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Abstract

A stationary or temporary offset in the steering system of a vehicle can result in
functions, relying on the steering wheel angle, performing poorly. Due to the
wide range of different vehicle configurations at Scania CV, all sensors with rele-
vant information regarding vehicle direction are not available on all vehicles. By
using a statistical approach, including common sensors installed on the vehicle,
a conceptual algorithm calibrating the Steering Wheel Angle Sensor offset in real-
time has been developed. The algorithm is simple and relies on the assumption
that a vehicle is driving straight ahead most of the time above a certain minimum
vehicle speed, thus the most frequent steering wheel angle is the straight ahead
angle. The algorithm is only active above the certain minimum vehicle speed
and consists of two moving windows comprising steering wheel angle samples in
which the calculations are performed. The results show that the algorithm is able
to detect offsets with a short calibration time. Storage of samples is required but
no vehicle specific parameters are needed.
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Notation

Nomenclauture

Notation Description Unit

δ Steering Wheel Angle ◦

δo Steering Wheel Angle offset ◦

δs Steering Wheel Angle slow offset ◦

δq Steering Wheel Angle quick offset ◦

r Yaw Rate ◦/s
a1 Weighting Parameter -
a2 Weighting Parameter -
a3 Weighting Parameter -

wslow Slow Window Size -
wquick Quick Window Size -
Blow Low Boundary Parameter ◦

Bhigh High Boundary Parameter ◦

Abbreviations

Abbreviation Description

sas Steering Wheel Angle Sensor
swa Steering Wheel Angle
yrs Yaw Rate Sensor
tas Tag Axle Steering
esp Electronic Stability Program
can Controller Area Network
ecu Electronic Control Unit
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1
Introduction

1.1 Background

The Steering Wheel Angle Sensor, sas, is an essential part in vehicles and is used
to measure the Steering Wheel Angle, swa. The information of the current swa
is needed by several functions in the vehicle such as the Tag Axle Steering, tas,
and the Electronic Stability Program, esp, since they rely on the swa. Along with
time and use, offset errors might be introduced in the steering system affecting
the sas to supply an uncalibrated swa. These offsets may occur temporarily
during loading and unloading of the carriage or permanently as a consequence
of tearing, service and deformation of the steering front axle.

Scania CV wants an investigation in a real-time offset estimation of the sas that
can be conformed to all trucks in their product range. Hence not all sensors
with the direction related information can be used since some of them are only
available on high specification trucks. The low specification requirement limits
the problem to only use a few sensors such as the sas as it exists on almost every
vehicle.

1.2 Problem Formulation

The problem is developing a conceptual algorithm to detect and determine off-
sets in the sas. The algorithm should be developed with a statistical approach
in order to reduce the amount of sensors needed and should only be active dur-
ing certain conditions. Since it is of interest to one day implement the algorithm
on an Electronic Control Unit, ecu, memory requirements exist resulting in the
inability of storing all input samples, which are accounted for during the devel-
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2 1 Introduction

opment. Furthermore, the offset should be detected and calculated regardless of
it being stationary or temporary.

1.3 Objective

With an offset error that may be introduced permanently or temporarily in the
sas the objective of this project is to develop an algorithm that determines the off-
set error regardless of origin. Furthermore, the algorithm should only use signals
from sensors that can be found in low specified trucks.

1.4 Delimitations

Since other functions in the vehicle benefit from a calibrated sas it could be of in-
terest to further study the possibilities and challenges in these functions that may
arise from this new information. Since the objective of this thesis is to only de-
termine the offset, the function owners will need to handle this new information.
However, some background information is given for the reader to understand
why a calibrated sas is of interest.

1.5 Previous Work

Previous work in the subject comprises mainly of patents. These patents all strive
to estimate and calibrate the offset error of the sas and use additional sensors and
many vehicle specific parameters. In [1] the authors have developed a histogram-
based method to determine the offset in the sas. In short, samples from the sas
are collected and a first frequency distribution is calculated in predetermined in-
tervals, then the average of the first frequency distribution is determined. The
first frequency distribution is then checked against the average and if the values
in the frequency distribution are distributed symmetrically around the average
all the values from the first frequency distribution are moved to a second fre-
quency distribution. If not, the values are not accountable for and a new first fre-
quency distribution is calculated. As soon as the number of values in the second
frequency distribution exceeds a certain threshold the swa offset is calculated as
the average of the second frequency distribution. This patent only accounts for
values from the sas when the vehicle is driving nearly straight ahead and uses
additional sensors measuring lateral acceleration, yaw rate and vehicle speed to
segment the signal.

In the patent [8] the authors have developed a method that adapts the swa offset
to changing road conditions. By taking gravity into consideration the method can
identify banking, hence is able to correct the offset such that the driver does not
need to compensate for the impact from gravity. In order to identify changing
road conditions the method needs a plurality of sensors, measuring lateral accel-
eration, wheel speed and yaw rate. By modelling the swa using different input
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signals, different modelled swa outputs are obtained. After low-pass filtration
the signals are weighted and the sas offset is calculated.

Using additional sensors to model the swa is also done by Peter Fejes [3] in his
master’s thesis. Briefly, he models the swa using Ackermann steering geometry
equations and compares it to the measured swa to obtain an offset. Since the
Ackermann steering geometry is inaccurate under certain conditions, a set of re-
quirements need to be fulfilled for his algorithm to be active such as minimum
speed and minimum yaw rate.

1.6 Outline of the report

In Chapter 2 research and relevant information needed for the project is pre-
sented. This chapter aims to give the reader an understanding on the fundamen-
tals of the system and prerequisites in order to facilitate continuous reading.

In Chapter 3 the data used for the algorithm is shown and the statistical assump-
tion, on which the algorithm is based on, is presented. The driving scenarios
that will influence the algorithm negatively are described and a segmentation ap-
proach, to handle some of the problematic driving scenarios, is visualised. Also,
some prerequisites that will simplify the understanding of the algorithm are dis-
cussed.

The developed algorithm is presented in Chapter 4 as well as its performance and
validation.

The final results are presented in Chapter 5 and discussion and future work can
be read in Chapter 6.





2
Theoretical Background

In this chapter the theoretical background needed for project is presented. Rele-
vant techniques needed to process the problem are all described here.

2.1 Steering Wheel Angle

When a truck leaves the assembly line, calibration of the sas is done by aligning
the front wheels with the truck chassis and adjusting the steering wheel. The swa
is the angle measured by the sas and by multiplying this angle with a steering
ratio the angle of the front wheels can be obtained. Thus having a steering ratio
of i.e. 20:1 would cause the front wheels to turn 18 degrees if a full turn (360
degrees) on the steering wheel is completed and no play in the steering system
exists. The sas is essential for several functions in the vehicle as it holds informa-
tion on the direction of the vehicle. The tas uses this information to steer the tag
axle, enabling a shorter turning radius and less tear on the tires.

2.2 Steering Mechanism

The mechanical components that transmit torque from the steering wheel to the
front wheels constitutes the steering system, see Figure 2.1. Briefly, the steer-
ing wheel is mounted on the steering column that enables torque transmission
to a steering gear [5]. The steering gear amplifies the torque and steers the front
wheels at a ratio of approximately 20:1 in common heavy duty vehicles [11]. Since
the components are attached by joints and the steering gear is a hydraulic system
some play exists in the steering system [3]. The potential play arises due to non-
linearities and needs to be considered since it implies that applying a certain
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6 2 Theoretical Background

torque on the steering wheel may not be manifested on the front wheels even if
the sas indicates steering [6].

Figure 2.1: A simplified sketch of a typical steering system.

2.3 Tag Axle Steering

This project is not about the Tag Axle Steering, tas, but since the tas relies on
a calibrated sas a brief description of how it works and why it needs the swa to
function properly is presented.

The tas is a function, mainly in trucks, that enables steering of the wheels at
the tag axle. The steerable tag axle decreases the turning radius which enhances
driving ability for the driver and less tearing on the tires as the rate of slip is
reduced.

The tas is not active in an interval of -X◦< δ < X◦ due to uncertainties of the
actual swa. If an accurate offset estimation of the swa can be achieved, this
window can be reduced and the tas function may work better since for higher
longitudinal vehicle speeds, the turning of the steering wheel tends to be smaller.
This means that cornering in higher speed may not activate the tas since the
rotation will be in the uncertainty interval. Furthermore, an offset in the sas
does not lead to an offset of the uncertainty interval since it is symmetric around
0◦thus the offset will result in a skewed tas uncertainty interval. In Figure 2.2
the principle is shown. The interval to the left and in the middle is the behaviour
of the uncertainty interval for an uncalibrated sas. With an offset in the sas it
would require less rotation of the steering wheel in one direction to activate the
tas while rotating the steering wheel in the opposite direction would require a
larger turning to activate the tas. The interval to the right is how this interval
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can be handled when information about the sas offset is present. If the offset is
zero, the interval is symmetric around zero, else symmetric around the offset.

Figure 2.2: Left is when no offset occurs. In the middle an offset occurs but
no calibration is made. To the right an offset occurs and calibration is made
and the interval is symmetric.

2.4 Sensors

The sensors of interest for the algorithm are the Steering Wheel Angle Sensor,
sas and the longitudinal speed sensor. Both sensors are available on all Scania
vehicles. The sas is mounted just behind the steering wheel on top of the steering
column and is a rotating sensor measuring the absolute steering angle. The front
wheel angle is (simplified) determined by the previously mentioned steering ra-
tio. A third sensor, Yaw Rate Sensor, yrs is also of interest in this report. Since
the developed algorithm needs validation, the yrs can be used as it measures the
movement around the Z-axis thus indicating the headed direction of the vehicle.

All signals are transmitted in the vehicle via can to ecu where the signals are
used as input to various functions, such as the previously mentioned tas.

In Table 2.1 the properties of standard sensors are provided. It should be noted
that the resolution of the sas has a higher resolution than the requirements for
the algorithm output.

Table 2.1: Sensor properties of common sensors.

Sensor Resolution Range

SAS 0.1◦ 1500◦

YRS 0.1◦/s 100◦/s

In Figure 2.3 the directions of a truck is visualised. The longitudinal vehicle
speed sensor is measuring the speed along the X-axis. The sas and the yrs is
measuring the rotation around the Z-axis. Along the Y-axis, lateral forces are
acting, such as crosswinds and centrifugal forces.
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Figure 2.3: Directions of a truck. Longitudinal forces on the X-axis, lateral
forces on the Y-axis and vertical forces on the Z-axis.

2.5 Steering Wheel Angle Sensor Offset

The sas offset is defined as the deviation, in degrees, from the zero position when
the vehicle is travelling straight-ahead. The sas offset can appear in two ways:
stationary and temporary.

The stationary offset typically occurs as a consequence of deformation of axis or
stays in the chassis, tire wear or service. The stationary offset persists until service
is done.

The temporary offset can occur during loading of a vehicle. The forces from the
load affect the positions of the wheels and if the load is not evenly distributed it
can effect the steering. Also certain driving conditions can be defined as tempo-
rary offsets which are presented in the next section.

One way of determining an offset in a sensor is by mathematically modelling the
system. By then calculating the residual, i.e the deviation from the measured
sensor signal with the modelled system an offset can be obtained. The accuracy
of the offset depends partly on the accuracy of the measurement and the accuracy
of the model. Noise or measurement errors in the sensor signals and model errors
results in an inaccurate offset.

Mathematical models and theory of the steering of a vehicle is extensively cov-
ered in many books such as [12]. In this thesis the approach of modelling the
steering is not of interest. Instead a statistical approach will be performed.

2.6 Driving Conditions and Vehicle Dynamics

Several driving conditions can be assumed problematic as they affect the steering
of the vehicle. To begin with, the longitudinal vehicle speed affects the steering.
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In speeds below 60 km/h the torque applied on the steering wheel results in
cornering of the vehicle, and with reduced speed a higher torque can be applied
on the steering wheel, resulting in ranging of the vehicle. Speeds above 60 km/h
decrease the swa [5] as forces affecting the vehicle disable the possibilities of
applying certain torques on the steering wheel without risking rollover.

Crosswinds affect the steering such that the driver has to countersteer towards
the wind direction. In order for the crosswinds to affect the steering and result
in a new offset, the winds need to be persistent. Gusts that influence the steering
for shorter periods of time will presumably not result in an offset. In theory,
an understeered vehicle does not need to countersteer when the pressure point
from the crosswinds is behind of the centre of mass of the vehicle [10]. In reality
however, the pressure point from the crosswinds more often hit centre of mass
thus countersteering is necessary in strong crosswinds.

Banking and cross slopes also have a certain impact on the steering. Both bank-
ing and cross slopes have the characteristic of an inclination perpendicular to
the direction of the road. Cross slopes are used in order to drain water more ef-
ficiently and according to [9] a 2% to 2.5% slope angle is the most widely used
design. Banking appears on curves to deal with centrifugal forces that act on the
vehicle and are usually steeper than cross slopes. The inclination angle will have
an effect on the lateral acceleration according to (2.1) where g is the gravitational
constant and θ is the angle of the road inclination.

ay = gsin(θ) (2.1)

Equation 2.1 states that a steeper inclination of the angle results in a higher lat-
eral acceleration when the vehicle is driving straight-ahead and no other forces
is acting on the vehicle. It should be noted that vehicles are configured to pre-
vent being affected by cross slopes, but there are regions where the roads have
a steeper inclination than the design policy [9], hence the driver will need to
countersteer in order to drive straight and a sas offset might be induced as a
consequence. Vehicles with active suspension steering are often configured to
compensate for crosswinds and cross slopes [5].

Ring-roads or long curves are also worth mentioning. Driving in such conditions
might be interpreted as a temporary sas offset corresponding to the most fre-
quent angle of the steering wheel if the vehicle is turning with constant radius
and speed for a longer period of time.

Finally toe needs to be mentioned as it might affect the directional stability of
the vehicle [2] and thus the steering behaviour. Toe can occur as toe-in, i.e. the
direction of the wheels rotates around the Z-axis inwards. Toe-out is when the
wheels are rotated outwards. Often heavy duty trucks are configured to have a
slight toe-in when unloaded. Research then suggests that the amount of toe-in
decreases with increased axle load, e.g. loading or cornering [2].

Presumably there are other factors that may have an impact on the steering of the
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vehicle but they have not been studied in this thesis.

2.7 Segmenation

Segmentation is a pattern recognition technique that uses a data driven approach
to classify unknown segments of a filtered signal that has been partitioned. When
the feature extraction from the segments has been made, each segment is classi-
fied. Then segments that should be classified are partitioned and features are
extracted from the segments. The segmentation can either be manual; all scenar-
ios are predefined, or automatic; the scenarios are detected by adaptive thresh-
olds that when exceeded create a new segment. Since a vehicle is in operation
for several hours a day automatic segmentation is favourable since predefining
all different scenarios is a time consuming work. The authors of [7] proposes
a standard deviation technique to segment the signal over an interval. In their
paper the adaptive threshold is also determined as the standard deviation of the
observed signal in a predefined window size. The signal is then compared with
the calculated threshold. If the signal is within the boundaries of the adaptive
threshold the samples are included in an algorithm while samples exceeding the
thresholds are not included.

The manual segmentation can be used as validation in simulation should the sig-
nals be known in advance [7]. The manual segmentation can also be used during
development to facilitate the working process by predefining the thresholds. If
the segmentation then is not correct the corresponding conditions can be seg-
mented by automatic segmentation.

2.8 Statistical Analysis on Signals

To facilitate reading later in the thesis some prerequisites in statistics are pre-
sented in this section.

2.8.1 Statistical Features

A histogram visually represents the frequency distribution of a set of observed
samples in predefined sized bins and is a convenient method to study a set of data
before processing is made. By putting the collected samples in predefined bins,
discretisation of the data is performed and a statistic - a value that summarises a
set of values [4] - can be obtained from the set such as the mean or the mode. By
studying the histogram the most appropriate statistic can be chosen.

Measuring the average of a set of data using the mean approach is well motivated
if no outliers exist and the samples are fairly normal distributed. However, a
distribution with outliers will affect the average value in such a way that it may
be misleading since the average will be shifted as the mean is sensitive towards
outliers.
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If instead the mode of the distribution is used the average becomes a more trust-
worthy statistic of the distribution since the mode is not as sensitive towards
outliers. The mode is the most frequent value, i.e. the value on the X-axis that
has most number of observations on the Y-axis, and works properly in unimodal
distributions, i.e, when only one peak occur in the data set. However, when the
data is a multimodal distribution two mode values are obtained which is unde-
sirable as in this application only one value is wanted. For example, if a driver
would drive in a sinus shaped road with the steering wheel positioned at -X◦ for
left turns and X◦ for right turns a multimodal distribution is likely to occur in
the swa set.

2.8.2 Running Statistics

When calculating statistics in a real-time application previous samples need to
be stored. If the mean is to be calculated then number of samples and the accu-
mulated sum need to be stored in order to obtain the mean at each run. A similar
approach when calculating the mode, i.e. the most frequent value in a window,
can be done by storing the samples in an array and then calculate the mode each
time the function is being run.

2.8.3 Moving Windows

As it could be of interest to calculate a statistic over a set of relatively fresh data
a moving window can be used, see Figure 2.4. By predefining the length of the
window the statistic will only be calculated in this window. This moving window
then moves along the X-axis by removing the oldest sample in the set of data each
time a new sample is added. By forgetting the history of the data new peaks in
the set can be detected faster should they occur. A moving window also reduces
the amount of stored samples.

2.8.4 Weighted Windows

Another way of dealing with the history of the data is to use a weighted window.
By weighting the position of the samples in the window differently a desirable re-
sult can be achieved accordingly. This window can either be moving or not, and
the weighting can be of fixed or exponential type, see Figure 2.5. An exponential
moving window calculates the statistic by setting weights that change exponen-
tially and never reach zero, equivalent to an infinite impulse filter. By doing so
all history is included, with the newest samples having a bigger impact on the
result. The weighting requires extra parameters that need to be predefined.
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3
Data Analysis

This chapter aims to analyse and motivate the decisions and techniques used in
the algorithm. First the data used in the report are presented. Then the statistical
assumption that the algorithm relies on is presented. Driving conditions that
may affect the steering, and thus the performance of the algorithm, are identified
and a basic segmentation approach is described and visualised. Furthermore, the
selected statistical approach is discussed to give an insight about the difficulties
and compromises that need to be made.

3.1 Data

The data used in the report was recorded via can in a previous project at Scania
and comprises sas signals, longitudinal vehicle speed signals and yrs signals.
The logged data is an approximate 35 minutes long log with and each signal has
a sampling time of 20 ms.

In Figure 3.1 the measured data is visualised. As can be seen, when the longi-
tudinal vehicle speed is low, the swa tends to be higher than for higher speeds.
This is expected since turning or ranging usually occur for lower speeds. Also
depicted in the figure is the yrs which is used for validation. As the signal is
rather noisy, filtering the signal is necessary. The sas and longitudinal vehicle
sensor are input signals for the algorithm and do not need filtering as the signals
are sufficiently clean.

The data includes straight ahead driving, cornering and frequent steering at dif-
ferent longitudinal vehicle speeds.

13
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Figure 3.1: The log containing sas, speed and yrs signals. The grading of
the Y-axis has been removed to minimise exposure of parameter values in
the algorithm.

3.2 Statistical Assumption

The statistical assumption on which the algorithm is based on is that a vehicle,
when driving, is travelling straight ahead most of the time. Thus the most fre-
quent angle of a set of swa is the straight ahead angle. Should this value not be
zero an offset has been introduced to the system.

Straight ahead direction is defined in this thesis as the swa when the vehicle
is travelling straight ahead. That is, it is not the actual position of the steering
wheel that is of interest, nor the front wheels alignment with the chassis.

3.3 Straight Ahead Validation

By using the yrs signals from the data log, another source of information is ob-
tained regarding the direction of the vehicle. With this redundant information,
a conclusion whether the most common swa is the straight ahead swa or not
can be drawn and the algorithm may, or may not, be based on the statistical as-
sumption. As the yrs holds information of the vehicle direction it can be used
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to classify the swa samples in either straight-ahead labels or not straight-ahead
labels according to Table 3.1, where a strategy is presented to validate the follow-
ing:

1. The most frequent angle is the straight ahead angle.

2. The swa mode is the correct offset.

The yrs signal is first low pass-filtered to reduce measurement noise. Due to the
time-delay introduced by the filter, the swa samples are delayed to match the
corresponding yrs sample.

Table 3.1: Strategy of validating the sas offset with yrs.

yrs sas Offset

r ≈ 0◦/s δ 0 ◦ Yes
r 0 0◦/s δ ≈ 0◦ Yes
r ≈ 0◦/s δ ≈ 0◦ No

If δ is deviating from 0◦ and r is fairly constant around 0◦ indicates an offset in
the sas. Figure 3.2 validates that when δ ≈ 0◦ the yaw rate is within its straight
ahead boundaries, thus the calculated offset is the straight-ahead angle and in
this set of data δo = 0◦. Given this information, the statistical assumption holds
and can be used as a foundation to the algorithm.

Validation Histogram
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Figure 3.2: The blue bars correspond to swa samples where the yrs samples
are within the straight-ahead boundaries. The black samples are the yrs
samples exceeding the straight-ahead boundaries.
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3.4 Problematic Driving Conditions

To conclude section 2.6 the driving conditions that have an impact on the steering
are:

1. Vehicle at standstill

2. Vehicle travelling at low speed

3. Crosswinds

4. Cross slopes

5. Ring roads

Condition 1 has been added to the problematic driving conditions since the sta-
tistical assumption is inaccurate if the vehicle is at standstill with the engine on.

In order to detect scenario 1-2 the longitudinal speed signal is needed since the
sas can not solely detect if the vehicle is travelling at a speed where ranging
is most likely to occur or is at standstill. By a simple segmentation, conditions
1-2 can successfully be detected, which is further described in section 3.5. Condi-
tions 3-5 however might be interpreted as temporary sas offsets by the algorithm
should they persist for a longer period of time as the driver has to countersteer
which need to be considered during the algorithm development.

3.5 Segmentation

As previously stated the problematic conditions of when the vehicle is at stand-
still and when the vehicle is travelling at low speeds can be removed by segment-
ing the signal. Studying Figure 3.3 it is obvious that higher angles on the steering
wheels occur for low speeds. In this data set, speeds above 30 km/h only includes
swa samples within approximately [-2,3] degrees. At speeds above 40 km/h this
interval is reduced to approximately [-1.5,1.5]. It can also be seen that speeds
above 60 km/h are subject to almost no steering input, as mentioned earlier [5].

The figure results in the conclusion that an appropriate minimum speed is in the
range of 30 to 40 km/h in order to avoid samples with meaningless information.
Although the studied data is only a 35 minutes long log it still gives valuable
insight in the approximate behaviour of the data.

Here a basic segmentation is performed by using the information of the vehicle
speed since the sas signal can not solely detect conditions depending on speed.
In Figure 3.4 it can be seen that the segmentation successfully separates the sam-
ples into grey areas (algorithm active) and white areas (algorithm inactive). By
doing this segmentation, the algorithm does not store samples with misleading
or unnecessary information concerning the swa and a more reliable offset can be
determined. As can be studied in the figure, the black line, corresponding to the
sas signal, swa samples (blue line) that deviates from zero are removed except
for samples between t ≈ 1200 to t ≈ 1500.
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Figure 3.3: Speed plotted against swa samples.
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Figure 3.4: Example of the segmentation over a set of data. The algorithm is
active at the grey areas and inactive at the white areas.
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3.6 Statistical Approach

To find a value that represents the average of a set of data, themode or the mean
can be calculated. Calculating an accurate mean requires that no outliers exist in
the data set as they have a negative impact on the mean value, leading to a shifted
average value. Since it is not certain that the segmentation will be able to remove
all outliers in the swa data, calculating the mean is not considered even if this is
the fastest procedure concerning time complexity.

Regarding the alternative of using weighted windows it is not necessarily inter-
esting to know the information of the swa samples way back in history. To ac-
quire a steady algorithm that still manages to detect new offsets only a short
history of swa samples is used and there is no need in weighting the samples in
this short time frame. Using an exponential moving average could be a decent
method when determining the offset. However, a trade-off is needed concerning
steadiness (smoothness) and calibration time. In (3.1) a basic formula for an ex-
ponential moving average can be seen where EMA stands for exponential moving
average, W is the smoothing factor and δ(t) is the current SWA sample.

EMA(t) = W ∗ δ(t) + (1 −W ) ∗ EMA(t − 1) (3.1)

Tuning of the smoothing factor W is needed and with a low W value a steady
offset may be achieved but with a long calibration time. A high W value results in
an oscillating behaviour but with quick responsiveness if an offset should occur.
This is highly undesirable since the oscillating behaviour will continue at the new
offset. Had the vehicle been travelling perfectly straight ahead this method could
have been useful since storing samples is not needed and the smoothing average
would be an accurate interpretation of the offset. However, the vehicle is not
travelling perfectly straight ahead and it is still the most frequent angle that is
to be found where the exponential moving average smoothens the data into an
average to find a trend, rather than determining an exact offset.

Calculating the median as statistic is also a possibility, but since the samples are
not sorted in the algorithm it is not preferable since a sorting procedure would
increase the time complexity.

Calculating the mode is not affected by outliers and is therefore a reasonable
statistic. The mode operation requires storage of data samples, compared to the
exponential moving average, and a hardware implementation would result in a
fairly harsh storage limitation. As this algorithm is developed in MATLAB no
such requirement exists. However, as it is of interest to implement the algorithm
in a real vehicle this storage requirement is still important to have in mind during
the development to facilitate future implementation. Therefore, given the stored
samples, a frequency distribution can be constructed in which the mode can
be calculated. The storage requirement further makes it impossible to store all
samples, thus only an arbitrary amount of samples can be stored, hence a moving
window is can be used which also enables a certain responsiveness if a new offset
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should occur. Since the mode is the mathematical interpretation of the stated
statistical assumption it is considered as the most appropriate statistic to use for
the algorithm.

The segmentation performed earlier results in the histogram to the right in Fig-
ure 3.5. The outliers have successfully been removed in the studied data set com-
pared to the left histogram which depicts the distribution before segmentation.
The segmentation will therefore result in a quicker calibration as unnecessary
samples are not stored.
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Figure 3.5: Histograms showing the original data to the left and the seg-
mented data to the right. The histograms are zoomed in at the base of the
distribution.





4
Algorithm Development

In this chapter the developed algorithm is presented. The prerequisites from
Chapter 2 and the identified conditions and requirements from Chapter 3 is the
foundation of the algorithm.

4.1 Algorithm

In Figure 4.1 the developed algorithm is visualised in a flow chart. The different
parts of the algorithm are described in the following sections but a brief descrip-
tion is presented here.

The input signals from vehicle sensors are the sas signal and the longitudinal
vehicle speed signal. No filtering is performed on the input signals. However, in
themode Calculation box, the binning of the swa samples are made into a prede-
fined resolution. The Slow mode and the Quick mode need predefined window
sizes wslow and wquick where wslow > wquick . The Quick mode needs a signifi-
cant peak to obtain a new value, otherwise the old value is used. When values
from the slow and the quick part have been calculated the absolute difference be-
tween the values are calculated. Depending on that difference, the contributions
from the slow and quick part are weighted differently in order to achieve a quick
calibration if such is needed or a steady calibration if such is needed. The final
offset is then calculated by weighting itself, the slow offset and the quick offset
dependent on the absolute difference between the slow and quick offset.

The algorithm has no vehicle dependent parameters but instead algorithm spe-
cific parameters that need to be predefined, see Section 4.3.

21
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Figure 4.1: A flow chart visualising a simplified version of the developed
algorithm.

4.2 Algorithm Description

As previously stated the aim of the algorithm is to find the most frequent swa
value and then calculate the current offset in the sas sensor. To achieve this, the
algorithm consists of two moving windows; one responsible for the slow calibra-
tion part calculating δs, containing more swa samples; another one with fewer
swa samples responsible for the quick calibration part calculating δq. Both δs
and δq are the mode in respective window. By then combining the results of the
current mode from the windows the algorithm effectively manages to detect the
offset, while at the same time manages to stay steady.
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4.2.1 Slow Calibration

The purpose of the slow calibration part of the algorithm is to ensure a stable
offset, insusceptible to external disturbances. With more samples in the window
the probability is higher that the straight-ahead scenario is detected, and thus the
offset. Another advantage with more samples in the window is that the mode
will not be subject to quick changes, thus a more steady output from the slow
calibration can be achieved. The slow calibration part gives

δs(t) = mode
(
δ(t), δ(t − 1), . . . , δ(t − wslow)

)
(4.1)

where t denotes the time-stamp for the current sample and wslow is a predefined
parameter.

4.2.2 Quick Calibration

The purpose of the quick calibration part of the algorithm is to ensure quicker
detection of a new offset in the system. Since the window, in which the mode is
calculated, is smaller than the slow window, the mode is more likely to change
itsmode quicker than the slow window if an offset appears. This is simply due to
the fact that if a new offset appears, the quick calibration part will only consist of
samples with shorter history comparing with the slow calibration part that will
consist of samples with older history as well.

Since the quick calibration is rather transient due to the small window the charac-
teristics of the steady slow calibration part is needed. Also, due to the volatility of
the quick calibration part, a certain requirement must be fulfilled. This require-
ment states that the peak of the found mode must be significantly higher than
the peak of the second mode. This requirement is necessary in order to avoid
uncertainties. For example, if the vehicle is cornering, and all samples belonging
to the turn are being used to calculate themode no significant peak will be found
which is desired as the vehicle is not travelling straight-ahead.

The quick calibration part gives

δq(t) =

mode
(
δ(t), δ(t − 1), . . . , δ(t − wquick)

)
, if peak is significant

δq(t − 1), otherwise
(4.2)

where t denotes the time-stamp for the current sample and wquick is a predefined
parameter. The significant peak condition is formulated to be when the peak of
the mode is at least twice as high as the second highest peak.

4.2.3 Offset Output

In order for the algorithm to weight the contributions from the slow and quick
calibration parts, a couple of parameters need to be determined, see Table 4.1. In
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(4.3), ∆ is calculated as the absolute difference between δs and δq and normalised
with a boundary value parameter Bhigh, see Section 4.3 for algorithm specific
parameters.

∆ =
|δs(t) − δq(t)|

Bhigh
(4.3)

The ∆ is used to determine the weighting parameters a2 and a3 during run-time.
The weighting parameters are used for the final output of the algorithm in order
to determine the contributions from the slow and quick part. In (4.4) the strategy
to determine a2 and a3 can be observed. If the first statement is true then a3 is
set to zero, i.e. the contribution from δq is none. If the second statement is true
then the weighting sets δs to zero. Otherwise no weighting parameter is set to
zero, resulting in contributions from both the slow and quick part.

a2, a3 =


(1 − a1), 0, if ∆ < Blow/Bhigh
0, (1 − a1) if ∆ > 1
(1 − ∆)(1 − a1), ∆(1 − a1) otherwise

(4.4)

To summarise, a2 and a3 are determined by the conditions in (4.4) and together
with the predefined parameter a1 the following is true

3∑
i=1

ai = 1 (4.5)

With the parameters determined and the offset contributions calculated from the
slow part, δs and the quick part, δq, the offset output is calculated according to
(4.6).

δo(t) = a1δo(t − 1) + a2δs(t) + a3δq(t) (4.6)

The reason why the old offset δo(t − 1) is used is to obtain a smooth transition
during transients, i.e. detection of a new offset. Also, using the old value, the
output offset will not be as susceptible when the windows detect an offset that
deviates from the true offset during shorter periods.

4.3 Parametrisation

In (4.1) to (4.6) the main equations of the algorithm are presented. These equa-
tions include tuneable parameters that affect the performance of the algorithm in
terms of accuracy and characteristics.
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In order to tune the parameters, requirements have been defined and are as fol-
lows:

1. The algorithm should be able to determine a new offset in 60 seconds.

2. The algorithm should not oscillate around the current offset.

3. The algorithm has 4 kilobytes memory storage available.

The first requirement is related to the settling time when a new offset occurs
(equivalent to a step). The second requirement is necessary for the result to be ac-
curate and stable. The third requirement is a hardware limitation. Although the
algorithm in this thesis has been developed in MATLAB no memory or hardware
limitations exist. However, as it could be interesting to implement the algorithm
on a truck, this memory storage limitation is used as guidance during parametri-
sation since the algorithm stores samples.

In Table 4.1 the tuneable parameters are listed.

Table 4.1: Tuneable parameters.

Parameter Description

Resolution The bin size of the frequency distribution
a1 Weighting parameter for previous offset
Blow Lower boundary for changing between offsets
Bhigh Higher boundary for changing between offsets
wslow Number of samples in long window
wquick Number of samples in short window

4.3.1 Resolution

To begin with, the resolution of the bins needs to be determined. The previously
mentioned play in the steering system might affect low swa values, and these low
steering input angles will therefore not be manifested on the front wheels.

Also, if the resolution is too high, the swa samples will be distributed over more
bins in the frequency distribution. This results in a mode that changes more
frequent, albeit the changes occur in a small interval.

If instead the resolution is lowered, the swa samples will be collected in a fewer
amount of bins and a more steadymode can be found. If the resolution is lowered
too much the algorithm will experience difficulties in finding smaller offsets in
the sas.

4.3.2 Weighting Parameters

The weighting parameters a2 and a3 are automatically determined according to
the strategy in (4.4), but a1 needs to be predefined. The algorithm is designed
such that the sum of a1, a2 and a3 equals 1.
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A too high value of a1 results in slow settling time when a new offset has been
detected. This is true since the output of the algorithm relies on itself at the
previous time stamp and the higher a1 the more the offset relies on the previous
offset. On the other hand, a too low value of a1 results in a fast settling time
which is undesirable as too quick changes might affect other functions that are
supposed to receive the sas offset.

4.3.3 Boundary Parameters

The boundary parameters are needed in order for the algorithm to know if it
should weight the quick or slow part. Since the algorithm needs a strategy when
weighting the slow or the quick offset, the boundary parameters are used as a
lower and an upper threshold.

The boundary parameters are Blow and Bhigh with the same unit as the swa sam-
ples. Parameter Blow is parametrised to achieve a steady offset output when the
absolute difference between the slow and quick offset is low. The idea is that if
the quick offset has found a new offset less than Blow it will not affect the steer-
ing notably and eventually δq = δs as soon as the slow calibration has found the
new peak. Since the (simplified) ratio from the steering wheel to the front wheels
is 1:20, a boundary value of for example Blow = 1◦ would result in a 1◦ wrong
offset until δs = δq. This is equivalent to 0.05◦ on the front wheels. This tiny
offset will most likely not be manifested on the front wheels, due to the play in
the steering system. The parameter is also parametrised to manage conditions
3-5 in Section 3.4 by setting it to a value that approximately cover some of the
circumstances when these conditions occur.

A proposed value of Blow is the resolution in degrees +1◦.

The boundary parameter Bhigh is determined as when a notable offset differing
from the current is detected. When the absolute difference of the slow and quick
offset exceeds this boundary the quick offset is weighted more, enabling a quick
calibration. The value is set to a value corresponding to a notable change in the
offset.

4.3.4 Window Size Parameters

The size of the windows are determined by the hardware limitations, such as the
memory storage available. The harsh memory storage requirement is, as men-
tioned earlier, only relevant on embedded code but can be used as guidance dur-
ing development. Every sample within the window size will be stored, in order
to calculate the mode. Increased window size will also have an impact on the
run time of the algorithm.

The window size responsible for the quick calibration, wquick , must not be too
small as the quick part will oscillate too much, and it will be difficult to find a
significant peak. If wquick is too large, the algorithm will not be able to perform
a quick calibration. Therefore, balance is needed in order to find a decent param-
eter value.
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If wslow is too small the calibration will not be steady enough, see Figure 4.2
where a test equivalent to Test A in Section 5 is performed. The blue line, (the
offset) fails to be steady due to the small window size of wslow. On the other
hand, if it is too large the memory requirement will not be fulfilled, the algorithm
will be slower in run-time and the idea of that δs reaches δq will take too long,
resulting in a wrong offset as a consequence.
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Figure 4.2: The blue line is the offset determined by the algorithm when
a small wslow is used. The black and red lines are the swa samples where
the black line corresponds to the algorithm being active and red when the
algorithm is not active.

A parametrisation has been done where wslow = wquick ∗10 and wslow holds a max-
imum of one minute of history when the slow mode is calculated. The memory
limitation is within reach.





5
Results

In this chapter the result of the algorithm is shown in different tests. The grading
on the Y-axis has been removed in all plots as it might expose some of the param-
eter values. The zero degree tick is given and the maximum absolute swa value
is 12◦.

5.1 Tests

In Table 5.1 the test cases are shown. Since the data was logged from a calibrated
truck the offset in the original data is around zero. Loading the carriage was
not possible, hence steps have been introduced in the data corresponding to an
offset in the system. A discussion concerning if this is a reasonable method can
be found in Section 6.1.2. The steps are aimed to test the different scenarios that
may occur and might affect the performance of the algorithm.

Table 5.1: Different test cases to study the performance of the algorithm.

Test Description Step size

A Original data None
B Induced step in data Step < Blow
C Induced step in data Blow ≤ Step ≤ Bhigh
D Induced step in data Step > Bhigh

29
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5.1.1 Test A - Steady State

The first test, Figure 5.1 shows the stationary behaviour of the algorithm. Com-
pared to Figure 4.2, the output of the algorithm is more stable when the param-
eters are tuned and the offset is detected to be zero almost at all times, which is
accurate. However, at t = 1200 to t = 1500 the offset deviates from zero at three
times. As can be seen on the swa data hardly no segmentation is performed here,
and the input on the steering wheel is rather frequent in both directions. This re-
sults in an offset that presumably are changing between two peaks as they occur.
With larger window size parameters this behaviour can be handled, but with slow
offset detection and memory problems as consequences. A lower resolution can
also solve the problem, but with reduced accuracy as a consequence. Therefore
a better segmentation is needed to remove scenarios when the vehicle is actively
turning and the vehicle speed is above the minimum speed.
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Figure 5.1: Test with original data. The blue line is the offset determined by
the algorithm. The black and red lines are the swa samples where the black
line corresponds to the algorithm being active and red when the algorithm
is not active.
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5.1.2 Test B - Small Step

In this test, the step is below the lower boundary parameter (4.4). Thus, the
algorithm will not change its output until the slow part has detected the new
offset. This results in a slower calibration time. Since Blow is parametrised for
very small offset deviations, this longer calibration time is acceptable as the size
of an offset smaller than Blow is not critical for the functions depending on the
correct swa. It takes just below 60 seconds for the algorithm to calibrate the
sas and deliver an output equal to the step size from when the step has been
introduced.
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Figure 5.2: Test with induced offset below Blow. The blue line is the offset
determined by the algorithm. The black and red lines are the swa samples
where the black line corresponds to the algorithm being active and red when
the algorithm is not active.
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5.1.3 Test C - Middle Sized Step

In Test C the step size is above Blow and below Bhigh (4.4). When an offset occurs
between the boundary parameters it results in this odd shape of the offset. This
happens because both δs and δq are weighted and only δq has reached the new
offset, and at a certain time this terrace point occurs. As soon as δs = δq, the
output of the algorithm will begin to reach the accurate offset. The reason why
the algorithm weights both contributions is because the quick part has found a
new offset that is not too big. If this is only a false alarm, such as a problematic
driving condition, the slow part will never reach this level as it is at the true level.
Thus, by weighting both contributions, the algorithm hedges towards uncertain-
ties and makes sure that the output error is smaller. If the slow part finds the
offset found by the quick part, the scenario in Test C is obtained.
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Figure 5.3: Test with induced offset between Blow and Bhigh. The blue line is
the offset determined by the algorithm. The black and red lines are the swa
samples where the black line corresponds to the algorithm being active and
red when the algorithm is not active.
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5.1.4 Test D - Large Step

The last test includes a step exceeding Bhigh (4.4). In this scenario, the offset
found by the quick part is considered to be highly deviating thus the quick part
is weighted more to ensure a quick calibration, since the slow part has not de-
tected the new large offset. An offset exceeding Bhigh is of such magnitude that
a quick calibration is needed since this large offset might directly affect waiting
functions relying on the sas information. The algorithm succeeds to find the off-
set in 40 seconds, which is the fastest calibration time of all step cases. The quick
calibration time is possible since the algorithm does not need to wait for the slow
part, and the quick part’s main mission is to find new offsets quickly, which it
does.
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Figure 5.4: Test with induced offset exceeding Bhigh. The blue line is the
offset determined by the algorithm. The black and red lines are the swa
samples where the black line corresponds to the algorithm being active and
red when the algorithm is not active.
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5.2 Detailed Results

In Figure 5.5 the accuracy of the algorithm can be studied when the vehicle is
driving nearly straight ahead at four periods. The spikes in the figure correspond
to when the vehicle is turning and most parts of the turns with high swa val-
ues are successfully segmented. The sas signal is never constant but oscillates
mostly around zero. Since the resolution of the algorithm is the size of integers,
all swa samples in the interval of [X-0.5, X+0.5] are lumped into the offset angle
X. The reason why this resolution is used is discussed in Section 4.3.1. Studying
the figure, a certain overweight for positive swa samples can be seen. However,
should the offset be 0.1◦ it would never be manifested due to the nonlinearites in
the steering system.
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Figure 5.5: The blue line is the offset determined by the algorithm. The black
and red lines are the swa samples where the black line corresponds to the
algorithm being active and red when the algorithm is not active.

Studying Figure 5.6 the problematic behaviour in Test A is in focus. In the top
figure the parameters have the same values as in Test A-Test D. As can be seen,
the segmentation is not successful, as the offset (blue line) is shifting between two
values. In the bottom figure, the minimum speed has been increased to 40 km/h,
which was the highest appropriate minimum speed to use for the segmentation,
as mentioned in Section 3.5. This results in an algorithm that handles the prob-
lematic behaviour by supplying the correct output at all times, with less activity
as a consequence.
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Figure 5.6: The blue line is the offset determined by the algorithm. The black
and red lines are the swa samples where the black line corresponds to the
algorithm being active and red when the algorithm is not active.

5.3 Calibration Time

From the tests above the calibration time varies depending on how big the offset
is compared to Blow and Bhigh. Other factors that affect the calibration time are,
for example, loading and unloading. If the carriage of the truck is loaded, with
an offset introduced as consequence, the algorithm will be active only when the
speed is above the minimum speed. This will then affect the calibration time.
However, for low speeds, offsets are not as critical since ranging and cornering
occur more frequent and the fact that the driver is countersteering will not be as
notable.

Another factor that affects the calibration time is when the offset occurs. Since
the moving windows might hold only straight ahead samples and the offset is
within the boundary parameters (4.4), the offset will be detected only when both
the quick and slow part has found the new peaks which depends on the window
sizes.

In Table 5.2 it can be seen that from the results above, the calibration is indeed
fastest for the quick calibration and slowest for the slow calibration which is in-
tended. Test A is not interesting concerning calibration time.
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Table 5.2: Calibration time results.

Test Calibration Characteristics

D Quick Calibration Fastest
C Combination Second
B Slow Calibration Slowest

It could be interesting to study the performance and calibration time of the algo-
rithm if the output is not filtered, allowing for instantaneous changes when an
offset occur. In Figure 5.7 such configuration can be seen, with a test equivalent
to Test D and same parameters. When the quick part has detected an offset the
output of the algorithm changes instantaneously to that value which could be
troublesome to handle by functions that need the offset information. Therefore,
filtering the output signal is recommended.
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Figure 5.7: Test with induced offset exceeding Bhigh. The blue line is the
offset determined by the algorithm when the output is not filtered. The black
and red lines are the swa samples where the black line corresponds to the
algorithm being active and red when the algorithm is not active.



6
Summary

The developed algorithm is combining the swa mode of two windows with dif-
ferent length and is only active when the longitudinal vehicle speed exceeds the
minimum speed. The combination part makes use of a simple filter and a func-
tion to choose which mode that should be weighted. Furthermore, the function
only uses the sas sensor and the longitudinal vehicle speed information thus
without these information sources it can not function properly. As of now the
resolution of the determined offset is the size of integers in degree since it was
the requirement.

6.1 Discussion

In this section the performance of the algorithm is discussed based on the results
in Chapter 5. The data used for the algorithm and the data manipulation for the
tests are discussed and a brief discussion and analysis of the memory requirement
is presented.

6.1.1 Performance

Regarding the accuracy of the algorithm the exact offset with current parametri-
sation is almost impossible to achieve and the output could always differ ±0.5◦

from the true sas offset, see Figure 5.5. This is, as previously mentioned, an ac-
curacy good enough due to the nonlinearites in the steering system. It is possible
to achieve a finer resolution by a different parametrisation.

Studying the results in Chapter 5, Test A, see Figure 5.1, shows a flaw in the al-
gorithm as it has problem when the vehicle is actively not driving straight ahead
at t ≈ 1200 to t ≈ 1500. This partly depends on the resolution and window sizes.
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With an increased resolution or increased window size this behaviour could be
handled. It also depends on that the slow part does not need a significant peak to
detect an offset. Should the slow part be configured similar to the quick part this
unwanted effect could possibly be handled. However, this would have negative
impact on the computational time. It might also be that the segmentation part
needs further development to cover such scenarios where the simplest solution
is to increase the minimum vehicle speed, see Figure 5.6. The disadvantage is
that the algorithm will be less active, hence the algorithm would be useless in
low speed applications.

In Test B-Test D an inaccurate offset output is delivered during the calibration
time, although decreasing as the output reaches the true offset. Even if this char-
acteristic is desired, since a binary switching is not wanted as in Figure 5.7, it
can still be problematic as functions depending on an accurate offset may rely on
this inaccurate offset during the calibration time. A plausible solution could be
to add information how wrong the offset is at each time stamp, since the targeted
offset value is known by the algorithm. Besides the wrong offset during the cali-
bration time, the algorithm manages to detect all kinds of offsets with a desirable
calibration time.

6.1.2 Data

The algorithm has only been tested on one set of data with an offset around zero.
Instead of introducing steps to imitate offsets a more extensive data acquisition
could have been pursued. Data logs including loading and unloading, and the
problematic driving conditions would have been interesting to study, in order to
cover the different scenarios naturally to test the performance of the algorithm
more extensively.

The manipulation of the data in Test B-Test D has been done to mimic an offset
in the sas. Since the real offset is known to be 0◦, creating a step in the data is a
simple yet an efficient way to test the algorithm for different offset sizes. As long
as the offset appears similarly in real life, which they should do, the steps in Test
B-Test D are sufficiently good to validate the algorithm. The certain moment in
time when a step should occur to mimic an offset is unknown but at the same
time irrelevant since the aim of the tests is to find the offset, which the algorithm
successfully does.

6.1.3 Memory Allocation

By creating corresponding frequency distributions for the slow and quick win-
dows it is possible to save values in the windows corresponding to the index in
the frequency distribution instead of the raw swa samples. When a new value
is added to a window the corresponding index in the frequency distribution is
incremented. When a value is removed from a window the corresponding index
in the frequency distribution is decremented. This method results in four arrays
that will allocate memory: two moving windows and two frequency distributions.
The advantage is that only unsigned integers of 8 or 16 bits need to be stored in-
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stead of the raw swa values which are of double type, i.e. 64 bits. Also, themode
operation can efficiently be done in the frequency distributions by finding the in-
dex with the maximum value and then cast the index value to a signed integer to
obtain the corresponding offset in each window.

To further explain the strategy, Table 6.1 is used. The data in the table is mocked
data. The frequency distributions Hslow and Hquick are of length 201, and can
therefore hold swa samples in the range [−100◦, 100◦]. Thus only unsigned 8
bits integers need to be stored in the windows wslow and wquick since the windows
only hold the corresponding element indexes in the frequency distributions. The
length of wslow > 256, thus Hslow needs to hold unsigned 16 bits integers, since
the max value an element in Hslow could obtain is the length of wslow. The same
principle goes for the quick part, and since the length of wquick < 256 the corre-
sponding frequency distribution only needs to hold unsigned 8 bits integers.

Table 6.1: Memory allocation strategy (with mocked data). The byte calcu-
lations are approximate.

Parameter Length Type Bytes

wslow 10000 uint08 10000
wquick 100 uint08 100
Hslow 201 uint16 402
Hquick 201 uint08 201

Sum 10703

The current parametrisation of the algorithm’s heavier parameters allocates 3.7
kilobytes. There are still space for the constant parameters to achieve the memory
requirement.

6.2 Conclusion

The developed algorithm performs well on the tested data. This thesis shows
that it is possible to use a statistical approach when determining the sas offset.
The algorithm succeeds in determining the offset regardless of being stationary
or temporary. The algorithm itself is rather simple and has no vehicle specific
parameters, thus it works in almost every vehicle as it only uses two common
sensor input signals. The algorithm requires storage of samples and the memory
requirement is fulfilled. However, the algorithm may not function properly in
all applications, such as mining vehicles, where speeds usually are low, ranging
occurs more frequently and the road curvature is changing.

Also, the algorithm will presumably perform different for different drivers. A
driver that steers the vehicle steady will most likely result in a more reliable and
steady offset, compared to a driver that frequently turns the steering wheel.

It cannot be concluded how much banking and crosswinds affect the algorithm
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as the data was insufficient in covering all problematic driving conditions.

6.3 Future Work

Implementing the algorithm on a truck is highly interesting to study the per-
formance. The development environment can then be used as a benchmark to
further facilitate the hardware implementation. The written code needs to be
translated to C-code and some of the built-in MATLAB functions need to be
rewritten. The storage requirement would be critical, thus the memory alloca-
tion needs consideration. To reduce bus load the algorithm can be configured
to still receive swa samples for each sample time corresponding to the raw sas
signal, but perform calculations for an arbitrary larger sample size.

With an implementation on a truck, questions regarding if the algorithm works
as expected, how it works delivering the offset to other functions and how it
performs in different applications could be answered. These answers could then
be used to further improve the performance of the algorithm. It will also be
possible to validate that the tests performed in this thesis are realistic. If they are,
the future development of the algorithm may be time saving and cost efficient as
testing can be performed in the development environment.

Secondly, parameter tuning can be done differently to acquire desired character-
istics aimed for a certain function. If for example a higher resolution is needed
the window sizes would presumably need to be changed as there would be more
bins in which the swa samples are stored resulting in more than one peak in
the frequency distributions. Depending on when a slow or quick calibration is
needed, the boundary parameters can be tuned to achieve the desired behaviour.

Then, an interesting approach would be to use machine learning to be able to
detect driving scenarios and to eliminate the vehicle speed sensor dependency.
Much more data would be needed during development, covering all problematic
driving conditions as well as different kinds of applications. This could possibly
solve the problem of supplying a steady output when the vehicle is not driving
straight ahead, as mentioned earlier.
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