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Abstract

Efficient drive cycle simulation of longitudinal vehicle propulsion models is an important
aid for design and analysis of power trains. Tools on the market today mainly use two dif-
ferent methods for such simulations, forward dynamic or quasi-static inverse simulation.
Here known theory for stable inversion of non linear systemsis used in order to combine
the fast simulation times of the quasi-static inverse simulation with the ability of including
transient dynamics as in the forward dynamic simulation. The stable inversion technique
with a new implicit driver model together forms a new concept, inverse dynamic sim-
ulation. This technique is demonstrated feasible for vehicle propulsion simulation and
specifically on three powertrain applications that includeimportant dynamics that can not
be handled using quasi-static inverse simulation. The extensions are engine dynamics,
drive line dynamics, and gas flow dynamics for diesel engines, which also are selected
to represent important properties such as zero dynamics, resonances, and non-minimum
phase systems. It is shown that inverse dynamic simulation is easy to set up, gives short
simulation times, and gives consistent results for design space exploration. This makes
inverse dynamic simulation a suitable method to use for drive cycle simulation, espe-
cially in situations requiring many simulations, such as optimization over design space,
powertrain configuration optimization, or development of powertrain control strategies.

Optimal vehicle propulsion control is developed with special focus on heavy trucks
used for long haulage. The power to mass ratio for a typical heavy duty truck makes
even moderate road slopes significant in the sense that it is impossible to keep a constant
cruising speed. This gives an interesting problem how to control vehicle speed such that
fuel consumption is minimized. Todays telematic systems together with three dimensional
road maps can provide the vehicle control system with information of the road topography.
This enables intelligent cruise controllers that utilize this information to control engine
fueling and gear shifting such that an optimal speed trajectory is obtained.

First the optimal control problem is solved numerically by dynamic programming,
giving a controller with real time capabilities that can be used on-line in the vehicles
control system. Simulations of such a system on authentic road profiles show that it has
potential for significant fuel savings. To achieve knowledge about the underlying physics
that affects the optimal solution, the optimal control problem is solved in detail and an-
alytical expressions for the conditions of optimality are derived. Those expressions are
then used to find optimal solutions on constructed test road profiles. Such test cases point
out the typical behavior of an optimal solution and also which parameters that are decisive
for the fuel minimization problem, and also how they quantitatively influence the behav-
ior. It is for example shown that small non-linearities in the engine torque characteristics
have significant effect on the optimal control strategy. Thesolutions for the non linear
engine model have a smoother character but also require longer prediction horizons. For
optimal gear ratio control it is shown that the maximum fueling function is essential for
the solution. For example, in the case of a continuously variable transmission it is shown
that the gear ratio never is chosen such that engine speed exceeds the speed of maximum
engine power. For a discrete step transmission the gear shifting losses are essential for the
optimal shift positions, but over all the solutions are close to continuous solutions.
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Sammanfattning

Effektiv körcykelsimulering av longitudinella fordonsframdrivningsmodeller är ett vik-
tigt hjälpmedel för design och analys av drivlinor. Tillgängliga verktyg på marknaden
idag använder huvudsakligen två metoder för sådan simulering, framåtdynamisk simu-
lering eller kvasistatisk inverssimulering. Kända metoder för stabil invertering av olin-
jära system används här för att kombinera de snabba beräkningseffektiva kvasistatiska in-
verssimuleringarna med den framåtdynamiska simuleringens möjlighet att inkludera tran-
sient dynamik. Metoden för stabil invertering tillsammansmed en ny implicit förarmodell
skapar tillsammans ett nytt koncept, inversdynamisk simulering. Denna metods använd-
barhet för simulering av fordonsframdrivning demonstreras på tre drivlineexempel som
innehåller viktig transient dynamik som inte kan hanteras med kvasistatisk inverssimuler-
ing. Utvidningarna är motordynamik, drivlinedynamik och gasflödesdynamik för diesel-
motorer. Dessa har också valts för att representera viktigaegenskaper såsom nolldynamik,
resonanser och icke-minfas-beteende. Det visas att inversdynamisk simulering är enkel
att sätta upp, ger korta simuleringstider och ger konsistenta resultat vid parameterstudi-
er. Detta gör att inversdynamisk simulering är en passande metod för körcykelsimulering
särskilt i situationer som kräver många simuleringar, såsom parameteroptimering, opti-
mering av drivlinekonfiguration eller utveckling av reglerstrategier för drivlinor.

Optimal styrning av fordonsframdrivning utvecklas med särskilt fokus på landsvägs-
körning med tunga lastbilar. Förhållandet mellan motoreffekt och fordonsmassa för en
typisk tung lastbil gör att det inte är möjligt att hålla en konstant marschfart ens i relativt
små väglutningar. Därför är det ett intressant reglerproblem att styra fordonets hastighet
så att bränsleförbrukningen minimeras. Dagens telematiksystem tillsammans med tredi-
mensionella vägkartor kan levera information om vägtopografi till fordonets styrsystem.
Denna information ger möjligheten att skapa intelligenta farthållare för att styra bränslein-
sprutning och växling så att en optimal hastighetstrajektoria erhålls.

Först löses det optimala styrnings-problemet numeriskt med dynamisk programmer-
ing vilket ger en regulator med realtidsegenskaper som kan användas on-line i fordonets
styrsystem. Simulering av ett sådant system på autentiska vägprofiler visar på potential
för signifikanta bränslebesparingar. Det optimala styrnignsprobelemet löses sedan i de-
talj för att få kunskap om den påverkande underliggande fysiken och analytiska uttryck
för optimalitetsvillkoren härleds. Dessa uttryck användsför att hitta optimala lösningar
på konstruerade testvägprofiler. Sådana testfall pekar ut typiskt beteende för en optimal
lösning och också vilka parametrar som är bestämmande för bränsleminimeringsprob-
lemet. Till exempel visas att små olinjäriteter i motorns momentkaraktäristik har stor be-
tydelse för den optimala reglerstrategin. Lösningarna förden olinjära motormodellen har
en mjukare karaktär men kräver också längre prediktionshorisont. För optimal växlingsre-
glering visas det att bränslebegränsingsfunktionen är viktig för lösningen. I till exempel
fallet med kontinuerligt variabelt utväxlingsförhållande visas det att utväxling aldrig väljs
så att varvtalet för motorns maxeffekt överskrids. För en stegad växellåda så är växlings-
förlusterna viktiga för de optimala växlingspunkterna, men som helhet är lösningarna
liknande de kontinuerliga lösningarna.
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1
Introduction

For road vehicles performance, cost, and safety have traditionally been important factors
to optimize. Also environmental aspects has emerged as a toppriority, where one main
focus of the industry has been to reduce fuel consumption andthereby CO2 emission.
In this strive, the power trains and the vehicle’s control systems have become more and
more complex. One example is hybrid vehicles where two or more power sources, in a
coordinated fashion, propels the vehicle. Another exampleis advanced traffic information
systems that provides information to the driver and/or the vehicle control system. Then
the current road and traffic situation can be used in an intelligent way, such that the ve-
hicle can be driven more fuel efficiently. Systems that can adapt to current situation and
operate in the most fuel efficient way for that situation are for example cruise controllers,
gear shifting programs for automatic transmissions, and energy management systems for
hybrid vehicles.

In the development of such complex systems simulation and optimization have be-
come necessary tools when designing a competitive product that is optimized with respect
to many criteria. The way to handle this is to use mathematical models of the vehicle, and
simulation of such models can to a high extent replace physical prototypes when test-
ing different design choices. To find an optimal design of thephysical vehicle and/or its
control system, simulation of the mathematical models can be used to evaluate different
criteria. This process can be automatized by coupling the simulation with an optimiza-
tion algorithm. Simulation and optimization also shortensthe product development cycle
which is necessary to cut development costs. A recent case where simulation studies re-
placed most prototype testing is the new Fiat 500 with a totaldevelopment time of 18
months. Simulation is also an important part of many controlalgorithms where predic-
tions of future vehicle states are made by simulation, and then used to find the optimal
control signals.

In this thesis simulation methods and optimization of vehicle propulsion has been
studied with the main focus on fuel consumption. The first part of the thesis treats ef-
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2 1 Introduction

ficient vehicle propulsion simulation methods that are suitable to for example parameter
optimization and control strategy evaluation. The second part treats fuel optimal driving
of heavy trucks, and special attention is given to optimal control of engine fueling and op-
timal gear shifting strategies under the assumption that the road topography ahead of the
vehicle is known. The results of the thesis can for example beused to design fuel optimal
control strategies, but the methods presented are also applicable for other purposes where
one important example is emission minimization.

1.1 Contributions

The contributions of the thesis will here shortly be summarized for each appended paper.
A more detailed description is given in the introduction forthe respective parts of the
thesis.

Efficient Drive Cycle Simulation, Anders Fröberg and Lars Nielsen, IEEE Transac-
tions on Vehicular Technology, accepted for publication, 2008. The paper proposes a new
method for inverse dynamic vehicle simulation. The new method is compared to forward
dynamic simulation regarding for example simulation setupeffort, consistency for pa-
rameter exploration, and simulation time. Also, a new driver model for inverse dynamic
simulation has been developed that makes it easy to define drive cycle tracking that is
independent of vehicle properties.

Inverse Dynamic Simulation of Non-Quadratic MIMO Powertrain Models -Application
to Hybrid Vehicles, Anders Fröberg, IEEE Vehicle Power and Propulsion Conference
2006. Extending the previous paper, it is demonstrated how typical non-quadratic MIMO
power train models can be reformulated enabling inverse dynamic simulation. It is also
demonstrated how time variant system order and time variantrelative degree is handled.

Controlling Gear Engagement and disengagement on heavy trucks for minimization
of fuel consumption, Anders Fröberg, Lars Nielsen, Lars-Gunnar Hedström, and Magnus
Pettersson, IFAC World Congress 2005. This paper treats fuel optimal use of neutral gear
using preview information of road topography. The contribution is to show the magnitude
of possible fuel savings by making the correct decision in steep downhill slopes whether
to disengage the gear or to cut the fuel injection.

A Real-Time Fuel-Optimal Cruise Controller for Heavy Trucks using Road Topogra-
phy Information, Erik Hellström, Anders Fröberg, and Lars Nielsen, SAE World Congress
2006. It is shown how a predictive cruise controller with real time performance can be de-
signed using dynamic programming, and the magnitude of possible fuel savings is demon-
strated.

Explicit Fuel Optimal Speed Profiles for Heavy Trucks on a Setof Topograhic Road
Profiles, Anders Fröberg, Erik Hellström, and Lars Nielsen SAE WorldCongress 2006.
To gain knowledge of decisive parameters affecting fuel consumption, fueling control is
here studied on constructed road profiles. The simple test cases together with analyti-
cal solutions to vehicle motion gives valuable insight intothe properties of the optimal
control.

Optimal Control Utilizing Analytical Solutions for Heavy Truck Cruise Control, An-
ders Fröberg and Lars Nielsen, technical report that is an extended version of the paper
Optimal fuel and gear ratio control for heavy trucks with piece wise affine engine charac-
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teristics, Anders Fröberg and Lars Nielsen, Fifth IFAC symposium on advances in auto-
motive control, California, 2007. The fuel optimal controlproblem treated in the previous
paper is solved in more detail. Engine torque is a piece wise affine function of fueling, and
optimal gear choice is presented both for a continuously variable transmission as well as
for a discrete stepped transmission. The theoretical results are used in a simple rule based
predictive cruise controller and the possible fuel savingsfor that method is demonstrated
in simulations on authentic road profiles.

The following work have also been published by the author, but are not included here:
Dynamic Vehicle Simulation -Forward, Inverse and New MixedPossibilities for Op-

timized Design and Control, Anders Fröberg and Lars Nielsen in Modeling: Diesel En-
gines, Multi-Dimensional Engine, and Vehicle and Engine Systems. Volume 2002-01-
1619 of SAE Technical paper series SP-1826.

A Method to Extend Inverse Dynamic Simulation of Powertrains with Additional
Dyanmics, Anders Fröberg and Lars Nielsen in 1:st IFAC symposium on Advances in
Automotive Control.

Extending the Inverse Vehicle Propulsion Simulation Concept-To Improve Simulation
Performance, Anders Fröberg, Licentiate thesis.

Optimal Fuel and Gear Ratio Control for Heavy Trucks with Piece Wise Affine Engine
Characteristics, Anders Fröberg and Lars Nielsen, Fifth IFAC Symposium on Advances
in Automotive Control 2007.
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Part I

Efficient vehicle propulsion
simulation
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2
Inverse dynamic simulation

Modeling and simulation are today widely used tools when designing new power trains
and control systems. In for example optimization of a power train, a candidate design
is evaluated by use of an objective function. When optimizing complex systems the cal-
culation of the objective function can not always be done by calculation of analytical
expressions, instead a simulation of the model has to be doneto calculate the objective
function. Using simulation in this way possibly a large number of simulations have to be
performed of the same model, where some parameters are varied from simulation to simu-
lation. For these situations computational efficiency and consistency between simulations
are important properties for the simulation method. The aimin this part of the thesis is to
find a simulation method that has good behavior with respect to these properties.

When certifying a vehicle with respect to fuel consumption and emission levels, the
vehicle is driven according to a given speed profile, a drive cycle. Hence, a typical task
for vehicle propulsion simulation is drive cycle simulation which is the main topic of this
part of the thesis. Another typical task for vehicle propulsion simulation is performance
simulations which are done to test for example accelerationperformance or the vehicles
ability to keep speed in steep grades. Although it is not exemplified here, the methods
presented in this part can be used for such simulations as well.

Mainly two different methods have been used for vehicle propulsion simulation. For-
ward dynamic simulation and quasi-static inverse simulation. The forward dynamic simu-
lation typically uses models that consist of a set of ordinary differential equations, ODEs,
that uses the drivers input, e.g. throttle, brakes, and steering input, to calculate the ve-
hicles states and speed. Since the method is capable of handling dynamic systems, the
prediction of for example fuel consumption and emissions can be accurate. Quasi-static
inverse simulation uses speed and acceleration given from the speed profile to calculate
the required torque and speed at the wheels. The computationthen goes backward through
the driveline to compute the generating variables to produce the given torque and speed.
Each component uses a static model and hence the prediction ability for this type of sim-
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8 2 Inverse dynamic simulation

ulation is not as good as for the forward dynamic simulation.On the other hand, due to
the static models the simulation time for these models are very short, which makes it a
suitable method for initial concept studies and parameter optimizations. This first part
of the thesis suggests that known theory for inversion of non-linear systems is used to
combine the merits of forward dynamic simulation and quasi-static inverse simulation.

2.1 Overview and contributions of simulation

This thesis part on simulation consists of two papers.Efficient Drive Cycle Simulation,
Anders Fröberg and Lars Nielsen, IEEE Transactions on Vehicular Technology, accepted
for publication, 2008, andInverse Dynamic Simulation of Non-Quadratic MIMO Pow-
ertrain Models -Application to Hybrid Vehicles, Anders Fröberg, IEEE Vehicle Power
and Propulsion Conference 2006. In the first paper a new inverse dynamic simulation
method is proposed. A comparison of forward and inverse simulation of vehicle propul-
sion models is presented. The comparison is done in order to evaluate how well different
simulation methods are suited for different tasks. For example how well the method can
capture transients, how suitable it is for optimization, and how computationally efficient
the method is. A new driver model for inverse dynamic simulation has been developed
that makes it easy to define drive cycle tracking that is independent of vehicle proper-
ties. This work has also been presented more thoroughly inExtending the Inverse Vehicle
Propulsion Simulation Concept-To Improve Simulation Performance, Licentiate thesis,
Anders Fröberg.

The second paper is an extension to the first and deals with some practical issues
for vehicle propulsion simulation. For example, inverse dynamic simulation in general
requires a quadratic system, i.e. a system with equally manyinputs and outputs. This
paper demonstrates how this requirement can be relaxed for typically non-quadratic vehi-
cle propulsion models. It is also demonstrated how vehicle propulsion models with time
variant system order and time variant relative degree can besimulated.

2.1.1 Related publications

The following publications by the author also treats the subject of this part, but are not
included here.

Dynamic Vehicle Simulation -Forward, Inverse and New MixedPossibilities for Op-
timized Design and Control, Anders Fröberg and Lars Nielsen in Modeling: Diesel En-
gines, Multi-Dimensional Engine, and Vehicle and Engine Systems. Volume 2002-01-
1619 of SAE Technical paper series SP-1826.

A Method to Extend Inverse Dynamic Simulation of Powertrains with Additional
Dyanmics, Anders Fröberg and Lars Nielsen in 1:st IFAC symposium on Advances in
Automotive Control.

Extending the Inverse Vehicle Propulsion Simulation Concept-To Improve Simulation
Performance, Anders Fröberg, Licentiate thesis.



Paper A

EFFICIENT DRIVE CYCLE SIMULATION1

Anders Fröberg⋆, Lars Nielsen⋆

⋆ Dep. of Electrical Engineering, Linköpings universitet,
SE-581 83 Linköping, Sweden.{froberg,lars}@isy.liu.se.

Abstract
Drive cycle simulations of longitudinal vehicle models is an important aid for de-
sign and analysis of power trains, and tools on the market today mainly use two
different methods for such simulations, forward dynamic orquasi-static inverse
simulation. Here known theory for stable inversion of non linear systems is used
in order to combine the fast simulation times of the quasi-static inverse simula-
tion with the ability of including transient dynamics as in the forward dynamic
simulation. The stable inversion technique with a new implicit driver model
together form a new concept, inverse dynamic simulation. This technique is
demonstrated feasible for vehicle propulsion simulation and specifically on three
powertrain applications that include important dynamics that can not be handled
using quasi-static inverse simulation. The extensions areengine dynamics, drive
line dynamics, and gas flow dynamics for diesel engines, which also are selected
to represent important properties such as zero dynamics, resonances, and non-
minimum phase systems. It is shown that inverse dynamic simulation is easy to
set up, gives short simulation times, and gives consistent results for design space
exploration. This makes inverse dynamic simulation a suitable method to use
for drive cycle simulation, especially in situations requiring many simulations,
such as optimization over design space, powertrain configuration optimization,
or development of powertrain control strategies.

1This is an edited version of [11], Efficient drive cycle simulation, accepted for publication in IEEE Trans-
actions on Vehicular Technology.
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Figure 1: Schematic depiction of different computational schemes, also illustrating
goal of the paper.

1 Introduction

There are a number of important uses of drive cycle simulations, and among all appli-
cations there are many where simulation time is important. It has been used a lot in
concept studies [31, 14, 21], and other examples where drivecycle simulation is used is
in optimization over a design space of parameters [14, 19], in optimization of powertrain
configuration [24, 2], and in design of powertrain control systems, [3], [25]. Drive cycle
simulation is also used in controllers such as model predictive cruise controllers, [13].

There are two main ways to do longitudinal vehicle simulation, quasi-static inverse
simulation and forward dynamic simulation. The quasi-static inverse simulation uses ve-
hicle speed and acceleration to calculate required torquesand speeds backwards through
the driveline. Finally fuel flow is calculated. See Figure 1 for a typical computational
scheme of quasi-static inverse simulation. No driver modelis used and drive cycle track-
ing is explicit. In existing tools today the followingquasi-static approach[15], [30] to
inverse simulation is taken. The speed,v(t), and acceleration, ˙v(t), are approximated by
v(t) = (v(kh+h)+v(kh))/2, v̇(t) = (v(kh+h)−v(kh))/h. In this way only static equa-
tions are solved when the input is computed, and a major advantage of this method is that
simulation time is low. On the other hand, in forward dynamicsimulation, differential
equations are solved using, e.g., throttle position or fuelflow as input, and vehicle speed
as output. Given an initial value of the vehicle’s states andthe input, the system is numer-
ically integrated to compute the speed trajectory. This type of simulation also requires
a driver model, a controller, to track a given speed trajectory (drive cycle) as depicted
in Figure 1. For forward dynamic simulation drive cycle tracking is implicit since it is
obtained using an explicit driver model, and it is straight forward to include additional
significant dynamics. However, the differential equationsthat have to be solved typically
gives an order of magnitude longer simulation times for drive cycle simulations than what
is typical for quasi-static simulation.

Because of the importance of drive cycle simulation it is natural that there are several
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tools for simulation of longitudinal vehicle models on the market today. Example of quasi-
static inverse tools are, e.g., Advisor [30] and QSS-TB [15], and examples of forward
dynamic simulation tools are, e.g., PSAT [23], Capsim [1], and, V-Elph [5]. All these
tools use Matlab/Simulink.

1.1 Goal of paper

It would of course be of considerable value to be able to extend the time-efficient quasi-
static simulation with important dynamics without significantly loosing simulation per-
formance. The goal of this paper is to find a simulation methodwith such properties.
Guiding principles in this development have been to make extensions to the quasi-static
method that are sufficiently general to include dynamics of the powertrain, such that im-
portant transients can be captured in the simulation. Quasi-static inverse simulation uses
only one state, vehicle speedv(t), so that the control is determined byu(t) = f (v(t), v̇(t))
. If more dynamics needs to be added to the models, then the inverse simulation strategy
has to be extended. More statesz have to be included, and they have to be obtainable
from the velocity profile, which means that higher derivatives of the speed, or drive-
cycle, may be needed. This can formally be written asu(t) = F(v(t), v̇(t),z(t), ż(t)) =
F (v(t), v̇(t), v̈(t), . . .), where either additional states or higher derivatives may be used.
Such simulation, here namedinverse dynamic simulation, is the main topic of this paper.

Given the main objective of the paper, i.e. combining the good properties of quasi-
static and forward dynamic simulation, see Figure 1, there are a number of ramifications
of the problem that have to be considered and the rest of the paper is outlined as follows.
In Section 2 inversion of non linear systems with added dynamics is described. Since
drive cycles in general are non smooth, tracking within limits is an issue in drive cycle
simulations. This together with driver models is treated inSection 3. In Section 4 the
proposed method of inverse dynamic simulation is demonstrated feasible on powertrain
models. This includes additional dynamics that has significant influence on fuel con-
sumption and emissions, and also that internal variables are captured. Last, in Section 5
simulation performance measures such as simulation time, set up effort, and consistency
in design space exploration are discussed, and inverse dynamic simulation is compared to
forward dynamics simulation.

2 Inversion of nonlinear systems

Inverse dynamic simulation is to compute generating variables like fuel flow and engine
torque when the output, the velocity profile, is given, whichmeans that it is a problem of
system inversion. This section will present the theory to beused, whereas the practical
use of the theory will be demonstrated on important powertrain models in Section 4.

Various domain specific solutions to system inversion have been developed, e.g. in
rigid body dynamics, [22], [29], [32]. A review of methods for inverse dynamic sim-
ulation of nonlinear systems in aerospace applications is given in [20] where a method
based on numerical differentiation followed by algebraic inversion is presented, and an
application of that method is presented in [26]. This methodis limited in that it uses an
Euler approximation of the derivatives. Another way to perform system inversion is to
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use a tool for non-causal simulation like e.g. Dymola, wherethe method is based on a
structural manipulation of equations. However, only minimum phase systems are treated
and numerical differentiation of the inputs is used [4].

A different possibility utilized in this paper, is to use thetheory of stable inversion of
nonlinear systems. Drivecycles need not be continuously differentiable, but for physical
powertrains, having finite forces and torques, simulation signals will be smooth, and it
turns out that it is not a limitation to assume smoothness. Therefore, the method described
in [6] and [16] can fruitfully be adapted. Related theory is presented in [17]. The rest
of this section presents the method by showing how a system ofordinary differential
equations is manipulated in order to perform an inverse dynamic simulation of it. The
method handles minimum- as well as non-minimum phase systems, and in the next section
it will be shown how numerical differentiation of the inputsis avoided. A large class of
systems that can be simulated in the forward dynamic way can thereby also be simulated
in the inverse dynamic way.

2.1 Stable inversion of nonlinear systems

A short review of the used inversion method will be given here. Let u(t) be the inputs,
y(t) the outputs, andx(t) the states of a given system. Suppose that the system can be
written in input-affine form

ẋ(t) = f (x(t))+g(x(t))u(t) (1)

y(t) = h(x(t)) (2)

Assume that the number of inputs,q, equals the number of outputs. This is not a crucial
assumption as demonstrated for example in [12], where redundancy is used to cast the
problem in this formulation. Consider also a system where variables with suffixd corre-
sponds to a system where variables are smooth, corresponding to tracking of a velocity
profile within tracking limits. Given a desired outputyd(t) that is smooth, the problem is
to solve

ẋd(t) = f (xd(t))+g(xd(t))ud(t) (3)

yd(t) = h(xd(t)) (4)

for the inputud(t), and possibly also the statesxd(t). With the notion smooth, it is here
meant that a signal is sufficiently many times continuously differentiable. From here on it
will be assumed that all functions are smooth such that the necessary derivatives exist and
can be computed. It will also be assumed thatf (0) = 0 andh(0) = 0. This can always be
achieved for systems like (3)-(4) by a simple change of coordinates.

Let L be the standard notation for Lie-derivatives according to

L f h(x) = ∑
i

fi(x)
∂

∂xi
h(x) (5)

Lr
f h(x) = L f

(

Lr−1
f h(x)

)

(6)

If for all 1 ≤ i, j ≤ q, for all k < r i −1, and for allx in a neighborhood ofx0

Lg j L
k
f hi(x) = 0 (7)
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and theq×q matrix

β̃(x) =













Lg1Lr1−1
f h1(x) . . . LgqLr1−1

f h1(x)

Lg1Lr2−1
f h2(x) . . . LgqLr2−1

f h2(x)
...

. . .
...

Lg1L
rq−1
f hq(x) . . . LgqL

rq−1
f hq(x)













(8)

is nonsingular, then the system is said to have a vector relative degreer = (r1, r2, . . . , rq)
at the pointx0. That is, the relative degree of the system is the number of times one has
to differentiate the outputs for at least one input to appearexplicitly.

The first step in the inversion procedure is to compute the relative degree. The next
step is to partially linearize the system. This is done by differentiatingyi(t) until at least

oneu j(t) appears explicitly. Defineξi
k = y(k−1)

i (t) for i = 1, . . . ,q andk = 1, . . . , r i and let

ξ(t)=
(

ξ1
1(t),ξ

1
2(t), . . . ,ξ

1
r1

(t),ξ2
1(t), . . . ,ξ

2
r2

(t), . . . ,ξq
rq

(t)
)T

=
(

y1(t), ẏ1(t), . . . ,y
(r1−1)
1 (t),y2(t), . . . ,y

(r2−1)
2 (t), . . . ,y

(rq−1)
q (t)

)T
(9)

Now the change of coordinates can be defined. Sincey is a function ofx, it can be
written as

(

ξT ,ηT)T
= ψ(x) (10)

whereη are variables needed, and the only constraint in the choice of η is that the jacobian
matrix ofψ(x) must be nonsingular atx0 so that it is a local coordinates transformation in
a neighborhood ofx0. It is always possible to find such aψ(x) [17]. With this choice of
coordinates the following system which is partially linearin ξ is achieved



















ξ̇i
1(t) = ξi

2(t)
...

ξ̇i
r i−1(t) = ξi

r i
(t)

ξ̇i
r i
(t) = αi(ξ(t),η(t))+ βi(ξ(t),η(t))u(t)

for i = 1, . . . ,q

η̇(t) = sa(ξ(t),η(t))+sb(ξ(t),η(t))u(t)

(11)

where the vectorα and the matrixβ are

α(ξ,η) = Lr
f h(ψ−1(ξ,η)) (12)

β(ξ,η) = LgLr−1
f h(ψ−1(ξ,η)) (13)

and the functionssa(ξ,η) andsb(ξ,η) are given by the choice ofη.

Denotey(r) =
(

y(r1)
1 , . . . ,y

(rq)
q

)

. Then it can be seen in the first part of (11) that

y(r)(t) = αi(ξ(t),η(t)) + βi(ξ(t),η(t))u(t). By the definition of relative degree,β(ξ,η)
is nonsingular. Given a desired output trajectoryyd(t) the required control inputud(t) can
be calculated as

ud(t) = βi(ξ(t),η(t))−1(y(r)
d (t)−αi(ξ(t),η(t))) (14)
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Here it is seen that in order to calculate the required input for the system to follow the
prescribed trajectory, not onlyyd(t) has to be known, but also the trajectories ofη(t) and
ther first derivatives ofyd(t). If the state trajectories producing the desired output areof
interest they can be calculated from the inverse coordinatechange

x(t) = ψ−1(ξ(t),η(t)) (15)

How the zero dynamics is to be solved depends on the system studied. There are three
classes of systems that can be written in the form (11). The first class is all systems where
the relative degree equals the dimension of the system, which means that there are no zero
dynamics. The second class is all systems with stable zero dynamics, i.e., minimum phase
systems, and the third class is systems with unstable zero dynamics, i.e., non-minimum
phase systems. For the class of systems without zero dynamics, (14) becomes a system
of static equations where the required input can be calculated from the desired output and
its derivatives. In the case of stable zero dynamics the procedure is also straight forward.
Substitute (14) in (11),

η̇(t)=sa(ξ(t),η(t))+sb(ξ(t),η(t))βi(ξ(t),η(t))−1(y(r)
d (t)−αi(ξ(t),η(t)))

≡s(η(t),Yd(t)) (16)

where
Yd(t) =

(

y1(t), ẏ1(t), . . . ,y
(r1)
1 (t),y2(t), . . . ,y

(r2)
2 (t), . . . ,y

(rq)
q (t)

)

(17)

Choose appropriate initial values forη(t), and solve the system of differential equations,
(16), in order to find the trajectories of the zero dynamics.

In the case of unstable zero dynamics however, there is no such straight forward way,
since then (16) can not be integrated as an initial value problem. It is not possible to solve
the unstable zero dynamics in the general case, but in drive cycle simulations the desired
output trajectory is known before hand. This gives the possibility of computing a non
causal solution of (16) and still receive a stable result. InDevasia et al. [6] a Picard-like
iteration is used to find the zero dynamics of a nonlinear non-minimum-phase system. To
illustrate that method a linear system is first studied

η̇(t) = Aη(t)+Bu(t); η(±∞) = 0 (18)

whereA has no eigenvalues on thejω-axis. For such systems it is possible to find a
similarity transformationη = Tη̃, whereT is invertible, that brings the system on a form
where

(

˙̃η1
˙̃η2

)

=

(

Ãn 0
0 Ãp

)(

η̃1

η̃2

)

+

(

B̃1

B̃2

)

u; η(±∞) = 0 (19)

whereÃn has all eigenvalues in the left half plane andÃp has all eigenvalues in the right
half plane. The solution to the boundary value problem (19) is

η̃(t) =

∞
∫

−∞

φ(t − τ)B̃u(τ)dτ (20)
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where

φ(t) =

(

1(t)eÃnt 0
0 −1(−t)eÃpt

)

(21)

and 1(t) is the unit step function. Solving for the first statesη1(t) in (19) is easy. The
system is stable and the solution

η̃1 =

∞
∫

0

eÃnτB̃1u(t − τ)dτ (22)

can be computed with numerical solvers for ODE:s. If the input signal is known before
hand, the solution to the last statesη2(t) can be computed in a stable way by reversing
time as

η̃2 =

0
∫

−∞

−eÃpτB̃2u(t − τ)dτ (23)

or a non causal numerical solution can be used. Hence a stablesimulation of the system
can be done. For a nonlinear system such as (16), a separationof the system in a stable
and unstable part as in (19) can not be done in general. The approach in Devasia et al. [6]
is to write the nonlinear zero dynamics (16) as

s(η,Yd) = Aη+(s(η,Yd)−Aη) (24)

which can be interpreted such as that the nonlinearities is seen as disturbances to a linear
system. In the above equationA gives a linear approximation ofs(·), typically ∂s

∂η |(0,0).
The iteration method simulates the linear system with the disturbances (nonlinearities) as
inputs according to

ηm+1(t) =

∞
∫

−∞

φ(t − τ)[s(ηm(τ),Yd(τ)−Aηm(τ)]dτ (25)

whereφ(t) is the state transition matrix for the linear system. If a change of coordinates
that brings the linearization in the form of (19) is applied,the system becomes

˙̃η(t) = T−1ATη̃(t)+T−1(s(Tη̃(t),Yd(t))−ATη̃(t)) (26)

and the iteration (25) can be separated in the form (19)

(

η̃1,m+1(t)
η̃2,m+1(t)

)

=

∞
∫

−∞

φ(t − τ)T−1[s(Tη̃m(τ),Yd(τ)−ATη̃m(τ)]dτ (27)

whereφ(t) is defined by (21). For this iteration to converge to a solution of (25), there are
restriction on the area of attraction that has to be handled,[6].
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Figure 2: The New European Drive Cycle, NEDC.
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Figure 3: Two different simulations of NEDC. Both are within trackinglimits but
result in different fuel consumption.

3 Tracking performance and driver models

A drive cycle is a speed profile where speed is given as a function of time, see Figure 2
for an example, and as can be seen in the figure a drive cycle cannot be expected to be
continuously differentiable. This means that for models including additional dynamics,
it is impossible to follow, or track, a drive cycle exactly, and hence, the speed has to
be controlled to track the drive cycle in a desired way. When drive cycles are used for
emission legislations the cycle is tracked by a human driverwithin certain limits. It is
therefore logical, also in simulation, to design driver models to track cycles within defined
limits. As will be shown later, results in for example fuel consumption can differ between
two different velocity trajectories that both are within prescribed limits, see Figure 3, and
it is thus important to study how a drive cycle is tracked and not only that the tracking is
within limits.

To achieve good drive cycle tracking, more or less sophisticated driver models are
needed, and here driver models for both forward and inverse dynamic simulation will
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Figure 4: Driver behavior for forward dynamic simulation (left) and inverse dy-
namic simulation (right) for a part of NEDC.

be discussed. To compare tracking and behavior, the different driver models are in the
following tested on the New European Drive Cycle, NEDC, see Figure 2.

3.1 Tracking in forward dynamic simulation

In forward dynamic simulation a driver model acts as a controller to track the reference
speed trajectory, and as seen in Figure 1 the driver model compares the drivecycle with the
actual speed and decides how to control the inputs, e.g., accelerator pedal, brake pedal,
clutch, and gear selector, in order to follow the prescribeddrive cycle within defined
limits. A driver model can be as simple as a PID-controller [7] or a more sophisticated
controller with prediction abilities [18]. The parametersof the driver model determines
driver alertness, which in this type of simulation results in tightness of cycle tracking. For
an example of tracking behavior for forward driver models, see Figure 4.

3.2 Enabling Tracking in inverse dynamic simulation

In inverse dynamic simulation, the reference speed trajectory is followed exactly if the
physics of the model allows it, provided that the reference speed trajectory is continuously
differentiable as many times as the relative degree of the system, as mentioned in [9], [8]
or as can be seen in Equation (14), see also [17]. If it is not sufficiently differentiable, then
the trajectory has to be smoothed to create a reference speedthat the simulated model can
follow with bounded states and inputs [9]. This smoothing ofthe drive cycle is in real
life done by a test driver, but is here done by mathematical smoothing that will be given
the interpretation of an implicit driver model. There are several possibilities to smooth
the drive cycle, and the shape of the smoothed speed profile isdecided by the behavior
of the driver model. One way is to filter the drive cycle with a standard linear low pass
filter with relative degree of at least the same order as the system. This will ensure that
the filtered drive cycle is differentiable sufficiently manytimes for Equation (14) to be
solvable, see [17]. Using a non causal linear filter gives thedriver look ahead properties.
Another way to smooth the drive cycle,vc(t), is to compute the desired trajectory,vd(t),
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as the convolution

vd(t) =
1
C

∞
∫

−∞

g(t − τ)vc(τ)dτ (28)

A good choice for the convolution kernel,g(t), see Figure 5, is to use the definition

g(t) =

{

e
−a2

a2−t2 , |t| ≤ a;
0, otherwise

(29)

where the parametera is a tracking time constant. Linear filtering of the drive cycle gives
only asymptotically exact tracking while the use of (29), due to compact support, gives
exact tracking on large parts of the drive cycle, as seen in Figure 4. A smallera gives
"tighter" tracking which corresponds to a more aggressive or alert driver behavior.

Since the choice (29) of the convolution kernelg(t) has compact support and is in-
finitely many times continuously differentiable, the resulting trajectoryvd(t) is infinitely
many times continuously differentiable. Moreover, the calculation of the derivatives does
not require numerical differentiation. Instead the derivatives are calculated using the fol-
lowing convolution

v(r)
d (t) =

∞
∫

−∞

g(r)(t − τ)vc(τ)dτ (30)

where the different derivativesg(r) are obtained by analytical differentiation of (29). See
Figure 5 for some examples with the parametera = 1.

Driver model. The new driver model for inverse dynamic simulation is defined by
Equations (28)-(30).

Inverse dynamic simulation. The driver model presented above together with the
inversion procedure presented in Section 2 is an extension to quasi-static simulation and
forms a new concept of inverse dynamic vehicle simulation. See Figure 1.
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Thus, the smoothing of the drive cycle is interpreted as an implicit driver model,
where the tracking behavior is specified in the velocity domain and is independent of the
vehicle. In fact, this way of specifying tracking behavior can be argued to be closer to
human behavior when performing drive cycle tests on a chassis dynamometer, since the
tracking of a human driver is not specified by controller parameters, but rather in terms of
tracking smoothness.

4 Typical Powertrain model examples

When using drive cycle simulation it may be desired to capture the behavior in transients
to achieve sufficient precision in the processes generatingfuel consumption and emis-
sions. Therefore it is necessary to be able to include the dominant dynamics, and not only
use quasi-static simulation like in Advisor [30] or the QSS-toolbox [15].

In this section three of the most important dynamics [18] that capture such transients
will be presented, and the feasibility of the inversion procedure presented in Section 2
will be demonstrated on these models. One example is the dynamics of the air filling
in the intake manifold when using throttle position as inputto the powertrain. Another
example is resonances in the driveline mainly caused by torsion in the drive shafts. These
are modeled in Section 4.1. The third example comes from diesel engines with exhaust
gas recycling where the gas flow in the engine is important foremissions modeling. This
flow is modeled in Section 4.2. The models are only briefly presented here and for a more
detailed presentation the reader is referred to [10].

Even though the examples in this section are motivated from the application they each
impose interesting and illustrative mathematical characteristics. The first example intro-
duces intake manifold pressure to illustrate the extensionwith one extra state compared
to quasi-static modeling. The second example additionallyincludes drive shaft torsion
which includes a resonant system and zero dynamics. The third example with gas flow
for diesel engines includes non-minimum phase, i.e. unstable zero dynamics. The model
examples will be used for comparison of different simulation methods in Section 5.

4.1 Powertrain with intake dynamics and driveline dynamics

This section will describe the two first examples, and it willbe done by first giving the
most complex example which is a power train with both intake pressure dynamics and
drive shaft flexibility. Then the model will be specialized to exclude the drive shaft flexi-
bility.

The main dynamic variable of a vehicle is vehicle speedv, which is the only one used
in quasi-static models. Including drive shaft torsionθd decouples vehicle speedv and en-
gine speedωe. Also the dynamics of intake manifold pressurepi is included. The model,
see Figure 6, is more thoroughly described in Fröberg [10], and will be referred to as the
flexible powertrain model, FP. The tractive input is effective throttle areaAe f f. From am-
bient pressurepa and intake manifold pressurepi the flow past the throttle is calculated
via a flow restriction modelΨ. Then the gasflow into the cylinders is calculated, giving
gross work. Subtracting pump work and friction gives the output torque from the engine.
The rest of the driveline is modeled as standard inertias, torsion springs, dampers, and
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Figure 6: Components of the powertrain model.

gears, giving driving force on the wheels. This driving force reduced by air resistance and
rolling resistance gives vehicle speed. When needed a braketorque proportional to driver
input is applied to the wheels, and the simulation is handledas in [12]. During the tractive
part of the drive cycle the model has inputu = Ae f f , statesx = [v,ωe,θd, pi ]

T , and output
y= v. The model parameters are lumped into the coefficientsci . Let the functionsfi ,gi ,h
be defined by the model equations that are

v̇ = c1v2 +c2v+c3ωe+c4θd +c5 ≡ f1(x) (31)

ω̇e = c6v+c7ωe+c8ω1.8
e +c9θd +c10pi +c11≡ f2(x) (32)

θ̇d = c12v+c13ωe ≡ f3(x) (33)

ṗi = c14ωe+c15ωepi +c16Ψ
(

pi

pa

)

Ae f f ≡ f4(x)+g4(x)u (34)

y = v≡ h(x) (35)

The relative degree of this system isr = 3. Hence the zero dynamics, and the inverse
dynamic model, has order 1.

The coordinate change (10) is chosen as

(ξ1,ξ2,ξ3,η)T = (v, v̇, v̈, pi)
T (36)

Using (14) in the zero dynamics gives

η̇ = f4(ψ−1(ξ,η))+g4(ψ−1(ξ,η))β−1(v(3)
d −α) (37)

using (12)-(13) which are

α = L3
f h (38)

β = LgL2
f h (39)

The zero dynamics (37) is stable for this model, and hence canbe solved as an initial
value problem. It is seen that only the outputvd(t) and the first three derivatives thereof
have to be known when solving for the zero dynamics and the resulting required input
(14)

Ae f f,d = β−1(ξ,η)(v(3)
d −α(ξ,η)) (40)

See Figures 7 and 8 for simulations of this model. The figures show both forward dynamic
and inverse dynamic simulation. The results are comparablewhich demonstrates the fea-
sibility of the proposed new method. A more detailed evaluation is done in Section 5.
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Figure 7: Velocity of a simulation of the powertrain model with flexible driveshaft
from Section 4.1.
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Figure 8: Effective throttle area of a simulation of the powertrain model with flexible
driveshaft from Section 4.1.
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Figure 9: A schematic picture of a diesel engine with EGR and VGT. The figure is
adapted from [27].

Powertrain with intake dynamics

The stiff powertrain, SP, includes the dynamics of intake manifold pressurepi but not the
drive shaft torsion. This simplified version of the model (31)-(35) with stiff driveshafts is
written as

v̇ = c1v2 +c2v1.8 +c3pi +c4 ≡ f1(x) (41)

ṗi = c5v+c6vpi +c7Ψ
(

pi

pa

)

Ae f f ≡ f4(x)+g4(x)u (42)

y = v≡ h(x) (43)

The inversion of this system follows the same procedure as for the previous example. The
system’s relative degree isr = 2, giving an inverse model that consists of static equations.

4.2 Gas flow control in a diesel engine

As mentioned earlier non-minimum-phase systems may be challenging, and one impor-
tant powertrain component that has this property is the gas flow for a diesel engine with
exhaust gas recycling, EGR and variable geometry turbine, VGT, see Figure 9. Such a
system is modeled in Wahlström [27], and the simplified version that is used here is de-
tailed in Fröberg [10], and will here be referred to as DE. Control variables are the EGR
valveuegr and the area of the VGTAvgt. These two inputs are used to control the mass
flow and its composition into the cylinder. Here the fuel flow and engine speed are consid-
ered as model parameters. Outputs are normalized air fuel ratio, λ, and EGR ratio,xegr.
This is a non minimum phase system for many operating points,and intuitively it can
be reasoned as follows: When the VGT is closed, initially, the flow past the turbine will
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decrease, which results in a decrease of compressor flow and adecrease inλ. However,
there will be a build up of pressure in the exhaust manifold, and after a while this will
result in a higher flow past the turbine, speeding up the turbo, and after a while results
in an increase of fresh air flow, which means thatλ increases. The model has four states
x = [pi , pe,ωt ,Aegr]

T , i.e. intake manifold pressure, exhaust manifold pressure, turbine
speed, and EGR valve area. As before the, coefficientsci are lumped model parameters,
and functionsfi ,gi ,h are defined in the model equations that are written as

ṗi = c1pi +c2ωt +c3AegrpeΨ
(

pi

pe

)

≡ f1(x) (44)

ṗe = c4pi +c5AegrpeΨ
(

pi

pe

)

+c6 +c7pe

√

1− c8

pc9
e

Avgt ≡ f2(x)+g2(x)u (45)

ω̇t = c10pc11
i +c12+

(

c13+
c14

pc15
e

)
√

1− c8

pc9
e

pe

ωt
Avgt ≡ f3(x)+g3(x)u (46)

Ȧegr = c16Aegr−c16uegr ≡ f4(x)+g4(x)u (47)

The outputs arey = [λ,xegr]
T

λ = c17ωt ≡ h1(x) (48)

xegr =
c18AegrpeΨ

(

pi
pe

)

c19ωt +c18AegrpeΨ
(

pi
pe

) ≡ h2(x) (49)

Computing Lie-derivatives for this system gives the vectorrelative degree asr =
(1,1), which means that the systems zero dynamics has order two. Aswas mentioned
earlier it is assumed in the inversion procedure thatf (0) = 0 andh(0) = 0, which is easily
achieved for this system by a simple coordinate change wherethe origin is moved to a
stationary point, like ˜pi = pi − pi,stat. When this is done the coordinate change toξ andη
can be chosen as

(ξ1,ξ2,η1,η2)
T =

(

λ̃, x̃egr, p̃i , p̃e

)T
(50)

Using (14) the zero dynamics can be written as

η1 = f1(ψ−1(ξ,η)) (51)

η2 = f2(ψ−1(ξ,η))+g2(ψ−1(ξ,η))β(ξ,η)−1(ξ̇−α(ξ,η)) (52)

where

α = L f h (53)

β = Lgh (54)

For the stationary pointpi = 2.06·105 Pa,pe = 2.41·105 Pa,ωt = 7001 rad/s, andAegr =
1 ·10−4m2, this zero dynamics is linearized

η̇ = Aη (55)

and the eigenvalues ofA becomeσ1 = −6.8 andσ2 = 15.8, so clearly the zero dynamics
is unstable. The iterative technique described by (27) is used to solve for the trajectories
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Figure 10: Specified output trajectories forλ and xegr (solid). A corresponding
forward dynamic simulation (dashed) is also seen.
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Figure 11: Required inputs from an inverse dynamic simulation of the diesel engine
with desired outputs according to Figure 10.

of the zero dynamics. No measures like e.g. multiple linearizations are used to optimize
performance. Having obtained the trajectories the required input is calculated as in (14)
which here becomes

(

ũegr,d

Ãvgt,d

)

= β−1(ξ,η)

((

˙̃λd
˙̃xegr,d

)

−α(ξ,η)

)

(56)

Forward dynamic simulations of the diesel engine is non trivial [28], since it is hard
to design a controller for the non minimum phase multivariable system. Instead, the pro-
cedure here is first to specify desired outputs, the drivecycle, then to perform an inverse
simulation, and finally to use the resulting inputs as inputsto the forward dynamic simu-
lation. See Figures 10 - 11 for simulations of the model, which demonstrates feasibility
since the results are almost identical for forward and inverse simulation.

5 Simulation usability and performance

The extended concept of inverse dynamic vehicle simulationsummarized in Sections 2
and 3.2 was in the previous section demonstrated to be feasible. However, as has been
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mentioned, the goal of the paper is increased performance bycombining the advantages of
forward dynamic simulation and quasi-static inverse simulation in a new method, inverse
dynamic simulation, see Figure 1. This section is devoted toa comparison with standard
forward simulation, realizing that when performing a simulation there a several properties
that are important. This regards the set-up effort, consequences of tracking performance,
consistency when scanning a parameter set, and of course simulation time, which are the
topics of the following sections.

5.1 Simulations

The simulation study for investigating properties and for making comparisons has been set
up in the following way. The powertrain models from Section 4are used, with parameter
values corresponding to a typical personal sedan car exceptfor the diesel example which
is a typical heavy truck diesel. Detailed parameter values can be found in [10]. Regarding
driver models, the forward model is controlled with a drivermodel implemented as a
PID-controller that is connected to the vehicle model as depicted in Figure 1. The PID-
parameters areKp = 8 ·10−5, Ki = 1 ·10−6 andKd = 0. The inverse dynamic simulation,
see Figure 1, uses a driver model as described by (28) - (29) with the parametera = 5.
To get comparable tracking, the parameter setting of the driver models has been done
as follows: First an inverse dynamic driver model has been designed that has a suitable
tracking behavior. Then, a forward dynamic PID-type drivermodel has been designed
such that it has comparable response time as the inverse driver model. The models are
simulated in the New European Drive Cycle, Figure 2.

5.2 Simulation setup effort

It was seen in Section 4.1 that both the inverse and forward dynamic simulation produced
qualitatively the same result. However, it can be seen in Figure 8 that the forward dynamic
simulation in that example has an oscillating behavior in throttle position. This stems from
the driver model, since for this example it is not sufficient with a single PID-controller due
to the non-linearities in the system. It may take quite some effort to design a driver model
that adapts to the vehicle’s behavior in different operating points. On the other hand, it
is seen that the inverse dynamic simulation has a smooth control that better resembles
the behavior of a real driver. Thus, the complexity of designing a driver model may be a
drawback for the forward dynamic simulation considering setup effort.

It is straight forward to implement a forward dynamic model in a simulation tool like
Matlab/Simulink, whereas an inverse dynamic simulation requires manipulations with the
differential equations describing the system before it canbe simulated. These manipula-
tions are however systematic as described in Section 2, and can be automatized. The
systematic conversion reduces the need to build dedicated inverse models as those used
in, e.g., Advisor. In this way the new simulation concept is abridge that ties forward dy-
namic simulations as in, e.g., PSAT, to quasi-static inverse simulations as in, e.g., Advisor,
in the sense that common model data bases can be used.
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Sim
Method

Driver model Fuel cons
[l/100km]
r=0.3m

Fuel cons
[l/100km]
r=0.45m

Forward Kp = 1.5·10−4

Ki = 1 ·10−5
8.619 7.315

Forward Kp = 5· 10−4

Ki = 5 ·10−6
8.634 7.293

Inverse a=2 8.595 7.265
Inverse a=1 8.627 7.271

Table 1: Consistency in simulation with change in wheel radius.

5.3 Consistency for parameter exploration

An important use of drive cycle simulation is for design space exploration like optimiz-
ing gear ratios of the transmission, optimizing the size of the engine for minimal fuel
consumption, or tuning of control system parameters. Then,it is important to have con-
sistency when some parameters vary between simulations, sothat correct conclusions can
be drawn.

A first complication is that tracking may vary as described already in Section 3 and
illustrated in Figure 3. Using the model from Section 4.1, itis seen in Figures 7 and 8
that both the forward and inverse dynamic simulation produces qualitatively comparable
results. In [10] an experiment with parameter changes in this model is done by keeping
the driver parameters, but the engine size is changed from 2.3 to 1.6 liters and the vehicle
mass is changed from 1700 to 1100kg. It turns out that the tracking behavior in the for-
ward simulations is different in the two cases but is by construction exactly the same for
the inverse dynamic simulations. Further, even though all simulations are within track-
ing limits, the different behaviors of the forward simulation give oscillations in the light
weight vehicle case. This shows that it can be difficult to runa set of forward dynamic
simulations and get a consistent fuel consumption calculations without retuning the driver
model when the vehicle parameters are changed.

An even more important point will now be demonstrated. The same model is used
again but now with a stiff driveline. It is simulated to studythe fuel consumption in the
NEDC driving cycle. The fuel consumption is taken as the integral of the maximum of
the fuel flow given by the model and an idle flow. Simulations are performed both with
the inverse dynamic method and the forward dynamic method. Keeping the same driver
models, the simulations are performed with two different wheel radius namely 0.3m and
0.45m. The results are shown in Table 1. For the forward case the order between the
two cases are reversed (8.619< 8.634 compared to 7.315> 7.293), which means that the
order in fuel consumption between the driver models is not preserved when wheel radius
is changed. This indicates that it can be difficult to evaluate simulations where model
parameters change if the tracking characteristics is not preserved. For the inverse case the
order is consistent (8.595< 8.627 and 7.265< 7.271).

The examples above show effects in forward dynamic simulation that deteriorates the
usefulness for the set of simulations as a design space exploration. However, for inverse
dynamic simulation, due to the computational scheme with the implicit driver model the
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behavior within tracking limits is consistent. The conclusion is that inverse dynamic
simulation has an advantage regarding consistency in design space exploration.

5.4 Simulation time

Recall that the main goal was to extend quasi-static inversesimulation with additional
dynamics while still keeping the low simulation time.

In order to study the simulation speed of inverse and forwarddynamic simulation
the three models from Section 4 will be used again in a more elaborate study including
more cases than in the previous sections. Besides the drive cycle NEDC also FTP 75 has
been used. Further, different driver models have been used as summarized in Table 3.
Twentysix combinations of vehicle models, driver models, and drive cycles have been
simulated and they are listed in the presentation of the results in Table 2. The “SP”
models is the model from Section 4.1 with a stiff drive shaft and engine dynamics. The
“FP” models is the model of a powertrain with a flexibility in the driveshaft from Section
4.1. The diesel engine model, “DE”, is the one with unstable zero dynamics described in
Section 4.2. One iteration has been used to find the zerodynamics of the inverse diesel
engine model. The number of integration steps in the inversesimulation of the diesel
engine is the sum of steps for the simulations of the zero dynamics and for finding the
required inputs.

Approach in comparisons

The inverse dynamic simulations are setup in order to resemble an automatic conversion
from the corresponding forward model using only the conversion described in Section 2.
This means that there is additional potential for speed up, like regarding choice of coordi-
nates or to see if all or at least some of the variables in the inverse coordinate change can
be solved analytically.

For each case in both inverse and forward simulation the fastest solver has been cho-
sen, and the resulting choice is listed in a column of the result presentation in Table 2.

Timing results

The main result that can be seen in Table 2 is that the inverse dynamic simulation has a
considerable speed advantage compared to the forward dynamic simulation. This holds
for all three powertrain applications that have different added dynamics. Going a bit more
into detail there are a number of interesting observations to be made in the comparisons.
There are mainly two things that affect the simulation time,the number of steps required
in the integration, and the number of calculations in each step. In Table 2 it is seen that
the inverse dynamic simulation takes at least an order of magnitude fewer steps than the
forward dynamic simulation.

One reason for the difference in number of integration stepsrelates to characteristics
of the vehicle model. The number of steps in the integration is mainly depending on
the eigenvalues of the simulated system, where large eigenvalues, i.e., far away from the
imaginary axis, will require small steps and thus more steps. This means that when the
eigenvalues of the zero dynamics are smaller than the eigenvalues for the forward dynamic



28 PAPER A. EFFICIENT DRIVE CYCLE SIMULATION

model, the inverse dynamic simulation will require fewer steps than the forward and for
many systems this is the case. For example, in the diesel engine model the eigenvalues
of the forward model in the linearization point are -18.2, -12.7, -5.00, -1.26, and for the
zero dynamics the eigenvalues are 15.8 and -6.8. For the stiff powertrain model there is
no zero dynamics, so the inverse model is correct in each sample point independent of
how few steps that are taken. Also for the flexible powertrainmodel, the zero dynamics,
stemming from the drive shaft flexibility, is slower than e.g. the intake pressure dynamics.

Another reason for the advantage in simulation time are the calculations needed in
each integration step. If there is a need to solve the inversecoordinate change numerically
online, the number of calculations in each step can increasesome for the inverse dynamic
models. However, since the dimension of the zero dynamics issmaller than the number
of states in the forward dynamic models the number of calculations in each step are fewer
in most cases.

A further reason for the relatively slow simulations of the forward models of the basic
powertrain and the flexible powertrain is the need for extra dynamics in the form of a con-
troller, the driver model. Typically, such a controller mayhave ten times faster dynamics
than the controlled system. Plots from such simulations presented in Table 2 have been
presented in Section 4. In those plots the forward dynamic simulation is unnecessarily
oscillating in some cases due to the driver model, but this isnot the main reason for long
simulation times. The trends in simulation time reported inTable 2 are still valid for other
tunings of the forward driver models.

6 Conclusions

The importance and characteristics, e.g. regarding tracking and repeatability, of drive
cycle simulation have been presented. Aiming especially for repeated drive cycle simula-
tions, the new implicit driver model presented in Section 3.2 together with the inversion
procedure presented in Section 2 forms a new concept of inverse dynamic vehicle simu-
lation. The use of the new driver model is a good way of specifying tracking behavior.
Compared to specifying tracking using the forward driver model it is closer to human
behavior when performing drive cycle tests on a chassis dynamometer, since it is not
specified by controller parameters, but rather in terms of tracking smoothness.

In Section 4 three powertrain applications were presented that included important
dynamics that can not be handled using quasi-static inversesimulation. The extensions
were engine dynamics, drive line dynamics, and gas flow dynamics around diesel engines.
These three cases also represented interesting mathematical properties such as zero dy-
namics, resonances, and non-minimum phase systems, i.e. unstable zero dynamics. The
feasibility of inverse dynamic simulation of these systemswas shown.

Besides feasibility more importantly also good characteristics was demonstrated re-
garding consistency and simulation speed. It was found thatspecifying the parametera
in the interpolating driver model is simpler than retuning the forward driver model (PID-
controller) for each model parameter setting, which is necessary to achieve consistency in
design space exploration. Simulation comparisons demonstrated that the new method has
good performance with faster simulations compared to standard forward simulation. This
means that the goals of Section 1 and Figure 1 are achieved. Inverse dynamic simula-
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Model Drivecycle Sim. Time [s] #steps Solver Forw./ Inv.
SP 1 NEDC 18.0 7653 ode45 F
SP 1 FTP75 31.8 13594 ode45 F
SP 2 NEDC 13.5 6287 ode45 F
SP 2 FTP75 22.2 9819 ode45 F
SP 3 NEDC 12.1 5637 ode45 F
SP 3 FTP75 22.6 9730 ode45 F
SP 4 NEDC 0.33 50 ode45 I
SP 4 FTP75 0.078 50 ode45 I
SP 5 NEDC 0.076 50 ode45 I
SP 5 FTP75 0.084 50 ode45 I
SP 6 NEDC 0.057 50 ode45 I
SP 6 FTP75 0.090 50 ode45 I
FP 1 NEDC 409 308207 ode23tb F
FP 1 FTP75 216 140183 ode45 F
FP 2 NEDC 320 244053 ode23tb F
FP 2 FTP75 197 130734 ode45 F
FP 3 NEDC 263 201583 ode23tb F
FP 3 FTP75 188 124498 ode45 F
FP 4 NEDC 60.0 10207 ode23tb I
FP 4 FTP75 161 26763 ode23tb I
FP 5 NEDC 30.5 5164 ode23tb I
FP 5 FTP75 100 16806 ode23tb I
FP 6 NEDC 117 16294 ode23tb I
FP 6 FTP75 66.9 10899 ode23tb I
DE - 12.9 3596 ode23tb F
DE - 8.66 2201 ode23tb I

Table 2: Simulation times.

Model Kp Ki a
SP 1, 4 6·10−4 1 ·10−5 1
SP 2, 5 1.5 ·10−4 1 ·10−5 2
SP 3, 6 8·10−5 1 ·10−6 5
FP 1, 4 1.5 ·10−4 2.5 ·10−6 1
FP 2, 5 1.2 ·10−4 2 ·10−6 2
FP 3, 6 8·10−5 1 ·10−6 5
Table 3: Driver model parameters.
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tion was favorably compared to forward dynamic simulation regarding simulation set-up
effort, simulation time, and consistency for parameter exploration. This makes inverse
dynamic simulation a suitable method to use for drive cycle simulation, especially in sit-
uations requiring many simulations, such as optimization over design space, powertrain
configuration optimization, or development of powertrain control strategies.
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Abstract
The method for stable inversion of nonlinear systems has earlier been demon-
strated as an efficient tool in inverse dynamic vehicle propulsion simulation.
However, that method is restricted to quadratic systems, i.e. systems with equally
many inputs and outputs. Here that restriction is relaxed for typical vehicle
propulsion simulation where the number of inputs, e.g. accelerator pedal and
brake pedal, are greater than the number of outputs, e.g. vehicle speed. Also re-
strictions to states and inputs resulting in time varying system order and relative
degree is discussed. A model of a parallel hybrid vehicle is used for demonstra-
tion.

1This is an edited version of [7], Inverse Dynamic Simulationof Non-Quadratic MIMO Powertrain Models -
Application to Hybrid Vehicles, published in the preprintsof the IEEE Vehicle Power and Propulsion Conference
2006.
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1 Introduction

Simulation of longitudinal vehicle models is a commonly used tool for driveline design,
driveline optimization, and, design of driveline control strategies. There are two com-
mon ways to do this, quasi-static as, e.g., in Advisor [13] and QSS-TB [8], and forward
dynamic simulation as, e.g. in PSAT [12] and Capsim [1]. The quasi-static simulation
uses vehicle speed and acceleration to calculate required torques and speeds backwards
through the driveline, and from that engine input is calculated. The model consists of
static equations and efficiency maps of the components whichresults in low simulation
time making the method suitable for design space exploration and optimization loops. In
forward dynamic simulation, differential equations are solved using, e.g., throttle position
as input, and vehicle speed as output, resulting in typically an order of magnitude longer
simulation times for drive cycle simulations than what is typical for Advisor or QSS [6].
The advantage is that dynamic effects can be included makingthe modeling more accu-
rate than in quasi-static simulation. In Fröberg [6] and Fröberg and Nielsen [5], [4] it is
shown that inverse dynamic simulation is a good compromise between accuracy and sim-
ulation speed. There the method for stable inversion of nonlinear system [2], [9] is used
to systematically transform a forward dynamic model to an inverse dynamic model. In
contrast to the quasi-static approach this method treats the same kind of dynamics as the
forward dynamic simulation, and it also handles zero dynamics and non-minimum phase
systems, while keeping a low computational time.

The method for stable inversion of nonlinear systems requires a quadratic system,
i.e. a system with equally many inputs and outputs. For a typical longitudinal vehicle
simulation the number of inputs is greater than the number ofoutputs. Typically, there
is one output, vehicle speed, and at least three inputs, accelerator pedal, brake pedal, and
gear selector. It will here be shown how this MISO system, with minimal restrictions, can
be transformed to a quadratic system that can be inverted.

A characteristic property in system inversion is the systemrelative degree [10], i.e.
the number of times the output has to be differentiated in order for the input to appear
explicitly. When for example putting restrictions on states or controls, the relative degree
typically varies over time. It will here be discussed how this is treated and in a simu-
lation example it will be demonstrated how this is handled intypical vehicle propulsion
simulation.

First, the method of inverse dynamic powertrain simulationwill be described, and it
will be discussed what extensions that are necessary to simulate non quadratic powertrain
models and systems of time varying order and time varying relative degree.

2 Inversion of non linear systems

The inverse dynamic simulation method is based on two things, inversion of differential
equations that describes the system, and design of a driver model. The inversion uses
the method of stable inversion of nonlinear systems [2], [9]. The method is based on a
change of coordinates that enables computation of the inputas a function of the output,
its derivatives, and the trajectories of the zero dynamics.

A short review of the method [2, 9] will be given here. Letu(t) be the inputs,y(t) the
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outputs, andx(t) the states of a given system. Suppose that the system can be written in
input-affine form and that the number of inputs,q, equals the number of outputs.

ẋd(t) = f (xd(t))+g(xd(t))ud(t) (1)

yd(t) = h(xd(t)) (2)

Here suffixd corresponds to variables which by some means are smooth, corresponding
to tracking of a velocity profile. Given a desired outputyd(t) that is smooth, the problem
is to solve for the inputud(t), and possibly also the statesxd(t). With the notion smooth,
it is here meant that a signal is sufficiently many times continuously differentiable. From
here on it will be assumed that all functions are smooth such that the necessary derivatives
exist and can be computed. It will also be assumed thatf (0) = 0 andh(0) = 0. This can
always be achieved for systems like (1)-(2) by a simple change of coordinates.

Let L be the standard notation for Lie-derivatives according to

L f h(x) = ∑
i

fi(x)
∂h(x)

∂xi
, Lr

f h(x) = L f

(

Lr−1
f h(x)

)

(3)

If for all 1 ≤ i, j ≤ q, for all k < r i −1, and for allx in a neighborhood ofx0

Lg j L
k
f hi(x) = 0 (4)

and theq×q matrix

β̃(x) =













Lg1Lr1−1
f h1(x) . . . LgqLr1−1

f h1(x)

Lg1Lr2−1
f h2(x) . . . LgqLr2−1

f h2(x)
...

. . .
...

Lg1L
rq−1
f hq(x) . . . LgqL

rq−1
f hq(x)













(5)

is nonsingular, then the system is said to have a vector relative degreer = (r1, r2, . . . , rq)
at the pointx0. That is, the relative degree of the system is the number of times one has
to differentiate the outputs for at least one input to appearexplicitly.

The first step in the inversion procedure is to compute the relative degree. The next
step is to partially linearize the system. This is done by differentiatingyi(t) until at least

oneu j(t) appears explicitly. Defineξi
k = y(k−1)

i (t) for i = 1, . . . ,q andk = 1, . . . , r i and let

ξ =
(

ξ1
1,ξ1

2, . . . ,ξ1
r1

,ξ2
1, . . . ,ξ2

r2
, . . . ,ξq

rq

)T

=
(

y1, ẏ1, . . . ,y
r1−1
1 ,y2, . . . ,y

r2−1
2 , . . . ,y

rq−1
q

)T
(6)

Now the change of coordinates can be defined. Sincey is a function ofx, it can be written
as

(

ξT ,ηT)T
= ψ(x) (7)

whereη are variables needed, and the only constraint in the choice of η is that the Jacobian
matrix ofψ(x) must be nonsingular atx0 so that it is a local coordinates transformation in
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a neighborhood ofx0. It is always possible to find such aψ(x) [10]. With this choice of
coordinates the following system which is partially linearin ξ is achieved



















ξ̇i
1(t) = ξi

2(t)
...

ξ̇i
r i−1(t) = ξi

r i
(t)

ξ̇i
r i
(t) = αi(ξ(t),η(t))+ βi(ξ(t),η(t))u(t)

η̇(t) = sa(ξ(t),η(t))+sb(ξ(t),η(t))u(t)

(8)

where the vectorα and the matrixβ are

α(ξ,η) = Lr
f h(ψ−1(ξ,η)) (9)

β(ξ,η) = LgLr−1
f h(ψ−1(ξ,η)) (10)

and the functionssa(ξ,η) andsb(ξ,η) are given by the choice ofη.

Denotey(r) =
(

y(r1)
1 , . . . ,y

(rq)
q

)

. Then it can be seen in the first part of (8) thaty(r)(t) =

αi(ξ(t),η(t))+ βi(ξ(t),η(t))u(t). By the definition of relative degree,β(ξ,η) is nonsin-
gular. Given a desired output trajectoryyd(t) the required control inputud(t) can be
calculated as

ud(t) = βi(ξ(t),η(t))−1(y(r)
d (t)−αi(ξ(t),η(t))) (11)

Here it is seen that in order to calculate the required input for the system to follow the
prescribed trajectory, not onlyyd(t) has to be known, but also the trajectories ofη(t) and
ther first derivatives ofyd(t). If the state trajectories producing the desired output areof
interest they can be calculated from the inverse coordinatechange

x(t) = ψ−1(ξ(t),η(t)) (12)

How the zero dynamics is to be solved depends on the system studied. There are three
classes of systems that can be written in the form (8). The first class is all systems where
the relative degree equals the dimension of the system, which means that there are no zero
dynamics. The second class is all systems with stable zero dynamics, i.e., minimum phase
systems, and the third class is systems with unstable zero dynamics, i.e., non-minimum
phase systems. For the class of systems without zero dynamics, (11) becomes a system
of static equations where the required input can be calculated from the desired output and
its derivatives. In the case of stable zero dynamics the procedure is also straight forward.
Substitute (11) in (8),

η̇ = sa(ξ,η)+sb(ξ,η)βi(ξ,η)−1(y(r)
d −αi(ξ,η)) ≡ s(η,Yd) (13)

where
Yd =

(

y1, ẏ1, . . . ,y
(r1)
1 ,y2, . . . ,y

(r2)
2 , . . . ,y

(rq)
q

)

(14)

Choose appropriate initial values forη(t), and solve the system of differential equations,
(13), in order to find the trajectories of the zero dynamics.

In the case of unstable zero dynamics however, there is no such straight forward way,
since then (13) can not be integrated as an initial value problem. It is not possible to
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solve the unstable zero dynamics in the general case, but in drive cycle simulations the
desired output trajectory is known before hand. This gives the possibility of computing a
non causal solution of (13) and still receive a stable result. In Devasia et al. [2] a Picard-
like iteration is used to find the zero dynamics of a nonlinearnon-minimum-phase system.
See also Fröberg [6] for a simulation example of a diesel engine with non-minimum phase
properties.

In summary the algorithm is as follows. Consider a system of order n. First, find
the relative degreer of the system and differentiate the outputr times. Then make a
coordinate change (7) where the system outputs and its derivatives up to the orderr −1
are used as states. Choosen− r other states to form a complete base for state space. These
n− r states is the zero dynamics and is typically chosen from the original states. The zero
dynamics is driven from the output and can be calculated fromthe output and itsr first
derivatives by combining Equations (11) and (8). The trajectories of zero dynamics are
solved by numerical integration. Then Equation (11) is usedto calculate the inputs from
the trajectories of the zero dynamics and ther first derivatives of the output . The original
states are found by the inverse of the coordinate change (12).

3 Driver model

The outputy to the original system, and its derivatives, is used as inputto the inverse
dynamic simulation. In vehicle propulsion simulation thismeans that the reference ve-
hicle speed has to be differentiated as many times as the systems relative degree. For a
physically realistic system it is not a restriction to assume that the speed is sufficiently
differentiable, since it would require infinite accelerations and torques in the driveline to
produce a non differentiable vehicle speed. In inverse dynamic simulation the vehicle
speed profile has to be smoothed to fulfill the differentiation requirements. The smooth-
ing corresponds to driver behavior and in [5], [6] the smoothing is done based on desired
driver behavior by calculating the desired speed profilevd(t) and its derivatives from a
given drive cyclevc(t) as the following convolution

v(r)
d (t) =

∞
∫

−∞

g(r)(t − τ)vc(τ)dτ (15)

By using this method when calculatingv(r)
d (t) numerical differentiation of the speed pro-

file is avoided sinceg(r)(t) can be analytically differentiated. Using the convolutionkernel

g(t) =

{

e
−a2

a2−t2 , |t| ≤ a;
0, otherwise

(16)

a speed profile as in Figure 1 is achieved.

4 Application to hybrid vehicles

To demonstrate inverse dynamic powertrain simulation a model of a parallel hybrid elec-
tric vehicle is used. First, the powertrain model equationswill be presented. Then, the
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Figure 1: Part of the European drive cycle NEDC. The solid line is the drive cycle
and the dashed line is the desired speed profile given by the driver model (15) with
the tracking time constanta = 5 seconds.

Figure 2: Schematic description of an example model of a parallell hybrid electric
vehicle.
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design of the control system necessary for inversion will bepresented. The inversion
algorithm for this system will be detailed, and last a simulation of the model will be
presented.

The powertrain is a parallel hybrid electric vehicle consisting of an internal combus-
tion engine, ICE, with transmission, and an electric motor coupled to the driveshafts.
See Figure 2 for a schematic depiction. The vehicle and engine model are standard as
described in Kiencke and Nielsen [11].

The motion of the vehicle is described by Newtons second law,

mv̇ = Ft −Fa−Fr −Fb (17)

i.e., mass,m, times acceleration, ˙v, equals the tractive force,Ft , reduced by air resistance,
Fa, rolling resistance,Fr , and force from the brakes,Fb. The resistances are given by

Fa =
1
2

ρcdAv2, Fr = mgcr (18)

whereρ is air density,cd drag coefficient,A vehicle cross sectional area,g gravitational
acceleration, andcr is rolling resistance coefficient.

The wheels are modeled without slip such that the tractive force is given from wheel
torqueTw and wheel radiusr, and vehicle speed is given from wheel speedωw according
to

Ft r = Tw, ωwr = v (19)

The wheel torque is the sum of the transmission torqueTt,out and the electric motor
torqueTem

Tw = Tt,out +Tem (20)

The transmission is modeled as an ideal gear with gear ratioit and the ingoing torque
to the transmissionTt,in and engine speedωe are given by

Tt,init = Tt,out, ωe = itωw (21)

The rotating parts of the engine is modeled as a standard rotating inertia as

Jeω̇e = Te−Tt,in (22)

whereJe is engine inertia andTe is the produced torque from the pistons. The engine
torque is modeled as proportional to fuel mass per engine cycle mf . Assuming that the
engine runs at stoichiometric conditions, i.e. the normalized air fuel ratioλ = 1, fuel mass
is given from air mass per engine cyclemac and stoichiometric air fuel ratioAFs

Te = kemf = ke
mac

AFsλ
(23)

The air mass flow into the cylinders is described by

ṁac = ηvol
Vdωep
2πnrRTi

, mac = ṁac
2πnr

ωe
(24)

whereηvol is volumetric efficiency,Vd is engine displacement,p is intake manifold pres-
sure,nr is number of revolutions per engine cycle,R is the mass specific gas constant,Ti

is intake manifold temperature.
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The pressure derivative in the intake manifold is given by the difference of the in-
flow and the outflow, i.e. the flow past the throttle, ˙mat, and the flow into the cylinders,
according to

ṗ =
RTi

Vi
(ṁat − ṁac) (25)

whereVi is intake manifold volume.
The electric traction motor is here assumed to work as a generator also and is modeled

as a DC-motor where the torque is proportional to the electric currentıem.

Tem= ıemkem (26)

The motor is modeled as with internal inductance and resistance and the current derivative
is given by

Lemı̇em= Uem−Remıem−ωemkem (27)

whereUem is the applied voltage. Note that motor current is denotedıem and that its time
derivative is denoted ˙ıem.

The rate change of the battery charge is simply

q̇ = −ıem (28)

Putting Equations (17)-(28) together results in a system with the states vehicle speed,
v, intake manifold pressure,p, motor current,ıem, and battery charge,q. Inputs to the
system is air flow past the throttle, ˙mat, motor voltage,Uem, gear ratio,it , and braking
forceFb. Output is vehicle speed. Lumping all model parameters intoci > 0, the system
can be written as

v̇ =
−c1v2−c2−c3Fb +c4ıem+c5pit

c6 +c7i2t
(29)

ṗ = c8ṁat −c9itvp (30)

ı̇em = c10Uem−c11ıem−c12v (31)

q̇ = −ıem (32)

4.1 Control system

Since the system (29)-(32) has four inputs and only one output inverse dynamic simulation
as described in Section 2 can not be applied directly. However, for most vehicle propul-
sion simulation applications this problem can be solved by also considering an energy
management system and a driver model. In a hybrid vehicle thedriver does not decide
how to combine the engine and motor to get a desired tractive force. This is done by an
energy management system that in this case controls the motor voltage and the engine air
mass flow from accelerator pedal position,Ap,pos, and the vehicles current state. Formally
this can be written asUem=Uem(Ap,pos,v, p, ıem,q), andṁat = ṁat(Ap,pos,v, p, ıem,q). For
most purposes it can also be assumed that the accelerator pedal and brake pedal never is
used at the same time. It will also be assumed that the driver changes gear at for example
given engine speed, i.e.it = f (ωe). Using the above assumptions the system has one input
at each time, either, accelerator pedal or brake pedal, and one output, vehicle speed. See
Figure 3 for a schematic depiction of inverse dynamic simulation of the example vehicle.
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Figure 3: Schematic description of inverse simulation of the model ofa parallell
hybrid electric vehicle depicted in Figure 2.

Energy management system

The focus in this work have been to demonstrate the inverse dynamic simulation on typical
system structure of a hybrid electric vehicle with varying relative degree and more inputs
than outputs. No effort has been made on finding a fuel optimalenergy management
system.

The control strategy is as follows:

1. Use the electric motor at speeds belowVlim

2. Use both the electric motor and ICE at hard accelerations

3. Use the ICE aboveVlim

4. Use the electric motor at braking (charging the battery)

5. Use the brakes if electric motor is not enough

No clutch is modeled between the engine and the rest of the driveline so the engine
always rotates. When the electric motor is not used a switch is used to disconnect the
motor from the battery. Also the charge and discharge current is limited toıem,min ≤ ıem≤
ıem,max.

For the five cases above the following systems are simulated:For case 1 and 4 the
engine is dragged by the driveline, ˙mat = 0, andUem is the input to the model. This means
that the system is of ordern = 4, the relative degree becomesr = 2, and the dimension of
the zero dynamics is dimη = 2. The coordinate change (7) can be chosen as

[

ξ1 ξ2 η1 η2
]T

=
[

v v̇ ıem q
]T

(33)

wherev̇ is given from Equation (29).
For case 2 the current of the motor is saturated atıem,max so the states to be simulated

arev, p, andq, and the input to the model is ˙mat. The system order isn = 3, the relative
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degreer = 2, and dimη = 1. The coordinate change can be chosen as
[

ξ1 ξ2 η1
]T

=
[

v v̇ q
]T

(34)

For case 3 the battery is disconnected from the motor, which givesn = 2, r = 2, and
dimη = 0. This means that there are no zero dynamics and the inverse model is a system
of static equations according to Equation (11). The coordinate change is

[

ξ1 ξ2
]T

=
[

v v̇
]T

(35)

For case 5 the electric motor is saturated atıem,min, ṁat = 0, andFb is the input to the
model. Since the motor current is givenn = 3, r = 1, and dimη = 2. The coordinate
change can be chosen as

[

ξ1 η1 η2
]T

=
[

v p q
]T

(36)

When the coordinate changes have been decided, the zero dynamics can be simulated
combining Equation (11) with the last equations of the system (8). Using the inverse
coordinate change (12) the zero dynamics can be simulated using the original coordinates.
When the zero dynamics is known the required inputs is given by Equation (11).

The termsα, (9) andβ, (10) for the different cases whenUem, ṁat, or Fb is used as
input becomes (expressed in the original coordinates):

αEM =
1

c6 +c7i2t

( −2c1v

c6 +c7i2t

(

−c1v2−c2−c3Fb+c4ıem+c5pit
)

+c4(−c11ıem−c12v)+c5it (c8ṁat −c9itvp)
)

(37)

βEM =
c4c10

c6 +c7i2t
(38)

αICE =
1

c6 +c7i2t

( −2c1v

c6 +c7i2t

(

−c1v2−c2−c3Fb +c4ıem+c5pit
)

+c4 (c10Uem−c11ıem−c12v)+c5it (−c9itvp)
)

(39)

βICE =
c5c8it

c6 +c7i2t
(40)

αB =
(

−c1v2−c2+c4ıem+c5pit
) 1

c6 +c7i2t
(41)

βB =
−c3

c6 +c7i2t
(42)

To perform an inverse dynamic simulation of this system, an inverse dynamic driver
model, (15), is designed that specifies the desired velocityprofile. Using the inverse driver
model together with the powertrain model and its control system, the model has only one
input, desired acceleration, i.e. accelerator or brake pedal position, and one output, vehicle
speed. This system can be inverted using the method described in Sections 2 and 3 which
results in an inverse dynamic model as depicted in Figure 3. An example simulation of the
hybrid powertrain model is presented in Figures 4 and 5. Whensimulating the considered
vehicle model there are some further considerations that will be discussed in the following
subsections.
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4.2 Change in system order and relative degree

As described above the system changes both order and relative degree when the energy
management system switches operating mode. For some mode switches the coordinates
for the zero dynamics is changed. Whenever a new coordinate is introduced it has to
be properly initiated. For example, when switching from high to low speed, i.e. case
3 to 1, two new coordinates,ıem andq is introduced and has to be properly initialized.
This has to be done such that the system equations (29)-(32) is consistent over the mode
switch. For the chargeq the only constraint is the obvious fact that it has to be initialized
to the value it had at the end of the period when it was last used. For ıem continuity and
smoothness of other variables also has to be considered. In this case it means thatıem

has to be initialized to a value consistent with Equation (29). Note that re-initializations
of variables as described above can not be done for general non-minimum phase systems
due to continuity restrictions [2].

4.3 Gear shifting and parameter jumps

The simplest way to model a gear change is as a parameter jump in gear ratio. This
approach however can not be used without consideration in neither inverse nor forward
simulation. As described in Section 2 there are smothness constraints on vehicle speed
as well as on internal variables. This can be violated if gearchanges are modeled as
parameter jumps. In the vehicle model presented here the parameter jump approach is
chosen. Since the model is a minimum phase system the simulation of the zero dynamics
can be stopped just before a gear change, then all states are re-initialized to be consistent
with the new gear ratio. For this example this causes a jump inintake manifold pressure.
Since the intake pressure dynamics is much faster than the chassis dynamics this can
be accepted for cases such as fuel consumption simulations.If an exact simulation of
the engine dynamics is required the gear shifting has to be more carefully modeled, for
example with a slipping clutch where a “drive cycle” is specified for the clutch, i.e. speed
profiles for the clutch plates during release and lock has to be specified.

Results for parameter jumps in inversion of linear non-minimum phase systems is
given by Devasia et.al. [3].

5 Conclusion

Inverse dynamic simulation based on stable inversion of nonlinear systems has earlier
been demonstrated feasible on quadratic powertrain models, i.e. models with equally
many outputs and inputs. Here it has been discussed how the inverse dynamic powertrain
simulation of non quadratic systems is performed. Inverse dynamic simulation of MISO
powertrains is shown possible by specifying a control system and a driver model which
results in a total system of one input, i.e. the driver’s desired acceleration, and one output,
the vehicle speed. It is shown that restrictions on states and controls can result in a system
where the system order and relative degree changes at switchpoints. Proper handling of
such systems in inverse dynamic simulation is discussed. Last, inverse dynamic simu-
lation of non quadratic systems that changes order and relative degree at switch points,
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Figure 4: Simulated states for the hybrid vehicle model.
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Figure 5: Simulated controls for the hybrid vehicle model.
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is demonstrated feasible by simulation of an example model of a parallel hybrid electric
vehicle.
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3
Look ahead powertrain control

The problem studied in this part is how to drive a given distance at a given time in the
most fuel efficient way. Only highway-like driving for heavytrucks has been studied, but
the results should be easily transferred to other driving missions and other vehicles by
changing the problem parameters.

Driving a given distance with an average speed is equivalentto drive a given distance
at a given time. The problem of minimizing fuel consumption under such conditions can
be formulated as follows. Let ˙mf (t) be the fuel flow into the engine, letv(t) be vehicle
speed, andvavg a desired average speed. Then minimization of fuel consumption over the
time t f is

min
∫ t f

0 ṁf (t)dt (3.1)

such that 1
t f

∫ t f
0 v(t)dt = vavg (3.2)

This problem is studied with slightly different view pointsin the following papers. First
some background to the problem is presented, and then some theory on optimal control is
summarized in a perspective used in the papers. Finally the papers are summarized and
contributions are indicated.

3.1 Background

For heavy trucks even moderate slopes become significant. For a typical heavy truck,
with weigth up to 60 metric tons, the mass of the vehicle makesit impossible to keep a
constant cruising speed at most roads due to road slope. A typical road in Sweden has
variations in slope between approximately−5% to 5%, see Figure 3.1. A negative slope
here defines a downhill slope and a positive slope defines an uphill slope. As shown in
Paper E the power to mass ratio for a typical vehicle that weighs 60 tons is too small for
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Figure 3.1: Slope of the highway E4 in Sweden between the cities of Södertälje and
Norrköping.

the vehicle to keep cruising speed in uphill slopes with an inclination larger than about
1%. Further, in down hill slopes where the engine does not produce any work, the mass
of the vehicle will make it accelerate if no brakes are applied, if the slope is steeper than
about−1%. For driving missions on such roads there are several possible speed profiles
that have the same average speed but with different fuel consumption. These facts make
it interesting to study optimal speed profiles that minimizes fuel consumption on a given
driving mission while keeping a desired average vehicle speed.

3.2 Optimal control theory

To solve the problem defined by Equations (3.1) and (3.2) optimal control theory is used.
A short review of optimal control as described in the classical textbook [4] will now be
given.

Let t0, t f be the initial and final time respectively. Letx(t) be the state vector andu(t)
be the controls of the system defined by

ẋ(t) = f (x(t),u(t),t), x(t0) = x0 (3.3)

Let ϕ(xf , t f ) and L(x(t),u(t), t) be functions that are differentiable sufficiently many
times. The optimal control problem is then to find the controllaw u(t) that minimizes
the performance index

J = ϕ(x(t f ),t f )+

t f
∫

t0

L(x(t),u(t),t)dt (3.4)
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Now, adjoin the system dynamics, i.e. the constraint (3.3),to the performance index with
multipliersλ(t)

J̃ = ϕ(x(t f ), t f )+

t f
∫

t0

(

L(x(t),u(t),t)+ λT(t)( f (x(t),u(t),t)− ẋ(t))
)

dt (3.5)

Define a scalar function called the Hamiltonian as

H(x(t),u(t),λ(t), t) = L(x(t),u(t),t)+ λT(t) f (x(t),u(t),t) (3.6)

In Chapter 2.3 in [4] the necessary optimality conditions are stated as follows: The
adjoint dynamics for an optimal solution is

λ̇T = −∂H
∂x

= −∂L
∂x

−λT ∂ f
∂x

(3.7)

with boundary conditions

λT(t f ) =
∂ϕ

∂x(t f )
(3.8)

and for an extremum it must hold that

∂H
∂u

= 0, t0 ≤ t ≤ t f (3.9)

Equations (3.7), (3.8) and, (3.9) are often referred to as the Euler-Lagrange equations.
A more general result than (3.9) for optimal control is the maximum principle as stated

in [7]. For a minimization problem as here the maximum principle becomes a “minimum
principle”. Let the set of allowed controls beu∈U , let the optimal control beu⋆, and let
the optimal solution bex⋆. Then the optimal control is found from

min
u∈U

H(x⋆(t),u(t),λ(t)) = H(x⋆(t),u⋆(t),λ(t)) (3.10)

Example 3.1

Consider a vehicle with air and rolling resistance forcesFl of the formFl = a+bv2 where
v is vehicle speed. Let the resistance due to road slope becsinα(s), the total vehicle
inertiaJ, the propulsive forceF, and the distance traveleds. The system dynamics can
then be written as

v̇ =
1
J

(

F −a−bv2−csinα(s)
)

(3.11)

ṡ = v (3.12)

The system state vector is thusx = [v,s]T and the control isu = F. If the total propulsive
work for the driving timet f is to be minimized, i.e.

min

t f
∫

0

Fvdt (3.13)
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i.e. L = Fv. The Hamiltonian for this problem is

H = Fv+ λv
1
J
(F −a−bv2−csinα(s))+ λsv (3.14)

and the adjoint dynamics is given by (3.7), i.e.

λ̇v = −∂H
∂v

= −F +
2
J

λvbv−λs (3.15)

λ̇s = −∂H
∂s

=
1
J

λvccosα(s)
dα
ds

(3.16)

with λv(t f ) = λs(t f ) = 0. The optimal propulsive force is found by minimizing the Hamil-
tonian with respect to the controlu. Since the Hamiltonian is linearly dependent onF, the
result obtained by using (3.9),

∂H
∂u

= v+
λv

J
(3.17)

does not give the optimal control directly. However, this function plays an important
role and will be referred to as the control switching function. Using the maximum princi-
ple (3.10) it is seen that when the control switching function is negative maximum propul-
sive force is used and when the control switching function ispositive minimum propulsive
force is used. When

∂H
∂u

= v+
λv

J
= 0 (3.18)

for finite periods of time further reasoning needs to be done in order to find the optimal
control.

Another way of approaching the problem is as follows. Since road slopeα is a func-
tion of position it is convenient to change independent variable according to

d
ds

=
1
v

d
dt

(3.19)

The natural choice of states are then vehicle speedv and traveled timeT, and the system
dynamics is

dv
ds

=
1
Jv

(

F −a−bv2−csinα(s)
)

(3.20)

dT
ds

=
1
v

(3.21)

The objective function is then

min

sf
∫

0

Fds (3.22)

i.e. L = F, and the Hamiltonian is

H = F + λv
1
Jv

(F −a−bv2−csinα(s))+ λT
1
v

(3.23)
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The adjoint dynamics becomes

dλv

ds
= −∂H

∂v
=

λv

Jv2

(

F −a+bv2−csinα(s)
)

+
λT

v2 (3.24)

dλT

ds
= −∂H

∂T
= 0 (3.25)

Note that the second adjoint variableλT now is constant.

3.2.1 Optimal control with specified final states

Now, consider the optimization problem studied above but with some of the states spec-
ified at the final timet f . If xi is specified at the terminal time the boundary condition

∂ϕ
∂xi (t f )

= λi(t f ) is exchanged toxi(t f ) = xi, f . If a system withn states has statesj = 1, . . . ,q

specified at the final time, see Chapter 2.4 in [4], the constraint (3.8) is exchanged to the
following, whereϑ j are associated multipliers to be decided by the problem

λ j(t f ) =

{

ϑ j , j = 1, . . . ,q
∂ϕ

∂xj (t f )
j = q+1, . . . ,n (3.26)

Example 3.2

Consider again Example 3.1. For that problem to be of any interest a constraint on the
traveled distance at the timet f has to be imposed. For the formulation using time as
independent variable this means thatλs(t f ) no longer is zero, but instead that value has
to be chosen such that the optimality conditions are satisfied. If alsov(t f ) is specified,λv

is treated similarly. Ifs is the independent variable instead of time, the same reasoning is
applied toλT(sf ) andλv(sf ).

3.2.2 Restrictions on control variables and states

In some problems it is interesting to study optimal solutions under constraints on functions
of the control and state variables. Such a constraint is written

C(x,u,t) ≤ 0 (3.27)

This problem is handled by adjoining the constraint to the Hamiltonian with a multiplier
µ

H = L+ λT f +µC (3.28)

where

µ

{

> 0, C = 0
= 0, C < 0

(3.29)
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Necessary optimality conditions are discussed in Chapter 3.10 in [4], and is as follows:
The adjoint dynamics is

λ̇T = −Hx =

{

−Lx−λT fx−µCx, C = 0
−Lx−λT fx, C < 0

(3.30)

and the optimal control is found from

Hu = Lu + λT fu +µCu = 0 (3.31)

WhenC = 0, i.e.µ 6= 0, (3.27) and (3.31) together determineu(t) andµ(t).

3.2.3 Singular solutions

In many applications the system is in the form

ẋ = f (x)+g(x)u (3.32)

Also assume thatL is linearly dependent onu, i.e.

L = l(x)u (3.33)

The Hamiltonian is then
H = l(x)u+ λT( f (x)+g(x)u) (3.34)

and
λ̇T = −lxu−λT( fx +gxu) (3.35)

If u is bounded the minimum ofH may occur on the boundary of the set of allu. It is
however possible that there are intervals where a functionu(t) will yield x(t) andλ(t)
such that

Hu = l(x)+ λTg(x) = 0 (3.36)

A convexity condition for a local minimum isHuu ≥ 0. When (3.36) is fulfilledHuu = 0
and such solutions are referred to as singular solutions. For such sections (3.36) does not
directly determineu(t), but it must also hold that

d
dt

Hu = lxẋ+ λ̇Tg+ λTgxẋ = 0 (3.37)

Using (3.32) and (3.35) in (3.37) gives

d
dt

Hu = lx( f +gu)− (lxu+ λT( fx +gxu))g+ λTgx( f +gu) = 0 (3.38)

Note that the terms in the control variableu cancels out in this expression. Equation (3.38)
hence does not help directly in findingu, but it may give valuable insight in the depen-
dence betweenλ andx, which in turn can give information aboutu. This method will be
used later in paper F. In Chapter 8.3 in [4] Equation (3.38) isdifferentiated once again
with respect to time to get an expression that determinesu.
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Example 3.3

Consider again the problem of Examples 3.1 and 3.2 formulated with position as inde-
pendent variable. Withu = F the partial derivative of the Hamiltonian (3.23) with respect
to the control is

∂H
∂F

= 1+
λv

Jv
(3.39)

and
d
ds

∂H
∂F

=
1
Jv

dλv

ds
− λv

Jv2

dv
ds

=
2λvb
J2v

+
λT

Jv3 (3.40)

For singular arcs∂H
∂F = 0 for finite distances which from (3.39) means thatλv = −Jv.

Using this the following dependency betweenv andλT is obtained

d
ds

∂H
∂F

=
λT

Jv3 −
2b
J

= 0 (3.41)

SinceλT is constantv is also constant during singular arcs. From that information the
optimal control is found from the vehicle dynamics.

3.3 Dynamic programming

Dynamic programming became popular after the works [1, 2]. There is also a presentation
given in [4], and a more recent textbook on the subject is [3].In the previous section
optimal control was discussed given an initial state and time. In control applications it is
often desired to know optimal control solutions from many initial states and times in order
to implement feedback control. In [4] it is discussed how this is treated for continuous
time problems, and a short review will be given here.

Typically, only one optimal path passes through a point(x(t),t) which means that a
unique optimal controlu◦ is associated with it. An optimal feedback control law can then
be expressed,

u◦ = u◦(x,t) (3.42)

Also, for each point(x(t), t), following the optimal path to the surface of the terminal
boundary, there is a unique optimal value of the performanceindex,J◦. Hence,J◦ can be
regarded as a function of the starting point, i.e.

J◦ = J◦(x,t) (3.43)

This is referred to as the optimal return function.
For an arbitrary initial point(x,t) the performance index is

J = ϕ(x(t f ),t f )+

t f
∫

t

L(x(τ),u(τ),τ)dτ (3.44)
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with terminal conditionsψ(x(t f ),t f ) = 0. The optimal return function (3.43) is then

J◦(x, t) = min
u(t)

{ϕ(x(t f ),t f )+

t f
∫

t

L(x(τ),u(τ),τ)dτ} (3.45)

with boundary condition thatJ◦(x,t) = ϕ(x,t) on the hypersurfaceψ(x,t) = 0. In [3]
there is a thorough description how this problem is solved iteratively by discretizing time.
There, time is divided inN+1 stages and the system is described as

xk+1 = f (xk,uk) (3.46)

The return function, or cost-to-go as it is called by Bertsekas [3], in the last stage is

JN(xN) = gN(xN) (3.47)

wheregN is the same function asϕ used in [4], see (3.4). Now, let the cost at time instant
k begk(xk,uk). Then, from the value of the end cost, (3.47), the optimal control policy is
found by iterating backward in time according to

Jk(xk) = min
uk

{gk(xk,uk)+Jk+1( fk(xk,uk))}, k = 0,1, . . . ,N−1 (3.48)

Let the optimal value of the cost-to-go function at stagek beJ∗k(xk).
Let πk = {µk,µk+1, . . . ,µN−1}. Then the optimal value of the cost to go function is

J∗k (xk) = min
πk

{gN(xN)+
N−1

∑
i=k

gi(xi ,µi(xi))} (3.49)

This expression can be compared to (3.45). In [3] it is shown that the functionJ∗k (xk) are
equal to the functionsJk(xk) generated by the dynamic programming algorithm (3.48).

When solving an optimal control problem it is also practicalto discretize the state-
space. The dynamic programming problem can then be described by a transition graph.
In a deterministic graph the same optimal solution is found independent if the algorithm
is run backward or forward in the graph.

Example 3.4
Consider again example 3.1 but now to be solved with the discrete dynamic programming
algorithm. The vehicle dynamics using the Euler approximation with step lengthh is

vk+1 = f (vk,Fk) =
h
J

(

Fk−a−bv2
k−csinα(s)

)

+vk (3.50)

Let the final state cost begN(vN) = 0 and the cost for a transition from statevi to vi+1 be
the propulsive workhFi . Then the state transition cost is

gk(vk,Fk) = hFk, k = 0, . . . ,N−1 (3.51)

The optimal control is then found from the backward iteration, with JN = 0,

Jk(xk) = minFk {gk(vk,Fk)+Jk+1( fk(vk,Fk))} , k = 0, . . . ,N−1 (3.52)

The dynamic programming method described is used in Paper C and D. An example
simulation is seen in Figure 3.2, which also will be the starting point of the next section.
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Figure 3.2: A simulation example of an authentic road from Paper D. Two simu-
lations are depicted, one using a standard cruise controller (PI) and one with a pre-
dictive controller using dynamic programming (MPC). The top plot shows the road
topography, the second vehicle velocity, the third normalized accelerator and brake
levels, and the fourth gear selection.
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3.4 Towards practical rule based control

In Figure 3.2, part of an example simulation from Paper D is presented. In that case the
dynamic programming algorithm has been used in each sample to calculate the optimal
accelerator level, i.e. fueling, optimal brake level, and optimal gear choice. Some typical
behavior can be observed in the figure, e.g., prior to a significant incline the vehicle is
accelerated which can be seen at 1, 4 and 6 km, and prior to a decline the vehicle is
retarded which can be seen at 5 and 7 km. Inspired by such observations it is interesting to
see if simple rules can be found that can be used in an intuitive and more computationally
efficient control system, and to what extent such a controller is able to save fuel.

To quantify when and how to take actions such as accelerationbefore inclines and
retardation before declines, the optimality conditions from Section 3.2 can be used.

Example 3.5
Again consider Example 3.1. Recall the control switching function (3.17), and that if
∂H
∂u > 0 minimum tractive force is used, and that if∂H

∂u < 0 maximum tractive force is
used. It is seen that vehicle inertia, which mostly depends on vehicle mass, is a decisive
parameter for the optimal control, but also that the relation between vehicle speedv and
the adjoint variableλv is important.

Those equations also gives a possibility to find the decisiveparameters for the optimal
control. It is natural that for example engine torque, vehicle mass, and road inclination
are decisive but it is not clear in what relation they will enter into practical rules. By using
simple yet descriptive models and formulating the analytical optimality conditions a lot
of insight can be obtained. The results point toward a practical rule-based controller as is
described in Paper F.

3.5 Overview and contributions of the papers

A brief overview of the papers will here be given and the contributions will be stated.
Controlling Gear Engagement and disengagement on heavy trucks for minimization

of fuel consumption, Anders Fröberg, Lars Nielsen, Lars-Gunnar Hedström, and Mag-
nus Pettersson, IFAC World Congress 2005. In steep downhillslopes a heavy truck will
accelerate even though there is no fuel injected to the engine, i.e. the engine produces
negative work due to friction. A possibility to reduce the total powertrain friction is to
engage neutral gear. This will increase the vehicle acceleration and the gain in kinetic en-
ergy will increase. However, to drive systems like power steering etc, the engine has to be
run in idle conditions and thus consuming some amount of fuel. The contribution of this
paper is to show the magnitude of possible fuel savings by making the correct decision in
significant downhill slopes whether to disengage the gear orto cut the fuel injection.

A Real-Time Fuel-Optimal Cruise Controller for Heavy Trucks using Road Topogra-
phy Information, Erik Hellström, Anders Fröberg, and Lars Nielsen, SAE World Congress
2006. If knowledge of road profile ahead of the vehicle is known that information can be
used to control engine fueling and gear choice in a fuel optimal way. This paper shows
how a predictive cruise controller with real time performance can be designed using dy-
namic programming, and the magnitude of possible fuel savings is demonstrated through
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simulations on authentic road profiles. This work is based onthe master thesis by Erik
Hellström [6] which was supervised by Anders Fröberg.

Explicit Fuel Optimal Speed Profiles for Heavy Trucks on a Setof Topograhic Road
Profiles, Anders Fröberg, Erik Hellström, and Lars Nielsen, SAE World Congress 2006.
To gain knowledge of decisive parameters affecting fuel consumption fueling control is
here studied on constructed road profiles. The simple test cases together with analyti-
cal solutions to vehicle motion gives valuable insight intothe properties of the optimal
control. The results can also be used to validate the behavior of numerical predictive
controllers such as presented in Paper D.

Optimal Control Utilizing Analytical Solutions for Heavy Truck Cruise Control, An-
ders Fröberg and Lars Nielsen, technical report that is an extended version of the paper [5],
Optimal fuel and gear ratio control for heavy trucks with piece wise affine engine char-
acteristics.Again solutions on constructed road profiles are studied, but now by solving
the optimal control problem in more detail. The analytical expressions that are derived
for the necessary optimality conditions provide insight inhow each parameter affects the
optimal solution.

Optimal control solutions for affine engine torque modelingare compared to solutions
for piece-wise affine models, and it is shown that even small non-linearities have signif-
icant effect on optimal control switch points. Solutions onoptimal gear ratio control for
both a continuous variable transmission and a discrete stepped transmission show that
the maximum fueling function and the gear shifting losses are important for the optimal
control behavior.

The theoretical results are used in a simple rule based predictive cruise controller and
the possible fuel savings for that method is demonstrated insimulations on authentic road
profiles showing promising results.
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Paper C

CONTROLLING GEAR ENGAGEMENT AND

DISENGAGEMENT ON HEAVY TRUCKS FOR

MINIMIZATION OF FUEL CONSUMPTION1

Anders Fröberg⋆, Lars Nielsen⋆, Lars-Gunnar Hedström†, Magnus Pettersson†

⋆Dep. of Electrical Engineering, Linköpings universitet,
SE-581 83 Linköping, Sweden.{froberg,lars}@isy.liu.se.

†Scania, SE-151 87 Södertälje, Sweden

Abstract
There is a potential to save fuel for heavy trucks by storing kinetic energy in
the vehicle when driving downhill, because the speed adds kinetic energy to the
vehicle which can be used after the downhill slope to propellthe vehicle. This
behavior can be even more utilized by disengaging the gear toreduce the friction
in the driveline and thus increase the speed even more. Two different control
strategies to choose when to disengage the gear is presented: One that uses in-
stantaneous inclination and one predictive control schemethat uses look ahead
information of the road topology. Simulation results show that gear disengage-
ment in downhills can reduce the fuel consumption about 3% onspecialized
constructed road profiles, but only about one tenth of that onan authentic road
profile.

1This is an edited version of [3], Controlling gear engagement and disengagement on heavy trucks for mini-
mization of fuel consumption, published in the preprints ofthe IFAC world congress 2005.
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1 Introduction

In order to save fuel it can be beneficial to increase speed when driving downhill to build
up kinetic energy that can be used driving uphill. Typical cruise controllers used in heavy
trucks allow the speed to vary between specified limits such that the speed is high in
hollows and low on crests. If the slope is high when driving downhill the fuel injection
can be cut off and no fuel is consumed. However, for small slopes the engine friction
can be so high such that the speed is decreased when going intofuel cut-off mode. In
these cases some fuel has to be injected to overcome the engine friction. Then it can be
beneficial to disengage the gear so that the powertrain friction is reduced and the speed
can be increased or maintained with only idle fuel flow. Further, if the road profile ahead
is known, using e.g. GPS or collected data, then further improvements can be done.
Here dynamic programming is used to make the trade off between going into fuel cut off
and disengaging the gear. In this paper, two strategies willbe developed, simulated, and
evaluated to explore the potential fuel savings.

2 Truck model

The truck is modeled with standard equations for a stiff driveline [5, 6] as summarized
here. See Section 6 for notations.

The dynamics of the engine inertia is modeled as

Jeω̇e = Te−Tt (1)

whereTe is the engine torque, which includes negative values representing e.g. negative
torque during fuel cut off or if present an exhaust brake. Transmission and final drive are
modeled as stiff rotational components with constant efficiencies.

ωe = it i f ωw (2)

Tt itηt i f η f = Tw (3)

The wheels are modeled as rolling wheels with brakes

Jwω̇w = Tw−Frw−Tb (4)

v = rwωw (5)

The vehicle motion is described by

F = mv̇+Fair +Fr +mgsin(α) (6)

where the air and rolling resistance is

Fair =
1
2

cdAρv2 (7)

Fr = mgcr cos(α) (8)
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Negative values ofα indicates a downhill slope and positive values indicates anuphill
slope. If Equations (1)-(8) are combined the result is

c1v̇ = c2Te+c3Tb +c4v2 +c5cos(α)+c6sin(α) (9)

whereci are lumped model parameters.
The control input to the engine is the injected amount of fuelper engine strokeδ. The

resulting engine torque is mapped as a function ofδ and engine speedωe.

Te = Te(δ,ωe) (10)

The fuel consumption is computed as

mf (δ(t),ωe(t)) =
∫

δ(t)
ωe(t)
2π

ncyl

nr
dt (11)

3 Control strategies

Cruise controllers in heavy trucks normally allow the speedto increase some above the
setpoint when driving downhill [8]. If the speed increases even though the engine does
not deliver any torque, the brakes are not applied until a speed limit defined by the cruise
controller is reached. The typical speed interval allowed is 5-10 km/h. In this work, the
cruise controller is implemented as two PI-controllers, one controlling the fueling and one
controlling the brakes.

Two strategies will be developed in the following: one instantaneous strategy in Sec-
tion 3.1, and one strategy with look ahead in Sections 3.2-3.5.

3.1 Using instantaneous inclination, II-strategy

As mentioned above, there are possibilities to enhance the cruise controller to save fuel.
For example a gyro, an accelerometer, or a GPS and 3D map can beused to obtain in-
formation about the inclination. This instantaneous inclination can be utilized, and the
rationale behind the algorithm below is as follows: Consider driving downhill with the
gear engaged in such a small slope that the engine has to deliver some torque for the vehi-
cle to maintain speed. In such a slope it can be possible to disengage the gear, and thereby
lowering the driveline friction sufficiently much, such that the speed can be maintained or
even increased. The increase in kinetic energy that is stored in the vehicle leads to lower
fueling some distance after the downhill slope and thereby the overall fuel consumption
can be reduced. When the gear is disengaged the engine has to be run in idle mode to
deliver power supply to auxiliary systems such as power steering, and hence consumes a
certain amount of fuel. In downhills with inclination so high that the engine does not has
to deliver any torque to maintain speed it is always beneficial to go into fuel cut-off mode.

Following this idea, the model presented in Section 2 is usedto derive the inclination
angles for when it is beneficial to disengage the gear. When the gear is disengaged it is
seen from Equation (9), settingTe = 0, Tb = 0, that for inclination angles

β̃ ∈ {β̃ : c4v2 +c5cos(β̃)+c6sin(β̃) ≥ 0} (12)
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the speed will be maintained or increased. The boundary for the set (12) (using equality
in (12), then becomes

β = arcsin





c4v2
√

c2
5 +c2

6



−arctan
c5

c6
(13)

On the other hand, if the inclination is too high it was earlier stated that fuel cut off was
beneficial. The following model for the engine friction whenit is being dragged

Ted = d1ωe+d2 (14)

with bothdi < 0, is used. Together with Equation (9) it is seen that for inclination angles

γ̃ ∈ {γ̃ : c2(d1ωe+d2)+c4v
2 +c5cos(γ̃)+c6sin(γ̃) ≥ 0} (15)

the speed will be maintained or increased even when the gear is engaged. The boundary
for the set (15) can be expressed as

γ = arcsin





c2(d1ωe+d2)+c4v2
√

c2
5 +c2

6



−arctan

(

c5

c6

)

(16)

3.2 Lookahead

As stated above it is possible to have knowledge about the upcoming road profile. This
can be used to make a more intelligent choice, than the methoddescribed in Section 3.1,
on when to disengage the gear. To use the extra information about the upcoming road
profile and find the optimal control strategy a model predictive control scheme is used
[1, 9].

3.3 Formulation of the optimization problem

Since the altitude information of the road profile is given asa function of position, the
model (9) is reformulated with a change of variables from time to position according to

dv
dt

=
dv
ds

ds
dt

= v
dv
ds

(17)

which introduced in (9) gives

c1
dv
ds

=
1
v
(c2Te+c3Tb +c4v2 +c5cos(α)+c6sin(α)) (18)

Using this model the choices of whether to disengage the gearor not can be represented
by a transition graph as depicted in Figure 1. The sample distance∆ was chosen to the
same as the distance between the samples of the altitude. Thecost for a transition between
statevk to statevk+1 is computed as

gk(vk,(δk,uk)) =

{

mf (δk,ωe), uk = 1
mf ,idle uk = 0

(19)
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Figure 1: An example of a dynamic programming transition graph for a prediction
horizon ofN samples. From each state there are two choices, either disengage the
gear or use the cruise controller over the next sample interval. The cost for each
transition is the amount of fuel that is needed to go between the corresponding states,
i.e. change the speed fromvl

i to vm
i+1 on the length of one sample interval.

whereuk = 1 denotes that the gear is engaged anduk = 0 denotes that the gear is dis-
engaged. Fuelingδk and engine speedωe is computed from a simulation of the model
using the standard cruise controller, andmf is computed from Equation (11). The fuel
consumption at idle ismf ,idle.

The following optimization problem is general, but since the aim is dynamic pro-
gramming the notation from [2] is used. Letµk(vk) = (δk,uk). Consider the class of all
admissible control laws

π = {µ0, . . . ,µN−1} (20)

that maps statesvk into controls. Given an initial statev0 and an admissible control law,
the statesvk are defined by the equation

vk+1 = fk(vk,µk(vk)) (21)

where fk(·) is defined by a discrete approximation method of (18), e.g. Eulers method or
a Runge-Kutta method, see [4]. If the cost for an end state isgN(vN) the total cost forπ
starting atv0 is

Jπ(v0) = gN(vN)+
N−1

∑
k=0

gk(vk,µk(vk)) (22)

The optimal control strategy to drive the distance corresponding toN samples is to find
the way,π∗, through the transition graph with the lowest cost, which isgiven by

Jπ∗(v0) = min
π

Jπ(v0) (23)

3.4 Design considerations

The design criterion (22) is defined by the fuel consumption (19), but the final costgN(vN)
remains to be designed. Sometimes this may need consideration. If all end states are
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assigned the same cost it is in most cases optimal to end up in the state with lowest
velocity, because the fuel required to reach that state is lower than for all other states (of
course except if braking is considered). However, if the endstate is in a downhill slope,
it can be beneficial for the total cost of the whole driving scenario if the end state for the
current optimization has a higher velocity. The fuel consumption for reaching such an
end state has to be compared to the velocity of that state in some way, and here the idea
is that the final states are assigned a cost corresponding to afuel equivalent of the higher
kinetic energy they corresponds to. This comparison is madewith an efficiency model of
the truck.

3.5 Determining the reachable state space

Using dynamic programming to optimize (22) means backward calculation in a transition
graph, and here this graph has the following characteristics. In the problem considered,
there are natural bounds on the velocity. Too high speed can not be accepted for, e.g.,
safety or regulation reasons. The driver will probably not allow the speed to decrease
below a certain limit. To find the upper limit for the speed thetruck model is simulated
with maximum fueling which results in a speed sequence(v0

s f , . . . ,v
N
s f). The upper limit

is then taken as min(vs f,vmax), wherevmax is the highest speed allowed. As lower limit
vmin = min(vc,vset) is chosen, where(v0

c, . . . ,v
N
c ) is the speed sequence obtained with a

standard cruise controller andvset is a set-point speed chosen by the driver.
Even though the state space is restricted with an upper and lower bound one can have

infinitely many states in between. Therefor an approximation is done such that if two
states are very close to each other,|v1 − v2| < ε for some small positive valueε, they
are approximated to the same state. Following this procedure the problem grows linearly
with prediction horizon, and the maximum number of states ineach stage in the transition
graph in Figure 1 is(vmax−vmin)/ε.

4 Simulation results

To evaluate the control strategies described in Section 3 the truck model presented in Sec-
tion 2 has been simulated with different road topologies. Both constructed test topologies
as well as actual topologies from the highway E4 outside Linköping, Sweden have been
used, see Figures 2- 7. The constructed road topologies havebeen chosen such that they
should show interesting properties of, and differences between, the two proposed control
strategies and an ordinary cruise controller.

The standard cruise controller and the controller using instantaneous inclination, II-
strategy, were sampled with 10 Hz. The look ahead controllerwas sampled each 25
meters, and the prediction horizon was 10 samples corresponding to 250 meters.

The gap betweenβ and γ defined by Equations (13) and (16) is narrow, typically
in the order of 0.1 degree for trucks weighing around 20-60 tons and speeds around 85
km/h. In Figure 2 the inclination is betweenβ and γ. The II-strategy disengages the
gear in the downhill which can be seen in the second subplot from above, where 0 means
disengaged gear. There is thus two periods around positions= 600 ands= 800 where
this happens. Thereby the speed increases, as can be seen in the lowest subplot as the
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Figure 2: Simulations of a 40 ton truck. The dashed line represents a standard cruise
controller and the solid line the II-strategy. The inclination in the slopes is∓1.3%
and the fuel saving is 1.53%.
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Figure 3: Simulations of a 40 ton truck. The dashed line represents a standard cruise
controller and the solid line the II-strategy. The inclination in the slopes is∓2%and
the fuel saving is 0.083%.
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Figure 4: Simulations of a 40 ton truck. The dashed line represents a standard cruise
controller and the solid line the II-strategy. The road datacomes from the highway
E4 outside Linköping and the fuel saving is 0.088%.
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Figure 5: Simulations of a 40 ton truck. The dashed line represents a standard cruise
controller and the solid line the look ahead strategy. The inclination in the slopes is
∓1.3%and the fuel saving is 1.38%.
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Figure 6: Simulations of a 40 ton truck. The dashed line represents a standard cruise
controller and the solid line the look ahead strategy. The inclination in the slopes is
∓2%and the fuel saving is 2.93%.
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Figure 7: Simulations of a 40 ton truck. The dashed line represents a standard cruise
controller and the solid line the look ahead strategy. The road data comes from the
highway E4 outside Linköping and the fuel saving is 0.31%.
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solid line. The behavior of the standard cruise controller is seen in the same subplot as
dashed line. It does not disengage so the speed is in these periods (arounds= 600 and
s= 800) decreasing instead of increasing as for the II-strategy. In subplot 3 from above
the fuel savings, about 1.5 %, for the II-strategy, is seen asthe difference between the
curves in the same period (s= 600,s= 800).

In Figure 3 the inclination is outside the operating range ofthe II-strategy and it gives
the same result as the standard cruise controller. If the plot of gear engagement and
disengagement is studied closely it is seen that the II-strategy does in fact disengage the
gear at 4 positions even though the inclination is outside the range[β,γ]. This is because
the algorithm calculates the instantaneous inclination asan interpolation between two
consecutive samples. In Figure 4 the II-strategy is illustrated on a real road profile, and
subplot 2 shows that the gear is seldom disengaged. Only in the last third of the driving
scenario there are downhill slopes where the strategy can beused and the total reduction
of fuel consumption is small. In Figure 5 it is seen, for this road profile, that the look
ahead strategy works almost as the II-strategy in Figure 2. It would however be expected
that the look ahead strategy should give a lower or at least equal fuel consumption as the
II-strategy, and the reason for not being so is that the look ahead strategy only changes
its control signal each 25 m. Driving in 85 km/h this is roughly 0.1 times the sampling
frequency of the II-strategy. On the other hand, for the testprofile in Figure 6 it is seen that
the look ahead strategy disengages the gear not only in the downhill slopes but also in the
flat sections between and after the downhill. Compared to thestandard cruise controller
the kinetic energy is increased in the downhill. Because of this the look ahead strategy can
start to inject fuel later after the downhill, (subplot 2 around positions= 900 m), and still
keeps the same speed as the standard cruise controller. The reduction of fuel consumption
is almost 3 %. In Figure 7 it is seen that the look ahead strategy disengages the gear
in the downhills of the third part of the driving scenario. Compared to the II-strategy in
Figure 4, for the same real road profile, the gear is, in the look ahead case, disengaged
during approximately three times as long. The reduction of fuel consumption is higher
than for the II-strategy, but is still modest over the total distance.

5 Conclusions

Simulations shows that fuel consumption can be decreased with up to approximately 3%
for some driving scenarios by disengaging the gear when driving downhill, and thereby
increasing the vehicle’s kinetic energy. This increase leads to lower fueling directly after
the downhill. As mentioned in Section 3.5 the size of the optimization problem is linear
in prediction horizon, and the case presented can easily be run well under real time.

If the vehicle is equipped with an automated manual transmission, see e.g. [7], or an
automatic clutch, no extra hardware in the powertrain is needed to implement the control
strategies presented. Since only the control software has to be changed the implementa-
tion cost is expected to be reasonably low.
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6 Nomenclature

A Vehicle cross sectional area
cd Air drag coefficient
ci Lumped vehicle model parameters
cr Rolling resistance coefficient
di Engine drag torque parameters
F Vehicle Forces
g Gravitational acceleration
i Gear ratio
J Inertia
m Vehicle mass
mf Fuel mass
ncyl Number of cylinders
nr Revolutions per engine cycle
qhv Fuel heating value
rw Wheel radius
T Torque
v Vehicle speed
α Inclination
η Efficiencies
∆ Sample distance
δ Injected amount of fuel per engine stroke
ρ Air density
ω Rotational speed
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Paper D

A REAL-TIME FUEL-OPTIMAL CRUISE

CONTROLLER FOR HEAVY TRUCKS USING

ROAD TOPOGRAPHY INFORMATION1

Erik Hellström ⋆, Anders Fröberg⋆, Lars Nielsen⋆

⋆ Dep. of Electrical Engineering, Linköpings universitet,
SE-581 83 Linköping, Sweden.{hellstrom,froberg,lars}@isy.liu.se.

Abstract
New and exciting possibilities in vehicle control are revealed by the considera-
tion of topography, for example through the combination of GPS and three di-
mensional road maps. How information about future road slopes can be utilized
in a heavy truck is explored. The aim is set at reducing the fuel consumption
over a route without increasing the total travel time.

A model predictive control (MPC) scheme is used to control the longitu-
dinal behavior of the vehicle, which entails determining accelerator and brake
levels and also which gear to engage. The optimization is accomplished through
discrete dynamic programming. A cost function that weighs fuel use, negative
deviations from the reference velocity, velocity changes,gear shifts and brake
use is used to define the optimization criterion.

Computer simulations back and forth on 127 km of a typical highway route
in Sweden, show that the fuel consumption in a heavy truck canbe reduced with
2.5% with a negligible change in travel time.

1This is an edited version of [4], A real-time fuel-optimal cruise controller for heavy trucks using road
topography information, published in the preprints of the SAE World Congress 2006.
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1 Introduction

Fuel cost is a major part of the life cycle cost of a truck. Reducing fuel consumption is
therefore attractive to the the owner as well as a gain for theenvironment.

In [3] the use of neutral gear and look ahead information for fuel savings were ex-
plored. The present paper is a continuation where the derived controller also determines
fueling, braking and gear shifts. The paper [7] also describes such a predictive algorithm
which uses topography information. Compared to that, here conclusions are also drawn
regarding optimal length of the prediction horizon and the potential fuel savings of using
the neutral gear.

When reporting effects on the fuel consumption from new controller strategies it is
important to study the effects on travel time. To get a fair assessment of controller perfor-
mance, it is preferable with controller configurations and road sections where the relative
difference in travel time compared to the reference model isnegative or close to zero. This
paper presents some results from short illustrative test profiles with the aim of showing
controller behavior in detail. To assess fuel saving potential, longer and authentic road
measurements are used.

The main objectives of the present paper are therefore to devise a control criterion for a
sufficiently complex truck model and drive mission on a realistic road profile, and further,
to study the interplay between model, criterion, and dynamic programming with its tuning
parameters, and to interpret the resulting optimal strategies obtained in the simulations.
Some of the observations are under simplifying assumptionsgiven analytic interpretations
in [2]. The presentation is organized so that the following two sections describe the truck
model and the dynamic programming algorithm which is used for optimization in an
MPC controller. In the final sections simulation results arepresented and conclusions are
drawn.

2 Truck model

In the following section, a model for the longitudinal dynamics of a truck is formulated.
The foundation for this model is found in [6].

The engine torqueTe is modeled as

Te = fe(ωe,δ) (1)

whereωe is engine speed [rpm] andδ is the fueling [mg/stroke]. The functionfe is
approximated with polynomial functions which are fitted to data from steady state mea-
surements.

The engine transmits a torqueTc to the clutch through

Jeω̇e = Te−Tc (2)

whereJe is the engine inertia. The inertia of the transmission and final drive is neglected.
The resulting conversion ratio isi and energy losses are modeled with an efficiencyη.
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Force Explanation Expression
Fa(v) Air drag 1

2cwAaρav2

Fr(α) Rolling resistance mgcr cosα
Fg(α) Gravitational force mgsinα

Table 1: Longitudinal forces.α is the road slope [rad] andcr is the rolling resistance
coefficient [-]

The clutch, propeller shafts and drive shafts are further assumed stiff. This gives

ωe = iωw

Tc =
1
iη

Tw

Jwω̇w = Tw−Tb− rwFw (3)

whereTw is the torque transmitted to the wheel,Jw is the wheel inertia,Tb is the braking
torque andrw is the wheel radius.Fw is the resulting friction force at the wheel.

The motion of the truck is governed by

mv̇ = Fw−Fa−Fr −Fg (4)

The longitudinal forces are explained in Table 1. Assuming no slip, the vehicle velocityv
is

v = rwωw

Equation (2) to (4) can then be combined to yield

v̇ =
rw

Jw +mr2w + ηi2Je

(

iηTe(v,δ)−Tb− rw(Fa(v)+Fr(α)+Fg(α))
)

(5)

The mass flow of fuel ˙mf [g/s] is determined by the fuelingδ [mg/stroke] and the
engine speed. Assuming zero slip the velocity isv = r

i ωe. The mass flow in [g/s] is then

ṁf (v,δ) = cf vδ (6)

wherecf (i) =
1

2π ·103

ncyl

nr

i
r

wherencyl is the number of cylinders andnr is the number of crankshaft revolutions per
stroke.

3 Look ahead control

An MPC controller has been developed to control the vehicle.This section describes the
shortest path Dynamic Programming (DP) algorithm which is used for the optimization in
an MPC scheme [5]. The control objectives are first identifiedand based on these, the cost
function is chosen. The problem is then presented in a form suitable for implementation.
Lastly, the DP algorithm is described and the algorithm complexity is discussed.
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3.1 Objective

The main objective is to keep the vehicle in an allowed range of velocities with a minimum
use of fuel. Denote the reference velocityvre f [km/h]. The vehicle velocity is allowed
to decrease withvdec and increase withvinc from vre f . The brake system is assumed
to be effective enough for the road ahead and thus the upper bound (vre f +vinc) never
needs to be violated. It is however not sure that a heavy truckcan keep the lower bound
(vre f −vdec) on all road profiles. This bound is therefore lowered if the maximum torque
possible which the vehicle can produce is not enough to keep the bound. It is assumed
though, that it is possible to keep a velocity greater than zero at all time. Denote the
velocity achieved when applying maximum torquevT lim. The constraint on the vehicle
speedv can then be expressed as

0 < min
{

vre f −vdec,vT lim
}

≤ v≤ vre f +vinc (7)

3.2 Cost function

The cost function is

J = ζN +
N−1

∑
k=0

ζk (8)

wherek is the stage number. The weighting functionsζ is, with basis of the objectives,
chosen as

ζk = Q













mf ,k

κ(ek)e 2
k

|vk−vk+1|
κ(|gk−gk+1|)

Tb













k = 0,1, . . . ,N−1

ζN = 0 (9)

whereek = vre f −vk, Q is a vector with five scalar penalty factors,Qi , i = 1,2,3,4,5, and
κ is a step function

κ(t) =

{

1 , t > 0
0 , t ≤ 0

(10)

The required fuel massmf ,k for a state transition is weighed withQ1. In order to
limit the state space, the state vector will not be expanded to include any cumulative
information of the state history. This leads to that it is notpossible to penalize the mean
velocity (with a terminal constraint on such a state). Therefore, the factorQ2 is included
which adds a cost on velocities below the reference speed. A smoother control is received
throughQ3 which penalizes velocity changes. Gear shifts are penalized with Q4. A
cost is finally added that is proportional, with the constantQ5, to the braking torque
Tb. Intuitively one may perhaps conclude that because of the fact that braking converts
kinetic energy into heat, it is a waste and hence it can not be fuel optimal. However,
because of the factorQ2 it can for example be advantageous to penalize braking to favor
a solution where the speed is lowered at one point to lessen brake usage at a later point.
One example of this can be seen in the next section, in Figure 4. The terminal costζN
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is set to zero. One obvious possibility is to penalize the velocity in the end stage with
ζN. The state velocities will however be limited, as describedlater in this section, to only
contain desired velocities.

3.3 Problem presentation

The vehicle is modeled by (5) and the fuel consumption according to (6). This gives a
state description with vehicle velocity as the only state and the slopeα as a measurable
disturbance. The vehicle velocity and the fuel flow are viewed as the output signals. Let
a signalg denote a gear number that maps to a conversion ratioi and an efficiencyη. The
control signals are then the fuelingδ, the gear numberg and the brake torqueTb.

v̇= fv(v,δ,Tb,g,α) =
rw

Jw +mr2w + ηi2Je

(

iηTe(v,δ)−Tb− rw(Fa(v)+Fr(α)+Fg(α))
)

y1 =v

y2 = f f (v,δ,g) = cf (g)vδ (11)

The road slope is position dependent rather than time dependent, as is the vehicle model.
This is handled by transforming the latter to a position dependent model by the following
simple rewrite.

dv
dt

=
dv
ds

ds
dt

=
dv
ds

v⇒ dv
ds

=
1
v

dv
dt

, v 6= 0 (12)

It is assumed that it is possible to keep a velocityv greater than zero at all time.

3.4 Problem reformulation

The system defined by Equation (11) is deterministic becauseall unknown disturbances
are neglected.

If the state space is discretized, it becomes finite due the velocity constraints in (7).
The evolution of this system under the influence of differentcontrol signals can then be
represented in a directed graph. An arc represents a transition between states in successive
stages and is associated with a cost for this transition. Thecost of an arc can be viewed as
the length of that arc. Through this, the problem is a shortest path problem in a graph [1].

The optimization problem at hand is to be solved numericallyby means of dynamic
programming (DP). A discrete model is therefore needed. Thestage grid in DP is noted
S [m]. Denote

vk = v(kS)

mf ,k = mf (kS)

It is assumed that the inputs and the disturbance is constantduringS, that is

u(s) ≡ uk

α(s) ≡ αk
∀s∈ [kS,(k+1)S[ (13)

Euler’s method with step lengthh and the velocity assumption then gives

vk+1 = vk +
h
vk

fv (14)



82 PAPER D. A REAL-TIME FUEL-OPTIMAL CRUISE CONTROLLER

To determine the fuel mass consumed the output signaly2 is integrated. Applying Euler’s
method again with the step lengthh yields

mf ,k+1 = mf ,k +
h
vk

f f (15)

3.5 Reducing the search space

The aim is a real-time algorithm, and therefore the search space which is considered by
the algorithm should be small enough to enable fast calculation of the optimal trajectory
and at the same time accurate enough to receive satisfactorysolutions. In order to reduce
the search space, states that do not meet the constraints or can not be reached because
of various physical limitations in the system, are removed.To balance grid size and
accuracy, the state and control spaces are not straightforwardly discretized. Instead, the
state space is discretized and the control signals that transforms the system to these states
are calculated by an inverse simulation of the system equations. This avoids discretizing
the control signals which will lead to inevitable rounding errors in the state-space grid.
The search-space reductions are described in more detail inthe remainder of this section.

Frequent gear shifting is not desirable and therefore shifts are penalized in the cost
function (9). In order to make this possible, the state vector is expanded with the gear
that brought the system to the current state. With this information in a state, the search
space can easily be reduced by introducing a limit on the maximum possible gear shifting
frequency. The only need is a counter, for the number of stages passed since the last shift,
in the state information.

The search space is a grid consisting of the states which are considered by the DP
algorithm. The distance between two adjacent stages isS [m]. A grid point is made up
of a velocity value, the gear number that brought the system to this state and the number
of stages for which this gear has been engaged. The velocity is further equidistantly
spaced withτ [km/h], see Figure 1. The control signals fueling and brake torque are not
discretized. They are instead calculated by an inverse simulation of Equation (5).

With a given velocity, only a subset of the gears in the gear-box is applicable. With
bounds on the engine speed[Nmin,Nmax] it is possible to select a set of a usable gears in
a state. Only gears with a ratio which give a engine speed in the allowed range are then
considered. In a state with the velocityv, the set of usable gearsGv is then defined as

Gv = {g |Nmin ≤ N(v,g) ≤ Nmax}∪{0} (16)

whereN(v,g) is the engine speed at vehicle velocityv and gear numberg with parameters
{i,η}. The neutral gear is modeled as gear number zero with a ratio which equals zero.

In order to determine which velocities to consider, the reachable velocities from the
initial state along the horizon is calculated with consideration of the allowed range. This
is achieved by simulating Equation (5). This gives an interval of velocities for each stage.
The lower bound in the last stage is then increased to the reference velocityvre f , or set
equal to the higher bound if it goes belowvre f . With this restriction it is possible to go
through the interval backwards from the last stage and remove states from where it is not
possible to reach one of the allowed velocities in the last stage. An example is shown in
Figure 1. The light gray area is the part of the state space that will be considered. The
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Figure 1: The velocity state space

darker area is the velocities that are removed when going backwards from the last stage.
There is now, for each stage, a set of velocities which are to be considered,

[

vlow,vhigh
]

.
This is a subset of the reachable velocities. The set in stagek is discretized in constant
steps ofτ. This makes up a setVk

Vk =
{

vlow,vlow + τ,vlow +2τ, . . . ,vhigh
}

(17)

3.6 DP algorithm

A statei is made up of a velocityvi , a gear numbergi and the counterci . The possible
statesi in stagek is a setSk and will be generated from the velocity rangeVk and the set
of gearsGv,

Sk =
{

{v,g,c}|v∈Vk,g∈ Gv,c∈ Z+
}

(18)

The counters in the states of the last stage,c j , j ∈ SN, are set toklim. The other counters
will be set in the DP algorithm. For each state in stagek, feasible control actions are
sought (by an inverse simulation of the system equations) which transforms the system
into the states in stagek+1. The feasible control action with the lowest cost is the optimal
control from the current state.

The transition cost at stepk from statei ∈ Sk to statej ∈ Sk+1 is

ζi, j
k = ζk(v

i ,v j ,ui, j
k ,αk)

where the controlui, j
k causes the transition from statei to j with a road slope ofαk.

If there is no control that transforms the system from statei to j at stagek, the cost is
set to infinity2. The algorithm is summarily stated below.

1. LetJN(i) = ζN = 0.

2With a numerical approach, an infinite cost means a very largenumber.
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2. Letk = N−1.

3. Let
Jk(i) = min

j∈Sk+1

{

ζi, j
k +Jk+1( j)

}

, i ∈ Sk.

A control actionui, j
k that transforms the system from a statei ∈Sk to a statej ∈Sk+1

is only allowed ifgi = g j or c j > klim. The counter of statei, ci is set toc j + 1 if
gi = g j and 1 otherwise.

4. Repeat step 3 fork = N−2,N−3, . . . ,0

5. The optimal cost isJ0 and the sought control is the optimal control set from the
initial state.

In the simulations, the DP algorithm is used for optimization in an MPC scheme. The
algorithm is issued once everyS m. If the vehicle position iss, the algorithm calculates
the control signals to apply whens∈ [s+S,s+2S[. The state ats+Sis predicted and used
as the initial state in the first stage in the algorithm. The available time for computation
is thus the travel time between positions ands+ S. Due to the fact that the algorithm is
restarted everySm, there is no need to store any information about the subsequent stages
when the optimal costs has been computed for all states in onestage.

3.7 Complexity

At stepk in the DP algorithm, every combination of states in stagek andk+ 1 will be
processed. Ifni denotes the number of states in stagei, the number of operations in
this step will thus be proportionalnknk+1. At the next step, all combinations between
states in stagek+1 andk+2 will be processed. The number of operations in this step is
proportional tonk+1nk+2. Repeating this for the horizon ofN steps, the total number of
operations is approximately proportional toNn2

m, if nm is the maximum number of states
in any stagenm = maxi=1..N {ni}.

4 Simulations

A reference truck-model is implemented in Matlab/Simulink. As in the design of the
controller, the basic Equation is (5) but measured data mapsare used instead of using
polynomial functions that are fitted to data. A PI cruise controller and gear switching logic
are implemented to imitate driver behavior. The ability of this model to accurately predict
the fuel consumption in a real truck has been shown in [9]. To assess the performance, the
relative difference in the fuel consumption∆ f uel and the travel time∆timeare used. The
algorithm parameters used are stated in Table 2 and the penalty factors are shown in Table
3. These factors have been adjusted in order to receive an acceptable behavior on the short
test profiles and a negligible effect on the travel time when simulating longer distances
with authentic road measurements. The results and the values of the penalty factors
naturally depends on the vehicle parameters used. The most important parameter is the
mass of the vehicle. The vehicle mass has been chosen to 40 metric tons and the reference
velocity is constant 85km/h in all simulations. The gear-box is made up of twelve gears,
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Parameter Function Value
S Stage grid 25 m
N Number of steps 40

S·N Horizon 1000 m
h Step length 25 m
τ Velocity discretization 0.1 km/h

vinc Max. inc. above ref. 5 km/h
vdec Min. dec. below ref. 5 km/h
klim Min. steps before a shift 8
Nmin Lower engine bound 1000 rpm
Nmax Upper engine bound 2000 rpm

Table 2: User parameters

Factor Penalizes Value
Q1 Fuel use 2
Q2 Neg. dev. from ref. speed 5
Q3 Velocity changes 15
Q4 Gear shifts 15
Q5 The use of brakes 0.005

Table 3: Penalty factors

Gear Ratio Gear Ratio
No. 10 1.55 No. 12 1.00
No. 11 1.23 Final drive 3.27

Table 4: The gear-box
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and the conversion ratioi in (3) is the product of a final drive ratio and a gear ratio. Data
for the final drive and the three gears used here are given in Table 4. Disturbances from
other vehicles are disregarded.

4.1 Constant slope

In Figure 2 an example incline is shown. With the acceleration before the hill(300-500m)
it is possible to keep a higher velocity throughout the incline and the time required on
a lower gear(700-1050m) is reduced, compared to the reference controller (700-1300m).
The integral part of the PI controller is saturated after thehill which is causing the differ-
ence between 1300 and 1500m.

Examples of declines are seen in Figures 3 and 4. In the short downhill, Figure 3,
neutral gear is used for about 700m(at 300-1000m). The gain in form of kinetic energy
is evidently greater than the cost of the fuel used to run the engine on idle. When the
engine is dragged, the fuel supply can in general be cut off. If the neutral gear was to be
used in the 500m downhill, Figure 4, the maximum velocity would be reached earlier and
increase the need for braking. The truck is in this case instead let to slow down before the
steep decline. In both examples the brake use is lowered compared to the PI-controller.
The mentioned saturation effect is evident at about 1250m inboth Figure 3 and 4.
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Figure 2: A 500m incline with slope of 3.5%. The MPC controller accelerates the
vehicle before the incline. No braking occurs.
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Figure 3: A 300m decline with slope of -3%. Fuel and brake use is loweredby the
MPC controller by letting the vehicle slow down before the decline.
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Figure 4: A 500m decline with slope of -3%. Fuel and brake use is loweredby the
MPC controller by letting the vehicle slow down before the decline.
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4.2 Hills and depressions

In Figure 5 neutral gear is used in the beginning to the bottomof the depression (500-
1200m). The lessened resistance torque allows the vehicle to accelerate faster than if
a gear was engaged and the engine was dragged. Owing to this acceleration, the MPC
controller can increase the fueling after the PI controller(at 1150m instead of at 950m)
and still keep about the same velocity later through the hill. This delay evidently saves
more fuel than was used to run the engine on idle resulting in afuel use reduction of about
2% without increasing the travel time.

A steeper depression is shown in Figure 6. In the MPC case, there is no need for
braking in the downhill because the truck is let to slow down before the downhill (300-
500m). In the end of the downhill part, the MPC controller increases the fueling (at
1100m) despite the fact that the velocity is well above the reference. This is due to the
controllers knowledge about the steep uphill in front of thetruck. This pre-acceleration
makes the need for a down-shift of gear unnecessary and keepsa higher velocity through
the hill. In total, both fuel(-6.97%) and time(-0.76%) can be saved.

In the hill, Figure 7, the controller accelerates the vehicle before the uphill begins
(300-500m). This leads to a higher velocity from the foot to the top of the hill. Before
the top is reached, the accelerator level is decreased despite that the velocity is much
below the reference (at 900m). The coming downhill will accelerate the vehicle above
the reference anyway and the lower velocity on the top of the hill will reduce the need for
braking. The lower gear is kept throughout the hill to further reduce the need of braking.
The vehicle is finally let to slow down to the reference velocity on the neutral gear (2000-
2250m). Neutral gear makes the retardation slightly slower. The travel time is increased
with half a percent on the section and the fuel consumption isreduced with 7.85%.

4.3 Authentic roads

In order to estimate fuel saving potential, authentic altitude measurements are used to
calculate slope values. The altitude is measured once each 25m on the highway between
the two cities of Linköping and Jönköping in Sweden. A portion of the road is selected
3. Simulations are made with this section in both directions.The results are shown in
Figures 8 and 9. The effects discovered in the illustrative test profiles are also found in
these simulations with authentic sections.

In Figure 8, acceleration prior to a steep incline is seen at 3km. Retardation prior
to a decline is seen at 2, 4 and 5km. A lower gear is used to reduce the load on the
brake systems between about 6 and 8km. Brake use is however mostly lowered by the
retardation before the decline. The truck is let to slow downto the reference velocity on
neutral gear after a steep decline at about 8km.

In Figure 9, acceleration prior to a steep incline is seen at 1,4 and 6km. Retardation
prior to a decline is seen at 5 and 7km. A lower gear is used to reduce the load on the
brake systems between about 5.5 and 6km. Brake use is howevermostly lowered by
the retardation before the decline. Between about 7 and 8km,neutral gear is used and

3The selected section is 9km and begins 97km from Linköping and ends 21km from Jönköping. The route
data is shown in Figure 10.
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Figure 5: A 1500m depression. The MPC controller uses neutral gear to let the truck
accelerate faster than if the twelfth gear was engaged. No braking occurs.
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Figure 6: A 1500m depression. The MPC controller lets the vehicle slowdown
before the depression and accelerates it before the uphill slope begins.
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Figure 7: A 1500m hill. The MPC controller accelerates the vehicle before the hill
and lets it slow down at the top.

the truck accelerates. When the slope lessens and the truck retards, the twelfth gear is
engaged when the reference velocity is reached.

The use of fuel is greatly reduced (-12.73%) in the first section shown in Figure 8. The
reduction is mainly made through the retardations before the downhill slopes at about 2, 4
and 5km. The acceleration prior to the uphill at 3km leads to that the twelfth gear is used
for about 200m longer and a higher velocity is maintained throughout the hill compared
to the PI-case. The higher velocity in the uphill between 3 and 4km lessens the increase of
the travel time that is a result of the retardations. The change in travel time for this section
then becomes negligible (+0.07%). The magnitude of the fuelconsumption reduction is
of course dependent on the fact that the altitude above sea level decreases with almost
100m over the 9km in Figure 8. However, when this section is used in the other direction,
Figure 9 shows that a satisfactory reduction of the fuel consumption still can be achieved
(-2.26%).

Figure 9 shows the section where the altitude increases withabout 100m over 9km.
Fuel is primarily saved through the retardations before thedownhill slopes at 5 and 7km.
In this case, the accelerations prior to inclines evidentlyincreases the mean velocity more
than the retardations prior to declines decreases it, resulting in a travel time reduction
(-1.77%).

Simulations on the entire route, see Figure 10, are made withvarying horizon length
(by varying the number of stepsN). The effect on fuel consumption and travel time
are shown in Figure 11. The fuel consumption is at best reduced with about 2% in
the direction toward Jönköping and about 3% toward Linköping. Traveling back and
forth gives a reduction of about 2.5%. The travel time is moderately affected and the
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Figure 8: A section on the road from Linköping to Jönköping. Acceleration prior
to a steep incline is seen at 3km. Retardation prior to a decline is seen at 2, 4 and
5km. A lower gear is used to reduce the load on the brake systems between about
6 and 8km. Neutral gear is finally used at about 8km to slow downto the reference
velocity after the steep decline.
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Figure 9: A section on the road from Jönköping to Linköping. Acceleration prior to
a steep incline is seen at 1,4 and 6km. Retardation prior to a decline is seen at 5 and
7km. A lower gear is used to reduce the load on the brake systems between about
5.5 and 6km. Neutral gear is used between about 7 and 8km. The truck accelerates
at first and when the slope lessens and the truck retards, the twelfth gear is engaged
when the reference velocity is reached.
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Figure 10: The road between the cities of Linköping and Jönköping
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Figure 11: The effect on fuel consumption and travel time on the road Linköping to
Jönköping.
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Figure 12: The effect on fuel use and travel time on the road Linköping to
Jönköping. Use of neutral gear is disallowed.

magnitude does not vary much with the horizon according to Figure 11. The fuel use
is however clearly dependent on the horizon. A horizon longer than 2000m seems ab-
solutely superfluous and good results are achieved with about 1000m, at least for this
road configuration. The simulation in Matlab/Simulink4 runs in real time5 up to about
750 to 1000m, depending on road configuration, if the velocity discretization is 0.1km/h.
The road configuration influences the size of the search spaceand therefore the complex-
ity.

4.4 Neutral gear

The use of neutral gear adds another degree of freedom in the problem. To estimate the
magnitude of the gain that is achieved through this, simulations are made where neutral
gear is disallowed. A comparison between Figures 11 and 12 reveals the effects. The
change in travel time is similar in both directions. Traveling toward Jönköping, the fuel
consumption reduction is lessened by about half a percent when neutral gear is disallowed.
The most evident difference appears in the direction towardLinköping. The fuel use
reduction is increased from about 1% to 3% when neutral gear is allowed. The altitude
above sea level is around 60m higher in Jönköping than in Linköping, see Figure 10.
Going toward Jönköping thus in general means facing more uphill than downhill slope.
Neutral gear is thus, as might be expected, most useful when there is more downhill than
uphill slope.

4The computer used was a PC with an Intel Celeron 2.6GHz processor and 480Mb of RAM running Windows
XP SP2 and Matlab 6.5.1, release 13.

5Meaning that the time required to simulate the system is shorter than the time that is simulated.
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5 Conclusions

There is an evident potential of fuel reductions by an explicit use of road topography in
a cruise controller. In the reported results with authenticroad maps, the travel time is
only insignificantly changed which of course is important for the credibility of the fuel
reduction values. Using authentic altitude measurements along a 127 km route, simula-
tions showed that the fuel consumption traveling this road back and forth can be reduced
with 2.5% without affecting the total travel time. When varying the horizon length, it
appears that, at least for this road configuration, a horizonof about 1000m is sufficient.
Horizon lengths longer than about 2000m do not improve the results; it only adds to the
complexity.

Simulations showed that substantial reductions in fuel usecan be made in a number of
situations of principle interest and some of these are now summarized. When a sufficiently
steep decline is ahead, the vehicle velocity can be lowered before the decline and the
vehicle is then let to accelerate in the downhill slope. Slowing down before a steep decline
will in general also lower the need for braking.

When there is a steep incline ahead, it may be favorable to accelerate before the uphill
slope begins. A higher velocity reaching the incline can lessen the need for lower gears.
This action do not decrease the use of fuel of noticeable amounts, it may even slightly
increase it. Simulations did however show that the travel time can be shortened of a
greater magnitude. Considering a route, the time decrease can then counterbalance the
time increases introduced where the vehicle velocity is lowered prior to declines.

On a route with more downhill than uphill slope, the use of neutral gear seems to be a
potent way of reducing fuel use. When going back this route and facing many inclines, a
clever choice of the pedal level appear to be more important.

The control algorithm relies on topographic information. This information can be
obtained with for example the combination of GPS and three dimensional road maps.
Another possibility could be to record road data the first time a route is travelled, and
then to use this data on later trips on that route. If the truckis equipped with an automated
manual transmission, see e.g. [8], no extra hardware in the powertrain would be needed to
carry out gear shifts. Hence, to realize the presented algorithm only the control software
has to be altered.

The search space for dynamic programming was reduced by removing the states that
can not be reached because of the various physical limitations in the system and also the
states that do not meet the problem constraints. In order to balance accuracy versus grid
size, the state space was discretized and the control signals were calculated by an inverse
simulation. Owing to these reductions, the complexity of the algorithm, when achieving
reported results, allows the simulations and thus the algorithm to run in real time on a
standard PC.
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Paper E

EXPLICIT FUEL OPTIMAL SPEED PROFILES

FOR HEAVY TRUCKS ON A SET OF

TOPOGRAPHIC ROAD PROFILES1

Anders Fröberg⋆, Erik Hellström ⋆, Lars Nielsen⋆

⋆ Dep. of Electrical Engineering, Linköpings universitet,
SE-581 83 Linköping, Sweden.{froberg,hellstrom,lars}@isy.liu.se.

Abstract
The problem addressed is how to drive a heavy truck over various road topogra-
phies such that the fuel consumption is minimized. Using a realistic model of a
truck powertrain, an optimization problem for minimization of fuel consumption
is formulated. Through the solutions of this problem optimal speed profiles are
found. An advantage here is that explicit analytical solutions can be found, and
this is done for a few constructed test roads. The test roads are constructed to be
easy enough to enable analytical solutions but still capture the important prop-
erties of real roads. In this way the obtained solutions provide explanations to
some behaviour obtained by ourselves and others using more elaborate modeling
and numeric optimization like dynamic programming. The results show that for
level road and in small gradients the optimal solution is to drive with constant
speed. For large gradients in downhill slopes it is optimal to utilize the kinetic
energy of the vehicle to accelerate in order to gain speed. This speed increase is
used to lower the speed on other road sections such that the total average speed
is kept. Taking account for limitations of top speed the optimal speed profile
changes to a strategy that minimizes brake usage. This is done by e.g. slowing
down before steep down gradients were the truck will accelerate even though the
engine does not produce any torque.

1This paper is an edited version of [3], Explicit Fuel optimalspeed profiles for heavy trucks on a set of
topographic road profiles, published in the preprints of theSAE World Congress 2006.
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1 Introduction

For heavy trucks fuel is a large part of the operating cost. A good driver has an intu-
ition of how to drive in a fuel optimal way. The problem of finding a fuel optimal way
of driving has been studied for different kinds of vehicles.Earlier work in this subject
have either been using simpler models [2], or they have been using an optimal con-
trol theory approach with approximate solutions using for example dynamic program-
ming [8, 9, 11, 13]. In these types of simulations many interesting behaviors are observed.
For example, it is sometimes observed that it is optimal to slow down before a downhill
whereas sometimes it is not. This may depend on a change of parameters like vehicle
mass or road inclination. One objective of this paper is to get insight to these observations
by formulating a problem allowing analytical solutions.

The analytical derivation of fuel efficient driving behavior is presented using a phys-
ical model of a heavy truck that gives fuel consumption prediction, but still being of
manageable complexity. The optimal solutions of the constructed test roads are important
for the understanding of the energy usage of a heavy truck. The purpose of this study
is to provide insight as mentioned before, but also to give proper strategies for standard
cases such as up- and downhill slopes, hills and depressions. A complete optimal strategy
will then be a continuous chain of such standard cases where the parameter dependence
will be explicit. Moreover, the optimal solutions presented are usable in e.g. validation of
suboptimal real time model predictive cruise controllers,or to teach drivers how to drive
more efficiently.

2 Truck model

The model structure that will be used here has been verified topredict fuel consumption
to within a few percent [12], but is still of such a simple character that it can be used for
analytical studies of fuel consumption.

The model consists of the following components: Engine, transmission, final gear,
wheels and chassis, which are all modeled as in [10]. The engine is modeled as

Te = fe(δ,ωe) (1)

whereδ is engine fueling in mg/stroke,ωe is engine speed, and the functionfe(δ,ωe) is
mapped from measured data. For a typical diesel engine an affine model of the engine
torque is a reasonable approximation, and can be written as

Te = ceδδ+ceωωe+cec (2)

This affine model will be used later in the optimization of fuel consumption.
The flywheel and the other rotating parts of the engine are modeled as

Te−Tf w = Jeω̇e (3)

whereTf w is the flywheel torque.
The transmission and final gear are modeled as a lumped component with gear ratioi

and efficiencyη as
ωe = iωw

Tf wiη−Tw = Jω̇w
(4)
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whereωw is wheel speed,J is the lumped inertia of the driveline, andTw is wheel torque.
The wheels are modeled as rolling wheels without slip as

rωw = v
Tw = Fwr

(5)

wherer is wheel radius,v vehicle speed, andFw is wheel force. The motion of the truck
is modeled as

mv̇ = Fw−Fair −Froll −Finc (6)

wherem is vehicle mass and the right hand side is wheel force, air drag resistance, rolling
resistance, and normal force respectively. The resistanceforces are

Fair = 1
2ρcdAv2

Froll = mg(cr1 +cr2v+cr3v2)
Finc = mgsinα

(7)

where the latter force depends on the road slopeα.
If all equations are combined the result is

v̇

(

m+Jei
2η

1
r2 +

J
r2

)

=
1
r

(ceδδ+ceωωe+cec) iη− 1
2

ρcdAv2

−mg
(

cr1 +cr2v+cr3v2)−mgsinα (8)

To summarize, the model can be written in the form

v̇(t) = f (v(t),δ(t),α(s(t)))
ṡ(t) = v(t)

(9)

wheres is the distance traveled.

3 Optimal speed on level road

The model presented in the previous section is of a similar structure as the one used
in [2]. Here that model structure is extended with more detailed models of the engine
and the rolling resistance. In [2] it is shown that the optimal speed profile on level
road is constant speed. The assumption for the engine model used there is that the fuel
consumption is proportional to the produced work. It will now be shown that constant
speed also is optimal when the model from [2] is extended witha more detailed engine
model as described by Equation (2). The model that is studiedfirstly is then given by
Equations (1) - (9). The model can be written as

v̇(t) = cδδ(t)+cωωe(t)+cvv(t)+cc(α)+cv2v2(t) (10)

whereci is the lumped model constants from Equation (8). Driving at constant speed,
i.e. v̇ = 0, with fixed gear, i.e.ωe = iv/r , the fuel consumption over the distances is
proportional to

z= δs= (c̃c + c̃vv+ c̃v2v2)s (11)
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v
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s

Figure 1: Driving the distances with average speedv, and the subdistancess1 and
s2 with the speedsv1 andv2 respectively.

wherec̃c = −cc/cδ, c̃v = −cωi/(cδr)− cv/cδ, andc̃v2 = −cv2/cδ. Let the distances be
partitioned in two parts as

s= s1 +s2 (12)

and assume that the vehicle is driving the distances with theconstant speedsv1 andv2

respectively, see Figure 1. The total consumption can then be written as

z= (c̃c + c̃vv1 + c̃v2v2
1)s1 +(c̃c + c̃vv2 + c̃v2v2

2)s2 (13)

The problem studied here is how to choosev1 andv2 such that the fuel consumption (13)
is minimized and that the distancess1 ands2 is traveled over the time

t = t1 + t2 =
s1

v1
+

s2

v2
=

s
v

(14)

wherev is the total average speed. The optimization problem is to minimize (13) subject
to the constraint (14). The objective function is augmentedwith the constraint using
Lagrange methods resulting in

L(v1,v2,λ) = (c̃c + c̃vv1 + c̃v2v2
1)s1 +(c̃c + c̃vv2 + c̃v2v2

2)s2 + λ(
s1

v1
+

s2

v2
− t) (15)

whereλ is a constant Lagrange multiplier. The minimum is found by solving the equations
defined by setting the partial derivatives of the Lagrange function to zero

∂L
∂v1

= c̃vs1 +2c̃v2v1s1−λs1v
−2
1 = 0 (16)
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∂L
∂v2

= c̃vs2 +2c̃v2v2s2−λs2v−2
2 = 0 (17)

∂L
∂λ

=
s1

v1
+

s2

v2
− t = 0 (18)

Multiplying (16) with v2
1/s1, (17) withv2

2/s2, and eliminatingλ gives

c̃vv
2
1 +2c̃v2v

3
1 = c̃vv

2
2 +2c̃v2v

3
2 (19)

which can be rearranged to
2c̃v2

c̃v
=

v2
2−v2

1

v3
1−v3

2

(20)

For physically realistic values on ˜cv, c̃v2, the only solution to this equation is that
v1 = v2. Using the constraint on total travel time (18) it is seen that this speed is also the
specified average speed for the distance

v = s/t = v1 = v2 (21)

If the second partial derivatives of the Lagrangian is computed it is seen that this point
is also a minimum.

In [2] it is shown that taking account for acceleration and deceleration between the
speedsv1 andv2 does not change the solution that the speeds must be equal. Atbest,
in the ideal case the extra energy it takes to accelerate fromv to v1, see Figure 1, will
be recovered when decelerating fromv1 to v so that the effect in energy consumption of
accelerating and decelerating will be zero. This fact is also easily shown with the theory
of calculus of variations. Taking account for accelerations, the problem of finding the
speed trajectory from pointa to pointb that has a given average speed and minimizes the
fuel consumption can, using Equation (10), be written as

min

tb
∫

ta

δ(t)v(t)dt = min

tb
∫

ta

(c̃v̇v̇(t)+ c̃c + c̃vv(t)+ c̃v2v2(t))v(t)dt (22)

subject to the constraint of a given average speed, i.e.

1
tb− ta

tb
∫

ta

v(t)dt = vre f(t) (23)

wherevre f is the specified average speed. This problem is in the form of

min

tb
∫

ta

F(t,v, v̇)dt (24)

subject to
tb
∫

ta

G(t,v, v̇)dt = vre f (25)
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A necessary condition forv(t) to be an optimum is that it fulfills the differential equa-
tion [5]

∂F
∂v

− d
dt

∂F
∂v̇

+ λ
(

∂G
∂v

− d
dt

∂G
∂v̇

)

= 0 (26)

whereλ is a constant Lagrange multiplier. In the case of (22) and (23) this becomes

c̃c +2c̃vv(t)+3c̃v2v2(t)+ λ = 0 (27)

i.e., even if accelerations and decelerations are taken account for, the optimal speed profile
is constant speed.

4 Optimal speed on small gradients

In [2] it is shown that for small gradients it is optimal with constant speed. It will be
shown that this is true also for the model (10)-(11). First small gradients will be defined
in terms of inclination angles, [4].

Consider the model (8). Let the acceleration ˙v(t) and the fuelingδ(t) be zero. Then it
is seen that for all inclination angles

γ̃d ∈ {γ̃d :
1
r

(ceωωe+cec) iη− 1
2

ρcdAv2−mg(cr1 +cr2v+cr3v
2)−mgsinγ̃d > 0} (28)

the vehicle will accelerate even though the engine does not produce any work. The limit
for the set̃γd is found by setting equality in (28) resulting in

γd = arcsin
(ceωωe+cec)

iη
r − ρ

2cdAv2−mg(cr1+cr2v+cr3v2)

mg
(29)

See Figure 2 for the characteristics of the limit angle. For uphill slopes the angles are
defined using maximum fuelingδmax(ωe) as

γ̃u ∈ {γ̃u : 1
r (ceδδmax+ceωωe+cec) iη− 1

2ρcdAv2

−mg(cr1+cr2v+cr3v2)−mgsinγ̃u > 0} (30)

i.e. the angles for which the engine is powerful enough to accelerate. The limit angle is
then

γu = arcsin
(ceδδmax+ceωωe+cec)

iη
r − ρ

2cdAv2−mg(cr1+cr2v+cr3v2)

mg
(31)

The maximum fuel injectionδmax is here modeled as a second order polynomial in engine
speed. See Figure 3 for the characteristics of the limit angle.

The definition of small gradients can now be made.
Definition 1: Small gradients are all gradients with inclinationsα such that

γd < α < γu (32)

Note thatγd takes a negative value whileγu is positive.
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Figure 2: The limit angle in downhill slopes as a function of vehicle speed for
different vehicle masses and highest gear.
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Figure 3: The limit angle in uphill slopes as a function of vehicle speed for different
vehicle masses.



104 PAPER E. EXPLICIT FUEL OPTIMAL SPEED PROFILES

A
lti

tu
de

Position

Figure 4: A constructed road profile that captures important behaviorof a truck
traveling in a downhill slope with large gradient. The gradient is such that the vehicle
will accelerate in the slope even though the engine does not produce any work.

Now with a definition of small gradients, optimal solutions for roads with level sec-
tions and sections with small gradients can be calculated. For a road section with a small
gradient with constant inclination the fuel consumption (11) is written

z= δs= (c̃c + c̃vv+ c̃v2v
2 +cinc)s (33)

wherecinc is the additional cost due to road inclination. Combining one level tangent
section with one of small gradient the total fuel consumption (13) is now

z= (c̃c + c̃vv1 + c̃v2v2
1)s1 +(c̃c + c̃vv2 + c̃v2v2

2 +cinc)s2 (34)

The Lagrangian (15) becomes

L(v1,v2,λ) = (c̃c + c̃vv1 + c̃v2v2
1)s1 +(c̃c + c̃vv2 + c̃v2v2

2 +cinc)s2 + λ(
s1

v1
+

s2

v2
− t) (35)

It is seen that the additionalcinc in the Lagrangian will disappear when the partial
derivatives (16)-(18) are computed, and hence the optimum remains unchanged. The
conclusion is that also combinations of level tangent road sections with sections of small
gradients has the optimal speed profile of constant speed.

5 Optimal speed on steep gradients

In [2] it is argued that slopes with large gradients, i.e. outside the definition in (32),
is so rare on common roads that there is no reason to take account for them. However,
in [4, 7, 6] it is shown that there is a potential to save some extra per cent of fuel by
controlling the vehicle speed in such slopes. Analytic solutions to the motion of the
model presented in Section 2 will here be used to find the optimal speed profiles for large
gradients. The type of road sections that will be studied is depicted in Figure 4.
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5.1 Downhill slopes

For steep downhill slopes the vehicle will accelerate even though the engine does not
produce any work. The motion of a vehicle accelerating in a downhill slope with fuel
injection cut off will now be studied. Assuming no fueling, i.e. δ(t) = 0, fixed gear, and
constant inclination the vehicle motion (10) can be writtenas

v̇(t) = cc +cvv(t)+cv2v
2(t) (36)

This ordinary differential equation can be solved by separating variables writing (36)
as

1
cc +cvv+cv2v2dv= dt, cc +cvv+cv2v

2 6= 0 (37)

Integrating both sides gives

∫

1
cc +cvv+cv2v2 dv=

∫

dt+c (38)

wherec is a constant. For typical values of the model parameters, when the vehicle is
traveling downhill, 4cv2cc < c2

v, which means that the integrals are

1
√

−4cv2cc +c2
v

ln

∣

∣

∣

∣

∣

2cv2v+cv−
√

−4cv2cc +c2
v

2cv2v+cv+
√

−4cv2cc +c2
v

∣

∣

∣

∣

∣

= t +c (39)

From this equation the speed can be solved for and the result is

v(t) =
a(cv−

√
k)− (cv +

√
k)e

√
k(t+c)

2cv2e
√

k(t+c) −a2cv2
(40)

The constantc is determined from the intitial velocityv(0), k = c2
v−4cccv2, anda= 1

if the initial speed is above the stationary speed anda =−1 if below the stationary speed.

Solving Equation (40) forc gives

c =
1√
k

ln

(

a(cv−
√

k)+v(0)a2cv2

v(0)2cv2 +cv+
√

k

)

(41)

As seen in Equation (40), given an initial speed at the beginning of the slope, the speed at
each time instant in the slope can be calculated. In order to calculate the speed at the end
of the slope, the time for that point has to be known. The time it takes to travel the slope
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can be calculated from the following expression for the distance of the slope.

s=

t1
∫

t0

v(t)dt = a
(

cv−
√

k
)

t1
∫

t0

1

2cv2e
√

kce
√

kt −2acv2
dt

−
(

cv +
√

k
)

e
√

kc

t1
∫

t0

e
√

kt

2cv2e
√

kce
√

kt −2acv2
dt =

a
(

cv−
√

k
)

[

1

−2acv2
√

k

(√
kt− ln

∣

∣

∣−2acv2+2cv2e
√

kce
√

kt
∣

∣

∣

)

]t1

t0

−
(

cv +
√

k
)

e
√

kc
[

1√
k2cv2e

√
kc

ln
∣

∣

∣−2acv2+2cv2e
√

kce
√

kt
∣

∣

∣

]t1

t0

(42)

Given the start timet0, start velocityv(t0), and the total lengths, the end timet1 can
be calculated solving equation (42).

When a vehicle has accelerated in a steep downhill slope suchas depicted in Figure 4,
it has to decelerate to cruising speed again once the level section is reached. The optimal
way to decelerate is to cut the fuel injection to decelerate as fast as possible. This will be
shown mathematically in Section 6, but it can also be argued intuitively as follows. Any
amount of fuel that is injected when driving faster than the cruising speed is used when
the vehicle is subject to higher resistance, which decreases the total efficiency. Hence, in
order to decelerate on level road the fuel injection is cut off. For typical model parameters
in this case 4cv2cc > c2

v and the integrals in (38) then becomes

2√
k

arctan

(

2cv2v+cv√
k

)

= t +c (43)

wherek = 4cccv2−c2
v. The speed is then

v(t) =
1

2cv2

(

√
ktan

(√
k

2
(t +c)

)

−cv

)

(44)

The constantc is given from initial conditions as

c =
2√
k

arctan

(

1√
k

(2cv2v(0)+cv)

)

(45)

Typical solutions to the speeds as given by Equations (40) and (44) are depicted in
Figure 5 - Figure 8. A simulation of a truck driving in a slope as depicted in Figure 4 is
presented in Figure 9. Note that for such a short downhill slope as 400 m, the deceleration
before and after the slope as well as the acceleration in the slope is nearly linear. The
reason for slowing down before the slope is to keep an averagespeed equal to the cruising
speed on the level sections.

5.2 Analytical solutions for optimal speed profiles

As can be seen in Figure 9, during deceleration with fuel cut off on level sections, it
is a good approximation to consider speed as a linear function of position. Also the
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Figure 5: Deceleration on level road when fueling is zero. For all three vehicle
weights the motion is almost linear for a large part of the operating range.
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Figure 6: Acceleration on 2% downhill slope with zero fueling. Note that it takes
more than 10 km to reach a stationary speed.
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Figure 7: Acceleration on 2% downhill slope with zero fueling. A zoom in of the
previous figure. For speeds around cruising speed the acceleration can be approxi-
mated as linear.
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Figure 9: Typical speed profile when driving with an average speed of 85km/h on
a level section, followed by a steep downhill slope, and ending with a level section.
The inclination in the slope is 3%. There is no fuel injectionduring the part from
200m to 1000m.
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Figure 10: Two different speed profiles with the same average speed. Both profiles
assumes that speed is a linear function of position during deceleration and accelera-
tion. The distance traveled in fuel cut off mode is equal in both cases and hence the
dotted profile has the lowest fuel consumption.
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Figure 11: Typical speed profile when driving with an average speed of 85km/h on
a level section, followed by a steep downhill slope, and ending with a level section.
The inclination in the slope is 3%. There is no fuel injectionduring the part from
1000m to about 5000m.

acceleration with fuel cut off in the slope can be approximated as linear. In the simulation
in Figure 9 the cruising speed was chosen to equal the desiredaverage speed on the total
distance. The point where the fuel injection is cut off is chosen so that the average speed
is the desired. Of course there are other speed profiles that have the same average speed.
For example, a lower cruising speed on the level sections andgoing into fuel cut off later
can have the same average speed, see Figure 10. Using linear approximations for the
decelerations and acceleration it is seen that the distancetraveled in fuel cut off mode is
equal for the different profiles. This means that the profile with lower cruising speed in
the level sections has the lowest fuel consumption. As can beseen in Figure 9 the linear
approximations of the speed profiles are valid for the case studied.

When studying long slopes such as the one depicted in Figure 11, it is seen that the
linear approximation of vehicle speed during the acceleration no longer is very good.
However, the linear approximation during deceleration is still good as expected, see Fig-
ure 5. The exponential behavior of the speed during the acceleration, see Equation (40),
means that the gain in speed in the slope will be lower the higher the initial speed is.
Comparing the previous two strategies, this means that using the strategy of cruising at
a lower speed and going into fuel cut off mode later, will result in a shorter distance in
fuel cut off mode, and hence the decrease in fuel consumptionwill be lesser. However
comparing the two strategies as in Figure 12, the strategy with lower cruising speed still
has the lowest consumption on the total distance.

So far it has been shown that the optimal way to drive in downhill slopes is to cruise
at constant speed all the way to the crest of the downhill slope, then go into fuel cut
off mode, let the vehicle accelerate in the slope, and last decelerate on the level section
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down to cruising speed again. Compared to other strategies,the gain in speed in the slope
is used to lower the cruising speed on the level sections, andthereby reducing the fuel
consumption. However, simulations also show that the gain in fuel consumption varies
little between different strategies.

The discussion up till now has assumed that there are no limitations on vehicle speed.
However, in a realistic case the speed must be limited due to safety and legislation reasons.
For such cases the brakes have to be used to limit the speed in steep downhill slopes. As
the brakes transform kinetic energy into heat, all brake usage is a waste of energy. For
fuel optimal driving it is hence desirable to find speed profiles that minimize the brake
usage. If the optimal speed profile not considering speed limits has a higher velocity than
allowed, the strategy can be modified. The new optimal profileis then to cut the fuel
injection at a time such that the vehicle reaches the maximumallowed speed at the end of
the slope without using the brakes, see Figure 13. Using the analytic solution (40), (42),
for vehicle acceleration in the slope and a linear approximation of deceleration on level
road, the point of going into fuel cut off can be calculated from a desired speed at the end
of the slope.

As mentioned earlier, the difference in fuel consumption for different speed profiles is
moderate for the simulation cases presented if not considering speed limitation. Typically,
the fuel savings using the optimal strategy as presented in Figure 10 and Figure 12 is in
the order of 1-2% for the simulated road profile. However, taking account for speed limits
and adjusting the policy as described above, see Figure13, the fuel savings are above 10%.

So far, road sections consisting of level road, and one down hill slope of constant
inclination have been examplified. A real road could be considered as a sequence of
sections with constant inclination. The problem of finding the optimal speed profile for
such sequences can be solved using the same strategy as aboveadding the constraint that
the speed at the end of one section must equal the initial speed of the following section.
The parameter to optimize is then the constant speed on the sections of level road and
small inclinations.

Another observation can bee made. When looking at numericalsolutions to optimal
driving as presented in, e.g. [6, 8, 9], there is often oscillations in the control inputs and
in some cases also the vehicle speed, and this often occurs close to switch points similar
to those in e.g. Figures 9 -12. Using the results presented here it is easier to understand if
numerical solutions to optimal control problems are subject to numerical or other errors.

6 Derivation of optimal controls

Up till now it has been argued with an intuitive reasoning what the optimal controls are,
namely: 1) At level road or in small gradients the optimal engine fueling is the one that
corresponds to a constant vehicle speed. 2) In steep downhill slopes fuel injection is cut
off. Before the slope the fuel injection in some cases was cutoff in order to minimize
brake usage. After the slope fuel injection remained cut offuntil cruising speed was
reached. 3) In long downhill slopes the brakes might have to be applied in order not to
exceed the speed limit. For completeness it will in this section be mathematically proven
that the above stated optimal controls also are the mathematically optimal controls.

Using the change of variablesds= vdt the problem considered can be formulated as
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Figure 12: Two different speed profiles with the same average speed. Thedistance
with fuel cut off is shorter for the dotted profile than the solid profile, but the lower
cruising speed still results in a lower over all fuel consumption.
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Figure 13: Using an optimal strategy disregarding speed limits is no longer optimal
when speed limitation is introduced. In this case the speed is limited to 90 km/h.
The old optimal strategy, dashed line, has to use the brakes at the end of the slope.
The new optimal policy, solid line, cuts the fuel injection at a time such that the
maximum allowed speed is reached at the end of the slope without using the brakes.
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the following optimal control problem [1]

min
sf
∫

s0

L(s)ds

x′(s) = f (x,u)
x(s0) = x0, ψ(x(sf )) = 0
C(x(s)) ≤ 0

(46)

where in this caseL(s) = δ(s), the states arexT =
[

v t
]

, i.e. vehicle speed and traveled
time. The control variables areuT =

[

δ Fb
]

, i.e. fueling and braking force. The state
constraints at positionsf are given byψ and the path constraint isC = v(s)−Vmax, where
Vmax is the maximum allowed speed. The system dynamics are as in (10) consideringcC

as a function of inclinationα. Using a fixed gear and also considering the braking force
Fb(s) the dynamics are

v′(s) = 1
v

(

cδδ(s)+cvv(s)+cc +cv2v2(s)−Fb
)

t ′(s) = 1
v(s)

(47)

where ’ denotes differentiation with respect to position. The Hamiltonian that is to be
minimized [1] is

H = L+ λT f +µC (48)

which in this case is

H = δ+
λ1

v

(

cδδ+cvv+cc+cv2v2−Fb
)

+ λ2
1
v

+µ(v−Vmax) (49)

The dynamics of the adjoint variables are

λ′ = −HT
x (50)

which in this case is

λ′
1 =

λ1

v2

(

cδδ+cvv+cc +cv2v2−Fb
)

− λ1

v
(cv +2cv2v)+

λ2

v2 −µ (51)

and
λ′

2 = 0 (52)

It now is convenient to change variables according to

p = 1+
cδ
v

λ1, p′ = λ′
1

cδ
v
−λ1

cδ
v2v′ (53)

which gives the Hamiltonian

H = pδ+
p−1

cδ

(

cc +cvv+cv2v
2)− p−1

cδ
Fb +

λ2

v
(54)

and the adjoint dynamics

p′ =
p−1

v2

(

−cvv−2cv2v
2)+

λ2cδ
v3 −µ

cδ
v

(55)
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Note that the adjoint dynamic is unstable in the causal direction and hence should be
simulated in the acausal direction, i.e. time should be reversed when simulatingp. Doing
so (55) becomes

p′ = − p−1
v2

(

−cvv−2cv2v
2)− λ2cδ

v3 +µ
cδ
v

(56)

The optimal controls are found by minimizing the Hamiltonian (54). It is seen that
there are a few choices of optimal control listed below:

• If p < 0, δ = δmax, i.e. maximum fueling

• If p = 0, δ is arbitrary, i.e. partial fueling

• If p > 0, δ = δmin, i.e. no fueling

• If p < 1, Fb = Fb,min, i.e. no braking

• If p = 1, Fb is arbitrary, i.e. partial braking

• If p > 1, Fb = Fb,max, i.e. maximum braking

The cases ofp = 0 andp = 1 will now be treated. When cruising, i.e. driving on
level roads or in small gradients it is not expected that fueling reaches the limits ofδmax

or δmin. Hence, for cruising at lower speed than the speed limitVmax, p = p′ = µ= 0 and
(56) becomes

0 =
1
v2

(

−cvv−2cv2v
2)− λ2cδ

v3 (57)

Sinceλ2 is constant, the speed is constant when fueling is not in the limit. This constant
speed is given by the above equation and is dependant on the constantλ2. The value ofλ2

is chosen such that the end constraint on traveled time is fulfilled. Note that sincecv < 0,
cv2 < 0, andcδ > 0, the adjoint variableλ2 > 0.

In an instant of partial brakingp = 1 and (56) would become

p′ = −λ2cδ
v3 +µ

cδ
v

(58)

When the speed is below the speed limitµ= 0 which givesp′ < 0. Hence, as long as the
speed is below the speed limitp will not stay atp = 1 and therefore the conclusion can be
drawn that the brakes never will be used in such cases. Duringsections of partial braking
p′ = 0 and (56) becomes

0 = −λ2cδ
v3 +µ

cδ
v

(59)

and the speedv = Vmax. To conclude, the possible choices of optimal controls are:1)
partial fueling such that the vehicle speed is constant. 2) zero fueling used to decelerate
on level road or in small gradients or to accelerate in large gradients. 3) Maximum fueling
in and in the neighborhood of steep uphill slopes. 4) Partialbraking in steep downhill
slopes when the vehicle speed is equal to the speed limit.
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7 Conclusions

Optimal speed profiles for heavy trucks driving important test road profiles have been
presented. The method has been based on analytic solution for linear road segments, and
the continuous connection of such solutions. An important effect of that strategy is that
the problem of finding the optimal speed trajectory is reduced to a parametric optimiza-
tion problem of finding the positions for switching between optimal control inputs. This
reduces the dimension of the problem significantly comparedto other methods. Further, it
provides a way of validation of solutions to optimal drivingsubject to numerical or other
errors. The more important conclusions are on a behavioral level. It was shown that it is
optimal to keep a constant speed on level road and in small gradients. For large gradi-
ents in downhill slopes several interesting conclusions can be drawn. The first is that it is
optimal for most cases to drive at cruising speed to the beginning of the slope, then cut
the fuel injection and let the vehicle accelerate down the slope, and then decelerate after
the slope down to cruising speed again. The acceleration in the downhill slope can be
used to lower the speed on level sections while still keepinga desired average speed over
the total distance. However, considering a more realistic case where there is a top speed
limit, there is an interesting switch in the optimal strategy. The optimal speed profile is
now to cut the fuel injection at a point before the downhill slope such that the vehicle
will reach the maximum allowed speed at the end of the slope. The point where to cut
the fuel injection can be calculated from the presented analytical solutions of the vehicle
motion. Thus, the most important contribution is to provideinsight into proper strate-
gies for standard cases like up- and downhill slopes, hills and depressions, and that these
base strategies can be continuously connected to a completestrategy while still keeping
explicit parameter dependence.
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Paper F

OPTIMAL CONTROL UTILIZING ANALYTICAL

SOLUTIONS FOR HEAVY TRUCK CRUISE

CONTROL1

Anders Fröberg⋆, Lars Nielsen⋆

⋆ Dep. of Electrical Engineering, Linköpings universitet,
SE-581 83 Linköping, Sweden.{froberg,lars}@isy.liu.se.

Abstract
The problem addressed is how to control vehicle speed over a given distance on a
given time such that fuel consumption is minimized. Analytical expressions for
the necessary optimality conditions are derived. These expressions are essential
for the understanding of the decisive parameters affectingfuel optimal driving
and the analytical optimality conditions make it possible to see how each param-
eter affects the optimal solution. Optimal solutions for anaffine engine torque
model are compared to solutions for a piece-wise affine model, and it is shown
that small non-linearities have significant effect on the optimal control strategy.
The solutions for the non linear engine model has a smoother character but also
requires longer prediction horizons.

Assuming a continuously variable transmission, optimal gear ratio control
is presented, and it is shown how the maximum fueling function is essential
for the solution. It is also shown that the gear ratio never ischosen such that
engine speed exceeds the speed of maximum engine power. Those results are
then extended to include a discrete stepped transmission, and it is demonstrated
how gear shifting losses affect optimal gear shifting positions.

The theory presented is a good base to formalize the intuition of fuel efficient
driving. To show this, optimal solutions are presented in simulations of some
constructed test road profiles, where the typical behavior of an optimal solution
is pointed out, and also which parameters that are decisive for the fuel minimiza-
tion problem. This is then used to design a simple low-complexity computation-
ally efficient rule-based look ahead cruise controller, andit is demonstrated that
simple parametrized quantitative rules have potential forsignificant fuel savings.

1This is an edited version of the technical report [4], Optimal Control Utilizing Analytical Solutions for
Heavy Truck Cruise Control.
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1 Introduction

Fuel cost is a large part of the operating cost of heavy trucks. Hence there has been an
increasing interest in predictive cruise controllers thatminimizes fuel consumption [19,
5, 11]. Some early work in finding fuel optimal speed profiles for automobiles is reported
in [16, 8]. Other related work regarding passenger cars in urban traffic has shown on a
large potential to use speed control to minimize fuel consumption [14]. Similar methods
as discussed in this paper has earlier been used on rail vehicles [13].

The scenario studied here concerns heavy trucks used for long haulage and the goal is
to control vehicle speed over a given distance on a given timesuch that fuel consumption
is minimized. It is assumed that road topography ahead of thevehicle is known and the
resulting problem will be referred to as look ahead cruise control. In a practical case
road topograghy can be extracted using for example a navigation system with 3D maps
or collected data. The differences between optimal solutions for a linear engine torque
model and a non linear engine torque model is investigated. The non linear model is here
modeled as a piece-wise affine, PWA, function. Optimal gear shifting is also studied,
both with a simplified transmission model with continuouslyvariable gear ratio, and for
a discrete step transmission.

Based on the modeling, the optimality conditions for the fuel minimization problem
become analytical expressions. From these expressions theeffect of each parameter can
be studied which is important to gain knowledge of what factors that affect fuel consump-
tion. For example, the optimal control derived here can be used as an aid when analyzing
and validating the behavior of numerical controllers as described in [6] and [7]. The re-
sults are also the basis for formalizing an intuitive optimal driving behavior which can be
used for design of simple rule based controllers. In this paper the effect of other traffic
is not explicitly considered. However, one way to handle such situations is to consider
other traffic as an extra constraint on vehicle speed. In [17]a method is presented that
optimizes vehicle speed when approaching a slower vehicle.

The paper is organized as follows. The fuel minimization problem is formulated in
Section 2. Under the assumption of an affine engine torque model and a fixed gear ratio,
necessary conditions for optimal fueling is derived in Section 3. In Section 4 a piece-wise
affine, PWA, model is used to capture the non linearities in the engine characteristics. As-
suming a continuously variable transmission, optimal gearratio is derived in Section 5 and
the results are then extended to include a discrete stepped transmission. The optimality
conditions for the different modeling choices are used to find optimal solutions for a few
illustrative constructed road profiles, and simulation results are presented in Section 6.
It is also demonstrated in Section 8 that the derived expressions can be used to design a
low-complexity computationally efficient rule-based lookahead cruise controller.
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2 Problem formulation

The problem to be solved is to minimize fuel consumption overa given distancesf with
specified travel timeTt . With notation according to Table 1 this is written as

min
∫ sf

0
δncyl i
2πnr r

ds (1)

s.t.
∫ sf

0
1
vds= Tt (2)

The vehicle is modeled as in [3], and [10], and can be written as

v̇ =
1
J

(

Fprop−Fair −Froll −Fslope−Fb
)

(3)

where the variables and parameters are selected according to Table 1, and the forces and
inertias are set according to Table 2. Losses in different parts of the driveline are easily
modeled as lumped losses by modifying the coefficients of engine friction losses and
vehicle resistance forces. Measured engine torque from a real engine is given in Figure 1.
It is there seen that an affine model of engine torque is a good first approximation, but for
a detailed analysis the non linearities should be included.

Variables and Description
parameters

α Road slope[rad]
δ Engine fueling[kg/stroke]
η Transmission efficiency
ωe Engine speed[rad/s]
ρ Air density[kg/m3]
θe Crank shaft angle[rad]
A Front area[m2]

ceδ, ceω, cec Engine torque coefficients
cd Air drag coefficient

cr1, cr2, cr3 Rolling resistance coefficients
Fb Brake force
g Gravitational acceleration
i Gear ratio
Je Engine inertia[kgm]
Jd Lumped drivline inertia[kgm]
m Vehicle mass[kg]

ncyl Number of cylinders
nr Revolutions per stroke
r Wheel radius[m]
s Traveled distance[m]

Table 1: Variables and parameters for the truck model.
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Quantity Equation Description
J(i(t)) m+Jei2η 1

r2 + Jd
r2 Vehicle Inertia

Fair(v(t)) 1
2ρcdAv2 Air resistance

Fprop(δ(t),ωe(t), i(t))
iη
r ( fδ(δ)+ fω(ωe)+cec) Propulsive force

Froll (v(t)) m(cr1 +cr2v+cr3v2) Rolling resistance
Fslope(α(s(t))) mgsinα(s) Force due to road slope

Table 2: Vehicle forces and inertias.
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Figure 1: Measured engine torque. Each line represents a given enginespeed.
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Figure 2: Affine approximation of engine torque. A maximum fueling function is
also plotted as function of engine speed.

3 Optimal fueling -Affine engine characteristics

It will first be assumed that engine torque can be approximated as an affine function.
With inspiration from the measured data in Figure 1, the model depicted in Figure 2 is
constructed. Note that engine torque in Table 2 isTe = fδ(δ) + fω(ωe) + cec. Using
ωe = iv

r , the affine approximation of engine torque gives thatFprop in Table 2 is written as

Fprop =
iη
r

(ceδδ+ceω
iv
r

+cec) (4)

In Figure 2 the maximum fueling function for a real engine is plotted. That function
will here firstly be approximated as an affine function of engine speed, but later a more
exact quadratic function will be used. Again usingωe = iv

r this can be written as

Cδ = δ− (cωconi
v
r

+cccon) ≤ 0 (5)

and it is assumed thatδ ≥ 0.
Since road slope is a function of position it is convenient tochange independent vari-

able from timet to positions,
d
ds

=
1
v

d
dt

(6)

Let the statesx of the system be vehicle speedv and traveled timeT, i.e. x = [v,T]T .
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Neglecting engine inertia the system dynamics becomes

dv
ds

=
1
v

(

cδiδ+cωi2
v
r

+cei

+cc +cvv+cv2v2 +cα sinα(s)
)

= fv (7)

dT
ds

=
1
v

= fT (8)

where the model coefficients can be derived from those given in Tabel 1.
The fuel minimization problem will be solved with optimal control theory which is

thoroughly described in the classic textbook [1], and that notation will here be followed.
The function to be minimized, (1), with constraints (5), (7), (8), are used to construct the
following Hamiltonian

H = δi + λv fv + λT fT +µδCδ (9)

where
ncyl

2πnr r
are included in the multipliers. When the constraintCδ is inactiveµδ = 0,

and when the constraint is activeµδ ≥ 0. The dynamics of the adjoint state variables are
dλ
ds = −HT

x , i.e.

dλv

ds
=

λv

v2 (cδiδ+cei +cc−cv2v2 +cα sinα)

+
λT

v2 +µδcωcon
i
r

(10)

dλT

ds
= 0 (11)

As in [12] the optimal fueling control is found by minimizingH with respect to the
control variableδ. Since the Hamiltonian is linear inδ the optimal control sequence will
consist of sections of maximum fueling, minimum fueling or sections wheredH

dδ = 0. The
latter sections are called singular arcs. Differentiatingthe Hamiltonian gives

dH
dδ

= i(1+
λvcδ

v
)+µδ (12)

For sections of singular arcs whereCδ < 0, i.e.µδ = 0, it is seen in (12) thatλv = − v
cδ

. It

must also hold thatdds(
dH
dδ ) = 0 which gives

d
ds

(
λvcδ

v
) =

dλv

ds
cδ
v
− λvcδ

v2 fv

=
λvcδ
v3 (−cω

i2v
r

−cvv−2cv2v
2)+

λTcδ
v3 = 0 (13)

Putting (12) equal to zero, solving forλv, and inserting into (13) gives the following
dependency betweenv andλT

v2

cδ
(cω

i2

r
+cv +2cv2v)+ λT = 0 (14)

SinceλT is constant, (11), the system must be in stationarity duringsingular arcs, i.e.v is
constant, and since (14) andλv =− v

cδ
, λv must be constant. The constantλT is determined
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by that the constraint on total travel time (2) is fulfilled. Given initial and end conditions
on the statesv andT, the complete problem to solve thus consists of Equations (2), (5),
(7), (8), (10)-(12), (14).

3.1 Solution characteristics

As mentioned above, the optimal control sequence consists of maximum fueling, zero
fueling and, singular arcs where fuelingδ is chosen such that vehicle speed is stationary.
Obviously, due to the nature of the vehicle resistance forces, the global optimal solution
will be stationary, i.e. constant speed, whenever it is possible, i.e. whenever the road
gradient is small enough. Road gradient is considered smallif maximum fueling is enough
to keep constant speed in an uphill slope and if zero fueling does not result in acceleration
in a down hill slope, [2]. Such small enough gradients will here be defined. Consider the
model (7) and let fuelingδ = 0. It is seen that for all inclination angles

α̃d ∈ {α̃d : cωi2
v
r

+cei +cc+cvv+cv2v
2 +cα sinα̃d > 0} (15)

the vehicle will accelerate even though the engine does not produce any work. The limit
for the setα̃d is found by setting equality in (15) resulting in

αd = arcsin
cωi2 v

r +cei +cc+cvv+cv2v2

−cα

= arcsin
ceωηi2v

r2 + cecηi
r −mcr1−mcr2v−mcr3v2− 1

2ρcdAv2

mg
(16)

that of course is a negative angle,αd < 0, for realistic vehicle parameters. For uphill
slopes the vehicle will accelerate when using maximum fuelingδmax for angles

α̃u ∈ {α̃u : cδiδmax+cωi2
v
r

+cei +cc +cvv+cv2v
2 +cα sinα̃u > 0} (17)

and the limit for the set is

αu = arcsin
cδiδmax+cωi2 v

r +cei +cc +cvv+cv2v2

−cα

= arcsin
ceδηi

r δmax+
ceωηi2v

r2 + cecηi
r −mcr1−mcr2v−mcr3v2− 1

2ρcdAv2

mg
(18)

that is a positive angle,αu > 0.
Using Equations (16) and (18) the following definition can bemade

Definition Small gradients are all gradients with inclinationα such that

αd < α < αu (19)

Other gradients are referred to as steep gradients.
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Figure 3: Engine torque as a piece-wise affine function of fueling. Maximum fueling
is plotted as function of engine speed.

To conclude, there are three possible control settings for optimal fueling, i.e. maxi-
mum fueling, fuel cut-off, and to control fueling such that vehicle speed is constant.

The adjoint variableλv responds to future changes in inclinationα, and for steep
slopes maximum or minimum fueling respectively is not enough to keepλv stationary. As
seen in (12)dH

dδ depends onλv and henceλv is important for the control switch points. An
optimal solution will thus consists of constant fueling forflat road and small gradients,
but in and in a neighborhood of steep uphill slopes it will be optimal to use maximum
fueling, and, in and in a neighborhood of steep downhill slopes it will be optimal to cut
off the fuel injection. The importance of the adjoint variable λv will be stressed later and
in Section 6.5 it will be used for a discussion on the sensitivity of the optimal solution.

4 PWA engine characteristics

To better approximate the engine characteristics the engine torque will now be modeled
as a piece-wise affine function of fuelingδ, see Figure 3 for a hypothetic example. Let
fueling be divided inN regions, see Figure 4 for a schematic depiction. When the engine
is operated in regionn the propulsive forceFprop in Table 2 is written

Fprop =
iη
r

(

n−1

∑
i=1

(kδ,i −kδ,i+1)δmax,i +kδ,nδ+kωeωe+k

)

(20)

When operating in fueling regionn the vehicle dynamics can be written in the form (7)

with obvious changes to the parameters, e.g. letcδ = cδ,n =
ηkδ,n

Jr . Differentiating the
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Hamiltonian with respect to fueling now gives

dH
dδ

= i(1+
λvcδ,n

v
)+µδ (21)

Considering only the operating region where the engine is currently operating, optimal
control can be derived as in Section 3, i.e. fueling can be in the limit of the region or
fueling can be such that vehicle speed is constant. Each engine region can be associated
with a constant speed solution as in Equation (14), i.e. the solution to

v2

cδ,n
(cω

i2

r
+cv+2cv2v)+ λT = 0 (22)

For each engine operating regionn, limit angles can be defined as in Equation (19) by
modifying Equations (16) and (18) giving

αd,n < α < αu,n (23)

4.1 Concave engine map

Now consider a concave torque characteristic, i.e.cδ,i > cδ,i+1. From (21) it is seen that
when

− 1
cδ,i+1

<
λv

v
< − 1

cδ,i
(24)

it will hold that dH
dδi

< 0 and dH
dδi+1

> 0. Since bothv andλv are continuous functions the
optimal control sequence will consist of a period where fueling is on the border of fueling
regioni andi+1. This means that there is never an immediate change from constant speed
to maximum or minimum fueling, but the solution will consistof a “smoother” change
to the upper or lower limit of fueling. Withcδ,i > cδ,i+1 the corresponding stationary
solution given by (22) will bevi > vi+1. This means that some downhill slopes will have
constant speed solutions with higher speed than for flat roadand some uphill slopes will
have constant speed solutions that is lower than for flat road.

4.2 Non concave engine map

For the approximation in Figure 3 the requirementcδ,i > cδ,i+1 is not fulfilled for all i,
i.e. the approximation is not concave. For such a case further reasoning needs to be done
in order to find the optimal control. An example fuel-torque characteristic is depicted in
Figure 4. Let the torque characteristic have slopecδ,i in the respective region. Consider
a case where cruising at constant speed at flat road implicates i = 1, i.e. a fueling value
in region 1. When a steep uphill slope is approached there is some distance where for

example 1+
λvcδ,i

v > 0 for i = 2,4 and 1+
λvcδ,i

v < 0 for i = 1,3. For such a position,
if considering only region 1 and 2 fueling would be chosen at the border between those
regions. Considering only region 3 and 4 would in the same waygive a fueling in the
border between those regions. There is hence two candidate values of fueling to use.
To decide which one that is optimal an approximation to the torque characteristics that
reduces the number of fueling regions can be used. Such an approximation is marked as
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Figure 4: piece-wise affine approximation of engine characteristics.

a dashed line in Figure 4. In this way the fueling-torque characteristics is transformed
into a concave function and the choice of fueling is uniquelydecided by considering (24).
Similar reasoning can be made for downhill slopes.

4.3 Non linear engine speed characteristics

To further improve the approximation of the engine characteristics, non-linearities in en-
gine speed dimension could also be considered. One way is to consider engine torque as
a piece-wise affine function of both speed and fueling.

Let engine speed be divided inM regions and let fueling be divided inN regions.
When the engine is operated in region(m,n) the propulsive forceFprop in Table 2 is
written

Fprop =
iη
r

(

n−1

∑
i=1

(kδ,i −kδ,i+1)δmax,i +kδ,nδ+

m−1

∑
j=1

(kωe, j −kωe, j+1)ωemax, j +kωe,mωe+k

)

(25)

See Figure 5 for an hypothetic engine model withM = 8,N = 6.
Differentiating the Hamiltonian with respect to fueling gives the same result as in (21).
Considering only the operating region where the engine is currently operating, optimal

control can be derived as in Section 3, i.e. fueling can be in the limit of the region or



4 PWA engine characteristics 127

Figure 5: piece-wise affine approximation of engine characteristics. Maximum fu-
eling is plotted as function of engine speed.

fueling can be such that vehicle speed is constant. Each engine region can be associated
with a constant speed solution as in Equation (14), i.e. the solution to

v2

cδ,n
(cω,m

i2

r
+cv +2cv2v)+ λT = 0 (26)

For each engine operating region[m,n], limit angles can be defined as in Equation (19)
by modifying Equations (16) and (18) giving

αd,m,n < α < αu,m,m (27)

Modeling engine torque as a piece-wise affine function of engine speed gives a Hamil-
tonian that is not differentiable with respect tov. This means thatλv will have a disconti-
nuity in the switch point between different engine speed regions. How this can be treated
is described in Chapter 3.6 in [1]. However, accounting for the non-linearities in the speed
dimension does not affect the principal behavior of the optimal control given by (21) in the
sense that the optimal fueling also in this case is in the border of fueling regions or such
that vehicle speed is constant. However, both the vehicle dynamics (7) and the adjoint dy-
namics (10) is affected by the engine characteristics in thespeed dimension, which means
that the optimal control switch points depends on it. Since the optimal fueling behavior
in principal is not affected by the modeling in the speed dimension the remaining of this
paper only considers nonlinearities in the fueling dimension.

A non-concave engine torque can require some care in finding the global optimal
solution. One such case is treated in [9]. That case is when the desired average speed
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corresponds to an inefficient engine operating point. Then it can be optimal to switch
between two other cruising speeds resulting in correct average speed. This can be studied
using Equation (26). For a givenλT it can be the case that no region has a feasible constant
speed solution corresponding to desired average speed. In such a case the optimal solution
consists of switching between different cruising speeds.

Other ways than (25) to make a PWA approximation of the enginemap can be more
close to the real characteristics. For example one can use a triangular mesh or a bilinear
function of engine speed and fueling. However, such approximations would still keep
the problem in input affine form and the principal results discussed so far would not be
changed.

5 Optimal gear ratio control

Not only fueling control but also gear choice affects the fuel consumption considerably.
Although there are high-power applications for which continuously variable transmissions
are used [15, 18], the most common transmission for heavy trucks are the discrete step
transmission. As a first attempt to study fuel optimal gear shifting, gear ratioi is assumed
to be continuously variable and fulfilling 0< imin ≤ i ≤ imax. Later, those results will be
used to derive solutions for a stepped transmission.

5.1 Optimal gear ratio - affine maximum fueling

Again study the model with affine engine characteristics (4)from Section 3. Maximum
fueling will here be modeled as an affine function of engine speed by usingωe = iv

r in (5).
Although this is a too simple model to resemble the measured function in Figure 2 the
results are illustrative and a base for the more accurate quadratic model that will be used
in Section 5.2.

The gear ratio can be varied between a lower and upper limit, i.e., it has to fulfill the
following constraints

Cimax = i − imax≤ 0 (28)

Cimin = imin− i ≤ 0 (29)

When choosing gear ratio the engine speed must also be kept within limits, i.e.

Cωmin = ωmin−
iv
r
≤ 0 (30)

Cωmax =
iv
r
−ωmax≤ 0 (31)

The constraints (28)-(31) are adjoined to the Hamiltonian with respective Lagrange
multipliersµimax, µimin, µωmin, andµωmax.

H = δi + λv fv + λT fT +µδCδ +µimaxCimax+µiminCimin +µωminCωmix

+µωmaxCωmax (32)
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Differentiating the Hamiltonian (32) with respect toi gives

dH
di

= δ(1+
λvcδ

v
)+2cω

λv

r
i +ce

λv

v
−µδcωcon

v
r

+µimax−µimin−µωmin
v
r

+µωmax
v
r

(33)

During sections of constant speed, i.e. for flat road and small gradients, fueling is not in
the limit, i.e.µδ = 0. Then Equation (12) gives 1+ λvcδ

v = 0. Also assume that gear ratio
and engine speed is within allowed limits, i.e. the respectiveµ= 0. The conditiondH

di = 0
then gives the optimal gear ratio

iopt = − ce

cω

r
2v

(34)

For typical engine characteristics, see Figure 1,ce,cω < 0 orcω < 0 andce is small. Both
situations result in thatiopt given by (34) is smaller thanimin, and hence, considering limits
on i the resulting optimal solution isiopt = imin. This minimizes engine speed and hence
engine friction.

Assuming that engine speed limits and gear ratio limits are not reached, i.e.µωmin =
µωmax= µimin = µimax= 0, optimal gear ratio during sections of maximum fueling is found
by combining Equations (5), (12), and, (33), usingdH

dδ = dH
di = 0, which gives

dH
di

= ccon(1+
λvcδ

v
)+ce

λv

v

+
2
r
(cωconv(1+

λvcδ
v

)+cωλv)i = 0 (35)

The optimal gear ratio given by Equation (35) is

iopt = − ccon(1+
λvcδ

v )+ce
λv
v

2
r (cωconv(1+

λvcδ
v )+cωλv)

(36)

Recall that 1+ λvcδ
v < 0 during sections where maximum fueling is used. It will be shown

later in simulations that 1+ λvcδ
v gets a large magnitude in steep uphill slopes resulting in

high gear ratios. Before and after the slope a low gear is usedas given by (34). For the
model consideredcconcδ is about 7 timesce, giving high gear ratios in steep uphill slopes.
However, large magnitudes oncωcon limits the gear ratio to a lower gear ratio.

5.2 Optimal gear ratio - quadratic maximum fueling

To make a better approximation of maximum fueling than (5) the following quadratic
model is used

Cδ = δ− (a0+a1
iv
r

+a2(
iv
r

)2) ≤ 0 (37)

Another choice could be to make a piece-wise affine model, butthen the Hamiltonian will
not be differentiable with respect to vehicle speed.
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The optimal gear ratio is now given from

dH
di

= δ(1+
λvcδ

v
)+2cω

λv

r
i +ce

λv

v
−µδ(a1 +2a2

iv
r

)
v
r

+µimax−µimin

−µωmin
v
r

+µωmax
v
r

= 0 (38)

When using maximum fueling and assuming that gear ratio limits as well as engine speed
limits are not reached, optimal gear ratio is found by combining Equations (12), (37),
and (38), which gives

3a2
v2

r2 (1+
λvcδ

v
)i2 +

(

2a1
v
r
(1+

λvcδ
v

)+2cω
λv

r

)

i +a0(1+
λvcδ

v
)+ce

λv

v

= k2i2 +k1i +ko = 0 (39)

Now the optimal gear ratio is

iopt = − k1

2k2
±

√

(

k1

2k2

)2

− ko

k2
(40)

Typically, only the solution with the plus sign before the square root gives physically
feasible solutions.

Plots of optimal gear solutions.In Figure 6 the solution to Equation (39) is plotted
as a function of the decisive variable 1+

λvcδ
v and vehicle speedv. The lowest possible

gear ratio for the vehicle studied is 3.42. Recall that during sections of constant speed
1+

λvcδ
v = 0. Consider the case where cruising speed is 85 km/h and the vehicle is ap-

proaching a steep uphill slope. During acceleration beforethe slope speed will increase
and the term 1+ λvcδ

v will decrease, i.e. the operating point will move downwardsto the
right in Figure 6. One conclusion that can be drawn from this figure is that it will never be
optimal to change gear during the acceleration phase beforea steep uphill slope. When
the vehicle starts to climb the hill speed will decrease, shifting the operating point to the
left, and the operating point enters the region for a possible gear change.

Another thing to notice in Figure 6 is that for large magnitudes of 1+ λvcδ
v the optimal

gear ratio is approximately a function of vehicle speed since the gear ratio contours are
almost vertical. As will be shown later in simulations that region is reached when max-
imum fueling has been used for a longer period of time, i.e. for relatively long or steep
uphill slopes.

For any given vehicle speed it is equivalent to see engine speedωe as control variable
instead of gear ratioi usingωe = vi

r . Using this substitution in Equation (39) optimal
engine speed can be calculated and a contour plot of the achieved result is plotted in
Figure 7. It can be seen in the area to the left of the dotted line in Figure 7 that optimal
engine speed very well can be described as a function of the decisive variable 1+ λvcδ

v ,
since the lines are almost horizontal. To the right of the dotted line the solution is restricted
by the minimum allowed gear ratio, compare with Figure 6. As will be shown later in
simulations the magnitude of the decisive expression 1+

λvcδ
v depends highly on the length

and inclination of uphill slopes. A longer or steeper slope results in larger magnitude of
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1+
λvcδ

v , which means that optimal engine speed is a function of length and steepness of
the slope.

Further analysis and implications of optimality. If the quadratic maximum fueling
function is linearized it can be compared with the result in (36). The linearization of the
quadratic model in the pointω0 is

Cδ = δ− (a0−a2ω2
0 +(a1+2a2ω0)ω) ≤ 0 (41)

Considering (36) and assuming that 1+
λvcδ

v has a large magnitude,iopt can be approxi-
mated as

iopt = − ccon
2
r cωconv

(42)

Again using engine speed as an equivalent control instead ofgear ratio, using the sub-
stitution ωe = vi

r , an optimal engine speed can be calculated for every vehiclespeed.
Rewriting (42) to optimal engine speed gives

ωopt = − ccon

2cωcon
= − a0−a2ω2

0

2(a1+2a2ω0)
(43)

There is one engine speedω0 = ω∗ whereω∗ = − a0−a2ω∗2

2(a1+2a2ω∗) . Forω0 < ω∗ it holds that
ωopt > ω∗ and forω0 > ω∗ it holds thatωopt < ω∗. Hence it is never beneficial to operate
at a higher engine speed thanω∗. Rewriting (43) the optimal engine speed is found by
solving the following equation

3a2ω2
opt +2a1ωopt +a0 = 0 (44)

Using ωe = vi
r this expression is quite similar to (39). It will now be shownthat when

∣

∣

∣

λvcδ
v

∣

∣

∣ >> 1, optimal engine speed goes to the same engine speed as wheremaximum

torque to the wheels are delivered. The torque delivered by the engine to the wheels is

Tw =
rωe

v
ηTe =

rωe

v
η(ceδ(a0 +a1ωe+a2ω2

e)+ceωωe+cec) (45)

This equation is differentiated with respect toωe to find the engine speed that gives max-
imum torque to the wheels. This is also the engine speed wherethe engine produces
maximum power.

dTw

dωe
=

rη
v

(ceδ(a0 +2a1ωe+3a2ω2
e)+2ceωωe+cec) = 0 (46)

Consider Equation (39), notice that when
∣

∣

∣

λvcδ
v

∣

∣

∣ >> 1, the optimal engine speed goes to

the solution of Equation (46). Also, since|ceδ|>> |ceω| , |cec|, this solution is close to the
solution of Equation (44). For the engine considered and thequadratic maximum fueling
function, maximum engine torque and maximum wheel torque (maximum engine power)
are plotted in Figure 8. The conclusion from this is that the character of the maximum
fueling function is decisive for the optimal gear choice.
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5.3 Discrete step transmission

Since discrete step transmissions are the most commonly used transmission for heavy
trucks it is interesting to see how the optimal solution would be if the gear ratio belongs
to a set of discrete numbersi ∈ {i1, i2, . . . , in}. For this case Equation (33) can no longer
be used directly to find the optimal gear ratio.

As a first attempt to model the gear shift process it will be assumed that a gear shift
is carried out instantaneously but possibly with a discontinuity in vehicle speed. For
vehicles with mechanical solutions such as for example dualclutch transmissions there
is no disruption in torque during a gear shift, and hence it isfeasible to model the gear
shifting without any speed loss. Using the more common manual transmissions there is
a disruption in torque, and such gear shifts will, except in steep downhills, result in a
decrease in speed. Suppose that a gear shift occurs at position s = si for a set of gear
shifting positionssi ∈ {s1, . . . ,sN−1}, and let the speed just before the shift bev(si−), let
the speed just after the shift bev(si+), and let the decrease in speed during the shift bevs.
The shift is then modeled as

v(si−)−v(si+) = vs (47)

One way to handle the discontinuity in this problem is to consider both fueling and gear
choice as control variables. The optimal control is then found by searching for the control
that minimizes the Hamiltonian at every position, see the discussion on the maximum
principle in [12]. Another approach that will be used here isdescribed in [1]. Then only
fueling is considered as a control variable that is found from ∂H/∂u = 0. This leads to a
formulation with switching between different system dynamics functions when switching
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gear. The optimal control problem formulation with discontinuities in the system equa-
tions and in the state variables, as described in Chapter 3.7in [1] is used here. The gear
shifting function

ϕ = v(si−)−v(si+)−vs = 0 (48)

is adjoined to the performance criteria with multiplierϑ. Let

φ = ϑϕ (49)

and the Hamiltonian be the combination of the Hamiltonians for each interval

H(i) = L(i) + λT f (i) (50)

ForN−1 shifts the performance criteria is

J =
N−1

∑
j=1

ϑ( j)Tϕ( j) +
N

∑
i=1

si−
∫

si−1+

(L(i) + λT f (i) −λT dx
ds

)ds (51)

It is shown in [1] that necessary conditions for optimality is

dλ
ds

= −
(

∂H(i)

∂x

)T

, si−1+ < s< si − (52)

λT(si−) =
∂φ

∂x(si−)
(53)

λT(si+) = − ∂φ
∂x(si+)

(54)

H(i)(si−)−H(i+1)(si+) = 0 (55)

For the case (48)λv(si−) = λv(si+) = ϑi , i.e. the adjoint variableλv is continuous over a
gear shift.

Sinceλv is continuous and gear ratio should be chosen such that the Hamiltonian
is minimized at each position, a change in gear can only occurwhen the Hamiltonian
evaluated for two nearby gears equal each other, i.e.H(i i ,v(si−)) = H(i i+1,v(si+)). For
zero speed loss at shifting points, i.e.vs = 0, the resulting gear shifting points are marked
with dashed lines in Figure 6. The optimal solution with a stepped transmission will of
course be quite similar to the continuously variable ratio solution in the sense that the gear
ratio is chosen such that the engine speed is on average closeto the continuous case. See
Figure 9 for a depiction of typical gear shifting points whenthe speed loss of a gear shift
is set to 0.1 m/s.

5.4 Optimal gear ratio for PWA engine characteristics

For non-linear engine characteristics it is interesting tostudy gear choice also when fu-
eling is not in the limit. For a PWA model as (25) each engine region can be analyzed
separately as in Section 5.1. During constant speed sections each region{m,n} has an
optimal gear ratio as in (34)

iopt = −ce,m,n

cω,m

r
2v

(56)
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In most cases the optimal gear ratio for each region is such that the engine speed is in
the border of the regions. This means that there are some operating points that have to be
considered and the optimal gear ratio is chosen such that engine efficiency is maximized.
Again, if searching for optimal gear ratio during non stationary sections the engine torque
has to be modeled such that the Hamiltonian is differentiable with respect to speed.

6 Simulations

The results from previous sections will now be demonstratedin simulations of some con-
structed road profiles. Both affine and piece wise affine engine models will be used, but
all simulations will use the quadratic maximum fueling function (37). Also results from
both continuous variable transmission as well as discrete stepped transmission will be
presented. The road profiles will consist of flat road followed by an uphill slope or a
downhill slope of constant gradient, and then flat road again. For such road segments the
slopeα will have a discontinuity when changing from flat road to slope. If there is such a
discontinuity at a given positionsd it is according to theory possible that the Hamiltonian
and/or the adjoint variables have a discontinuity at that position. For simulation it is im-
portant to decide whether or not the adjoint variables have discontinuities, and it will here
be shown that that is not the case. A general condition that decides at which positions1

such an event occurs can be formulated as in [1] as a so called interior boundary condition

N(x(s1),s1) = 0 (57)
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In Chapter 3.5 in [1] the influence onH andλ from such an event is derived to be

λT(s1−) = λT(s1+)+ πT ∂N
∂x(s1)

(58)

H(s1−) = H(s1+)−πT ∂N
∂s1

(59)

whereπ are constant multipliers. Since road slope is a function of position the condition
that decides when a discontinuity inα occurs can be formulated as

N(s) = s1−s= 0 (60)

For the condition (60) it is seen from (58) that there is no discontinuity in the adjoint
variablesλ since the condition is independent of the states.

6.1 Optimal solutions for uphill and downhill slopes

Optimal solutions of example simulations are seen in Figures 10, 11 and, 12. All sim-
ulations are of a 40 ton truck withλT chosen such that cruising speed at flat road is 85
km/h. In Figure 10 the engine model is piece-wise affine in fueling dimension and affine
in speed dimension, see Figure 3. Assuming a continuously variable transmission both
fueling and gear ratio is optimized. As expected from Section 5.2 and especially Equa-
tions (39) and (46), for long steep slopes the gear ratio is chosen such that the engine
speed is close to 1800 rpm, the point of engine maximum power.Also as mentioned in
Section 5.2 in connection to Figure 6, starting at 85 km/h before the slope there is no
change in gear ratio during the acceleration phase before the slope. Notice also that the
acceleration from about position 300 m to 2400 m is done usingfueling in the border be-
tween the two upper fueling regions. Then, between about 2400 m to 5200 m maximum
fueling is used, and from 5200 m to 6900 m fueling is again in the border between the
two upper fueling regions.

In Figure 11 a simulation of the PWA engine model is done in a 500 m slope of−6%
slope. The vehicle cruises at constant speed from start to about 800 m where the fueling
is lowered to the border between fueling region 2 and 3. During that part it begins to
decelerate and at about 2400 m the fuel injection is again lowered to the border between
region 1 and 2. It is worth noting that the fuel injection is never cut off totally as it would
have been done for an affine engine torque model.

6.2 Affine and piece-wise affine modeling

In Figure 12 three simulations are presented. The solid lineis a simulation of the affine
engine torque model with no gear optimization. The dashed line is with the PWA engine
torque model with no gear optimization. The dotted line is also with the PWA model but
now with gear optimization. As expected the affine model onlyuses two modes of fueling,
i.e. such that constant speed is kept to about 2300 m, and thenmaximum fueling is used
until 5300 m where speed is kept constant again. The simulation with the PWA model
start accelerating earlier and uses only maximum fueling from about 3900 m to about
4200 m. The gradual change in fueling for the PWA model gives asmoother control but
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Figure 10: Uphill slope of 1500 m 6 percent inclination. Both fueling and gear ratio
is optimized.
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Figure 11: Downhill slope of 500 m -6 percent inclination. Both fuelingand gear
ratio is optimized.
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Figure 12: Three simulations in a 1000 m 3 percent uphill slope. Solid line is an
affine engine torque model. Dashed line is PWA engine torque model. Dotted line is
PWA engine torque model with gear optimization.

also requires about 500 m longer prediction horizon than theaffine model. When also
gear ratio is optimized the PWA model never uses maximum fueling.

6.3 Continuously variable gear ratio optimization

To study optimal choice of gear ratio three simulations of the affine engine torque model
is presented in Figure 13. The optimal engine speed given by Equation (39) for the
three simulations are there shown as functions of vehicle speed and the decisive vari-
able 1+ λvcδ

v . One simulation, the “inner arc”, is of a 1000 m 3 % uphill slope. In that
simulation the optimal gear ratio just about reaches the lowest feasible gear ratio. The
other simulations is of a 600 m 6 % uphill slope and a 1500 m 6 % uphill slope. In the
latter simulation the vehicle is able to keep a constant speed of about 30 km/h at some part
of the slope. As mentioned earlier the magnitude of 1+

λvcδ
v gets larger the longer and

steeper the slope is. Hence, optimal engine speed is a function of length and steepness of
the slope.

In Figure 14 the same simulation as in Figure 10 with the PWA modeled engine is
depicted. Only the part in the upper fueling region is shown.Note that the optimal engine
speed, being around the line 1780 rpm, is higher than for the affine engine, Figure 13,
where it was around 1650 rpm, and closer to maximum engine power, Figure 8 where the
maximum is around 1800 rpm.

The result from Figures 6 and 7 could be used to define gear shifting points that is
dependent on speed and for example length and slope of hills.If the vehicle is approach-
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Figure 13: Optimal gear ratios. One simualation of a 1000 m 3 % uphill slope
where the optimal gear ratio just about reaches the lowest feasible gear ratio. The
next, the “middle” arc is a simulation of a 600 m 6 % uphill slope. The “outer” arc
is a simulation of a 1500 m 6 % uphill slope.
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Figure 15: Simulations with an affine engine and stepped transmission in a 6% 600
m uphill slope. The engine speed is on average close to the continuous ratio solution
in Figure 13. Dashed line corresponds to a simulation without a speed loss during
the gear shifts, and solid line corresponds to a simulation with 0.1 m/s speed loss
during the gear shifts. Note that without gear shift losses an extra gear shift occurs
near the top of the hill.

ing a long and or steep slope the magnitude of 1+
λvcδ

v will get larger leading to a higher
optimal engine speed during the slope. Looking at the simulations in for example Fig-
ure 13 it is seen that during the uphill slope, the retardation phase, the optimal engine
speed has small variations with a mean value depending on thespeed at the start of the
slope. Hence, an approximative gear shifting strategy could be designed based on the
speed when starting to climb a hill.

6.4 Discrete stepped transmission

Last, two simulations of a stepped transmission is presented. See Figure 15 for example
simulations in a 6% 600 m uphill slope. The dashed lines in thefigure corresponds to a
simulation without a speed loss during the gear shifts, and the solid lines corresponds to
a 0.1 m/s speed loss during shifts. This is a typical value if it is assumed that the engine
is incapable to propel the vehicle for about 0.5 s during the shift. Note that the simulation
without gear shifting losses performs an extra gear shift near the top of the hill. Note also
that the engine speed is on average close to the continuous ratio solution in Figure 13.
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6.5 Interpretation of the Lagrange variables

Looking at the Hamiltonian (9), it is seen that it is proportional to amount of fuel used
per distance, i.e. [kg/m]. This means that the Lagrange variableλv is proportional to
amount of fuel divided by velocity, i.e. [kg/(m/s)]. Sinceλv is decisive for the optimal
control it is interesting to interpret the value of it. In [1]it is shown that for the augmented
performance criteriāJ =

∫ sf
s0 (δi +λT( f − dx

ds))ds, the variation in the performance criteria
δJ̄ due to a variation in initial conditionsδx(s0) is

δJ̄ = λT(s0)δx(s0)+

sf
∫

s0

∂H
∂u

δuds (61)

whereu is the control vector[δ i]T . Hence,λT(s0) is the gradient ofJ̄ with respect to
initial conditions while holdingu(s) constant. Of course the positions0 can be taken
anywhere which means thatλ at every position is a measure of how much the total cost
would be affected by a change inx at that position. The variableλv thus is a measure of
how much fuel consumption would change if the speedv is varied. Sinceλv is negative
a raise in vehicle speed by 1 m/s at positions0 will result in a decreased total cost given
by the value ofλv(s0). A decrease of speed by 1 m/s would increase the total cost by the
same amount.

Now, looking at the simulations above in for example Figures10 and 11, it is seen
that for an uphill slope a change in speed in the beginning of the slope has the highest
influence on the total consumption. In the same way the speed at the end of a down hill
slope is most critical to the total fuel consumption.

The influence from a change in vehicle speed on the total cost,λv(s0)δv(s0), can be
written as

λv(s0)

v(s0)
v(s0)δv(s0) (62)

Remember that the termλv/v is decisive for both optimal fueling and for optimal gear
ratio. Rewriting (61) the first part is (62). Sincevδv is a measure of change in kinetic
energy,λv/v is a measure of how the total cost is affected to a change in kinetic energy.
Looking at Figure 13 it is seen that the point most sensitive to a change in kinetic energy
does not coincide with the point most sensitive to a change invehicle speed. Instead of the
beginning of the slope now a point somewhere in the middle of the slope is most critical,
i.e. the lowest point of the respective arc. However, as mentioned earlier, the decisive
factor 1+ λvcδ

v has small variations during the slope which means that the sensitivity to a
change in kinetic energy is approximately constant during the slope.

6.6 Speed limits

Speed limits is a state variable inequality constraint. Optimal control with such con-
straints are treated in Section 3.11 in [1]. An upper speed limit is derived by the following
constraint

Cv = v−Vmax≤ 0 (63)
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In [1] the method to handle the type of constraint as (63) are to differentiate until the
control variable appears explicitly. For the model (7) thismeans that the derivativeC′

v =
d
dsCv is adjoined to the Hamiltonian (9) with the multiplierµv resulting in

H = δi +(λv +µv) fv + λT fT +µδCδ (64)

At the entry point of a constrained arc the adjoint variableλv is discontinuous but contin-
uous at the exit point. However, instead of solving the optimal control problem as before
the constrained solution can intuitively be found from the unconstrained solution. Con-
sider the cases presented so far. If there had been an upper speed constraint present the
solution after the position of leaving the constrained arc would follow the unconstrained
solution. For example, after a steep downhill slope where the unconstrained solution ex-
ceeds the speed limit at the end of the slope, the constrainedsolution could be found in
the same way as before, by setting the speed at the end of the slope to the maximum al-
lowed speed. The value ofλv is then given by the fact that bothλv andv should reach
their respective stationary values at the same position. Sinceλv has a discontinuity at the
entry point of the constrained arc there is no easy way to decide the value ofλv at that
point. However, among all solutions that fulfills the necessary conditions for optimality,
(10)-(13), the most fuel efficient solution is to start to decelerate before the slope at a
position such that the upper speed limit is reached exactly at the end of the slope. This
is of course then the solution that minimizes brake usage, and hence minimizes the total
fuel consumption.

For uphill slopes the reasoning can be done in the same way such that maximum
allowed speed is reached exactly at the beginning of the slope if the unconstrained solution
exceeds the speed limit at that position. An example simulation with an affine engine
torque model is plotted in Figure 16 where the maximum allowed speed was 90 km/h.
If Figure 16 is compared to an unconstrained simulation of the same slope in Figure 13
it is seen that in the constrained simulation the optimal gear ratio in the slope is higher
resulting in about 100 rpm higher engine speed than in the unconstrained case.

6.7 Discussion

The optimal strategies presented above is a compromise between running the engine at
efficient operating points and minimizing air and roll resistance. For the affine engine
model (4) the optimal fueling strategy has the character of bang-bang control. This strat-
egy minimizes vehicle speed variations and hence air and roll resistance losses. When
using the non linear model (20) the engine efficiency decreases in the upper fueling re-
gion. Hence the optimal solution in for example Figure 12 starts to accelerate earlier than
when using an affine model. Using this strategy, vehicle losses for the driving mission is
increased but the distance of maximum fueling, where engineefficiency is low, is short-
ened. Looking in the same figure it is also seen that, by optimizing gear ratio, the upper
fueling region is avoided, though the higher gear ratio gives increased engine friction.

7 Sensitivity analysis

For an implementation in a vehicle it is interesting to see how uncertainties in parameters
will affect the optimal strategy and thereby the total fuel consumption. Using a given
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Figure 16: Simulation in a 6 % 600 m uphill slope with maximum allowed speed of
90 km/h, solid line. The unconstrained solution from Figure13 of the same simula-
tion case is also plotted in the lower plot, dotted line.
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Coefficient Sensitivity,α = −0.03 Sensitivity,α = 0 Sensitivity,α = 0.03
δ = 0 mg/stroke δ = 113 mg/stroke δ = 220 mg/stroke

cδ 0.00 323 -1.48
cω -0.12 -49 0.11
ce 0.079 32 -0.076
cc -0.42 -171 0.40
cv 0.00 0.00 0.00
cv2 -0.33 -135 0.32
cα 1.78 0.00 1.72
α 1.78 0.00 1.72

Table 3: Senstivity of vehicle dynamics to model coefficients. The sensitivity is
calculated for a 40 ton truck cruising at 85 km/h

fueling strategy and gear choice, an error in a parameter estimation will result in a different
speed profile than predicted. To see how much such a change will affect the total cost the
discussion in Section 6.5 can be used. As mentioned,λv is a measure of how much the
total fuel consumption is affected by a change in vehicle speed. Thus, to estimate how
a parameter change influences the total fuel consumption it is sufficient to study how a
parameter change affects vehicle speed. The sensitivity ofa function f (x) to x at the
point x0 is computed as(∂ f/∂x)|x0/(x0/ f (x0)). In Table 3 the sensitivity of the vehicle
dynamics, i.e. the right hand side of Equation (7), to the model coefficients, is presented.
Road slope has the highest significance on the total fuel consumption. The second highest
influence hascδ, and the third highest influence hascc andcv2. Note that if the drive line
inertiasJe andJd are neglected in the total vehicle inertia, see Table 2,cδ = (iηceδ)/(mr),
cv2 = (0.5ρcdA+mcr3)/m, cc = (iηcec+mcr1)/m, andcα = g. This means for example
that a fault in vehicle mass or fuel-torque characteristic has equal importance. However,
a fault in road slope has the most significant influence on the total cost.

One parameter known to be difficult to measure is vehicle massand therefor it is of
special interest to study. To see how a fault in vehicle mass affects the optimal solution
two simulations has been performed with masses 40 tons and 44tons, see Figure 17. It
is there seen that if the vehicle mass is underestimated, thevehicle will start to accelerate
too late and shift to lower gear too late which can lead to a necessary extra gear shift
which of course gives an increase in fuel consumption. In a downhill slope it is of course
also worse to underestimate the mass than to overestimate since an underestimate leads
to a later deceleration before the slope, which in turn leadsto a higher speed in the slope.
In presence of speed limits this leads to unnecessary braking and an increase of total fuel
consumption.

8 Rule based predictive cruise control

There are several ways to use the presented optimality conditions in attempts towards an
on-line controller. Looking at the vehicle dynamics in the time domain, vehicle speed
can be solved analytically, as in [2], on constant grades forboth constant fueling and
maximum fueling. Given the equations for vehicle speed and the constraint on total travel
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Figure 17: Simulation in a 6 % 600 m uphill slope with masses 44 tons (dashed
lines) and 40 tons (solid lines).

time, the problem of finding optimal controls is that of finding optimal control switching
points, by solving a system of nonlinear equations [2].

Another approach to utilize the analytical solutions to thevehicle motion will here be
used as part of an on-line predictive cruise controller. Oneadvantage is that the assump-
tion that the road grade is piece-wise constant can be dropped.

To demonstrate the possibility to significantly save fuel using the second approach, a
simple rule based predictive cruise controller has been implemented. For simplicity the
controller is based on the results using an affine engine torque model as in Section 3. It
would be possible to make further improvements using a controller based on non-linear
engine characteristics and optimize gear choice. However,the purpose here is only to
demonstrate the magnitude of the savings that can be done using the presented material.
In [5] the possible savings of gear choice is presented.

8.1 Optimization criterion

The idea for an on-line controller is to locate upcoming steep hills, compare different
fueling strategies with respect to a criterion over a prediction horizon, use the best strategy
over a sampling distance, and then re-evaluate the criterion at the next sampling point.
Closed loop control is achieved by recalculating optimal controls at every sample point.

An idea for criterion could be to use the Hamiltonian (9). Over short horizons it
might however not be a good idea to try to control the average speed to a given value.
For example, if the road mostly consists of downhill slopes during the prediction horizon
it is often better for the total driving mission to have a higher speed than average, and
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the opposite for sections of mostly uphill slopes. Influenced by (9) the criterion for a
prediction horizon froms= 0 tos= Sp could be chosen as

J̃ =

Sp
∫

0

δids+ λT

Sp
∫

0

fTds (65)

The first term is proportional to the fuel consumed while driving the distanceSp and the
second term accounts for the travel time. The time penaltyλT is obtained by solving
Equation (14) using a desired stationary speedvre f on flat roads and small gradients.
For this criterion to be useful it has to be modified to accountfor the speed at the end
of horizon. As known from Section 3 the optimal solution consists of constant speed,
maximum fueling, and fuel cut off. Using (65) will result in astrategy that uses fuel cut
off at the end of the prediction horizon.

Handling residual cost at end of horizon. One way to deal with this could be to
constrain the solution to a given speed, e.g.v(Sp) = vre f , at the end of the horizon.
However, this is not a good idea if for example the end of horizon is in a slope. The way
chosen here to deal with the problem of finite horizon is as follows: Assume flat road
afterSp, let Svre f be the position where the reference speedvre f is reached afterSp when
using either maximum fueling or fuel cut off depending on if the speed atSp is less than
or greater thanvre f . By defining a function∆ as

∆ =

Svre f
∫

SP

δids+ λT

Svre f
∫

SP

fTds (66)

the criterion (65) can be chosen as

J =

Sp
∫

0

δids+ λT

Sp
∫

0

fTds+ ∆ (67)

The function∆ then follows from the solution to the vehicles longitudinaldynamics.
When using fuel cut off on flat road the vehicle dynamics (7) inthe time domain becomes

v̇ = cei +cc+(cω
i2

r
+cv)v+cv2v

2 (68)

Using maximum fueling modeled asδmax= ccon+cωcon
i
r v+cω2con

i2

r2 v2 results in

v̇ = cδiccon + cei + cc + (cδcωcon
i2

r
+ cω

i2

r
+ cv)v + (cδcω2con

i3

r2 + cv2)v
2 (69)

Both Equation (68) and (69) are in the form

v̇ = c0 +c1v+c2v
2 (70)

This differential equation can be solved by separating variables as

1
c0 +c1v+c2v2 dv= dt, c0 +c1v+c2v2 6= 0 (71)
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Integrating both sides give
∫

1
c0 +c1v+c2v2 dv=

∫

dt (72)

This equation has two different solutions depending on the coefficients. When accelerat-
ing the coefficients are such that the solution to (72) is

1
√

−4c2c0 +c2
1

ln

∣

∣

∣

∣

∣

∣

2c2v+c1−
√

−4c2c0 +c2
1

2c2v+c1+
√

−4c2c0 +c2
1

∣

∣

∣

∣

∣

∣

= t +k (73)

The solution to this equation is

v(t) =
−(c1−

√

c2
1−4c0c2)− (c1+

√

c2
1−4c0c2)e

√
c2
1−4c0c2(t+k)

2c2e
√

c2
1−4c0c2(t+k) +2c2

(74)

andk is chosen such that initial conditions are satisfied. When decelerating the coeffi-
cients are such that the solution to (72) is

2
√

4c0c2−c2
1

arctan





2c2v+c1
√

4c0c2−c2
1



= t +k (75)

and also herek is determined by initial conditions. The vehicle speed given by this equa-
tion is

v(t) =
1

2c2





√

4c0c2−c2
1 tan





√

4c0c2−c2
1

2
(t +k)



−c1



 (76)

Now, from (73) or (75) the time required forv to reachvre f can be calculated. Given
time, distance can be calculated by integrating speed. The distance traveled,s=

∫

vdt,
during acceleration tovre f , is given from the integral of (74) which is

∫ −(c1−
√

c2
1−4c0c2)− (c1+

√

c2
1−4c0c2)e

√
c2
1−4c0c2(t+k)

2c2e
√

c2
1−4c0c2(t+k) +2c2

dt

=

√

c2
1−4c0c2−c1

2c2
t −

ln
∣

∣

∣2c2(e
√

c2
1−4c0c2(k+t) +1)

∣

∣

∣

c2
(77)

and the distance traveled during deceleration tovre f is given from the integral of (76)
which is

∫





√

4c0c2−c2
1

2c2
tan





√

4c0c2−c2
1

2
(t +k)



− c1

2c2



dt

= − c1

2c2
t −

ln

∣

∣

∣

∣

cos

(√
4c0c2−c2

1
2 (t +k)

)∣

∣

∣

∣

c2
(78)
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Now ∆, (66), can be calculated as follows. Given distance the firstintegral is easily
calculated for the different cases of fuel cut off and maximum fueling. The second integral
is simply traveled time as given by Equations (73) and (75).

8.2 On-line algorithm

Given the results above, an on-line cruise controller can beformulated. For simplicity,
as in [5] the standard cruise controller will be used as actuator. When constant speed is
desired,v = vre f is commanded, when maximum fueling is desired, a higher speed than
the vehicles present speed will be commanded, and, when fuelcut off is desired, a lower
speed than the present speed is commanded. Since the standard cruise controller is of a
PID-controller type this strategy will not always lead to the desired fueling but as will be
shown in simulations it will be close to desired behavior.

For a realistic case, speed limits has to be imposed such thatVmin ≤ v ≤ Vmax. The
algorithm is as follows:

1. Check if there are steep slopes within the horizon. If not,sendvre f to the cruise
controller.

2. If a steep slope is detected, perform two simulations of the vehicle. First simulation:
If the first steep slope is an uphill(downhill) slope start using maximum(minimum)
fueling and simulate until eithervre f or Vmax(Vmin) is reached. Second simulation:
Command constant speed on one sample and then use maximum(minimum) fuel-
ing.

3. If Vmax(Vmin) is reached beforevre f is reached after the slope, commandvre f to the
cruise controller.

4. Compare the two solutions by the performance index (67). Chose control according
to the simulation with lowest value of the performance index.

This algorithm is implemented in a simulation environment developed by Erik Hell-
ström [6].

Results from the simulations are shown in Figures 18 - 20. There the above rule-based
look-ahead cruise controller, LC, is compared to a standardPID-type cruise controller,
CC. The allowed speed range is 80≤ v ≤ 90 km/h and the reference speed is 85 km/h.
The standard cruise controller will not apply the brakes until the upper speed limit is
reached. The prediction horizon for the look-ahead controller was set to 1000 m and the
sample distance to 50 m. It is seen that the algorithm works asexpected from Section 3.
In Figure 18 the algorithm starts to accelerate using maximum fueling about 300 m before
the slope. The higher speed compared to the standard cruise controller also results in a
shorter period on a lower gear. Due to higher average speed for the look ahead cruise con-
troller the fuel consumption is slightly higher compared tothe standard cruise controller.
However, the trip time is significantly lower. A down hill slope is presented in Figure 19.
The look ahead algorithm cut offs the fuel injection and starts to decelerate about 200 m
before the slope. This results in a shorter period of brakingand significant fuel savings but
a small increase in trip time. For a real road consisting of both uphill slopes and downhill
slopes, it is expected that the difference in total travel time between the look ahead cruise
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controller and the standard cruise controller is moderate.In Figure 20 it is seen that even
though the travel time is almost the same for the two controllers the fuel saving is sig-
nificant for the look ahead controller. It can also be mentioned that the magnitude of the
savings is promising even though not quite as high as those reported in [6] using a more
sophisticated numerical optimal controller.

9 Conclusions

Analytical expressions for optimality of the fuel optimal cruise control problem have been
derived. These expressions are essential for the understanding of the decisive parameters
affecting fuel optimal driving, and the analytical optimality conditions makes it possible to
see how each parameter affects the optimal solution. It has been shown that the expression
1+

λvcδ
v is decisive for both optimal fueling and optimal gear selection. For example, it

is seen in Equation (12) that the ratio between engine torqueto vehicle mass, given by
the parametercδ, directly affects the optimal control switch points, whichalso the adjoint
variableλv and vehicle speedv does. The adjoint variableλv reacts to future changes in
road slope and from that the control switch points given by (12) also depends on road
inclination. This type of analysis lead to the idea of using phase plots with 1+ λvcδ

v andv
on the axes, and this type of plot has been used extensively, see Figures 6, 7, 13, 14, and
16. It has also been shown that, accounting for small non-linearities in the engine torque
model, fueling is gradually increased or decreased to the fueling limit, giving a smoother
control than achieved for an affine model, see for example Figure 11. This gradual change
in control also means that a longer prediction horizon is needed.

The maximum fueling function has strong influence on optimalgear choice. It is
shown for a continuously variable transmission that it is never optimal to operate above
the engine speed of maximum engine power. Further, for typical cases, see Figure 13,
during the acceleration phase before an uphill slope it is never optimal to shift gear, but
it can be optimal to stay at a higher gear ratio for a short distance after the slope. From
the results in Figure 13 it is seen that for optimal solutionsengine speed is approximately
constant during the slope, and is determined by the vehicle speed at the beginning of the
slope. The optimal vehicle speed at the beginning of the slope mostly depends on the
length and inclination of the slope and hence optimal gear shifting is approximatively a
function of slope length and inclination. Another point to notice is that for non-linear
fuel-torque characteristics, in order to avoid inefficientengine operating points, it can be
beneficial to shift gear instead of using maximum fueling.

Optimal solutions for a discrete stepped transmission are close to the continuous gear
ratio solutions in the sense that engine speed for the two cases are close. However, it is
shown in simulations that modeling of gear shifting losses are important for gear shifting
positions.

The theory presented is a good base to formalize the intuition of fuel efficient driving
and one example where the analytical optimality expressions can be used is in design of a
simple low-complexity computationally efficient rule-based controller. Such a controller
has been shown to be able to save a large part of the possible savings achieved with more
computationally demanding controllers based on numericaloptimization.
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Figure 18: Rule based algorithm in a 6 % 300 m upphill slope. LC denotes Look-
ahead cruise controller and CC denotes the standard cruise controller.
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Figure 19: Rule based algorithm in a -6 % 300 m downhill slope. LC denotes
Look-ahead cruise controller and CC denotes the standard cruise controller.
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Figure 20: Simulation of the rule based algorithm on the Highway E4 between the
cities Södertälje and Norrköping in Sweden. LC denotes Look-ahead cruise con-
troller and CC denotes the standard cruise controller.
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