. One of the hazards is NoFuelLevelWarning which occurs
when no there is no warning showing that the fuel level is low when driving the truck.
The other one is the more serious hazard OutOfFuel which occurs when the truck runs
out of fuel when driving [12].

Figure 3.1: A figure showing the elements that fuel level display contains and its
environment. From article [25]

3.1.2 Fuel level display system difficulties

A problem with fuel level display when it comes to fault tree generation is that the system
lacks some kind of back-up system, i.e., there are no redundant subsystems. This means
that the whole system will be described as a tree with OR-gates. The system has redun-

3.2 Dual circuit steering 23

dancy in the way that is has error handling. According to [8], static fault trees are bad at
describing systems with error handling. Since it was not a trivial problem it was consid-
ered to be outside the scope of this thesis. Another system was used as well to validate
the fault tree generation process. The other system is the dual circuit steering which is
explained in Section 3.2.

3.2 Dual circuit steering

The system dual circuit steering is presented and described in this section. Then, some of
the difficulties with the system are highlighted.

The dual circuit steering (DCS) is divided in the same way as Section 3.1 about the
fuel level display; where the system is presented in the first part and difficulties is de-
scribed in the the second part.

3.2.1 Dual circuit steering system description

Dual circuit steering is the system responsible for the power steering of the truck, which
helps the driver steer the truck without using considerable effort. The DCS system is split
into two independent circuits connected to the steering systems. This gives the system re-
dundancy, which the fuel level display lacked. The safety goal of the dual circuit steering
system is: "If nominal driving, the steering wheel torque applied must make vehicle turn".
It is very important that the safety goal is fulfilled to guarantee the safety of the driver and
other road users. The safety goal is then broken down into sub goals responsible of fulfill-
ing the safety goal. A figure describing the requirement breakdown is shown in Figure 3.3.

In the requirement structure the safety goal is split into two sub-requirements, one require-
ment concerning the mechanics behind the steering and the other one sub goal requiring
sufficient hydraulic flow to the power steering which will help the truck turn.

The hydraulic system is divided into two sub systems: one containing the primary hy-
draulic circuit, which has the main responsibility to generate enough hydraulic flow, and
the other is the back-up circuit, which gives sufficient hydraulic flow for a short period of
time if the primary circuit fails. Also, if the primary system fails a warning light notifying
the driver there is something wrong with the hydraulic flow will be shown, telling the
driver to stop.

The hazard of dual circuit steering is occurring when turning the steering wheel does
not make the truck turn, and is called NoServoSteering [12].

3.2.2 Dual circuit steering system difficulties

The difficult part of dual circuit steering is the fact that there exists some hardware redun-
dancy in the system. The system has two hydraulic flow circuits, where the back up is
used when the primary circuits fails.

24 3 System overview

The problem with redundancy is that the requirements usually fails if only one of the
assumptions fails. In general a contract is only fulfilled if all the assumptions are ful-
filled, therefore some extension of contract theory is described in [22]. Definition 2.20
explains what the extension looks like and is based on adding an addition node type in the
requirement structure, called OR⊥. The new node works as a AND node when it comes
to failures which means that all incoming arcs has to fail for the node to fail.

3.3 Requirement structure

Requirement structures used here is based on the theory from [25] which is presented in
Section 2.2. When creating a requirement structure, the first step is to identify a top level
safety requirement for the system, i.e., a safety goal (SG). When defining the guarantee
of a contract, the intended responsibility of the element, in a larger context, is considered.

The safety goal of the fuel level display states that it should not give the driver wrong
information about the fuel level, i.e., it should not show the driver that it is more fuel in
the tank than there actually is. If the safety goal is violated with the failure mode sig-
nal_value_high the hazard OutOfFuel occurs.

In the fuel level display there are other levels of requirements than safety goals, which is
the highest. The other levels are Functional Safety Requirements (FSRs), Technical Safety
Requirements (TSRs), and Hardware and Software Safety Requirements (HWSRs/SSRs)
and are referred to depending on what properties they modulate.

If a requirement modulate vehicular level properties, it is considered to a FSR. If sig-
nals with both SW and HW properties are referenced by the requirement, it is considered
to be a TSR. If only SW/HW properties is modeled it is a HWSRs/SSRs [25].

Figure 3.2 shows the requirement structure of fuel level display the safety goal. The arc
with a black dot, in the figure, from FSRDriver to SG declares that SG assumes FSRDriver.
This is equivalent to FSRDriver being the assumption to the contract ({FSRDriver}, SG)
where SG is the guarantee. In Figure 3.2, an arrow from FSRCOO to SG means that
FSRCOO fulfills SG.

3.3 Requirement structure 25

Figure 3.2: Requirement structure over the fuel level display. The black ball in the
end of the arcs means assumption and the black arrow means that a requirement is
fulfilled by another requirement. From article [25]

All of the safety requirements of the dual circuit steering are presented in Figure 3.3.
In dual circuit steering, the requirements have not been divided into levels like FSR, TSR,
SSRs, and HWSRs. Instead, they are divided into levels from SESAMM function to Allo-
cation Elements (AE) down to infrastructure requirements.

The safety goal of DCS is, as opposed to FLD, divided into several sub goals which
is characterized by not being allocated to any element in the architecture. The hardware
redundancy described in Section 3.2 about the system is described with a label named
’OR’ in Figure 3.3.

26 3 System overview

SF
Power Steering

SG: If nominal driving, then steering wheel torque applied must make

vehicle turn. ASIL=D

SubGoal1: If nominal driving, then there must be sufficient

hydraulic flow. ASIL=D

MechSteeringREQ1: If there is sufficient hydraulic

flow, then steering wheel torque applied must

make vehicle turn. ASIL=D [halted breakdown

since pure mechanic]

DriverREQ1: If red warning has been activated for

more than or equal to 1 minute, then no nominal

driving. ASIL A [halted breakdown since outside of

PrimaryCircuitREQ1: If nominal driving, then

there must be sufficient hydraulic flow.

ASIL=C [halted breakdown since pure

mechanic]

SubGoal2: If nominal driving, then there must be

sufficient hydraulic flow. ASIL=A

OR

SubGoal3: If no red warning is active or red warning has been activated

for less than 1 minute, then during nominal driving, there must be

sufficient hydraulic flow. ASIL=A

ASIL decomposition:

Primary circuit and

SESAMM+ secondary circuit

are sufficiently independent

AND

AND

ISO 26262 does not
require further
breakdown of

requirements allocated
to non-E/E elements

Breakdown of Safety Goal to

Software Requirements

AE421

AND

driving. ASIL A [halted breakdown since outside of

item]

sufficient hydraulic flow. ASIL=A

SESAMMREQ1: If nominal driving and prim. circuit does not provide

sufficient hydraulic flow, then red warning is active. ASIL=A

SESAMMREQ2: If nominal driving and prim. circuit has

not provided sufficient hydraulic flow for less than one

minute, then sec. circuit must provide sufficient hydraulic

flow. ASIL=A

The motor breaks
down after 1 minute.

SESAMMREQ1.1: If actualEngineSpeed>0 and

actualVehicleSpeed > 0 and !actualPrimaryCircuitFlow,

then powerSteeringWarning.

ASIL A.

SESAMMREQ2.1: If (actualEngineSpeed >0 and

actualVehicleSpeed > 0 and !actualPrimaryCircuitFlow)

for less than

one minute , then actualSecondaryCircuitFlow.

ASIL A.

AE462REQ1: actualEngineSpeed equals

EngineSpeed . ASIL A. [halted

decomposition since not part of item]

SecondaryCircuitREQ1:

actualSecondaryCircuitFlow equals

actuatedSecondaryCircuitFlow. ASIL A.

[halted decomposition since pure mechanic]
AE644REQ1: FailureInSteeringCircuit1

must equal

powerSteeringWarning. ASIL A.

decomposition since not part of item]

PrimaryCircuitREQ2: sensedPrimaryCircuitFlow

equals actualPrimaryCircuitFlow. ASIL A. [halted

decomposition since pure mechanic]

AE31REQ1: actualVehicleSpeed equals

WheelBasedVehicleSpeed . ASIL A.

[halted decomposition since not part of item]

STEE
InfrastructureSWREQ1:

EngineSpeed equals

RTDB_ENGINE_SPEED_E. ASIL A.

InfrastructureSWREQ2:

WheelBasedVehicleSpeed equals

RTDB_VEHICLE_SPEED_E. ASIL A.

InfrastructureSWREQ5:

sensedPrimaryCircuitFlow equals

RTDB_STEE_SENS_CIRC1_LO_E.

ASIL A

InfrastructureSWREQ4:

actuatedSecondaryCircuitFlow equals

RTDB_STEE_ELECTRIC_MOTOR_ACT_E. ASIL A.

InfrastructureSWREQ3:

FailureInSteeringCircuit1 equals

RTDB_FAIL_STEERING_1_E. ASIL A.

Figure 3.3: Requirement breakdown of the safety goal of dual circuit steering. From
a Scania poster presentation

3.3 Requirement structure 27

3.3.1 Requirement structure FLD

The requirements, building up the requirement structure for the system fuel level display,
are shown in Tables 3.1, 3.2, 3.3, 3.4 and 3.5 and are taken from [25].

In the tables, variables are expressed in italic. The assumptions, if existing, for every
requirement are listed as well as a ’*’ on assumptions that are fulfilling the requirement.

This notation: FSRDriver means that the requirement is a functional safety requirement,
and that it is allocated to the element Driver.

Level I. Safety requirements on CMS and SG

The first safety level is limited to the safety goal of the system and the item (see Defi-
nition 2.3), CMS, that is responsible for maintaining the functionality of the fuel level
display.

Table 3.1: Requirements at the highest level in fuel level display

Name Component Assumptions Description
SG - FSRCMS*,

FSRDriver

If actualParkingBrake[Bool] is not applied
(false), THEN indicatedFuelVolume[%],
shown by the fuel gauge, is less than or
equal to actualFuelVolume[%].

FSRCMS CMS FSRFuel*,
T SRTank,
FSREMS, FSRICL

If actualParkingBrake[Bool] is not applied
(false), THEN indicatedFuelVolume[%],
shown by the fuel gauge, is less than or
equal to actualFuelVolume[%].

Level II. Safety requirements on the environment of the item (ICL, tank, driver,
and EMS)

The second level of requirements are on the environment of the item (CMS), i.e., the
assumptions of the requirement FSRCMS.

28 3 System overview

Table 3.2: Requirements at level 2 in fuel level display

Name Component Assumptions Description
FSRDriver COO - If actualParkingBrake[Bool] is not applied

(false), THEN the derivative of actualFu-
elVolume[%] is less than or equal to 0.

T SRTank Fuel Sen-
sor (T16)

- The position of the floater sensedFu-
elLevel[%], sensed by the fuel sensor
(T16), does not deviate more than 10%
from actualFuelVolume[%] in the fuel
tank.

FSREMS EMS FSRDriver If actualParkingBrake[Bool] is not applied
(false) AND the CAN message FuelEcon-
omy is transmitted within 0.3s from the
last sent message, THEN the CAN signal
FuelRate[litres=h] in FuelEconomy does
not deviate more than 1% from the deriva-
tive of actualFuelVolume[%]; OR Fuel-
Rate[litres=h] has the value 0xFE (error).

FSRICL ICL - If the CAN signal FuelLevel[%] in the
CAN message DashDisplay does not have
the value 0xFE (error) and DashDisplay
is received within 1s from the last re-
ceived message, THEN indicatedFuelVol-
ume[%], shown by the fuel gauge, is equal
toFuelLevel[%]. Otherwise, indicatedFu-
elVolume[%] is equal to 0.

Level III. Safety requirements on APPL SW and MIDD SW components

The third level consists of requirements for application software and MIDD software com-
ponents, that are responsible of providing CAN-signals and sensor readings to the appli-
cation component as well as encode information from the APP back to CAN-messages.

3.3 Requirement structure 29

Table 3.3: Requirements at level 3 in fuel level display

Name Component Assumptions Description
FSRFuel fuel T SRTank,

FSREMS, FSRICL,
T SRANIN ,
T SR1

ICAN ,
T SR2

ICAN ,
T SR1

OCAN ,
T SR2

OCAN

If actualParkingBrake[Bool] is not applied
(false), THEN indicatedFuelVolume[%],
shown by the fuel gauge, is less than or
equal to actualFuelVolume[%].

T SRANIN ANIN T SRADCC,
HWSRFSens

fuelSensorRes_Val_F32[%] corresponds
to the floater position sensedFuelLevel[%],
sensed by the fuel sensor; OR fuelSen-
sorRes_SS_U08[Enum] has the value
ERR.

T SR1
ICAN ICAN SSRRCAN ,

T SRRCAN

If the CAN signal FuelRate[l=h] in
the CAN-message FuelEconomy does not
have the value 0xFE (error) AND Fu-
elEconomy has been received within 0.3s
from the last received message THEN fu-
elRate_Val_F32[l=h] corresponds to Fuel-
Rate[l=h].

T SR2
ICAN ICAN SSRRCAN ,

T SRRCAN

If the CAN signal FuelRate[l=h] has
the value 0xFE (error) OR FuelEconomy
has not been received within 0.3s from
the last received message THEN fuel-
Rate_SS_U08[Enum] is set to the value
ERR.

T SR1
OCAN OCAN T SRTCAN If estFuelLevel_SS_U08[Enum] has

the value ERR and the CAN-message
DashDisplay is sent within 1s from the
last sent message, THEN the CAN signal
FuelLevel[%] in DashDisplay has the
value 0xFE (error).

T SR2
OCAN OCAN T SRTCAN If estfuelLevel_SS_U08[Enum] does not

have the value ERR and the CAN-message
DashDisplay is sent within 1s from the last
sent message, THEN the CAN signal Fu-
elLevel[%] in DashDisplay has a value that
corresponds to estFuelLevel_Val_F32[%].

30 3 System overview

Level IV. Safety requirements on BIOS SW components

Requirements on level four is on the BIOS SW components. BIOS-components man-
ages the interaction between software and hardware component e.g. by sending signals
corresponding to voltage values to the MIDD-components.

Table 3.4: Requirements at level 4 in fuel level display

Name Component Assumptions Description
T SRADCC ADCC HWSRADC,

SSR1
DMAC,

SSR2
DMAC

fPinRes_s32[mV] corresponds to the volt-
age value V_Fuel[mV].

T SRRCAN RCAN HWSR1
CAN ,

SSR1
BUFF ,

SSR2
BUFF

If FuelEconomy is received within 20ms
THEN it is available in FiFoBuffer.

SSRRCAN RCAN SSR1
BUFF ,

SSR1
BUFF

On Rcan_getRxMsg_U32(): If the oldest
message in FiFoBuffer has PGN 0xFEF2,
THEN rmsg, corresponding to FuelEcon-
omy, is returned.

T SRTCAN TCAN HWSR2
CAN On Tcan_putTxMsg_E(tmsg): If tmsg has

PGN 0xFEFC, THEN DashDisplay is
eventually transmitted onto CAN.

SSR1
DMAC DMAC - On Dmac_enableCh(ch U32): the DMA

channel that corresponds to ch_U32 is en-
abled.

SSR2
DMAC DMAC - On Dmac_disableCh(ch U32): the DMA

channel that corresponds to ch_U32 is dis-
abled.

SSR1
BUFF BUFF - On Buff_put_B(rmsg): Adds rmsg to Fi-

FoBuffer.
SSR2

BUFF BUFF - On Buff_get_B(): returns the oldest mes-
sage rmsg from FiFoBuffer.

3.3 Requirement structure 31

Level V. Safety requirements on COO ECU HW or HW components

The fifth level of safety requirements are requirements on the hardware components allo-
cated to the item, e.g. the fuel sensor.

Table 3.5: Requirements at level 5 in fuel level display

Name Component Assumptions Description
HWSRFSens Fuel Sen-

sor (T16)
- The fuel sensor converts the floater po-

sition sensedFuelLevel[%] into a voltage
value V_Fuel[mV] according to table Y3;
OR 3000 < V_Fuel[mV] OR V_Fuel[mV]
< 200

HWSRADC ADC - If the DMA channels timerCh AND rfi-
foCh are enabled for approx. 20ms, THEN
a RAW value of V_Fuel[mV] is available
in ADCRFIFO.

HWSR1
CANC CAN Con-

troller
- On Rcan_decodeCan: a new CAN mes-

sage is available in HWreceivebuffer
HWSR2

CANC CAN Con-
troller

- The messages put in HWsendbuffer are
eventually transmitted onto CAN.

32 3 System overview

3.3.2 Requirement structure DCS

The dual circuit steering, with the requirement structure in Figure 3.3, is divided into three
levels of safety requirements. The highest level resembles the functional level which is
requirement on a vehicular level of the system. The second level is on the item level, i.e.,
the level of the item responsible for using the back-up circuit if the first circuit fails. The
thirds level is requirements on the infrastructure software. The requirements are taken
from Figure ??

Level I. SESAMM function level

This subsection has the requirements that is responsible for the functional part of the dual
circuit steering and is part of the requirement of the dual circuit steering.

Table 3.6: Requirements at level 1 in dual circuit steering

Name Component Assumptions Description
SG - SubGoal1*,

MechSteer-
ingREQ1

If nominal driving, then steering
wheel torque applied must make ve-
hicle turn.

SubGoal1 - OR{SubGoal2*,
PrimaryCir-
cuitREQ1}

If nominal driving, then there must
be sufficient hydraulic flow.

MechSteeringREQ1 Mechanical
Steering
System

- If there is sufficient hydraulic flow,
then steering wheel torque applied
must make vehicle turn.

SubGoal2 - SubGoal3*,
DriverREQ1

If nominal driving, then there must
be sufficient hydraulic flow.

PrimaryCircuitREQ1 Primary
Hydraulic
Flow
Circuit

- If nominal driving, then there must
be sufficient hydraulic flow.

SubGoal3 - SESAMMREQ1,
SESAMMREQ2

If no red warning is active or red
warning has been activated for less
than 1 minute, then during nominal
driving, there must be sufficient hy-
draulic flow.

DriverREQ1 Truck
driver

- If no red warning is active or red
warning has been activated for less
than 1 minute, then during nominal
driving, there must be sufficient hy-
draulic flow.

3.3 Requirement structure 33

Level II. AE421 level

Requirements on level two are requirements on the environment on the element AE421
which is the item responsible for the dual circuit steering secondary.

Table 3.7: Requirements at level 2 in dual circuit steering

Name Component Assumptions Description
SESAMMREQ1 CMS AE644REQ1,

AE31REQ1,
AE462REQ1,
PrimaryCir-
cuitREQ2, Infrastruc-
tureSWREQ1, Infras-
tructureSWREQ2,
Infrastruc-
tureSWREQ3, Infras-
tructureSWREQ5

If actualEngineSpeed>0 and
actualVehicleSpeed > 0 and
!actualPrimaryCircuitFlow,
then powerSteeringWarning

SESAMMREQ2 Secondary
Hydraulic
Flow
Circuit

AE31REQ1, Sec-
ondaryCircuitREQ,
AE462REQ1,
PrimaryCir-
cuitREQ2, Infrastruc-
tureSWREQ1, Infras-
tructureSWREQ2,
Infrastruc-
tureSWREQ4, Infras-
tructureSWREQ5

If actualEngineSpeed>0 and
actualVehicleSpeed > 0 and
!actualPrimaryCircuitFlow,
then powerSteeringWarning

AE644REQ1 ICL - FailureInSteeringCircuit1
must equal powerSteering-
Warning.

AE31REQ1 COO - actualVehicleSpeed equals
WheelBasedVehicleSpeed.

SecondaryCircuitREQ1 Secondary
Flow
Sensor
(T56)

- actualSecondaryCircuitFlow
equals actuatedSec-
ondaryCircuitFlow

AE462REQ1 EMS - actualEngineSpeed equals
EngineSpeed.

PrimaryCircuitREQ2 Primary
Flow
Sensor
(T55)

- sensedPrimaryCircuitFlow
equals actualPrimaryCircuit-
Flow.

34 3 System overview

Level III. Infrastructure software level

The infrastructure requirements are requirements on the communication software of the
dual circuit steering system.

Table 3.8: Requirements at level 3 in dual circuit steering

Name Component Assumptions Description
InfrastructureSWREQ1 STEE - EngineSpeed equals

RTDB_ENGINE_SPEED
InfrastructureSWREQ2 STEE - WheelBasedVehicleSpeed equals

RTDB_VEHICLE_SPEED_E.
InfrastructureSWREQ3 STEE - FailureInSteeringCircuit1 equals

RTDB_FAIL_STEERING_1_E.
InfrastructureSWREQ4 STEE - actuatedSecondaryCircuitFlow equals

RTDB_STEE_ELECTRIC_MOTOR -
_ACT_E.

InfrastructureSWREQ5 STEE - sensedPrimaryCircuitFlow equals
RTDB_STEE_SENS_CIRC1_LO_E.

3.4 Database

The requirement data creating the requirement structures is stored in a Neo4J database.
Neo4J is a graph database where the data is stored as graphs instead of being stored in
tables [16]. In the Espresso project the database data is stored according to a meta model.
A meta model is a simplified model of the actual model of the database made for visual-
izing the structure of the database [9]. The part of the meta model that is relevant for the
thesis is shown in Figure 3.4.

The database consists of nodes, which has some information, e.g., a name and a descrip-
tion, etc. The nodes are connected to other nodes with so called arcs, which describes
the relationship. A short example describing how the meta model works can be seen in
Example 3.1.

3.4 Database 35

Figure 3.4: This is a picture of the meta model describing the database structure.

36 3 System overview

Example 3.1
This example models the world and people living there, and the results can be seen in

Figure 3.5.

The database is consisting of starting node, called root node. The root node has the
name The_World. The_World is connected to the country Sweden with the arc called
has_country. Sweden resembles properties in the database that are connected to Sweden.

Sweden is connected with nodes of the type Citizens with the arc has_citizens. Sweden is
also connected to nodes node called Cities. Swedes has the arcs lives_in which connects
them with the nodes of the type Cities. It is also connected to itself, which means that a
node of the type Citizen can be connected with another Citizen with the arc has_family.

Figure 3.5: This figure describes a test database with a few node types connected
with arcs describing their relationships.

The meta model that describes the database used in this master thesis can be seen in
the Figure 3.4. It describes the relationship between, e.g., how software components are
connected to a top component as sub components, which resembles an abstraction layer
on an ECU, that in turn is connected to an ECU software.

The main focus is on the nodes in the top of the figure called contract_tuple, assump-
tion, assertion and collection. These are the types that build the requirement structures
that are used in the fault tree generation.

3.4 Database 37

A collection consists of a group of contracts that are all allocated to the same com-
ponent. A contract consists of, as defined in Definition 2.15, a guarantee, which is the
assertion that it is connected to with the arc has_requirement, as well as assumptions
connected with the arc has_assumption. The information of the contracts allocated com-
ponent comes from the collection it belongs to, since all collections are connected to one
component.

The assertion type consists of all requirements in the database. Assertions have an arc
to itself which says decomposed_to. Decomposition means that an assertion is broken
down into another assertion which fulfills the first one. Fulfills, in this case, means that
the fulfilling assertion overtakes the responsibility that the first assertion is fulfilled, i.e., as
defined in Definition 2.2.2. The assumption type is either a reference to an assertion (see
above) or an external assumption, which is an assumption to a contract, see Section 2.2.

4
Fault tree generation

This chapter describes the fault tree generation method together with the preliminaries
that are needed to create the trees.

The motivation to why fault trees can be created from requirements at all is that require-
ments in a way is the inverse to a fault tree and can be compared to a success tree which is
mentioned in [20]. A success tree describes which basic events has to work to guarantee
that the top event does not occur. In the similar way a requirement structure is built up on
which part of a system that has to work to be able to guarantee that the safety goal of the
system is fulfilled.

The concept of turning a success tree into a fault tree is an easy procedure and can be done
by changing the top event from not occurring into occurring and turning all OR-gates into
AND, and the other way around [20]. The requirement structure is more complex but the
general idea is the same.

A contract promises that a scenario fulfilling the assumptions will result in a scenario
defined by the guarantee. This means that it is possible to create a success like tree from
the requirement structure. However when it comes to a scenario not fulfilling the assertion
of the assumptions it is only possible to say that the guarantee is not fulfilled. Therefore,
it can be useful to use failure modes to try to describe how broken assumptions will affect
the guarantee, i.e., how failure states in the assumptions maps on to a failure state in the
guarantee. This is illustrated in Figure 4.1

39

40 4 Fault tree generation

Figure 4.1: The mapping from fulfilled assumptions to nominal behaviour and from
unfulfilled assumptions to faults.

4.1 Premises

The extension of the requirement structure with failure propagation will make it possible
for a non-fulfilled assumption not to violate the safety goal. This can be done if the failure
mode that propagates does not cause any hazards.

The premise of the thesis is to generate fault trees based on the information gathered
in a requirement structure. Requirement nodes, in the requirement structure, is made up
of contracts, see Definition 2.15. For the guarantee of the contract to hold, the assump-
tions and the element responsible for the behavior has to be fulfilled. This means that
in the general case of contract theory, to ensure that the safety goal is fulfilled, all the
assumptions and components in the contract structure have to be fulfilled, according to
Definition 2.9. However, the relation between hazards and safety goals are many to many,
i.e., violating a safety goal in different ways can lead to several hazards and the occurrence
of a hazard can lead to several violated safety goals. Therefore it is not enough to know
that requirements (especially safety goals) are broken, it is also necessary to know how
the requirements are broken. Example 4.1 explains how different failure modes violating
requirements will result in different scenarios.

4.2 Failure mode propagation network 41

Example 4.1
The requirement FSRFuel from the fuel level display system have a few assumptions that
is required to be fulfilled. Depending on what failure modes the assumptions has the sys-
tems will be affected in different ways.

Consider failure of the assumption T SRTank from Table 3.2. The position of the floater
sensedFuelLevel[%], sensed by the fuel sensor, does not deviate more than 10% from ac-
tualFuelVolume[%] in the fuel tank.

This requirement is broken if the floater in the sensor shows more than 10% more fuel
than it exists in the tank. This situation can cause the hazard OutOfFuel since the driver
will believe there is more fuel than it actually is. Instead, if the fuel sensor instead show
10% less fuel the driver will have to refuel a truck earlier than it needs to. Both of these
scenarios will break the requirement T SRTank, which will cause a violation of the safety
goal, but only one of the faulty behaviours will cause the OutOfFuel hazard.

To be able to identify the correct hazard from the requirement structure, failure modes
must to be defined. This will make it possible to identify the failure modes of the items
when causing the hazard. e.g., the floater in the tank can cause OutOfFuel if it has the
failure mode signal_value_high but not if it has signal_value_low.

4.2 Failure mode propagation network

As a conclusion from Section 4.1, failure modes are needed to correctly create a fault tree
from the requirement structure. The failure modes will be added to all the nodes in the
requirement structure, i.e., all requirements and items.

The new network should contain all requirements and elements from a requirement struc-
ture as well as hazards connected to the safety goal. The hazards are connected to certain
failure modes that exist in the safety goal. For the network to be useful, it is necessary to
describe the failure mode propagation from a fault in an item to the requirement(s) on the
item, and from the requirement(s) through the whole requirement structure.

From the network it should be possible to see which failure mode in a specific element
that can cause a selected hazard. A list of criteria on the new failure mode propagation
network is listed below.

Required properties of the failure propagation network:

1: Ability to, for each node, describe different states (failure modes).

2: Describe how states in nodes affects the states of their adjacent nodes.

3: Traceability of top level state to identify what causes it.

A property of the Bayesian network is that, because of the CPT handling all the state
propagation, it is not needed to create more nodes than the requirements and components

42 4 Fault tree generation

that comes from the requirement structure. That property makes the Bayesian network
easy to overview. A big disadvantage is that the Bayesian network CPT will grow expo-
nentially with the number of failure modes and parents, which may cause problems when
dealing with nodes with a lot of parents.

Pros:
1: It can describe all the states, i.e. failure modes, that each node can be in.

2: It is possible to describe all possible propagation scenarios using the conditional
probability tables.

3: It is possible to, using inference, see which components that can affect a hazard.

4: Well used method with a lot of already existing software e.g. SMILE [13]

5: Can be used to generate FMEA if starting from component and investigating which
hazards that are affected.

6: Possibility to extend so the failure propagation network contains true probabilities,
rather than if/if not components/requirements are affected.

A Bayesian network can describe all possible states that it could be in, given some
evidence, at the same time it can describe all possible hazardous events that can occur
given that an element has a certain failure mode, like a FMEA. It can also identify which
component failure modes that could cause a hazard, i.e., a fault tree.

The fact that Bayesian networks are directed acyclic graphs will not be a problem since
the requirement structure, that the failure propagation network is based on, also is directed
and acyclic, see Definition 2.2.2.

Cons:
1: State explosion in the CPT when there exist many failure modes as well as many

parents to a child.

2: It is a bit inefficient when many of the rows in the CPT wont be used, and/or can be
defined in an easier way.

A problem with Bayesian networks in this case is that parts of the CPT will not be
utilized, e.g., the usage of probability will be seen more like a binary state, either some-
thing propagates or it does not. Also it is likely that some combinations of failure modes
in the parents never will occur which will make parts of the CPT unnecessary. A problem
occurs when there are many failure modes as well as parents to a node because of the
number of elements in the CPT will be large according to (2.7)

An already existing tool for safety analysis in ISO26262 is Hierarchically Performed
Hazard Origin & Propagation Studies (HiP-HOPS). Hip-HOPS also has the possibility
to automatically synthesize fault trees and FMEA. Hip-HOPS uses models created by
external modeling programs compatible with Hip-HOPS, e.g., Matlab Simulink or Simu-
lationX to generate their fault trees and FMEA [18]. Since the data in this thesis is in the
shape of requirements, HiP-HOPS can not be used in this thesis.

4.2 Failure mode propagation network 43

4.2.1 Defining failure mode propagation

Since a Bayesian network contains more information than it is needed of the failure mode
propagation network‘, logical statements will be used to define the failure mode propa-
gation. The statements will later be translated into conditional probability tables. This
method will make it easier to define how parents failure modes propagate to the child
nodes.

This method can be used since it is likely that many of the columns in the CPT can be
expressed using a basic logical expression. Also it is cumbersome as well as error prone
to generate conditional probability tables by hand.

The conversion to CPT is done for each row separately. Each row is described by a,
maybe empty, set of equations, A. A is connecting a failure mode of the node to failure
modes of the parent nodes. The union of all the equations Ei in A, will give a new com-
posite equation E*. E* takes the parents failure modes as argument and checks if the
value that is returned is 0 or not. If the return value is , 0 then the number 1 will be
added to the tested position in the table. This will resemble that there is a probability > 0
of propagating to that failure mode given that combination of failure modes of the parents.

The given procedure will be done for all rows until each element has been processed.
The last step is to normalize each column so it will sum to 1. The method will be shown
in Example 4.2.

Example 4.2
A requirement node, R0, has two failure modes FM1, FM2, and the no fault mode NF .

The requirement has two parent nodes, R1 and R2, with the same failure modes. The CPT
of requirement R0 will have 32+1 = 27 elements according to Equation (2.7).

Consider that there exist the following relationships between the failure modes in R0 and
in R1 and R2:

R0(NF) = R1(NF)∧R2(NF)

R0(FM1) = R1(FM1)∨R2(FM1)∨{R1(FM2)∧R2(FM2)}
R0(FM2) = R1(FM2)∨R2(FM2)

then, by automatically transforming the results above, the resulting CPT can be seen in
Table 4.1.

Starting with the first row R(NF) which has the equation R0(NF) = R1(NF)∧R2(NF).
The first column has failure modes R1(NF) and R2(NF) which will get the result 1 since
1∧1 = 1. All other rows will be 0, since 1∧0 = 1, 0∧1 = 0, 0∧0 = 0.

Next row corresponds to equation R1(FM1)∨R2(FM1)∨{R1(FM2)∧R2(FM2)}. The
expressions are calculated for every column and their values are set to the specific posi-
tion in the table.

44 4 Fault tree generation

The equation R1(FM2)∨R2(FM2) is used for the last row, with the same principle. When
all elements in the table has been processed all the columns are normalized so they sum
to 1, i.e., by calculating the sum of each column and dividing each element in the column
by the sum.

Table 4.1: Results of the conditional probability table generated by the equations
describing the propagation

R2 NF FM1 FM2
R \ R1 NF FM1 FM2 NF FM1 FM2 NF FM1 FM2
NF 1 0 0 0 0 0 0 0 0
FM1 0 1 0 1 1 0.5 0 0.5 0.5
FM2 0 0 1 0 0 0.5 1 0.5 0.5

Unless the complexity of the failure mode is very high, this method will simplify
the generation of failure mode propagation compared to manually generating conditional
probability tables.

Since each row can be described using one, possibly complex, equation, the number
of equations describing the CPT will be equivalent of the number of failure modes in
the node. For most cases, simple logical equations can be found that will describe the
propagation, which will lower the manual labour when generating the CPTs.

4.3 Bayesian network generation

The following section describes how the Bayesian failure propagation network is gener-
ated and how it can be used to find out which hazards can be caused by different compo-
nent faults.

4.3.1 Generating Bayesian networks

The Bayesian networks will be generated using the software libraries [13]. First the re-
quirement structure will be built as a Bayesian network starting from a safety goal, and
then by using the meta model in Section 3.4 all the connected requirements will be re-
trieved. Also the allocated elements will be retrieved.

All retrieved requirements will be introduced into a DAG as nodes connected to other
requirements and elements with arcs. Also hazard nodes will be connected to the safety
goal as well as introducing failure modes in each element and requirement. A method for
adding failure modes to all nodes will be done as described in Section 4.2. By adding
probabilities of failure mode propagation and for each node putting them in a conditional
probability table the DAG is made into a Bayesian network.

First the failure modes have to be defined in every requirement and elements. The Bayesian

4.4 Automated fault tree generation 45

network now contains information about the structure of the system and which failure
modes each element and requirement has. Information on how the failure mode propaga-
tion is taken from the failure mode propagation described in Section 4.2.1 above.

Finding causes to a hazard is done by inducing a hazard and comparing it to the nomi-
nal case. A hazard is induced by setting P(Hazard = Active) = 100% and updating the
conditional probabilities in the network according to Equation (2.1), and then checking
P(Ni = nominal|Hazard = Active) = pi, where Ni is a node in the system and pi is a
probability. The possible causes is following set nodes {N j|P(N j = nominal|Hazard =
active)> 0,N j ∈ allnodes}.

Using this, by first looking at the nominal case, i.e. setting the probability of all haz-
ards to 0, the probability of being in the nominal state is 100%. Then a hazard that, the
fault tree will be created from, will be induced. The hazard will be induced by setting
the probability of the hazard to occur to 1. It is now possible to see how the conditional
probabilities changes and then comparing the probability of being in the nominal state
for each component and requirement compared to the state where the probability of there
existing hazards being 1.

All the components and requirements that in some way are affecting the hazard will be
used in a new Bayesian network which only contains possible causes to the hazard.

4.4 Automated fault tree generation

This section describes the automated fault tree generation process and how the results can
be used for fault tree analysis.

4.4.1 Generating fault trees

From the generated Bayesian network the creation of fault trees start with choosing a
safety goal, i.e., what part of the Bayesian network that will be used. The next step is
choosing for which hazard to create the fault tree from.

The first step is to find out which requirements and components will affect the specified
hazard. This can be done in various ways but the chosen method is to calculate the prob-
ability of nominal behaviour for requirements and components, given a hazardous state
and the comparing it to the nominal state. This method will single out the requirements
and components that in some way can cause the hazard.

A new network of nodes only consisting of components and requirements, that has a
probability of causing the hazard, will be created.

Each component node will be a basic node in the fault tree since they are the atomic
part of what can result in the safety goal being violated and in that way causing a hazard.
If a component is allocated to more than one requirement the component will be cloned

46 4 Fault tree generation

and one component node will being allocated to each requirement, this action is necessary
to create a tree structure out of the Bayesian DAG. If a requirement R is the assumption
of more than one requirement, R will be copied together with its child nodes and then one
copy will be allocated to each of the parent requirements. A downside to this is that it is
no longer possible to see that the requirements are the same anymore.

When the directed acyclic graph is turned into a tree, the requirement nodes are turned
into logical AND/OR-gates. If there exist redundancy the node in the Bayesian network
will have an identifier that says it is an AND-node. The Bayesian network has the support
to define if it is an AND-node in the CPT:s. An OR-node in the Bayesian network can
be seen in the CPT if failure mode in all of the parents alone cause a failure mode in the
requirement node. If it is needed for two or more nodes in all situations for failure mode
propagation to occur, there is an AND-node between them.

If redundancy exist, it is possible to describe the redundancy as as an additional node,
existing in the Bayesian network. This node resembles the OR-node used in the extended
contract theory in Definition 2.20. Another way of describing redundancy is to use the
conditional probability tables to describe that two or more elements are redundant.

The tree is created from the new treelike Bayesian network where all the requirements
are defined as logical gates. The tree is generated from the top, i.e. from the hazard. First
logical nodes are created depending on the requirement nodes in the new Bayesian net-
work. Then, components are added as basic events in every step. Before the components
are added, the tree is analyzed to see if basic event already have been added higher up
in the tree. If the basic node already exists, the new node will not be added. Since the
limitations of the thesis assumes that events are independent, adding the same event will
be redundant and not change the information of the tree. The proof of this can be seen in
Theorem 4.3. In reality the events is not necessarily independent which will cause a loss
of information.

Theorem 4.3. A basic event A will be redundant if a basic event A’, where A = A’, exists
higher up in the tree structure.

Proof: Proof of Theorem 4.3 using mathematical induction
The basic events representing the component comp are called A and A’ (to separate them),
where A = A’. The hierarchy level of LVL(A) ≤ LVL(A’). For each logical gate further
down in the tree the level will increase by 10, i.e., the higher level the lower in the tree
hierarchy. An illustration of this can be seen in Figure 4.2

◦ and � denotes arbitrary logical gates (AND/OR). Using following expressions:

Idempotence of ∧ a∧a = a (4.1)

Idempotence of ∨ a∨a = a (4.2)

It is possible to show redundancy occurs if two components are added to the same
level in the tree structure.

4.4 Automated fault tree generation 47

A◦A′ ◦B◦C ◦ · · · (4.1),(4.2)
= A◦B◦C ◦ . . . (4.3)

Redundancy when two identical basic events occur on the same level are proven. Next
step is to prove that it still holds if LVL(A’) - LVL(A) = 1.

A◦B◦C ◦ · · ·= [B = (A′ �B′ �C′ � . . .)] = A◦ (A′ �B′ �C′ � . . .)◦C ◦ . . . (4.4)

There are two cases to take into account, ◦ = � and ◦ , �. And to solve them following
relations are used:

Associativity for ∨ a∨ (b∨ c) = (a∨b)∨ c (4.5)

Associativity of ∧ a∧ (b∧ c) = (a∧b)∧ c (4.6)

Absorption 1 a∧ (a∨b) = a (4.7)

Absorption 2 a∨ (a∧b) = a (4.8)

Distributivity of ∧ over ∨ a∧ (b∨ c) = (a∧b)∨ (a∧ c) (4.9)

Distributivity of ∨ over ∧ a∨ (b∧ c) = (a∨b)∧ (a∨ c) (4.10)

Case: ◦= �

A◦ (A′ �B′ �C′ � . . .)◦C ◦ · · · (4.5),(4.2) or (4.6),(4.1)
= A◦ (B′ �C′ � . . .)◦C ◦ . . . (4.11)

Case: ◦ , �

A◦ (A′ �B′ �C′ � . . .)◦C ◦ · · · (4.7) or (4.8)
= A◦C ◦ . . . (4.12)

Now LVL(A’) - LVL(A) = 2. Depending on if gate at LVL(A) and LVL(A) + 1 are
the same or not the associativity law ((4.5) or (4.6)) or the distributive law((4.9) or (4.10))
will be used. Now the results in (4.11) or (4.12) can be used to prove redundancy when
the level difference is 2.

If LVL(A’) - LVL(A) = n and n≥0, associativity law or distributive law is used depending
on gate types between LVL(A) and LVL(A) + 1. The results from LVL(A’) - LVL(A) = n -
1 can then be used prove that redundancy will occur when the level difference is n, where
n is arbitrary.

This concludes the proof that all recurrences of component on a higher level in the fault
trees are redundant.

48 4 Fault tree generation

Figure 4.2: Here is an illustration of the concept levels in a fault tree. The first level,
lvl 0, is defined as the events beneath the logic gate connected to the hazard.

The basic events are created from the component nodes that are allocated to each re-
quirement node. Before a new basic event is added, the tree is first checked to see if that
basic event exist in a higher hierarchy in the tree (closer to the hazard). If the component
already exist the node is not added

The fault tree is finished with creating intermediate event over each of the nodes in the
fault tree. The intermediate nodes is describing what requirement that has been broken if
the result from the gate is true.

The last step in the generation is to perform fault tree analysis on the system. The analysis
is done by calculating the minimal cut sets, which are the minimal causes of the hazard,
of the system. The minimal cut sets from the tree is calculated using a method described
in the flow chart in Figure 4.3. The first part in calculating the minimal cut set is to re-
cursively go through all the branches of the tree, starting from the root node (the hazard).
When reaching leaf nodes the method goes upwards toward the root node. In each junc-
tion (gate) a logical expression, describing the possible failure causes, is calculated. The
expression is calculated by using the gates logical operator (AND/OR) on all incoming
branches. If the gate is an OR-gate the idempotent law for OR and AND is used, giving
an expression on the following form:

Exp1 OR Exp2 OR Exp3 OR . . . (4.13)

For AND-nodes the distributive law is first used, followed by the idempotent law giving,
the form seen in Equation (4.13). Next all expressions are compared and all super-sets

4.5 Meta model extension 49

will be removed. This calculations will be done in each gate until the root node has been
reached.

The minimal cut set can then be used to generate a minimal tree describing only the
minimal combination of basic events causing the hazard.

4.5 Meta model extension

The meta model that describes the database, shown in Figure 4.4, has to be extended to
contain failure modes and hazards. These extensions are necessary to store and retrieve in-
formation that is needed to create fault propagating Bayesian networks. The failure mode
type contains a name and description as well as the relationship has_failure_mode with
the assertion type. Also software and hardware has the relationship has_failure_mode
with the failure mode type. The hazard type is connected failure modes as well as asser-
tions with the relationship called caused_by which says that a hazard will be caused by
an assertion being in a certain failure mode.

50 4 Fault tree generation

Figure 4.3: A flowchart for the algorithm that calculates minimal cut sets from the
generated fault tree.

4.5 Meta model extension 51

Figure 4.4: This figure is the extended meta model which describes the new database
structure.

5
Case study

Since there are no available fault trees for the case study systems, the validation of the
method is done in two steps. The first step is to manually generate fault trees from to
requirement structure to validate that the generated trees are correct with regard to the
system described by the requirement structure.

The second step is to evaluate the possibility to generate fault trees of systems starting
from requirement structures.

5.1 Results evaluation: Fuel level display

The two case study examples have been automatically generated in accordance to the
method described in Chapter 4 together with requirement structures of the both systems

5.1.1 Fuel level display manual fault tree generation

The fault tree generated for fuel level display is generated from the Hazard OutOfFuel
shown in Figure 6.5. The generation of this hazard is made from first creating a failure
propagation network from the requirement structure of fuel level display. The hazard con-
nected to the system is chosen to create the fault tree from. The fuel level display has two
hazards, OutOfFuel, shown in Figure 6.5, and NoFuelLevelWarning. OutOfFuel is the
hazard that the truck runs out of fuel when driving.

The hazard OutOfFuel can be caused if the safety goal has the failure mode signal_value_high.
This failure mode says that the requirements regarding the amount of fuel in the fuel tank
is higher than the actual amount. The information of the failure modes as well as hazards,
in fuel level display, comes from a system FMEA of system [12].

53

54 5 Case study

The relevant failure modes in this example is the failure modes that can cause the safety
goal to be in the signal_value_high failure mode. The failure mode signal_value_high
implies that a too high signal exist in the item. The other important failure mode is the
failure mode signal_value_omission which means that no signal has been transferred.

In this case study it is assumed that all requirements has the following failure modes: sig-
nal_value_high, signal_value_low, signal_value_omission, signal_value_error and sig-
nal_value_commission. It is assumed that the failure mode signal_value_high propa-
gates into the same failure mode, i.e. signal_value_high. Also the failure mode sig-
nal_value_omission is assumed to be able to cause the signal_value_high failure mode,
since not delivering signals will cause the system not to update the fuel level.

The failure mode propagation in the network is defined as in Table 5.1. In the table only
the failure propagation of the relevant failure modes, i.e. the ones that cause the OutOf-
Fuel hazard as well as the no fault failure mode, are presented. The table shows a general
propagation where a requirement or item has both the failure modes signal_value_omission
and signal_value_high and how failure modes in the parent could cause them.

Table 5.1: The failure mode propagation in FLD, with the parents in {parent}

Failure Mode Parent Failure Mode Combinations
NF {1}NF AND {2}NF AND.. AND {n}NF
signal_value_high ({1}signal_value_high OR {1}signal_value_omission)

OR
({2}signal_value_high OR {2}signal_value_omission)

OR
...

OR
({n}signal_value_high OR {n}signal_value_omission)

signal_value_omission {1}signal_value_omission
OR

{2}signal_value_omission
OR
...

OR
{n}signal_value_omission

5.1 Results evaluation: Fuel level display 55

When failure modes as well as failure mode propagation are added to all requirements
and elements it is possible to evaluate which requirements and elements are affecting
the hazard OutOfFuel using the method described earlier. The results show that all the
elements and requirements, in the requirement structure, are possible causes to the hazard.

In the next coming sections the requirements describing fuel level display will be gone
through and used to manually create a fault tree. The manually created tree will have the
hazard OutOfFuel as top event. The manually generated tree will later be compared to the
results from the fault tree generation.

When generating fault trees, the error handling is not considered, and to make a more
accurate comparison the error handling will not be considered when manually generating
the fault tree.

Level 1. Safety requirements on CMS and SG

The requirements from the first safety level is taken from Table 3.1 considering the safety
goal of the system as well as the item, CMS.

The hazard OutOfFuel is connected to the safety goal and occurs when the indicated-
FuelVolume[%] is higher then actualFuelVolume[%]. The hazard will be the top event in
the fault tree. SG is fulfilled by the requirement FSRCMS as well as having an assumption
FSRDriver, which will be described as the contract ({FSRCMS, FSRDriver}, SG).

According to Definition 2.15 the contract is fulfilled if the allocated element as well as
the assumptions are fulfilled. Since the goal is on the vehicle level it has not any element
allocated which means it will be violated if any of the assumptions are broken. Since
there is no additional error handling this means that the safety goal in the fault tree will
be turned into an OR-gate with the the inputs FSRCMS and FSRDriver.

The fulfilling requirement FSRCMS is violated if its element, the ECU system CMS (Chas-
sis Management System) is faulty or the assumptions FSRFuel , T SRTank, FSREMS and
FSRICL are violated. There is no error handling on this stage either which means that
FSRCMS will be turned into an OR-gate with the basic event CMS and the undeveloped
events FSRFuel , T SRTank, FSREMS and FSRICL.

Since there are no more information about the assumptions at level 1, FSRDriver will
also be a undeveloped event in the fault tree. Figure 5.1 describes the fault tree of the first
level of the requirement structure of the fuel level display.

56 5 Case study

Figure 5.1: A fault tree describing the first level of fuel level displays safety require-
ment

Level 2. Safety requirements on the environment of the item (ICL, tank, driver,
and EMS)

The next level of requirements considers the environment of the item (CMS) which are the
assumptions of FSRCMS. The requirements from level 2 of the fuel level display comes
from Table 3.2.

The assumption of the safety goal, FSRDriver, is allocated to the element Driver does not
have any assumptions. FSRDriver will be turned into the basic event Driver in the fault tree.

T SRTank does not have any assumptions which makes the allocated element, the fuel tank,
the basic event. The FSREMS assumption FSRDriver, since the basic event Driver exist
higher up in the tree it according to Theorem 4.3 be redundant if added lower in the tree.
The requirement will instead be turned into the basic event of the element, the EMS ECU
System. The FSRICL does not have any assumptions either which makes the element, the
ICL ECU system, a basic event.

At level 2 there is no information about the fuel filter FSRFuel and it will be added to
the fault tree as an undeveloped event, which means that there is not enough information
about that part yet. The fault tree describing the second safety requirement level can be
seen in figure 5.2.

5.1 Results evaluation: Fuel level display 57

Figure 5.2: A fault tree describing the first two levels of FLDs safety requirements

Level 3. Safety requirements on APPL SW and MIDD SW components

The third level consists of application software components, and MIDD software compo-
nents that are responsible of providing CAN-signals and sensor readings to the application
component as well as encode information from the APP back to CAN-messages. The data
comes from Table 3.3.

FSRFuel is fulfilling the requirement FSRCMS and has the assumptions T SRTank, FSREMS,
FSRICL, T SRANIN , T SR1

ICAN , T SR2
ICAN , T SR1

OCAN and T SR2
OCAN and is allocated to the

element Fuel, which is the filter calculating the fuel level. The requirement has no error
handling and will therefore represented as an OR-gate with inputs from all the assump-
tions. Since T SRTank, FSREMS, FSRICL exist higher up in the tree they will not be added.
It leaves the requirements T SRANIN , T SR1−2

ICAN T SR1−2
OCAN as inputs.

The requirement T SRANIN is needed to guarantee that the correct value from the fuel sen-
sor has been received, to do so the element ANIN as well as the assumptions T SRADCC
and HWSRFSens has to be fulfilled. T SRANIN will be an OR-gate with 3 inputs, 2 from the
assumptions and 1 from the basic event ANIN.

T SR1−2
ICAN both are depending on SSRRCAN and T SRRCAN as well as the element ICAN

to be fulfilled. Since the two requirements are identical when it comes to the allocation
element and assumptions it is enough to represent one of them in the fault tree. The re-
quirement will be turned into an OR-gate with 3 inputs, two from the assumptions and
one from the element ICAN.

58 5 Case study

The same procedure can be done with T SR1−2
OCAN and is in the same way an OR-gate

with two inputs, one from the element OCAN and one from the assumption T SRTCAN .

The events corresponding to the requirements T SRANIN , T SRICAN and T SROCAN are the
only events that are not developed in this step.

Figure 5.3 resembles the fault tree described by the first three requirements levels.

Figure 5.3: The fault tree describing the third level of fuel level displays safety
requirement

Level 4. Safety requirements on BIOS SW components

BIOS-components manages the interaction between software and hardware component
e.g. by sending signals corresponding to voltage values to the MIDD-components.

In accordance with earlier levels, the requirements T SRADCC, T SRRCAN , SSRRCAN and
T SRTCAN will be seen as OR-gates with their assumptions and elements as inputs and
the requirements without assumptions, SSR1

DMAC, SSR2
DMAC, SSR1

BUFF and SSR2
BUFF , will

have their allocated elements as basic events.

Next, logic gates with more than one of the same basic events will have the redundant
basic events removed. The results of the fault tree created from four levels of safety
requirements is seen in Figure 5.4.

5.1 Results evaluation: Fuel level display 59

Figure 5.4: The fault tree describing the fourth level of fuel level displays safety
requirement

Level 5. Safety requirements on COO ECU HW or HW components

The fifth level of safety requirements are requirements on the hardware components al-
located to the item, e.g. the fuel sensor. All the safety requirements on the fifth level is
hardware components that lack assumptions of other requirements. Therefore they will
all be turned into basic events in the fault tree, which now is complete for the fuel level
display. Figure 5.5 shows the complete fault tree of the fuel level display.

60 5 Case study

Figure 5.5: The completed tree that describes the fuel level display

5.2 Results evaluation: Dual circuit steering 61

5.2 Results evaluation: Dual circuit steering

Evaluation of the dual circuit steering is done using the same methodology as for the
FLD. The hazard that is analyzed in this system is NoServoSteering, which means that
the driver will have trouble to make the vehicle turn.

5.2.1 Dual circuit steering manual fault tree generation

The information about the requirements of dual circuit steering is not as extensive as the
requirements of fuel level display, which causes the system description to be less accurate.
The main purpose of using the requirement structure of dual circuit steering is to show
how redundancy in the requirement structure can be described as well as how it will be
translated into the fault tree. Therefore the failure mode propagation is not the focus in
this case study. Figure 6.6 shows the generated fault tree of the dual circuit steering.

Level 1. SESAMM function level

This subsection considers the requirements that are responsible for the functional part of
the dual circuit steering and is part of the requirement of the dual circuit steering. The
requirements are taken from the requirement structure of dual circuit steering displayed
in Table 3.6.

The failure mode propagation in this example system is very easy, the failure modes are
no_Fault and signal_value_faulty. Table 5.2 displays the failure mode propagation in dual
circuit steering and says that, unless anything else is mentioned, the failure mode of the
child node is Faulty if any of the parents have the Faulty failure mode. This means that the
hazard NoServoSteering is caused by the failure mode signal_value_faulty in the safety
goal.

62 5 Case study

Table 5.2: The failure mode propagation in DCS, with the parents in {parent}.

Failure Mode Parent Failure Mode Combinations
NF {1}NF

AND
{2}NF

AND
...

AND
{n}NF

signal_value_faulty {1}signal_value_faulty
OR

{2}signal_value_faulty
OR
...

OR
{n}signal_value_faulty

The safety goal states that the truck must be able to control during nominal driving.
For that to work it is fulfilled by the requirement SubGoal1 as well as assuming that the
requirement on the mechanical steering system MechSteeringReq1 is fulfilled. It will be
developed as a gate with two inputs.

The MechSteeringReq1 is a requirement on the mechanical steering of the truck and since
it is not part of the E/E systems of the truck there is no further development of the require-
ment, i.e., it has no assumptions and the element Mechanical Steering will be a basic
event in the fault tree.

SubGoal1 fulfills the SG and has the assumptions from SubGoal2 and PrimaryCiruitReq1,
where there exist redundancy between the two assumptions, which means that only one of
the requirements has to be fulfilled for SubGoal1 to be fulfilled. This will create an AND-
gate with two inputs. PrimaryCircuitReq1 has no further breakdown, i.e., no assumptions
which means that the element Primary Hydraulic Flow Circuit will be a basic event in the
fault tree.

Subgoal2 fulfills the requirement SubGoal1 and is in turn fulfilled by the SubGoal3. It
also has the assumption DriverReq1, which is an requirement with no assumptions and
the element Driver. The OR-gate that represents the SubGoal2 in the fault tree has two
inputs, one from the requirement SubGoal3 and one from the basic event Driver.

The last sub goal, SubGoal3, fulfills SubGoal2. It has two assumptions on the SESAMM
of the truck. The assumptions SESAMMReq1 and SESAMMReq2 are allocated to the

5.2 Results evaluation: Dual circuit steering 63

Chassis Management System (CMS) and the Secondary Hydraulic Circuit. SESAMM-
Req1 and SESAMMReq2 will be developed in further in dual circuit steering level 2.
Figure 5.6 shows the fault tree resembling the first level of safety requirements on dual
circuit steering.

Figure 5.6: The manually created fault tree describing the first level of safety re-
quirements of the system dual circuit steering

Level 2. AE421 level

Safety requirements on level 2 are requirements for the item, responsible for the back
up circuit if the primary flow circuit does not work, and its environment. The safety re-
quirements of level 2 are taken from Table 3.7. SESAMMReq1 has the allocated element
CMS as well as 8 assumptions and SESAMMReq2 has the item Secondary Hydraulic
Flow Circuit and 8 assumptions. The rest of the requirements on level 2 has only allo-
cated elements and no assumptions, which means that their elements will be basic events
in the fault tree. This means that there is only the Infrastructure requirements left that is
not developed yet, since they are part of level 3 safety requirements. The results of the
fault tree created from the first two levels of safety requirements is displayed in Figure 5.7.

64 5 Case study

Figure 5.7: The manually created fault tree describing two first level of safety re-
quirements of dual circuit steering

Level 3. Infrastructure software level

The infrastructure requirements that exists in level 3 of the safety requirements is taken
from Table 3.8. None of the infrastructure requirements have any assumptions, which
means that their elements will be basic events in the fault tree. The allocated element
is STEE for all the requirements which means that many of the requirements will give
redundant basic events. The redundant basic events will be removed from the tree since
the same safety requirement on the same level in the fault tree does not give any additional
information about the system, see Theorem 4.3. Figure 5.8 shows the final manually
created fault tree of the dual circuit steering.

5.2 Results evaluation: Dual circuit steering 65

Figure 5.8: The manually created fault tree describing all three levels of of safety
requirements describing dual circuit steering

6
Results

This chapter is dedicated to show the case study of the thesis. The results concern the
generation of fault trees and failure propagation networks, but also results regarding the
extension of the used database and how the definition of failure mode propagation is done.

6.1 Bayesian network evaluation

The generated Bayesian networks of the system fuel level display is presented in Fig-
ure 6.1. A close up on the hazards and safety goals can be seen in Figure 6.2. It is
shown that the hazard OutOfFuel is active (the OutOfFuel node has 100% probability to
be active) and which requirements and elements are affecting it. The network also has the
ability to introduce a failure mode in any node and evaluate which nodes are affected by it.

Figure 6.3 shows the Bayesian network that handles the failure propagation for DCS.
As opposed to FLD, DCS has redundancy in the system and this is presented by using
an OR node in the network that connects the requirement on the primary circuit together
with the requirement SubGoal2. The redundancy can be seen in Figure 6.4 by setting the
hazard NoServoSteering to active as well as setting evidence of a fault in a hydraulic flow
sensor. The Bayesian network then says that it has to be a fault in either the mechanical
steering system or in the primary hydraulic flow circuit.

67

68 6 Results

Figure 6.1: Bayesian network describing the failure mode propagation in fuel level
display. The red squares resemble the system hazards. The bars show the conditional
probabilities in the network.

6.1 Bayesian network evaluation 69

Figure 6.2: A close up on the hazards and safety goal in the fuel level display. It is
possible to observe that the hazard OutOfFuel and it’s effect on adjacent nodes.

Figure 6.3: Bayesian network describing the failure mode propagation in dual circuit
steering. No probabilities are set in the network.

70 6 Results

Figure 6.4: Bayeisan network illustrating the effects of setting the probability of the
hazard to 1. It is also possible to see the effects of redundancy in the network.

6.2 Fault tree generation evaluation

The fault trees for the systems is evaluated by comparing the automatically and manually
generated fault trees in the case study. This is done to validate the fault tree generation
method.

6.2.1 Results evaluation: Fault tree comparison

The manually created fault tree in Figure 5.5 tree can now be compared against the au-
tomatically generated tree in Figure 6.5. The two fault trees are identical on every level,
which is explained by the fact that the same information is used when generating the trees.

The difference between the trees when creating the trees manually and automatically gen-
erating them is that the requirement description is not used when automatically generating
the trees. The requirement descriptions have information how the guarantee behaves de-
pending on the assumptions and the allocated element, e.g., by saying that if an error
value is received then a warning will be shown to the driver. This will result in a degraded
state, i.e., a faulty but safe state. The error handling works, in a safety perspective, similar
to redundancy in a system.

6.2 Fault tree generation evaluation 71

Since the error handling only is described in the requirement description, the ability to
retrieve that information is somewhat difficult, since that data is not retrieved from the
database when building the fault trees. It is possible to model error handling in the fail-
ure propagation network by adding an error failure mode. It is also possible to add extra
elements responsible for the error handling to the propagation network. Then OR nodes,
similar to Definition 2.20, can be created connecting error handling elements and other
nodes to simulate redundancy.

Error handling are often based on the system finding out that something is wrong, e.g.,
by discovering that some values are implausible/unlikely or does not match another value.
Even if it is possible to model error handling in the Bayesian network it is not always pos-
sible to describe it in the fault tree. According to [8, p. 177]: "Fault trees have long been
used for reliability modeling because of their concise representation of system structure,
but they cannot adequately model the dynamic system behavior in response to a fault or
error." Because of this, error handling is not dealt with in this thesis.

As well as automatically generating fault trees it is also possible to generate minimal
cut sets of the fault tree and using it to generate a minimal tree of the system describing
the minimal sets of basic events that can cause a hazard. The minimal tree for OutOfFuel
can be seen in Figure 6.8. Some fault tree analysis can be done on the generated fault trees
to generate a minimal cut set, or a minimal tree describing the minimal failure causes of
the hazard.

Figure 6.6 shows the generated version of dual circuit steering which can be compared
to the manually created fault tree in Figure 5.8. The fault trees has identical basic events
building up the tree, which is to be expected since they are based on the same require-
ments and elements. Also the structure of the fault tree is the same with the same basic
events on every level. This is also expected because a similar procedure is done when
creating the trees manually compared to generating them.

72 6 Results

O
u

t_
o

f_
F

u
el

:
 R

eq
u
ir

em
en

t
S

G
_
F

u
el

_
L

ev
el

_
D

is
p
la

y
 i

s
v
io

la
te

d

O
R

D
ri

v
er

R
eq

u
ir

em
en

t
F

S
R

_
C

M
S

 i
s

v
io

la
te

d

O
R

C
M

S
 -

 E

C
U

 S
y

st
em

IC
L

 -

 E
C

U
 S

y
st

em
F

u
el

 T
an

k
E

M
S

 -

 E
C

U
 S

y
st

em
R

eq
u
ir

em
en

t
F

S
R

_
F

U
E

L
 i

s
v
io

la
te

d

O
R

T
1

6
 -

 S

en
so

r,
 f

u
el

 l
ev

el
A

N
IN

 -

 M
ID

D
 S

W
 c

o
m

p
o

n
e
n

t
R

eq
u
ir

em
en

t
T

S
R

_
A

D
C

C
 i

s
v
io

la
te

d

O
R

F
U

E
L

R

eq
u
ir

em
en

t
T

S
R

2
_
O

C
A

N
 i

s
v
io

la
te

d
R

eq
u
ir

em
en

t
T

S
R

2
_
IC

A
N

 i
s

v
io

la
te

d
R

eq
u
ir

em
en

t
T

S
R

_
A

N
IN

 i
s

v
io

la
te

d

O
R

O
C

A
N

 -

 M
ID

D
 S

W
 C

o
m

p
o

n
e
n

t
R

eq
u
ir

em
en

t
T

S
R

_
T

C
A

N
 i

s
v
io

la
te

d

O
R

T
C

A
N

 -

 B
IO

S
 S

W
 C

o
m

p
o

n
e
n

t
E

1
1
3
 -

 C

o
n

tr
o

l
u

n
it

,
C

M
S

O
R

IC
A

N
 -

 M

ID
D

 S
W

 C
o

m
p

o
n

e
n

t
R

eq
u
ir

em
en

t
T

S
R

_
R

C
A

N
 i

s
v
io

la
te

d
R

eq
u
ir

em
en

t
S

S
R

_
R

C
A

N
 i

s
v
io

la
te

d

O
R

R
C

A
N

 -

 B
IO

S
 S

W
 C

o
m

p
o

n
e
n

t
B

U
F

F
 -

 B

IO
S

 S
W

 C
o

m
p

o
n

e
n

t
E

1
1
3
 -

 C

o
n

tr
o

l
u

n
it

,
C

M
S

O
R

R
C

A
N

 -

 B
IO

S
 S

W
 C

o
m

p
o

n
e
n

t
B

U
F

F
 -

 B

IO
S

 S
W

 C
o

m
p

o
n

e
n

t

O
R

A
D

C
C

 -

 B
IO

S
 S

W
 C

o
m

p
o

n
e
n

t
D

M
A

C
 -

 B

IO
S

 S
W

 C
o

m
p

o
n

e
n

t
E

1
1
3
 -

 C

o
n

tr
o

l
u

n
it

,
C

M
S

Figure 6.5: A generated version of the fault tree describing the system fuel level
display. The top event is the hazard OutOfFuel.

6.2 Fault tree generation evaluation 73

N
o
_
S

te
er

in
g
:

 R
eq

u
ir

em
en

t
S

af
et

y
G

o
al

D
C

S
 i

s
b
ro

k
en

 b
y
 f

au
lt

s
in

 f
o
ll

w
in

g
 c

o
m

p
o
n
en

ts
:

O
R

M
ec

h
S

te
er

in
g
 -

 M

ec
h
an

ic
al

 s
te

er
in

g
 s

y
st

em
R

eq
u
ir

em
en

t
D

u
al

C
ir

cu
it

S
te

er
in

g
O

rN
o
d
e

is
 b

ro
k
en

 b
y
 f

au
lt

s
in

 f
o
ll

w
in

g
 c

o
m

p
o
n
en

ts
:

A
N

D

P
ri

m
ar

y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
 -

 H

y
d
ra

u
li

c
fl

o
w

 c
ir

cu
it

R
eq

u
ir

em
en

t
S

u
b
G

o
al

2
 i

s
b
ro

k
en

 b
y
 f

au
lt

s
in

 f
o
ll

w
in

g
 c

o
m

p
o
n
en

ts
:

O
R

D
ri

v
er

 -

 T
h
e

tr
u
ck

 d
ri

v
er

R
eq

u
ir

em
en

t
S

u
b
G

o
al

3
 i

s
b
ro

k
en

 b
y
 f

au
lt

s
in

 f
o
ll

w
in

g
 c

o
m

p
o
n
en

ts
:

O
R

R
eq

u
ir

em
en

t
S

E
S

A
M

M
R

E
Q

1
 i

s
b
ro

k
en

 b
y
 f

au
lt

s
in

 f
o
ll

w
in

g
 c

o
m

p
o
n
en

ts
:

R
eq

u
ir

em
en

t
S

E
S

A
M

M
R

E
Q

2
 i

s
b
ro

k
en

 b
y
 f

au
lt

s
in

 f
o
ll

w
in

g
 c

o
m

p
o
n
en

ts
:

O
R

C
M

S
 -

 E

C
U

IC

L
 -

 E

C
U

C

O
O

 -

 E
C

U

E
M

S
 -

 E

C
U

T

5
5

 -

 H
y
d
ra

u
li

c
fl

o
w

 s
en

so
r

st
ee

 -

 u
n
k
n
o
w

n

O
R

S
ec

o
n
d
ar

y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
 -

 H

y
d
ra

u
li

c
fl

o
w

 c
ir

cu
it

C
O

O
 -

 E

C
U

E

M
S

 -

 E
C

U

T
5

5
 -

 H

y
d
ra

u
li

c
fl

o
w

 s
en

so
r

st
ee

 -

 u
n
k
n
o
w

n
T

5
6

 -

 H
y
d
ra

u
li

c
fl

o
w

 s
en

so
r

Figure 6.6: A fault tree of the system dual circuit steering. The top event is the
hazard NoServoSteering.

74 6 Results

6.2.2 General discussion

From the results of the fuel level display and dual circuit steering when comparing the
automatic generated and manually generated fault trees it seems like the fault tree genera-
tion is working as intended when starting from a requirement structure.

The last thing to examine is if the fault trees that are generated from the requirement
structure are the same as a manually generated fault trees that are created from knowl-
edge of the system, i.e. the way fault trees usually are created. If the results are the same
it is possible to say if the data from the requirement structures, together with failure mode
propagation, are sufficient enough data to generate fault trees.

The fault tree in Figure 6.7 is created with help of Scania employee Magnus Selldén. The
fault tree is similar to the automatically generated fault tree in Figure 6.5. Both systems
have no redundancy and focuses on the ECU-system CMS. The fuel sensor, the floater
in the tank, the fuel filter as well as the communication software are similar in both fault
trees.

The major differences between the expert created tree and the tree created from require-
ments is that the fault tree generated from the requirement structure is further broken
down into BIOS and hardware elements that the manual fault tree is not. Another distinc-
tion is that the generated fault tree does not have any break down on the ICL and EMS
ECU-system which the manual tree has. This means that the differences between the trees
are mostly due to which parts of the system that are broken down, which will result in the
trees to have finer resolution on some parts compared to the other tree.

The reason that different part of the systems are broken down depends on which parts
that are important to the creator. The experts main focus is on the functional levels of the
system, i.e., level 1-3.. Also some of the functional requirements from other ECU systems
where broken down further. The creator of the requirement structure also focuses on the
lower levels, 4 and 5, which explains the small difference in the generated fault trees.

6.2 Fault tree generation evaluation 75

Figure 6.7: A fault tree describing fuel level display created with help of Scania
employee Magnus Selldén.

76 6 Results

Some phenomenons that can be hard to get both from the requirement structure and
model in the failure propagation network are so called cascade failures. A cascade fail-
ure means that more than, e.g., sending a faulty signal the failure creates faults in other
elements [20], i.e., a broken resistor in a circuit can make another resistor break because
of increased current passing through. This is a phenomenon that is not described in any
of the requirement structures (FLD/DCS). This phenomenon is also hard to model in the
failure propagation network since elements that are faulty does not affect other elements,
i.e., cascade failure can not be modeled in the current way the propagation network is
constructed. The minimal tree for dual circuit steering can be seen in Figure 6.9.

Hazard Out_of_Fuel is cause by:
 (T3) OR (CMS) OR (ICL) OR (T16) OR (EMS) OR (fuel) OR (OCAN) OR (TCAN) OR (E113) OR (ICAN) OR (RCAN) OR (BUFF) OR (ANIN) OR (ADCC) OR (DMAC)

OR

Driver CMS ICL T16 EMS FUEL OCAN TCAN E113 ICAN RCAN BUFF ANIN ADCC DMAC Fuel Tank

Figure 6.8: The minimal tree generated from the minimal cut sets of the hazard
OutOfFuel.

6.2 Fault tree generation evaluation 77

H
az

ar
d

 N
o

_
S

te
er

in
g

 i
s

ca
u

se
 b

y
:

(M

ec
h
S

te
er

in
g
)

O
R

(P

ri
m

ar
y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
 A

N
D

 D
ri

v
er

)
O

R

(P

ri
m

ar
y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
 A

N
D

 C
M

S
)

O
R

(P

ri
m

ar
y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
 A

N
D

 I
C

L
)

O
R

(P

ri
m

ar
y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
 A

N
D

 C
O

O
)

O
R

(P

ri
m

ar
y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
 A

N
D

 E
M

S
)

O
R

(P

ri
m

ar
y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
 A

N
D

 T
5
5
)

O
R

(P

ri
m

ar
y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
 A

N
D

 s
te

e)
 O

R

(P

ri
m

ar
y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
 A

N
D

 S
ec

o
n
d
ar

y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
)

O
R

(P

ri
m

ar
y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
 A

N
D

 T
5
6
)

O
R

M
ec

h
S

te
er

in
g

A
N

D
A

N
D

A
N

D
A

N
D

A
N

D
A

N
D

A
N

D
A

N
D

A
N

D

P
ri

m
ar

y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
D

ri
v
er

P
ri

m
ar

y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
C

M
S

P
ri

m
ar

y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
IC

L
P

ri
m

ar
y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
C

O
O

P
ri

m
ar

y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
E

M
S

P
ri

m
ar

y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
T

5
5

P
ri

m
ar

y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
st

ee
P

ri
m

ar
y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
S

ec
o
n
d
ar

y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
P

ri
m

ar
y
H

y
d
ra

u
li

cF
lo

w
C

ir
cu

it
T

5
6

Figure 6.9: The minimal tree generated from the minimal cut sets of the hazard
NoServoSteering.

7
Conclusion

This chapter concludes the thesis and discusses the results as well as future works.

7.1 Conclusion

Since the generation of fault trees is automatic, it is a straightforward and time saving
method if the failure propagation and safety requirements already exist. If one or both
does not exist, this method for generating fault trees may not be either straightforward nor
time saving. But since the ISO26262-standard requires safety requirements, and informa-
tion about failure modes is needed for FMEA, it is likely that both will exist at Scania for
most systems in the future.

Because all the requirement information cannot be parsed and some faults are not de-
scribed by the requirements, the generated fault trees does not always describe the system
entirely. Although, if branches has to be added to complete the fault tree it can also be
an indication that the safety requirements is not fully comprehensive. Since the quality
of the fault trees are very dependant on the requirements, i.e., if they are inadequate or
wrong this will be translated directly to the fault trees. Using this, it is possible to validate
that safety requirements are correctly written. This can be done in system where fault
trees already exists, and the verification can be done by comparing existing trees with
fault trees generated from requirements. If the trees differ it can be an indication that the
requirements for the system are inadequate.

Since minimal cut sets are automatically generated it is possible to calculate a failure
probability in a system, if the fault probability in all included elements can be estimated.
This calculation gives a fast and rough estimation of how safe the system is. Which can
be used to evaluate if, e.g., measures has to be taken to lower the failure rate.

79

80 7 Conclusion

Bayesian networks are used to describe the failure propagation in systems to be able
to create the fault trees. There exist programs for failure propagation, e.g, HiP-HOPS,
but since it does not work in this case, Bayesian networks were used instead. A limita-
tion with Bayesian networks is that the required computational power grows fast with the
number of nodes and states in the network, which can make large failure propagation net-
works hard to compute. But since the computation is done offline and no time limitation
this is no real limitation in most cases. If the computational time is a problem there are
methods for decreasing the complexity in CPTs which could be implemented to reduce
the calculation intensity if needed. Another benefit with the Bayesian networks are that
they also can be used to generate FMEA-tables, i.e. the other master thesis in this project.
The Bayesian networks can also be used for diagnosis for the system. This can be done if
probabilities for different faults as well as the probability of faults causing specific failure
modes are introduced into the network.

When it comes to validation of the fault trees some difficulties occurred. Since it did not
exist any fault trees describing the example system to compare against, the verification of
the fault tree generation had to be done in two steps. First, the method of generating fault
trees from the requirement structure had to be validated, i.e., to see if the method works as
intended given the requirements. Second, the finished fault trees had to be verified against
the real system, i.e., investigating if the information taken from the requirement structures
is enough to generate accurate fault trees. The verification was done by first generating
fault trees from the requirement structures manually and then compare them to the auto-
matically generated fault trees. The validation certainty could have been increased if the
manual fault trees had been created by an expert with knowledge of safety requirements
as well as the actual system. The second verification was done with the help of a Scania
expert where we together created a fault tree for the system fuel level display. Since fault
trees are not a safety analysis method used at Scania, the employees are not used to the
method, this was not an optimal scenario for the validation.

When starting the master thesis, data describing the failure mode propagation for the two
systems did not exist. Therefore the failure propagation had to be created from informa-
tion found in FMEA-tables of the two systems. Since that information were not enough
to describe the entire failure propagation, this can be seen as an additional possible source
of errors in the validation.

The trees that are automatically generated in this thesis only consists of the static AND
and OR gates. This means that no dynamic behaviour is described, e.g., behaviour which
considers in which order events happen. Also not using voting gates, i.e., gates that returns
true if x out of y inputs are true makes the fault trees larger and a bit more complicated
than it could be. The extension of the latter is pretty straight forward to implement. In-
cluding dynamic gates would on the other hand change the generation process.

Some faults, e.g., cascade failures and common cause failures (CCF) is not included in
the fault trees since those types of failure is not described by the requirement structures.
This is a weakness of this method, but the CCFs can be added to the fault trees after the
automatic generation.

7.2 Future work 81

In this thesis it is shown that it is possible to generate a success tree using only a re-
quirement structure that is structured using contract theory as base. To create a fault tree,
additional information how the different faults translate into different hazards, for this
failure propagation is added. The failure propagation is needed because otherwise it is
not possible to say which hazard/hazards that can be caused, only that the system is not
safe.

7.2 Future work

As a future work it can be investigated how the Bayesian network generated from re-
quirement structures can be used as a diagnostic tool, e.g., by introducing probabilities of
different faults given broken requirements. It can also be investigated if the network can
be used in a method of verifying the safety requirements. Finally a method for generating
the failure mode propagation, e.g from system models, could simplify the process even
further.

If the safety requirements were written in a more formal way, the information in the
requirements could be used by the program when generating the Bayesian network as
well as the fault trees. A future work could be to use that information to improve the gen-
eration of the trees, e.g., when considering error handling or other properties described
in the requirement. Extending that would probably require some extension to the fault
tree generation to include dynamic gates, e.g., priority-AND which means that the gate
returns true if and only if inputs happen in a predetermined order [7]. This is needed
since the error handling has to be the system that crashes first in order for the failure to
go unnoticed. The extension of dynamic gates and dynamic fault tree analysis could be
another thesis work based on this thesis.

Another continuation could be to investigate if it is possible to generate safety require-
ments, or at least templates, from a failure propagation network. Where the networks
could be used to show which elements that needs requirement definitions as well as know-
ing how elements affect each other.

82 7 Conclusion

Bibliography

[1] ISO 26262-1:2011. Road vehicles — functional safety — part 1: Vocabulary, 2011.
Cited on pages 3, 4, 9, and 10.

[2] ISO 26262-4:2011. Road vehicles — functional safety — part 4: Product develop-
ment at the system level, 2011. Cited on pages 1 and 4.

[3] ISO 26262-9:2011. Road vehicles — functional safety — part 9: Automotive safety
integrity level (asil)-oriented and safety-oriented analyses, 2011. Cited on page 5.

[4] A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla. Improving the analysis
of dependable systems by mapping fault treesinto Bayesian networks. Reliability
Engineering & System Safety, 71:249–260, 2001. Cited on pages 6 and 19.

[5] Andrea Bobbio, Luigi Portinale, Michele Minichino, and Ester Ciancamerla. Com-
paring fault trees and bayesian networks for dependability analysis. In Massimo
Felici and Karama Kanoun, editors, Computer Safety, Reliability and Security, vol-
ume 1698 of Lecture Notes in Computer Science, pages 310–322. Springer Berlin
Heidelberg, 1999. Cited on page 6.

[6] Hichem Boudali, Pepijn Crouzen, and Mariëlle I.A. Stoelinga. Dynamic fault
tree analysis using input/output interactive markov chains. In In The 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2007, 25-28 June 2007, Edinburgh,UK, Proceedings, pages 708–717, 2007. Cited
on page 5.

[7] Marc Bouissou. A Generalization of Dynamic Fault Trees through Boolean logic
Driven Markov Processes (BDMP)®. In Proceedings of ESREL 2007, 2007. Cited
on page 81.

[8] B J Dugan. Fault trees and imperfect coverage. Technical report, Durham, NC, USA,
1987. Cited on pages 23 and 71.

[9] ESPRESSO. Metamodel Neo4J Database, 2015. Cited on page 34.

[10] F. Hu. Cyber-Physical Systems: Integrated Computing and Engineering Design.
Taylor & Francis, 2013. Cited on page 10.

83

84 Bibliography

[11] Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision Graphs.
Springer Publishing Company, Incorporated, 2nd edition, 2007. Cited on page 15.

[12] Jan Karlsson. FMEA CMS1 (PD523329), 2014. Cited on pages 22, 23, and 53.

[13] Decision Systems Laboratory. GeNIe & SMILE. https://dslpitt.org/
genie/, 2015. [Online; accessed 22-April-2015]. Cited on pages 17, 42, and 44.

[14] P. Liggesmeyer and M. Rothfelder. Improving system reliability with automatic
fault tree generation. In Fault-Tolerant Computing, 1998. Digest of Papers. Twenty-
Eighth Annual International Symposium on, pages 90–99, June 1998. Cited on page
6.

[15] Xiaofeng Liu and Siqi An. Failure propagation analysis of aircraft engine systems
based on complex network. Procedia Engineering, 80(0):506 – 521, 2014. 3rd
International Symposium on Aircraft Airworthiness (ISAA 2013). Cited on page 6.

[16] Inc. Neo Technology. Neo4J product information, 2014. Cited on page 34.

[17] M. Nyberg. Failure propagation modeling for safety analysis using causal bayesian
networks. In Control and Fault-Tolerant Systems (SysTol), 2013 Conference on,
pages 91–97, Oct 2013. Cited on pages 5 and 6.

[18] Yiannis Papadopoulos, Martin Walker, David Parker, Erich Rüde, Rainer Hamann,
Andreas Uhlig, Uwe Grätz, and Rune Lien. Engineering failure analysis and design
optimisation with hip-hops. Engineering Failure Analysis, 18(2):590 – 608, 2011.
The Fourth International Conference on Engineering Failure Analysis Part 1. Cited
on page 42.

[19] United States. Department of Defense. Mil-Std-1629a: 1980: Procedures for Per-
forming a Failure Mode, Effects and Criticality Analysis. Department of Defense,
1980. Cited on page 3.

[20] W. Vesely, J. Dugan, J. Fragola, Minarick, and J. Railsback. Fault Tree Handbook
with Aerospace Applications. Handbook, National Aeronautics and Space Adminis-
tration, Washington, DC, 2002. Cited on pages 3, 19, 20, 39, and 76.

[21] Malcolm Wallace. Modular architectural representation and analysis of fault propa-
gation and transformation. In Proc. FESCA 2005, ENTCS 141(3), Elsevier, pages
53–71, 2005. Cited on page 6.

[22] J. Westman and M. Nyberg. Extending contract theory with safety integrity levels.
In High Assurance Systems Engineering (HASE), 2015 IEEE 16th International
Symposium on, pages 85–92, Jan 2015. Cited on pages 10, 12, 15, and 24.

[23] Jonas Westman. Breakdown of Safety Goal to Software Requirements Power Point
Presentation Demo Day January 2015, 2015. Cited on page 7.

[24] Jonas Westman and Mattias Nyberg. A reference example on the specification
of safety requirements using iso 26262. In Proceedings of Workshop DECS

https://dslpitt.org/genie/
https://dslpitt.org/genie/

Bibliography 85

(ERCIM/EWICS Workshop on Dependable Embedded and Cyber-physical Sys-
tems) of the 32nd International Conference on Computer Safety, Reliability and
Security - SAFECOMP 2013 - Workshop DECS (ERCIM/EWICS Workshop on
Dependable Embedded and Cyber-physical Systems) of the 32nd International Con-
ference on Computer Safety, Reliability and Security, France (2013) :, 2013. NQC
20140128. Cited on page 6.

[25] Jonas Westman and Mattias Nyberg. Specifying and structuring requirements on
cyber-physical systems using contracts. Technical report, KTH, Mechatronics, 2014.
QS 2015. Cited on pages 6, 7, 10, 12, 13, 14, 21, 22, 24, 25, and 27.

[26] Jonas Westman, Mattias Nyberg, and Martin Törngren. Structuring safety require-
ments in iso 26262 using contract theory. In Computer Safety, Reliability, and Secu-
rity : 32nd International Conference, SAFECOMP 2013, Toulouse, France, Septem-
ber 24-27, 2013. Proceedings, volume 8153 of Lecture Notes in Computer Science,
pages 166–177, 2013. QC 20140128. Cited on page 10.

86 Bibliography

Upphovsrätt
Detta dokument hålls tillgängligt på Internet — eller dess framtida ersättare — under 25 år
från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut
enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forsk-
ning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte
upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens
medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösning-
ar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den om-
fattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt
skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang
som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets
hemsida http://www.ep.liu.se/

Copyright
The publishers will keep this document online on the Internet — or its possible replace-
ment — for a period of 25 years from the date of publication barring exceptional circum-
stances.

The online availability of the document implies a permanent permission for anyone to
read, to download, to print out single copies for his/her own use and to use it unchanged
for any non-commercial research and educational purpose. Subsequent transfers of copy-
right cannot revoke this permission. All other uses of the document are conditional on
the consent of the copyright owner. The publisher has taken technical and administrative
measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when
his/her work is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its
procedures for publication and for assurance of document integrity, please refer to its
www home page: http://www.ep.liu.se/

© Johan Andersson

http://www.ep.liu.se/
http://www.ep.liu.se/

	Front Page
	Title Page
	Library Page
	Abstract
	Acknowledgments
	Contents
	Notation
	1 Introduction
	1.1 Background and problem formulation
	1.2 Introduction to safety engineering concepts
	1.2.1 Fault tree analysis
	1.2.2 FMEA
	1.2.3 ISO26262

	1.3 Purpose and goal
	1.4 Limitations
	1.5 Related research
	1.6 Methodology
	1.7 Report outline

	2 Theory
	2.1 General terminology
	2.2 Contract theory
	2.2.1 Background
	2.2.2 Definitions

	2.3 Bayesian networks
	2.3.1 Conditional probability tables
	2.3.2 Conditional probability tables size

	2.4 Fault tree analysis
	2.4.1 GeNIe and Smile
	2.4.2 Fault trees
	2.4.3 Creating fault trees
	2.4.4 Analysis

	3 System overview
	3.1 Fuel level display
	3.1.1 Fuel level display system description
	3.1.2 Fuel level display system difficulties

	3.2 Dual circuit steering
	3.2.1 Dual circuit steering system description
	3.2.2 Dual circuit steering system difficulties

	3.3 Requirement structure
	3.3.1 Requirement structure FLD
	3.3.2 Requirement structure DCS

	3.4 Database

	4 Fault tree generation
	4.1 Premises
	4.2 Failure mode propagation network
	4.2.1 Defining failure mode propagation

	4.3 Bayesian network generation
	4.3.1 Generating Bayesian networks

	4.4 Automated fault tree generation
	4.4.1 Generating fault trees

	4.5 Meta model extension

	5 Case study
	5.1 Results evaluation: Fuel level display
	5.1.1 Fuel level display manual fault tree generation

	5.2 Results evaluation: Dual circuit steering
	5.2.1 Dual circuit steering manual fault tree generation

	6 Results
	6.1 Bayesian network evaluation
	6.2 Fault tree generation evaluation
	6.2.1 Results evaluation: Fault tree comparison
	6.2.2 General discussion

	7 Conclusion
	7.1 Conclusion
	7.2 Future work

	Bibliography
	Copyright

