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Abstract

Model based fault diagnosis is to perform fault diagnosis by means of models.
An important question is how to use the models to construct a diagnosis system.
To develop a general theory for this, useful in real applications, is the topic of
the first part of this thesis. The second part deals with design of linear residual
generators and fault detectability analysis.

A general framework, for describing and analyzing diagnosis problems, is
proposed. Within this framework a diagnosis method structured hypothesis tests
is developed. It is based on general hypothesis testing and the task of diagnosis
is transferred to the task of validating a set of different models with respect to
the measured data. The procedure of deriving the diagnosis statement, i.e. the
output from the diagnosis system, is in this method formalized and described
by logic.

Arbitrary types of faults, including multiple faults, can be handled, both in
the general framework and also in the method structured hypothesis tests. It
is shown how well known methods for fault diagnosis fit into the general frame-
work. Common methods such as residual generation, parameter estimation, and
statistically based methods can be seen as different methods to generate test
quantities within the method structured hypothesis tests.

Based on the general framework, a method for evaluating and comparing
diagnosis systems is developed. Concepts from decision theory and statistics
are used to define a performance measure, which reflects the probability of e.g.
false alarm and missed detection. Based on the evaluation method, a procedure
for automatic design of diagnosis systems is developed.

Within the framework, diagnosis systems for the air-intake system of auto-
motive engines are designed. In one case, the procedure for automatic design
is used. Also the methods for evaluation of diagnosis systems are applied. The
whole design chain is described, including the modeling of the engine. All diag-
nosis systems are validated in experiments using data from a real engine. This
application highlights the strengths of the method structured hypothesis tests,
since a large variety of different faults need to be diagnosed. To the authors
knowledge, the same problem can not be solved using previous methods.

In the second part of the thesis, linear residual generation is investigated by
using a notion of polynomial bases for residual generators. It is shown that the
order of such a basis doesn’t need to be larger than the system order. Fault
detectability, seen as a system property, is investigated. New criterions for fault
detectability, and especially strong fault detectability, are given.

A new design method, the minimal polynomial basis approach, is presented.
This method is capable of generating all residual generators, explicitly those of
minimal order. Since the method is based on established theory for polynomial
matrices, standard numerically efficient design tools are available. Also, the link
to the well known Chow-Willsky scheme is investigated. It is concluded that
in its original version, it has not the nice properties of the minimal polynomial
basis approach.
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Chapter 1

Introduction and Overview
of Thesis

Model based fault diagnosis is to perform fault diagnosis by means of models. An
important question is how to use the models to construct a diagnosis system. To
develop a theory for this, useful for real applications, is the topic of the first part
of this thesis. The second part deals with design of linear residual generators
and fault detectability analysis.

This chapter starts by, in Section 1.1, giving an introductory background
and a general motivation to the field of fault diagnosis. In Section 1.2, some
fundamental definitions are reviewed. Then Section 1.3 contains an overview
and some criticism to some present approaches to fault diagnosis. Finally, Sec-
tion 1.4 summarizes the thesis and gives the main contributions.

1.1 Introductory Background

From a general perspective, including for example medical and technical ap-
plications, fault diagnosis can be explained as follows. For a process there are
observed variables or behavior for which there are knowledge of what is ex-
pected or normal. The task of fault diagnosis is to, from the observations and
the knowledge, generate a diagnosis statement, i.e. to decide whether there is a
fault or not and also to identify the fault. Thus the basic problems in the area
of fault diagnosis is how the procedure for generating the diagnosis statement
should look like, what parameters or behavior that are relevant to study, and
how to derive and represent the knowledge of what is expected or normal.

This thesis focuses on diagnosis of technical systems, and typical faults con-
sidered are for example sensor faults and actuator faults. The observations are
mainly output signals obtained from the sensors, but can also be observations
made by a human, such as level of noise and vibrations. The knowledge of what
is expected or normal, is derived from commanded inputs together with models

1



2 Chapter 1. Introduction and Overview of Thesis

of the system. The term model based fault diagnosis refers to the fact that the
knowledge of what is expected or normal, is represented in an explicit model of
the system. The type of models considered is mainly differential equations.

Model based diagnosis of technical systems has gained much industrial in-
terest lately. The reason is that it has possibilities to improve for example
safety, environment protection, machine protection, availability, and repairabil-
ity. Some important applications that have been discussed in the literature
are:

• Nearly all subsystems of aircrafts, e.g. aircraft control system, navigation
system, and engines

• Emission control systems in automotive vehicles

• Nuclear power plants

• Chemical plants

• Gas turbines

• Industrial robots

• Electrical motors

Manual diagnosis of technical systems has been performed as long as techni-
cal systems have existed, but automatic diagnosis started to appear first when
computers became available. In the beginning of the 70’s, the first research
reports on model based diagnosis were published. Some of the earliest areas,
that were investigated, were chemical plants and aerospace applications. The
research on model based diagnosis has since then been intensified during both
the 80’s and the 90’s. Today, this is still an expansive research area with many
unsolved questions. Some references to books in the area are (Patton, Frank
and Clark, 1989; Basseville and Nikiforov, 1993; Gertler, 1998; Chen and Pat-
ton, 1999).

Up to now, numerous methods for doing diagnosis have been published, but
many approaches are more ad hoc than systematic. It is fair to say that few
general theories exist, and a complete understanding of the relations between
different methods has been missing. This is reflected in that few books exists
and the fact that no general terminology has yet been widely accepted. However
the importance of diagnosis is unquestioned. This can be exemplified by the
computerized management systems for automotive engines. For these system,
as much as 50% of the software is dedicated to diagnosis. The other 50% is for
example for control.

1.1.1 Traditional vs Model Based Diagnosis

Traditionally diagnosis has been performed by mainly limit checking. When for
example a sensor signal level leaves its normal range, an alarm is generated. The
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normal range is predefined by using thresholds. This normal range can be de-
pendent on the operating conditions. In for example an aircraft, the thresholds,
for different operating points defined by altitude and speed, can be stored in a
table. This use of thresholds as functions of some other variables, can actually
be viewed as a kind of model based diagnosis.

Another traditional approach is duplication (or triplication or more) of hard-
ware. This is usually called hardware redundancy and the typical example is to
use redundant sensors. There are at least three problems associated with the
use of hardware redundancy: hardware is expensive, it requires space, and adds
weight to the system. In addition, extra components increase the complexity of
the system which in turn may introduce extra diagnostic requirements.

Model Based Fault Diagnosis

Increased usage of explicit models in fault diagnosis has a large potential to
have the following advantages:

• Higher diagnosis performance can be obtained, for example smaller and
also more types faults can be detected and the detection time is shorter.

• Diagnosis can be performed over a larger operating range.

• Diagnosis can be performed passively without disturbing the operation of
the process.

• Increased possibilities to perform isolation.

• Disturbances can be compensated for, which implies that high diagnosis
performance can be obtained in spite of the presence of disturbances.

• Reliance on hardware redundancy can be reduced, which means that cost
and weight can be reduced.

The model can be of any type, from logic based models to differential equa-
tions. Depending on the type of model, different approaches to model based
diagnosis can be used, for example statistical approaches, AI-based approaches,
or approaches within the framework of control theory. It is sometimes believed
that model based diagnosis is very complex. This is not true since for example
traditional limit checking is also a kind of model based diagnosis.

The disadvantage of model based diagnosis is quite naturally the need for
a reliable model and possibly a more complex design procedure. In the actual
design of a model based diagnosis system, it is likely that the major part of the
work is spent on building the model. This model can however be reused, e.g. in
control design. Someone may argue that an disadvantage of increasing the usage
of models is that more computing power is needed to perform the diagnosis.
However, this conclusion is not fair. Actually, for the same level of performance
it can be the case that an increased used models is less computationally intensive
than traditional approaches.
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The accuracy of the model is usually the major limiting factor of the per-
formance of a model based diagnosis system. Compared to the area of model
based control, the quality of the model is much more important in diagnosis.
The reason for is that the feedback, used in closed-loop control, tends to be for-
giving against model errors. Diagnosis should be compared to open-loop control
since no feedback is involved. All model errors propagates through the diagnosis
system and degrades the diagnosis performance.

air mass-flow

manifold pressure

engine speed

throttle

Figure 1.1: A principle illustration of an SI-engine.

Following is an example of a successful industrial application of model based
diagnosis.

Example 1.1

Consider Figure 1.1, containing a principle illustration of a spark-ignited com-
bustion engine. The air enters at the left side, passes the throttle and the
manifold, and finally enters the cylinders. The engine in the figure have three
sensors measuring the physical variables air mass-flow, manifold pressure, and
engine speed.

The air flow ṁ into the cylinders can be modeled as a function of manifold
pressure p and engine speed n, i.e. ṁ = g(p, n). The physics behind the function
g is involved and it is therefore usually modeled by a black-box model. In engine
management systems, one common solution is to represent the function g as a
lookup-table. So by using this lookup-table an estimation of the air mass-flow
can be obtained. When the measured air mass-flow significantly differs from the
estimation, it can be concluded that a fault must be present somewhere in the
engine. The fault can for example be that one of the three sensors are faulty or
that a leakage have occured somewhere between the air mass-flow sensor and
the cylinder. This is an example of model based diagnosis that is commonly
used in production cars today.
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1.2 Present Definitions

As a step towards a unified terminology, the IFAC Technical Committee SAFE-
PROCESS has suggested preliminary definitions of some terms in the field of
fault diagnosis. Some of these definitions are given here as a way to introduce
the field. Another reason is that most of these terms will be given a more formal
definition later in this theses.

The following list of definitions is a subset of their list:

• Fault
Unpermitted deviation of at least one characteristic property or variable
of the system from acceptable/usual/standard behavior.

• Failure
Permanent interruption of a systems ability to perform a required function
under specified operating conditions.

• Fault Detection
Determination of faults present in a system and time of detection.

• Fault Isolation
Determination of kind, location, and time of detection of a fault. Follows
fault detection.

• Fault Identification
Determination of the size and time-variant behavior of a fault. Follows
fault isolation.

• Fault Diagnosis
Determination of kind, size, location, and time of detection of a fault.
Follows fault detection. Includes fault isolation and identification.

For the definition of the term fault diagnosis, one slightly different definition also
exists in the literature. This definition can be found in for example (Gertler,
1991) and says that fault diagnosis also includes fault detection. This is also the
view taken in this thesis.

If fault detection is excluded from the term diagnosis, as in the SAFEPRO-
CESS, one gets a problem of finding a word describing the whole area. This has
partly been solved by introducing the abbreviation FDI (Fault Detection and
Isolation), which is common in many papers.

In this context, it is also interesting to see how a general dictionary defines
the word diagnosis. The following information can be found in the Webster
Dictionary:

diagnosis
Etymology: New Latin, from Greek diagnOsis, from diagignOskein
to distinguish, from dia- + gignOskein to know
Date: circa 1681
1 a : the art or act of identifying a disease from its signs and
symptoms b : the decision reached by diagnosis
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2 a : investigation or analysis of the cause or nature of a
condition, situation, or problem <diagnosis of engine trouble>
b : a statement or conclusion from such an analysis

1.3 Present Approaches to Model Based Fault

Diagnosis

This section is included because of two reasons. The first is to point out some
problems with present approaches to fault diagnosis. The first part of the thesis
is then devoted to present a new approach in which these problems are avoided.
The second reason is to give newcomers to the field of fault diagnosis a short
background to some of the approaches present in literature.

By reading recent books (Gertler, 1998; Chen and Patton, 1999) about fault
diagnosis of technical processes, or survey papers (Patton, 1994; Gertler, 1991;
Frank, 1993; Isermann, 1993), one can come to the conclusion that the two most
common systematic approaches to fault diagnosis is to use a “residual view” or
parameter estimation. Below these two approaches are presented shortly.
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Figure 1.2: A diagnosis system based on the “residual view”.
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1.3.1 The “Residual View”

With this approach, faults are modeled by signals f(t). Central is the residual
r(t) which is a scalar or vector signal that is 0 or small in the fault free case, i.e.
f(t) = 0, and is 6= 0 when a fault occurs, i.e. f(t) 6= 0. The diagnosis system is
then separated into two parts: residual generation and residual evaluation.

This view of how to design diagnosis system is well established among fault
diagnosis researchers. This is emphasized by the following quotation from the
most recent book (Chen and Patton, 1999) in the field:

”Chow and Willsky (1984) first defined the model-based FDI as a
two-stages process: (1) residual generation, (2) decision making (in-
cluding residual evaluation). This two-stages process is accepted as
a standard procedure for model-based FDI nowadays.”

Almost equally well established is the following way of constructing the resid-
ual evaluation (also called decision logic) procedure. The method is often called
structured residuals and is primarily an isolation method. A diagnosis system
using structured residuals can be illustrated as in Figure 1.2. In this method,
the first step of the residual evaluation is essentially to check if each residual
is responding to the fault or not, often achieved via simple thresholding. By
using residuals that are sensitive to different subsets of faults, isolation can be
achieved. What residuals that are sensitive to what faults is often illustrated
with a residual structure. An example of a residual structure is

f1 f2 f3
r1 0 1 0
r2 0 1 1
r3 1 0 1

The 1:s indicates which residuals that are sensitive to each fault. For this
residual structure, assume for example that residuals r2 and r3 are responding,
and r1 is not. Then the conclusion is that fault f3 has occured.

A large part of all fault-diagnosis research has been to find methods to design
residual generators. Of this large part, most results are concerned with linear
systems.

A limitation with this approach to fault diagnosis is that faults are modeled
as signals. This is very general and might therefore seem to be a good solution.
However, the generality of this fault model is actually its drawback. Many faults
can be modeled by less general models, and we will see in this thesis that to
facilitate isolation this is necessary in many situations.

Another limitation is that the residual structure, with its 0:s and 1:s, places
quite strong requirements on the residual generators. A 1 more or less means
that the corresponding residual must respond to the fault. It can be understood
that for small faults in real systems, with noise and model uncertainties present,
this requirement is often violated.

A third limitation, related to the the previous limitation, is that the deci-
sion procedure, of how the diagnosis statement is formed from the real-valued



8 Chapter 1. Introduction and Overview of Thesis

residuals, does not have a solid theoretical motivation. For example, in the
context of deciding the diagnosis statement, what are the meanings of the 0:s
and the 1:s, and what does it mean that a residual is above the threshold? It
would be desirable to use a decision procedure for which we can find an intuitive
formalism based on existing well-established theory, preferably mathematics if
possible.

1.3.2 Parameter Estimation

The other main approach to model-based fault-diagnosis is to model faults as
deviations in constant parameters. To illustrate the concept, consider a system
with a modelM(θ), where θ is a parameter having the nominal (i.e. fault-free)
value θ0. By using general parameter estimation techniques, an estimate θ̂ can
be formed and then compared to θ0. If θ̂ deviates to much from θ0, then the
conclusion is that a fault has occured.

The most severe limitation with this approach is its quite restricted way of
modeling faults. To model many realistic faults, more general fault models must
be used.

Another limitation is that when the number of diagnosed faults grow, the
parameter vector θ grows in dimension. This is a serious problem because the
computations needed to calculate θ̂ can become quite difficult.

1.3.3 This Thesis

The first part of this thesis, i.e. Chapter 2 to 4, suggests a new approach to fault
diagnosis. This approach does not have the limitations indicated above. Also,
it includes both structured residuals and the parameter estimation approach as
special cases.

1.4 Summary and Contributions of the Thesis

The summaries of the different chapters, given below, indicate the scope of the
thesis and also give an idea of the contributions. In addition, a summary of the
main contributions is included in the end of this section.

Chapter 2: A General Framework for Fault Diagnosis

In this chapter a new framework for describing and analyzing diagnosis problem
is presented. The presentation is formal, and often used terms like “fault”,
“isolation”, and “detectability” are defined. A connection to diagnosis based on
logic (AI), is indicated.

In contrast to previous existing frameworks, e.g. the residual view, arbitrary
fault models can be handled. Also multiple faults are naturally integrated so
that no special treatment is needed. A diagnosis-system architecture, based
on basic ideas from decision theory and propositional logic, is presented. We
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introduce the idea that the output from a diagnosis system can be several pos-
sible faults. Finally, results that relates fault modeling with detectability and
isolability properties, are developed.

Chapter 3: Structured Hypothesis Tests

The general diagnosis-system architecture presented in the previous chapter is
refined to the isolation method structured hypothesis tests. It is based on general
hypothesis testing and uses the general framework developed in Chapter 2. The
task of diagnosis is transferred to the task of validating a set of different models
with respect to the measured data. A main advantage with this method is that
it can handle arbitrary types of faults. As a way to describe the structure of the
diagnosis system we use an incidence structure and a decision structure. Also
the relation to the method structured residuals is investigated.

Chapter 4: Design and Evaluation of Hypothesis Tests for Fault Di-
agnosis

This chapter discusses how to design hypothesis tests to be used with the method
structured hypothesis tests. Three principles are described: the prediction, the
likelihood, and the estimate principle. These three principles should be sufficient
to solve most diagnosis problems.

In this chapter we see how well known methods for fault diagnosis fit in
the general framework from Chapter 2 and structured hypothesis tests. This
also clarifies conceptual links between different approaches to fault diagnosis,
e.g. the connection between residual generation, parameter estimation, and a
statistically based method for detection of abrupt changes. The importance of
normalization is emphasized. Two special cases of this is adaptive thresholds
and the likelihood ratio test.

Also discussed is how to evaluate hypothesis tests and for this, tools from
statistics and decision theory are used. The evaluation scheme developed is
applied to compare the estimate principle and the prediction principle, and it
is concluded that the former has some optimality properties.

Chapter 5: Applications to an Automotive Engine

The methods and the theory developed in the previous chapters are applied
to an automotive engine. Test quantities and diagnosis systems are designed
and analyzed. The whole design chain is covered including the modeling of the
engine. The results are validated in experiments using data from a real engine.
The diagnosis system constructed highlights the strengths of the method struc-
tured hypothesis tests, since a large variety of different faults can be handled.
To the authors knowledge, the same problem can not be solved using previous
methods.
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Chapter 6: Evaluation and Automatic Design of Diagnosis Systems

Based on decision theory, a method for evaluating and comparing diagnosis
system is developed. Probability measures, such as probabilities of false alarm
and missed detection, are used. One key result is the method to evaluate the
performance of a complete diagnosis system by using probability measures of
individual hypothesis tests.

Based on the evaluation method developed, a procedure for automatic design
of diagnosis systems is proposed. The procedure is applied to a real automotive
engine. The diagnosis system obtained is validated using experimental data
from the engine and the results show both that the procedure is working and
also that the evaluation method is sound.

Chapter 7: Linear Residual Generation

Design of linear residual generators, which is a special case of the prediction
principle, is considered. A new method, the minimal polynomial basis approach
has been developed in a joint work with Erik Frisk. This method is capable
of generating all residual generators, explicitly those of minimal McMillan or-
der. Since the method is based on established theory for polynomial matrices,
standard numerically efficient design tools are available.

Also the well known Chow-Willsky scheme is investigated and it is concluded
that in its original version, it has not the nice properties of the minimal poly-
nomial basis approach. However, the Chow-Willsky scheme is modified so that
it algebraically, although not numerically, becomes equivalent to the minimal
polynomial basis approach.

The order of linear residual generators is investigated and it is concluded that
to generate a basis, for all residual generators, it is sufficient to consider orders
up to the system order. This result is new since previous related results only
deal with the existence of residual generators and also only for some restricted
cases.

Chapter 8: Criterions for Fault Detectability in Linear Systems

This chapter refines the general concepts of fault detectability from Chapter 2
to linear systems. The notion of bases, from the previous chapter, is used to
investigate fault detectability seen as a system property, i.e. if there exists
any residual generator in which a fault is detectable. New criterions for fault
detectability and especially strong fault detectability are developed.

1.4.1 Main Contributions

• The general framework, for describing arbitrary faults, and describing and
analyzing diagnosis problems, presented in Chapter 2.

• The diagnosis method structured hypothesis tests presented in Chapter 3.
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• The methods to evaluate and compare diagnosis systems, presented in
Chapter 4 and 6.

• Demonstration of the feasibility of the evaluation and design methods in
real applications, presented in Chapter 5.

• The method to design linear residual generators, the minimal polynomial
basis approach, presented in Chapter 7.

• The criterions for fault detectability and strong fault detectability in linear
systems, presented in Chapter 8.

1.5 Publications

In the research work, leading to this thesis, the author has published the fol-
lowing conference and journal papers:

• Nyberg M. and Nielsen L. (1997), Model Based Diagnosis for the Air
Intake System of the SI-Engine, SAE 1997 Transactions: Journal of Com-
mercial Vehicles.

• Nyberg M. and Nielsen L. (1997), Design of a Complete FDI System based
on a Performance Index With Application to an Automotive Engine, IFAC
Fault Detection, Supervision and Safety for Technical Processes, Hull,
United Kingdom, pp 812-817.

• Frisk M., Nyberg M. and Nielsen L. (1997), FDI with adaptive residual
generation applied to a DC-servo, IFAC Fault Detection, Supervision and
Safety for Technical Processes, Hull, United Kingdom, pp 438-443.

• Nyberg M. and Nielsen L. (1997), Parity Functions as Universal Residual
Generators and Tool for Fault Detectability Analysis, IEEE Conf. on
Decision and Control, San Diego, California, pp 4483-4489.

• Nyberg M. and Perkovic A. (1998), Model Based Diagnosis of Leaks in
the Air-Intake System of an SI-Engine, SAE Paper 980514.

• Nyberg M. (1998), SI-Engine Air-Intake System Diagnosis by Automatic
FDI-Design, IFAC Workshop Advances in Automotive Control, Columbus,
Ohio, pp 225-230.

• Nyberg M. (1999), Model Based Diagnosis of Both Sensor-Faults and
Leakage in the Air-Intake System of an SI-Engine, SAE Paper 1999-01-
0860.

• Nyberg M. and Frisk E. (1999), A Minimal Polynomial Basis Solution to
Residual Generation for Fault Diagnosis in Linear Systems, IFAC, Beijing,
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• Nyberg M. and Nielsen L. (2000), A Universal Chow-Willsky Scheme and
Detectability Criteria, IEEE Trans. Automatic Control.
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Chapter 2

A General Framework for
Fault Diagnosis

The author’s experience and also other people’s experience, e.g. Bøgh (1997),
is that ad-hoc approaches to fault diagnosis give equally good or even better
performance than present systematic approaches. One reason is that present
approaches are too limited to special cases. For example, there is a large amount
of systematic methods that are designed for linear systems. The problem is that
almost no real systems are linear enough so that these methods often result in
bad performance.

Previous attempts to introduce systematics have very much focused on sys-
tematic methods to design residual generators1. However, of all parts in a design
chain, it is not sure that residual generation is the right thing to systematize.
The reason is that systematic methods for residual generation tend to be either
not general enough, so that they are not applicable to the specific application
at hand, or too general, so that they can not utilize the special structure of each
application. One further reason is that for many cases, residual generator de-
sign is actually not very difficult, and engineering intuition can often take us far.
Instead of focusing on systemization of the residual generation, the approach
in the following three chapters is to systematize other parts of the design, e.g.
the architecture of the diagnosis system, and leaves the details of the residual
generator design to the engineer. However, we will give some general principles
also for the residual generation part.

The underlying philosophy of all this is that the engineer should do what
he or she makes best, which is probably the residual generation, and the rest
should be left to the design method. The goal has been to find a systematic
approach that can utilize ad-hoc design of residual generators at the maximum.
In this way, design solutions that have been previously considered to be ad-

1We use the term residual generator here in a quite broad meaning. This is because many
readers have a quite good understanding of this term. However after this introductory section,
we will switch to a more general terminology and residual generator will only be used for some
specific cases.

13
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hoc becomes part of a systematic method. Also previous methods that have
been considered to be systematic, e.g. structured residuals, statistical methods,
parameter estimation, are naturally included.

Although systematic, many previous diagnosis approaches are not based on
any theoretical framework, as was exemplified in Section 1.3. On the contrary
the approach suggested here is theoretically grounded in hypothesis testing (seen
from either a statistical or decision theoretic standpoint) and to some extent also
in propositional logic. Since many previous diagnosis methods are part of this
framework, it also serves as a theoretical motivation to the methods that were
previously not theoretically grounded. The approach presented is also strongly
connected to how human beings would reason when performing diagnosis.

As said above, the description of this approach is distributed in the following
three chapters. We start in this chapter by giving a general framework in which
diagnosis problems can be described in a formalized and abstract manner. We
will throughout this chapter, and also the following, not be restricted to any
special types of faults and also, no restriction will be made regarding the mul-
tiplicity of faults. This is in contrast to almost all other works in which it is
common that only one specific type of fault is considered and also only single
faults. In fact the presented framework is valid for any arbitrary faults in any
multiplicity.

Why is there a need for a general framework for fault diagnosis? One moti-
vation is that in many situations we need to design diagnosis systems capable
of diagnosing several different types of faults at the same time. One example
of this is the automotive engine application investigated in Chapter 5. Another
motivation is that, if we find design or analysis methods that can be described in
terms of a general framework, then they are automatically valid for a large class
of diagnosis problems. An example of such a design method is the structured
hypothesis tests given in Chapter 3, and an example of such an analysis method
is the method for diagnosis-system evaluation given in Chapter 6.

The first part of this chapter, i.e. Section 2.1, discusses fault modeling and
then, in Section 2.2, the notion of fault modes will be introduced. Then a general
architecture for a diagnosis system is given in Section 2.3. Section 2.4 defines
a submode relation between fault modes and Section 2.5 contains definitions
of isolability and detectability. Finally, Section 2.6 discusses what implications
the submode relation has on isolability and detectability. All the formalism
introduced in this chapter will be used in the next two chapters to describe
more precise methods that can be used to perform diagnosis. Note that all
notations introduced are summarized in the beginning of this thesis (and also
in Appendix 2.A).

2.1 Fault Modeling

For constructing a model-based diagnosis system, a model of the system is
needed. This model is the formal representation of the knowledge of possible
faults and how they influence the process. In general, better models implies
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better diagnosis performance, e.g. smaller faults can be detected and more
different types of faults can be isolated. We will in this section describe a general
framework for fault modeling. In this framework, practically all existing fault
modeling techniques fit in naturally.

G(θG, φG)

-

-

-

u(t)

y(t)

z(t, θz, φz)

Figure 2.1: A general system model, linear or non-linear.

2.1.1 Fault State

The system model considered is illustrated in Figure 2.1. The model consists of
a plant G(θG, φG) and the vector valued signal z(t, θz, φz). The parameters θG
and θz describe faults and the parameters φG and φz describe disturbances.

The plant is modeled as an arbitrary system G(θG, φG) described by differ-
ential equations. It has known inputs u(t), e.g. control signals, and measurable
outputs y(t). In addition, the plant can be affected by other signals, which are
collected in z(t, θz, φz). These additional signals are assumed to be unknown or
at least partially unknown. Some of the signals z(t, θz, φz) may be modeled as
stochastic processes. Note that the plant G(θG, φG) is considered to be com-
pletely deterministic, and thus all stochastic parts of a model are collected in
the signal z(t, θz, φz). Except for this, there are cases in which a part of a model
can be included in either G(θG, φG) or z(t, θz, φz). In such cases it is up to the
user to decide what is most natural for the given application.

The constant parameter vector θG represents the true but unknown fault
situation of the plant G(θG, φG). The constant parameter vector θz represents
the true but unknown fault situation of the signal z(t, θz, φz). The parameter
vector θ = [θG θz] is called the fault state and represents the fault situation of
the complete system. One or possibly several fault states always corresponds to
the fault-free case. The fault state space, i.e. the parameter space of θ, will be
denoted Θ. Note that we have chosen the convention that θ is not dependent
on time which corresponds to an assumption that the fault state of the system
never changes. Even though this may seem to be a limitation, this is not the
case as we will see later. We will be quite liberal regarding the definition of the
parameter vector θ, e.g. we will allow elements that are functions.

Corresponding to θ there is the constant parameter vector φ = [φG φz ],
which represents disturbances affecting the system. However, this thesis will
mostly not be focused on handling of disturbances. Therefore, the parameter
φ will often be neglected and the system model then consists of G(θG) and
z(t, θG).
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Example 2.1

Consider a model of an amplifier:

y(t) = gu(t) + v(t) v(t) ∼ N(0, σ)

where u(t) is the input, y(t) the output, g the amplifying gain, and v(t) is a
noise signal with variance σ2. This means that the signal z(t, θz) in the general
model here corresponds to v(t) and the parameters θG and θz are:

θG =g
θz =σ

Then the fault-free case can for example be assumed to correspond to the fault
state

θ = [g σ] = [10 0.01]

and any deviation of θ from this fault state may be considered to be a fault.

2.1.2 Component Fault States

Besides to separate a system model into a plant G(θG) and a signal z(t, θz), it
is natural to also separate a system into a number of components. For each of
these components, a number of faults may occur. Parts of the system that are
not directly affected by any fault are not considered to be components.

Each component i has a, possibly vector-valued, parameter θi which deter-
mines the exact fault state (which can be no fault) of the component. Assume
that there is a total number of p components. Then the fault state θ of the
whole system can be written

θ = [θ1, . . . θp]

The parameter space of θi is denoted Di. Then parameter space Θ becomes

Θ = D1 × · · · × Dp

2.1.3 Models

As was said above, the model consists of G(θG) and z(t, θz) (with φG and φz
neglected). The whole system model will be denotedM(θ) and thus

M(θ) = 〈G(θG), z(t, θz)〉

The modelM(θ) with a fixed value of θ then exactly specifies the system when
a specific fault (or no fault) is present.
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Example 2.2

Consider a system described by the following equations:

ẋ =f(x, u) (2.1a)
y1 =h1(x) + b1 (2.1b)
y2 =h2(x) + b2 (2.1c)
b1 ≥0 (2.1d)
b2 ≥0 (2.1e)

The constants b1 and b2 represents sensor bias faults and it is assumed that only
positive biases can occur.

The system can be considered to have two components: sensor 1 and sensor 2.
Then θ1 = b1 and θ2 = b2. The corresponding fault-state spaces D1 and D2 are
D1 = [0,∞[ and D2 = [0,∞[ respectively. This means that θ = [θ1 θ2] = [b1 b2]
and the fault-state space Θ becomes

Θ = D1 ×D2 = {[b1 b2]; b1 ≥ 0, b2 ≥ 0}

2.1.4 Examples of Fault Models

We will in this section give some examples of common fault modeling principles,
and see how they fit into the framework of this thesis. However, in a real
application one should not be limited to the examples given here, but instead
always choose the fault model that is “best suited” for the particular application,
e.g. in terms of performance and computing power available. In practice only
the fantasy sets the limit of what fault models that can be considered.

Fault Signals

Commonly faults are modeled as unrestricted arbitrary fault signals, e.g. (Gertler,
1998)(Chen and Patton, 1999). When fault signals are used, a specific fault is
usually modeled as a scalar fault signal. Fault modeling by signals is very general
and can describe all types of faults. However, as we will see later in this thesis,
to use fault models that are too general may imply that it becomes impossible
to isolate different faults.

Faults that are traditionally modeled as signals, are possible to describe also
in the framework described above, where faults are described by the fault state
parameter. To illustrate this, consider a general nonlinear system modeled as

ẋ(t) = g
(
x(t), u(t), f(t)

)
y(t) = h

(
x(t), u(t), f(t)

)
The signal f(t) here represents an arbitrary fault that can for example be an
actuator fault or a sensor fault. There are several possibilities to include the
fault signal f(t) in the general framework:
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1. The fault signal is seen as a parameter of the plant, i.e. θG = f(t).
Note that θG is still constant and its value is the whole signal f(t). If
discrete time and finite data is considered, then θG becomes a vector
θG = [f(t1) . . . f(tn)].

2. The fault signal is seen as an unknown input and z(t, θz) is chosen as
z(t) = f(t).

3. The fault signal is seen as an unknown input z(t, θz) where θz = f(t) and
then z(t, θz) = θz. Note again that θz is constant.

4. The fault signal is seen as an unknown input and z(t, θz) is chosen as
z(t) = θzf(t). The parameter θz can be binary (0 or 1), indicating only
the presence of the fault, or real-valued, indicating the amplitude of the
fault.

Remember that we want to describe the fault situation of the system with the
fault state θ and that each possible fault corresponds to a point in the fault
state space Θ. These desires can be met by using the first, third, or fourth
alternative above, but the not the second.

It is also possible to include some more restrictions on the fault state param-
eter θ. An example of a natural restriction is that the value of a fault signal f(t)
is limited in range. Another example is that the bandwidth of f(t) is limited to
some value. In general it is advantageous to include restrictions into the fault
models. The reason is that the isolation task get easier the more restrictive fault
models we have.

Constant Plant Parameters

Another very common fault model is to model faults as deviations of constant
plant parameters from their nominal value, e.g. (Isermann, 1993). It is obvious
that such faults can in the general framework be modeled by the parameter θG.
Faults that are typically modeled in this way are “gain-errors” and “off-sets”
(“biases”).

Fault modeling by constant plant parameters is exemplified in Example 2.1
where the parameter g is 10 in the nominal case and a fault is represented as a
deviation from this nominal value. Another example is the parameters b1 and
b2 in Example 2.2.

Also for this fault modeling principle, it is possible to include some restric-
tions on the fault state parameter θ. For example the size of a bias or a gain-error
is usually limited by the system.

Constant Signal Parameters

In some cases, it is appropriate to model a fault as a deviation of a constant
signal parameter from its nominal value. A typical example is a signal whose
variance is constant and low in the fault-free case, and when a fault is present the
variance is also constant but higher. These faults can in the general framework
be modeled by the parameter θz.
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Figure 2.2: Some different types of time-variant behavior of faults.

Abrupt Changes

A quite common fault model is to consider abrupt changes of variables, e.g. see
(Basseville and Nikiforov, 1993). This is illustrated in Figure 2.2 as the solid line.
It is assumed that a variable or signal has a constant value θ0 before an unknown
change-time tch and then jumps to a new constant value θ1. The parameters θ0
and θ1 can be unknown or known. The abrupt change model fit into the general
framework by letting either θG or θz contain the three parameters θ0, θ1, and
tch.

Example 2.3

Consider an electrical connector. One possible fault is a sudden “connection
cut-off” at time tch. A model for this fault mode is

ys(t) = (1 − c(t))x(t)

where

c(t) =

{
θ0 = 0 t < tch

θ1 = 1 t ≥ tch

That is, the fault model is based on an abrupt change in the signal c(t). Since
the levels θ0 and θ1 are known at beforehand, this fault can be described by the
single parameter tch, i.e. θG = tch.

Note that the abrupt change model can also be used to model any abrupt
change, and not only changes of the level of an signal. For example, we can
assume that the derivative or the variance of a signal changes abruptly.
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Incipient Faults

In some sense, the opposite of abrupt changes is incipient faults. Incipient faults
are faults that gradually develops from no fault to a larger and larger fault. This
is illustrated in Figure 2.2 as the dash-dotted line. An incipient fault could for
example be a slow degradation of a component or developing calibration errors
of a sensor. Modeling of incipient faults are exemplified in the two following
examples:

Example 2.4

Let c(t) represent the “size” of the fault. If the fault is incipient, then c(t)
becomes

c(t) =

{
0 t < tch

g(t− tch) t ≥ tch

Then the fault state could be θ = [tch g]. This fault model can in fact be seen
as special case of the abrupt change model.

Example 2.5

Consider a limited time window and assume that during this time window,
either the no fault case is present or that an incipient fault has already started
to develop, i.e. the starting-point is actually outside the range of the window.
Then an appropriate fault model would be

c(t) = c0 + gt

where t is the time within the window. Thus θ = [c0 g] and the fault free case
would correspond to θ = [0 0].

Intermittent Fault

An intermittent fault is a fault that occurs and disappears repeatedly. This is
shown in Figure 2.2 as the dashed line. A typical example of an intermittent
fault is a loose connector.

Example 2.6

Consider a sensor measuring a state x. The model of this (sub-) system can be
written

ys(t) = c1(t)x(t)

where ys is the sensor output and x is the state. The function c1(t) is our model
of the loose contact. For some t, there is no contact and therefore c1(t) = 0. For
other t, the contact is perfect and c1(t) = 1. That is, c1(t) is a function that
switches between 0 and 1 at unknown time instances. In terms of the general
model description, z(t, θz) can be chosen as z(t, θz) = c(t) where the unknown
time instances are collected in the vector θz.
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2.2 Fault Modes

Different faults can be classified into different fault modes. For example, consider
a system containing a water tank and leakages in the bottom of this tank. All
such leakages, regardless of their area, belong to the same fault mode “water
tank bottom leakage”.

The classification of different faults into fault modes corresponds to a parti-
tion of the fault-state space Θ. This means that each fault mode γ is associated
with a subset Θγ of Θ. One of the fault modes corresponds to the fault-free
case and this fault mode will be denoted “no fault” or NF. Further, all sets Θγ

are pairwise disjoint and

Θ =
⋃
γ∈Ω

Θγ

where Ω is used to denote the set of all fault modes.
If fault mode γ is present in the system, then we know that θ ∈ Θγ . The

fact that all sets Θγ are pairwise disjoint means that only one fault mode can
be present at the same time. We will use the convention that one of the fault
modes always corresponds to the no fault case.

ΘNF

ΘF1

ΘF2

ΘF3

ΘF4

Figure 2.3: The fault state space divided into subsets corresponding to different
fault modes.

For notational convenience we will to each fault mode associate an abbrevi-
ation, e.g. “no fault” was abbreviated NF. All this is illustrated in Figure 2.3
which shows how the whole set Θ has been divided into five subsets correspond-
ing to fault modes NF, F1, F2, F3, and F4. It is now possible to formally
define fault :

Definition 2.1 (Fault) A fault state θ is a fault if θ /∈ ΘNF.
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We have already used the term fault in a non strict sense and will also continue
to do so in many not-so-formal parts of the thesis.

Example 2.7

Consider again Example 2.2. Four fault modes are considered:

NF no fault
B1 bias in sensor 1
B2 bias in sensor 2
B1&B2 bias both sensor 1 and sensor 2

The sets Θ, ΘNF, ΘB1, ΘB2, and ΘB1&B2 become

Θ ={[b1 b2]; b1 ≥ 0, b2 ≥ 0} (2.2a)
ΘNF ={[0 0]} (2.2b)
ΘB1 ={[b1 0]; b1 > 0} (2.2c)
ΘB2 ={[0 b2]; b2 > 0} (2.2d)

ΘB1&B2 ={[b1 b2]; b1 > 0, b2 > 0} (2.2e)

The fault mode present in the system will frequently be denoted Fp. Thus
when the present fault mode is F1, we write this as Fp = F1. This further
means for the present fault state θ it holds that θ ∈ ΘF1.

2.2.1 Component Fault-Modes

Besides defining fault modes for the whole system, it is natural to also consider
component fault-modes. To emphasize the difference between component fault-
modes and fault modes for the whole system, the latter will sometimes be called
system fault-modes.

As was said in Section 2.1.2, a system can usually be separated into a number
of components. The characteristic property of a component is that only one type
of fault can be present at a time. The classification into different types of faults is
made by introducing component fault-modes. Consider for example a valve with
fault modes “no fault”, “stuck open”, and “stuck closed”. Obviously no two of
these fault modes can be present at the same time. In analogy with the system
fault-modes, we use the convention that one of the component fault-modes is
the no fault case.

Each component fault-mode ψ is associated with a subset Diψ of Di. That
is, if fault mode ψ is present in component i, then θi ∈ Diψ. In analogy with the
system fault-modes, the sets Diψ form a partition of the component fault-state
space Di. This means that the sets Diψ are pairwise disjoint and

Di =
⋃
ψ∈Ωi

Diψ

where Ωi is the set of all component fault-modes for component i.
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Relation to System Fault-Modes

Let F ij denote the j:th component fault-mode of the i:th component. We will
reserve the fault-mode F i0 to be the “no fault” case of the i:th component. The
fault-mode F i0 will also be denoted NF i. Let p be the number of components
and ni the number of different component fault-modes for the i:th component.
All component fault-modes can then be collected in a table:

component component
number i fault-modes
1 F 1

0 ≡ NF 1, F 1
1 , . . . F 1

n1

2 F 2
0 ≡ NF 2, F 2

1 , . . . F 2
n2

...
...

p F p0 ≡ NF p, F
p
1 , . . . F pnp

A system fault-mode can then be composed by a vector of component fault-
modes. Thus the length of this vector is p and the total number of possible
system fault-modes is

p∏
i=1

ni (2.3)

To distinguish between system fault-modes and component fault-modes, we
have here used bold-face letters to denote system fault-modes. However, when
it is clear from the context, we will later in the thesis often skip the bold-face
notation. Some examples of system fault-modes are

NF =[NF 1, NF 2, . . . NF p] (2.4a)

F1
1 =[F 1

1 , NF
2, . . . NF p] (2.4b)

F2
1 =[NF 1, F 2

1 , NF
3, . . . NF p] (2.4c)

F1
2&F2

1 =[F 1
2 , F

2
1 , NF

3, . . .NF p] (2.4d)

The first of these examples is the no-fault case of the whole system. For the
other examples, we have used the convention that components, that have none
of its component fault-modes included in the notation for the system fault-mode,
are assumed to have component fault-mode NF i. This means that from only
the notation of the system fault-modes and the sets Diψ , we are able to uniquely
infer the sets Θγ . For the examples (2.4) we have

NF θ ∈ ΘNF = {θ ∈ Θ|
∧
i θi ∈ DiNF i}

F1
1 θ ∈ ΘF1

1
= {θ ∈ Θ|θ1 ∈ D1

F 1
1

∧
i6=1 θi ∈ DiNF i}

F2
1 θ ∈ ΘF2

1
= {θ ∈ Θ|θ2 ∈ D2

F 2
1

∧
i6=2 θi ∈ DiNF i}

F1
2&F2

1 θ ∈ ΘF1
2&F2

1
= {θ ∈ Θ|θ1 ∈ D1

F 1
2
∧ θ2 ∈ D2

F 1
1

∧
i6=1 θi ∈ DiNF i}

To clarify the relation between system fault-modes and component fault-
modes, it may be useful to study a Venn diagram over the different fault modes
of a system. This is illustrated in the following example.
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Example 2.8

Consider again Example 2.7. Four component fault-modes are considered, i.e.
NF1, NF2, B1, and B2, and they are defined by the sets Diψ as follows:

D1
NF1 ={0}
D1
B1 ={x > 0}

D2
NF2 ={0}
D2
B2 ={x > 0}

The sets Ωi of component fault-modes implies that there are four possible system
fault-modes:

NF =[NF1, NF2]
B1 =[B1, NF2]
B2 =[NF1, B2]

B1&B2 =[B1, B2]

The fault-state space and the different fault modes are shown in a Venn diagram
in Figure 2.4. The whole area corresponds to the set Θ. The left circle represents
all fault-states for which component fault-mode B1 is present, i.e. the set

{θ | θ1 ∈ D1
B1}

Similarly the right circle represents all fault-states for which component fault-
mode B2 is present. These two circles together divides the fault-state space into
the four sets ΘNF, ΘB1, ΘB2, and ΘB1&B2, which are shown in the figure.

ΘNF

ΘB1 ΘB2ΘB1&B2

Figure 2.4: A Venn diagram showing the relation between the component and
system fault-modes.
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2.2.2 Single- and Multiple Fault-Modes

The system fault-modes in which only one of the component fault-modes is not
NF i are said to be single fault-modes. For example, B1 and B2 in the example
above, are both single fault-modes. Usually also the no-fault system fault-mode,
i.e. NF, is said to be a single fault-mode. The opposite are multiple fault-modes
where more than one of the component fault-modes are not NF i.

The terminology single faults and multiple faults are frequently used in the
diagnosis literature. In the framework presented here, a fault θ is a single fault
if it belongs to a single fault-mode, i.e. θ ∈ Θγ and γ is a single fault mode.
Similarly a fault θ is a multiple fault if it belongs to a multiple fault-mode. Note
that with the formalism described here, multiple fault-modes comes in naturally
and requires no special treatment.

A problem with considering multiple fault-modes is that the complexity of
the diagnosis problem increases. When the number of components gets larger,
the number of different system fault-modes grows exponentially, see (2.3). This
further implies that a more complex and more expensive diagnosis system is
needed. A solution is to consider only single fault-modes. This corresponds
to an assumption that only one fault can be present at the same time. In
that case, the number of system fault-modes grows linearly with the number of
components, i.e. the number of possible system fault-modes becomes

1 +
p∑
i=1

(ni − 1) (2.5)

The assumption to only consider single fault-modes may seem to be unreal-
istic at first, but at least three practical considerations support this assumption.

• If a sufficiently small time scale is chosen it is probably the case that one
fault has occured first even though several faults are present.

• In a system in which one fault is highly improbable (as it usually is), it is
even more improbable that two or more faults occur.

• The specifications of a diagnosis system only require diagnosis of single
faults. The reason can be that diagnosis systems capable of handling mul-
tiple fault modes would become to expensive because of increased sensor
and hardware costs. In fact, the current diagnosis legislative regulations
for automotive engines only require single fault diagnosis.

An alternative to only consider single fault-modes, but still not all multiple
fault-modes, is to consider a subset of the multiple fault-modes. For example,
one could choose to consider all system fault-modes where at maximum two
component faults are present.

2.2.3 Models

Remember the system modelM(θ) that is capable of describing the system for
all possible fault states θ ∈ Θ. By restricting θ to a subset Θγ , corresponding
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to a fault mode γ, we get a “smaller” model. For especially single fault-modes,
the models can get much smaller. To each fault mode γ, we can then associate
a model Mγ(θ) which we formally define as

Mγ(θ) =M(θ)|θ∈Θγ (2.6)

Thus the modelMγ(θ) is capable of describing the system as long as fault mode
γ is present.

For a specific fault mode γ, the constraint θ ∈ Θγ usually fix a part of the
vector θ to some constants. Then, as an alternative to the notation Mγ(θ),
we will use Mγ(θγ), where θγ is the part of the θ-vector that is not fixed. If
the θ-vector is completely fixed by the fault mode γ, the θ-argument becomes
unnecessary and the corresponding fault model can be denotedMγ .

Example 2.9

The models corresponding to each fault mode are given by (2.1) and some
additional constraints on b1 and b2 defined by (2.2). The models associated
with the different fault modes are

NF: MNF(θ) =MNF

B1: MB1(θ) =MB1(b1)
B2: MB2(θ) =MB2(b2)
B1&B2: MB1&B2(θ) =MB1&B2([b1 b2])

Note: As a reference, this sensor-bias example, that has been step-wise
expanded in this and the previous section, is summarized in Appendix 2.A.

2.3 Diagnosis Systems

To perform fault diagnosis, a diagnosis system is needed. The general structure
of an application including a diagnosis system is shown in Figure 2.5. Inputs
to the diagnosis system are the signals u(t) and y(t), which are equal to, or a
superset of, the control system signals. Except for control signals, the plant is
also affected by faults and disturbances and these are not known to the diagnosis
system. The task of the diagnosis system is to generate a diagnosis statement
S, which contains information about which fault modes that can explain the
behavior of the process. Note that it is assumed that the diagnosis system is
passive, i.e. it can by no means affect the plant.

In terms of decision theory (e.g. see (Berger, 1985)), the diagnosis system is
a decision rule δ(x), where x = [u y], and S is the action. That is, the diagnosis
system is a function of u and y and S = δ(x) = δ([u y]). Note that x can also
contain several samples of u and y from different times.

One way of structuring a diagnosis system is shown in Figure 2.6. The
whole diagnosis system δ(x) can be divided into smaller parts δi(x), which we
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Control
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Faults
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Disturbances
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�- Diagnosis
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Diagnosis Statement

Figure 2.5: General structure of a diagnosis application.

will call tests. These tests are also decision rules. Assume that each of the
tests δi(x) generates the diagnosis statement Si, i.e. Si = δi(x). The purpose
of the decision logic is then to combine this information to form the diagnosis
statement S.

The diagnosis statement S and the individual diagnosis statements Si do
all contain information about which system fault-modes that can explain the
behavior of the system. We can represent and reason about this information
in at least two ways. The first is to use a representation where the diagnosis
statements S and Si are sets of system fault modes. The second is to let the
diagnosis statements be expressed as propositional logic formulas where the
propositional symbols are component fault-modes. In the next two sections,
these two alternatives will be investigated.

2.3.1 Forming the Diagnosis Statement by Using a Set
Representation

An example of a diagnosis statement, represented by a set of system fault-modes,
is

S ={B1,B2}

The interpretation here is that each of the fault modes B1 and B2, can alone
explain the behavior of the system. This can also be expressed as that each of
the modelsMB1(θ) and MB2(θ) can explain the measured data x.
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Figure 2.6: A general diagnosis system.

All individual diagnosis statements Si contain information of which system
fault-modes that can explain the data. To derive the diagnosis statement S, we
want to summarize the information from all the individual diagnosis statements
Si. By using the set representation, this is done via an intersection operation,
i.e. the diagnosis statement S is formed as

S =
⋂
i

Si (2.7)

Thus the decision logic of the diagnosis system can be seen as a simple inter-
section operation.

The following example illustrates this principle.

Example 2.10

Consider the system fault-modes NF, B1, B2, and B1&B2. Assume that
the diagnosis system contains three individual tests. Assume further that the
diagnosis system has collected and processed the input data, and the individual
diagnosis statements Si are

S1 ={NF,B1}
S2 ={B1,B1&B2}
S3 ={B1,B2}

Then the diagnosis statement S becomes

S = {NF,B1} ∩ {B1,B1&B2} ∩ {B1,B2} = {B1}
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The result should be interpreted as B1 is the only system fault-mode that can
explain the behavior of the system.

In the example above, it happened that S only contained one system fault-
mode. It can also happen that S contains several system fault-modes. If for
example the individual diagnosis statements Si are

S1 ={NF,B1,B1&B2}
S2 ={B1,B1&B2}
S3 ={B1,B2,B1&B2}

Then the diagnosis statement S becomes

S ={NF,B1,B1&B2} ∩ {B1,B1&B2} ∩ {B1,B2,B1&B2} =
={B1,B1&B2}

This diagnosis statement should be interpreted as both the system fault-modes
B1 and B1&B2 can explain the behavior of the system.

One special case is when the fault mode NF (no fault) is contained in the
diagnosis statement. For example

S = {NF,B1,B2,B1&B2}

This means that the system fault-mode NF (and also some other system fault-
modes) can explain the behavior of the system. Further this corresponds to that
the fault free modelMNF can explain the behavior of the system. In this case
there is no reason to generate an alarm. On the other hand if the fault mode
NF is not contained in the diagnosis statement S, some faults are probably
present and an alarm should be generated.

The set representation of diagnosis statements will be used a lot in this thesis.
One reason is that it is easy and intuitive to express that a system fault-mode
γ is part of the diagnosis statement S. This is written γ ∈ S. For example the
principle of when to generate an alarm can be expressed as

NF ∈ S NOT generate an alarm
NF /∈ S generate an alarm

The diagnosis-system architecture presented here is based on the same prin-
ciple as human beings are using when performing diagnosis. That is, a human
being breaks down a complex diagnosis problem into smaller tasks (the tests).
These smaller tasks are performed (can be to observe a special characteristic)
and the outcome from all of them are combined to form the total diagnosis
statement. This connection to human reasoning will be even more detailed in
the next chapter in which the individual tests are seen as hypothesis tests.

Below follows a larger example, similar to one given in (Sandewall, 1991), of
a diagnosis problem and a diagnosis system. In addition to illustrating general
principles, also the connection to human reasoning will hopefully be realized.
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Remember the symbol Ω which denotes the set of all system fault-modes. If a
diagnosis statement is Ω, then this means that any fault mode can explain the
system behavior.

Example 2.11

Assume that we want to diagnose a car. The following system fault-modes are
considered:

NF no fault
BD battery discharged
SB start motor broken
NG no gasoline

Remember that only one of these fault modes can occur at the same time. An
automated diagnosis system or a human being can perform the following tests:

δ1: When the ignition key is turned on, observe if the start motor starts.
The different conclusions are then

test is not performed S1 = Ω
start motor starts S1 = {NF,NG}
start motor do not start S1 = {BD,SB}

The conclusion “test is not performed” means that the ignition key has not been
turned on.

δ2: When the ignition key is turned on, observe if the engine starts. The
different conclusions are then

test is not performed S2 = Ω
engine starts S2 = {NF}
engine do not start S2 = {BD,SB,NG}

δ3: When the head-light switch is turned on, observe if the head-lights are
turned on. The different conclusions are then

test is not performed S3 = Ω
head-lights are turned on S3 = {NF,SB,NG}
head-lights are not turned on S3 = {BD}

Now assume that both the ignition key and the head-light switch are turned
on and the following observations are made:

•start motor do not start
•engine do not start
•head-lights are turned on

This means that the diagnosis statement S becomes

S = S1 ∩ S2 ∩ S3 = {BD,SB} ∩ {BD,SB,NG} ∩ {NF,SB,NG} = {SB}
That is, the conclusion is that the only fault mode that can explain the behavior
of the system is SB, i.e. start motor broken.
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2.3.2 Forming the Diagnosis Statement by Using a Propo-
sitional Logic Representation

We will now investigate the case where the diagnosis statements Si and S are
expressed as propositional logic formulas, and the propositional symbols are
component fault-modes. Note first that this representation is equivalent to
using sets of system fault-modes. The diagnosis statement S is with this repre-
sentation formed as

S =
∧
i

Si

Thus the decision logic can be seen as a simple conjunction operation.
As noted in Section 2.2.2, a representation based on system fault-modes can

be problematic since the number of system fault-modes grows exponentially
with the number of components. The reasoning based on propositional logic and
component fault-modes, does not have this problem. An additional advantage
with this representation is that we obtain a closer connection to other diagnosis
methods based on logic, e.g. (Reiter, 1987). It can also be argued that a
representation based on component fault-modes is more natural.

The next example will illustrate reasoning based on propositional logic and
component fault-modes. Also shown is the link to the equivalent representation
based on sets of system fault-modes. In the example, we have assumed that
each component has only two possible component fault-modes. In this case,
standard “two-valued” propositional logic can be used. If some components
have more than two possible component fault-modes, than some “multi-valued”
propositional logic2 must be used, e.g. see (Larsson, 1997).

Example 2.12

Assume that we want to diagnose the same car as in the previous example. Now
we will consider multiple faults and it is natural to start defining the component
fault-modes:

component component
name fault-modes
battery NFB, BD
start motor NFS , SB
gasoline NFG, NG

The abbreviations have the same meaning as in the previous example. This
means that the set of all system fault-modes become:

Ω = {NF,BD,SB,NG,BD&SB,BD&NG,SB&NG,BD&SB&NG}

We can now proceed as we did in Example 2.11, but instead we will choose to use
a reasoning based on propositional logic and component fault-modes. Instead

2If such a multi-valued logic is adopted, we could in principle also use propositional logic
to reason about system fault-modes, i.e. as an alternative to the set representation.
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of for example NFB we will write ¬BD. The symbol ⊥ will be used to denote
falsity. Then the three tests can be formulated as follows:

δ1: When the ignition key is turned on, observe if the start motor starts.
The different conclusions are then

test is not performed S1 = ¬ ⊥
start motor starts S1 = ¬BD ∧ ¬SB
start motor do not start S1 = BD ∨ SB

Note that S1 is now expressed with component fault-modes which is significantly
different compared to the previous example where system fault-modes were used.
For example, the last alternative conclusion of test δ1, expressed by system fault-
modes and the set representation, is

S1 = {BD,SB,BD&SB,BD&NG,SB&NG,BD&SB&NG}

δ2: When the ignition key is turned on, observe if the engine starts. The
different conclusions are then

test is not performed S2 = ¬ ⊥
engine starts S2 = ¬BD ∧ ¬SB ∧ ¬NG
engine do not start S2 = BD ∨ SB ∨NG

δ3: When the head-light switch is turned on, observe if the head-lights are
turned on. The different conclusions are then

test is not performed S3 = ¬ ⊥
head-lights are turned on S3 = ¬BD
head-lights are not turned on S3 = BD

Now assume that both the ignition key and the head-light switch are turned
on and the following observations are made:

•start motor do not start
•engine do not start
•head-lights are turned on

This means that the diagnosis statement S becomes

S =S1 ∧ S2 ∧ S3 = (BD ∨ SB) ∧ (BD ∨ SB ∨NG) ∧ ¬BD =
=¬BD ∧ SB

That is, the conclusion is that the behavior of the system corresponds to that
the component fault-modes ¬BD and SB are present. That is, the battery is
not discharged and the start motor is broken. If we instead had used reasoning
about the system fault-modes, the diagnosis statement would become

S = {SB,SB&NG}
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Remark: In the above example, we considered multiple fault modes, in con-
trast to Example 2.10, in which only single fault-modes were used. If we want
consider only single fault-modes, also when using reasoning based on compo-
nents and propositional logic, we have to add a set of premises saying that no
two component faults can be present at the same time, e.g. ¬(BD ∧SB). Such
premises are not needed when the reasoning is based on system-fault modes and
the set representation. That is, multiple fault-modes could have been introduced
in Example 2.10, without any special considerations.

2.3.3 Speculative and Conclusive Diagnosis-Systems

As have been said above, a diagnosis statement S can in general contain more
than one system fault-mode. This is in contrast to most fault diagnosis litera-
ture, in which the diagnosis statement can only contain one system fault-mode.
The difference is fundamental and to distinguish between the two types of diag-
nosis system, we will use the terms conclusive diagnosis-system and speculative
diagnosis-system.

A speculative diagnosis-system corresponds well to a desired functionality
since in cases where it is difficult or even impossible to decide which fault mode
that is present, it is very useful for a service technician to get to know that there
are more than one fault mode that can explain the behavior of the process. If
the diagnosis system was forced to pick out one fault mode in cases like this, it
is highly probable that a mistake is made and wrong fault mode is picked out.

The diagnosis task of a conclusive diagnosis-system is to infer which one,
of several fault scenarios (fault modes), that is present. On the other hand,
the diagnosis task of a speculating diagnosis-system is to speculate which fault
scenarios (possibly several) that can be present such that the collected data can
explain the behavior of the system.

Formally, the conclusive diagnosis-system is a special case of a speculative
diagnosis-system with the additional restriction that no matter the outcome of
the different tests δi, the diagnosis statement S does always contain maximally
one system fault-mode.

2.3.4 Formal Definitions

Now when faults, fault modes, and diagnosis systems have been formally defined,
we are ready to introduce more formal definitions to the conceptually important
terms in the SAFEPROCESS list from Section 1.2. These definitions are valid
for the speculative as well as the conclusive diagnosis system.

Definition 2.2 (Fault Detection) Fault Detection is the task to determine
if the system fault-mode NF can explain the behavior of the system or not.

Definition 2.3 (Fault Isolation) Fault isolation is the task to determine which
system fault-mode that can best explain the behavior of the system.
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Definition 2.4 (Generalized Fault Isolation) Fault isolation is the task to
determine which system fault-modes that can explain the behavior of the system.

Definition 2.5 (Fault Identification) Fault identification is the task to es-
timate the fault state θ that can best explain the behavior of the system.

Now we define fault diagnosis as equivalent to the generalized fault isolation:

Definition 2.6 (Fault Diagnosis) Fault diagnosis is the task to determine
which fault modes that can explain the behavior of the system.

Note that this definition of fault diagnosis is not in agreement with many other
sources which define diagnosis as the combined task fault detection, fault isola-
tion, and fault identification, e.g. compare with the definitions in Section 1.2.
However, as we will see in Chapter 4, it can happen that fault identification
must be implicitly performed when doing fault isolation.

Note also the difference between fault diagnosis and general system identi-
fication in which the single θ, that best explains the data, is sought. To use
system identification directly to perform both fault detection, isolation, and
identification, would in some cases theoretically be possible. However, for most
cases the problem is that the vector θ is usually quite large and the identification
therefore becomes difficult. In addition, it can very well be the case that the
model is not identifiable with respect to θ. However, if one fault mode is as-
sumed, the fault identification becomes much simpler and this is the motivation
why we need to perform fault isolation before fault identification.

2.4 Relations Between Fault Modes

Because of for instance “over parameterization”, it can happen that two different
fault modes can describe the system behavior equally well. Consider for example
a system modeled as

y = abu

where one fault mode Fa corresponds to that a 6= 1 and fault mode Fb cor-
responds to that b 6= 1. It is obvious that both Fa and Fb can equally well
describe the system.

These kinds of relations between Fa and Fb are further investigated in this
section. We will see later that for both analysis and design of a diagnosis
system, these relations play a fundamental role. There is also a close relation
to identifiability in system identification, e.g. (Ljung, 1987).

First a notion of equivalent models is established:

Definition 2.7 (Equivalent Models) Two modelsM1(θ1) andM2(θ2), with
fixed parameters θ1 and θ2 are equivalent, i.e.

M1(θ1) =M2(θ2)
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if for each initial state x1 ofM1(θ1), there is an initial state x2 ofM2(θ2) such
that for all signals u(t) and z(t), the outputs y1(t) and y2(t) are equal, and vice
versa.

Definition 2.8 (Submode) We say that a fault mode γ1 is a submode of
another fault mode γ2, i.e.

γ1 4 γ2

if for each fixed value θ1 ∈ Θγ1 , there is a fixed value θ2 ∈ Θγ2 such that
Mγ1(θ1) =Mγ2(θ2).

Definition 2.9 (Submode in the Limit) We say that a fault mode γ1 is a
submode in the limit of another fault mode γ2, i.e.

γ1 4∗ γ2

if for each fixed value θ1 ∈ Θγ1 , there is a fixed value θ∗ such that

Mγ1(θ1) = lim
θ2→θ∗
θ2∈Θγ2

Mγ2(θ2)

These relations are transitive which means that if γ1 4 γ2 and γ2 4 γ3, then
γ1 4 γ3. Further if γ1 4∗ γ2 and γ2 4∗ γ3, then γ1 4∗ γ3 (at least under
regularity conditions). Further we have that if γ1 4 γ2 then also γ1 4∗ γ2.

The submode relation between fault modes can quite easily arise when mod-
eling systems and faults. Unfortunately they are undesirable since they, as we
will see in the Section 2.5, imply that it becomes difficult or impossible to isolate
different faults. Examples of how the submode relation can arise is given in the
following example.

Possible Leak

Water Level Sensor

Figure 2.7: A water tank.

Example 2.13

Consider the water tank illustrated in Figure 2.7. Two types of faults can occur:
there may be a leakage and the water-level sensor may fail. The diameter of
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the leakage hole is assumed to be unknown but constant. For some reason,
it is interesting to distinguish between three types of sensor faults: a simple
calibration fault (i.e. a gain fault), a combination of a bias and a calibration
fault, and an arbitrary fault. The component fault-modes can therefore be
summarized as

component component component
number i name fault-modes
1 Level Sensor NF1, SCF , LSF , ASF
2 Tank NF2, L

where L is “Leakage”, SCF is “Sensor Calibration Fault”, LSF is “Linear
Sensor Fault”, and ASF is “Arbitrary Sensor Fault”. Thus the possible system
fault-modes are

NF =[NF1, NF2]
L =[L,NF2]

SCF =[NF1, SCF ]
LSF =[NF1, LSF ]
ASF =[NF1, ASF ]

L&SCF =[L, SCF ]
L&LSF =[L,LSF ]
L&ASF =[L,ASF ]

The fault-complete model MΩ(θ) of the tank is

ẋ(t) =u(t)−Ah(x(t))
y(t) =gx(t) +m+ f(t)

where the state x(t) is the water level, and u(t) is the flow into the tank. The
leakage flow is determined by the leakage area A times the nonlinear function
h(x(t)). The sensor signal y(t) is affected by different faults via the constants k
and m, and the signal f(t). The parameter vector θ becomes θ = [A, g,m, f(t)],
and θ1 = A and θ2 = [g,m, f(t)].

The single fault-modes are defined by the following models:

MNF ={M(θ) | A = 0 ∧ g = 1 ∧m = 0 ∧ ∀t.f(t) = 0}
ML(A) ={M(θ) | A > 0 ∧ g = 1 ∧m = 0 ∧ ∀t.f(t) = 0}
MSCF(g) ={M(θ) | A = 0 ∧ g 6= 1 ∧m = 0 ∧ ∀t.f(t) = 0}

MLSF([g m]) ={M(θ) | A = 0 ∧ (g 6= 0 ∨m 6= 0) ∧ ∀t.f(t) = 0}
MASF(f(t)) ={M(θ) | A = 0 ∧ g = 1 ∧m = 0 ∧ f(t) 6= 0}

From these models it is easy to also derive the models for the multiple fault-
modes.
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When we have the models for all system fault-modes, we can identify the
following relations:

NF 4∗ L
NF 4∗ SCF 4 LSF 4 ASF

NF 4∗ L&SCF 4 L&LSF 4 L&ASF

Even though most of these relations can be avoided, it is usually very difficult
to avoid that NF is a submode of most other fault modes.

2.5 Isolability and Detectability

In this section we define and discuss isolability and detectability. The diagnosis
statement is assumed to be expressed using the set representation. From now
on, we skip the bold-face notation for system fault-modes. We start by defining
what is meant by detecting and isolating a fault.

Definition 2.10 (Detected Fault) Assume a fault θ ∈ ΘF1 is present. Then
the fault θ is detected using a diagnosis system δ(x), if NF /∈ S.

Definition 2.11 (Isolated Fault) Assume a fault θ ∈ ΘF1 is present. Then
the fault θ is isolated using a diagnosis system δ(x), if S = {F1}.

Note that Definition 2.11 means that fault isolation implies fault detection.
Related to the above definitions, we also define the terms false alarm, missed

detection, missed isolation:

Definition 2.12 (False Alarm) Assume that no faults are present, i.e. θ ∈
ΘNF . Then the diagnosis statement S represents a false alarm if NF /∈ S.

Definition 2.13 (Missed Detection) Assume that a fault θ ∈ ΘF1 is present.
Then the diagnosis statement S represents a missed detection if NF ∈ S.

Definition 2.14 (Missed Isolation) Assume that a fault θ ∈ ΘF1 is present.
Then the diagnosis statement S represents a missed isolation if S 6= {F1}.

Next we define isolability and detectability for a given diagnosis system. We
restrict the definitions to deterministic systems. This means that the system
output y is completely determined by initial conditions x0, the input u, faults θ,
and disturbances φ. This further means that S = δ([y, u]) = δ([y(x0, u, φ, θ), u]),
i.e. also the diagnosis statement is deterministically determined by [x0, u, φ] and
θ. However, it is possible to generalize the definitions to the stochastic case.

The goal is to define what we mean when saying “the fault mode F1 is
isolable from the fault mode F2” but we start with a simpler problem, namely
what we mean by “the fault-state θ1 is isolable from the fault-state θ2”:
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Definition 2.15
(Fault-State Isolability Under [x0, u, φ] in a Diagnosis System)
Given a fixed [x0, u, φ] and a diagnosis system δ, we say that the fault state
θ1 ∈ ΘF1 is isolable from θ2 ∈ ΘF2 under [x0, u, φ] if

F1 ∈ S = δ
(
y(x0, u, φ, θ1), u) ∧ F2 /∈ S = δ

(
y(x0, u, φ, θ1), u)

and

F2 ∈ S = δ
(
y(x0, u, φ, θ2), u)

Note that the definition is not symmetric, i.e. a fault θ1 can be isolable from
θ2, without that θ2 is isolable from θ1.

Next, when defining what we mean by “F1 is isolable from F2”, we have
several choices. We can consider a single pair of fault states or all fault states
in the fault modes. We can consider a single [x0, u, φ], given or not given, or all
possible [x0, u, φ]. All together, we end up with no less than six different defini-
tions of fault isolability for a given diagnosis system. These six are illustrated
in Table 2.1.

Complete Isolability
∀θ ⇒ Partial Isolability

∃θ
Uniform Isolability

∀[x0, u, φ]
⇓

F1 is uniformly and
completely isolable
from F2

F1 is uniformly and
partially isolable from
F2

Under [x0, u, φ]
⇓

F1 is completely
isolable from F2 under
[x0, u, φ]

F1 is partially isolable
from F2 under
[x0, u, φ]

∃[x0, u, φ] F1 is completely
isolable from F2

F1 is partially isolable
from F2

Table 2.1: Definitions of fault-mode isolability.

If written out, the definitions from Table 2.1 become:

Definition 2.16
(Uniform (Complete) Fault-Mode Isolability in a Diagnosis System)
Given a diagnosis system δ, we say that F1 is uniformly and completely isolable
from F2 if

∀[x0, u, φ] ∀θ1 ∈ ΘF1 ∀θ2 ∈ ΘF2 . θ1 is isolable from θ2 under [x0, u, φ]

Definition 2.17
((Complete) Fault-Mode Isolability in a Diagnosis System Under [x0, u, φ])
Given a fixed [x0, u, φ] and a diagnosis system δ, we say that F1 is completely
isolable from F2 under [x0, u, φ] if

∀θ1 ∈ ΘF1 ∀θ2 ∈ ΘF2 . θ1 is isolable from θ2 under [x0, u, φ]
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Definition 2.18
((Complete) Fault-Mode Isolability in a Diagnosis System)
Given a diagnosis system δ, we say that F1 is completely isolable from F2 if

∃[x0, u, φ] ∀θ1 ∈ ΘF1 ∀θ2 ∈ ΘF2 . θ1 is isolable from θ2 under [x0, u, φ]

Definition 2.19
(Uniform Partial Fault-Mode Isolability in a Diagnosis System)
Given a diagnosis system δ, we say that F1 is uniformly and partially isolable
from F2 if

∀[x0, u, φ] ∃θ1 ∈ ΘF1 ∃θ2 ∈ ΘF2 . θ1 is isolable from θ2 under [x0, u, φ]

Definition 2.20
(Partial Fault-Mode Isolability in a Diagnosis System Under [x0, u, φ])
Given a fixed [x0, u, φ] and a diagnosis system δ, we say that F1 is partially
isolable from F2 under [x0, u, φ] if

∃θ1 ∈ ΘF1 ∃θ2 ∈ ΘF2 . θ1 is isolable from θ2 under [x0, u, φ]

Definition 2.21 [Partial Fault-Mode Isolability in a Diagnosis System] Given
a diagnosis system δ, we say that F1 is partially isolable from F2 if

∃[x0, u, φ] ∃θ1 ∈ ΘF1 ∃θ2 ∈ ΘF2 . θ1 is isolable from θ2 under [x0, u, φ]

Note the implications between the different isolability properties. These are
indicated by arrows in Table 2.1.

The most weak property is partial fault-mode isolability. However not partial
fault-mode isolability is quite strong; if we find that F1 is not partially isolable
from F2, then F1 is not isolable from F2 in any other sense.

Next we define isolability also as a property of the system:

Definition 2.22 [[Uniform] Complete/Partial Fault Mode Isolability] A fault
mode F1 is [uniformly] and completely/partially isolable from fault mode F2 if
there exists a diagnosis system δ in which fault mode F1 is [uniformly] com-
pletely/partially isolable from fault mode F2.

We have here skipped the case isolability under [x0, u, φ].
A special case of isolability is detectability. As with isolability, we can define

detectability as a system property or not.

Definition 2.23 [Fault Mode Detectability [in a Diagnosis System]] A fault
mode F1 is [uniformly] completely/partially detectable [in a diagnosis system δ]
if F1 is isolable from NF [in the diagnosis system δ].

The isolability and detectability properties of a set of fault modes can be
quite difficult to analyze by only using the definitions 2.16 to 2.23. However,
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these properties are still important so therefore, we need some tools (i.e. the-
orems) by which isolability and detectability can be analyzed from more easily
identified properties of the diagnosis system and the fault modes. Some tools,
applicable in the general case, are presented in the next section, and some tools,
applicable for linear systems, are presented in Chapter 8.

2.6 Submode Relations between Fault Modes and

Isolability

Submode relations between fault modes, as defined in Section 2.4, can severely
limit the possibility to perform fault isolation. This is formally explained by the
following theorem:

Theorem 2.1 Assume it holds that F1 4∗ F2, then

a) F1 is not completely isolable from F2

b) F2 is not completely isolable from F1

c) if δ(x) is an ideal diagnosis system, i.e.

γ ∈ S ⇐⇒Mγ(θ) can explain data x

andM(θ) is a correct model, then F1 is not partially or completely isolable
from F2 in δ(x).

Proof: For the (a)-part, assume that F1 is completely isolable from F2. Then
from Definition 2.18 and 2.22 we know that there exists a diagnosis system and
a [x0, u, φ] such that for all θ1 ∈ ΘF1 and all θ2 ∈ ΘF2 , it holds that

θ1 present =⇒ F1 ∈ S ∧ F2 /∈ S (2.8a)
θ2 present =⇒ F2 ∈ S (2.8b)

Assume that θ1 is present. Since F1 4∗ F2, we know that there is a θ∗2 ∈ ΘF2 (or
possibly in the limit) such thatM2(θ∗2) =M1(θ1). This means that the output
y from the plant when θ1 is present equals the output when θ∗2 is present. That
is, the diagnosis statement when θ∗2 is present, equals the diagnosis statement
when θ1 is present. Therefore, when θ∗2 is present, we have, according to (2.8a),
that F2 /∈ S. However, from (2.8b) we have that θ∗2 present implies F2 ∈ S.
This contradiction proves the (a)-part of the theorem.

For the (b)-part, assume that F2 is completely isolable from F1. Then we
know that there exists a diagnosis system and a [x0, u, φ] such that for all θ2 ∈
ΘF2 and all θ1 ∈ ΘF1 , it holds that

θ2 present =⇒ F2 ∈ S ∧ F1 /∈ S (2.9)
θ1 present =⇒ F1 ∈ S (2.10)
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The relation F1 4∗ F2 implies that there exists θ∗1 ∈ ΘF1 and θ∗2 ∈ ΘF2 (or
possibly in the limit) such thatM2(θ∗2) =M1(θ1). These two θ∗i give the same
diagnosis statement S. From (2.9) we have that F1 /∈ S and from (2.9), F1 ∈ S.
This contradiction proves the (b)-part of the theorem.

For the (c)-part, assume that F1 is partially isolable from F2 in an ideal
diagnosis system δ. Then from Definition 2.21 we know that there exist [x0, u, φ],
θ1 ∈ ΘF1 and θ2 ∈ ΘF2 such that (2.8) holds.

Assume that θ1 is present. With the same reasoning as for the (a)-part,
we can then conclude that there is a θ∗2 ∈ ΘF2 which gives exactly the same
diagnosis statement as θ1, i.e. F2 /∈ S. Therefore, when θ∗2 is present, we have
that F2 /∈ S. However, from the assumption of ideal diagnosis system and
correct model, we know that θ∗2 present implies F2 ∈ S. This contradiction
proves the (c)-part of the theorem.

Note that since not isolability implies not uniform isolability, this theorem also
proves that F1 4∗ F2 implies that F1 is not uniformly completely/partially
isolable from F2.

The next theorem shows that when a fault mode is not related by the
submode-relation to another fault mode, then we are able to prove at least
partial isolability.

Theorem 2.2 If it holds that F1 64∗ F2 and the model M(θ) is correct, then
F1 is partially isolable from F2 in an ideal diagnosis system.

Proof: The relation F1 64∗ F2 means that there is a θ1 ∈ ΘF1 such that for
all θ2 ∈ ΘF2 it holds that

M2(θ2) 6=M1(θ1) (2.11)

Assume that θ1 is present. Then the assumption of correct model and ideal
diagnosis system implies that F1 ∈ S. The relation (2.11) means that there
must exist a [x0, u, φ] such that M2(θ2) can not explain the data for any θ2.
This further means that F2 /∈ S. Thus, we have shown that there exists a
[x0, u, φ] and a θ1 such that F1 ∈ S ∧ F2 /∈ S. From the assumption of correct
model and ideal diagnosis system it also holds that for all θ2 ∈ ΘF2 , F2 ∈ S.
This proves that F1 is partially isolable from F2.

The following example illustrates some of the isolability properties and also
how Theorem 2.1 and 2.2 can be used.

Example 2.14

Consider a valve whose position x(t) is controlled by the signal u(t) and mea-
sured with a sensor with output ys(t). Three system fault-modes are considered:
NF (no fault), AF (actuator fault), and SF (sensor fault). The fault modes
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are described by the following models:

MNF : MAF (f(t)) : MSF :
x(t) = u(t) x(t) =u(t) + f(t) x(t) =u(t)
ys(t) = x(t) ys(t) =x(t) ys(t) =0

We also know that the input signal is limited as 1 < u < 2.

By studying the models representing the different fault modes, we realize
that the following relations hold:

NF 4∗ AF

NF 64∗ SF

AF 64∗ NF

AF 64∗ SF

SF 64∗ NF

SF 4∗ AF

Now we will use these relations together with Theorem 2.1 and 2.2, and assuming
an ideal diagnosis system. Doing so we obtain the following facts:

NF not isol. from AF (Th. 2.1), AF not compl. isol. from NF (Th. 2.2)
NF part. isol. from SF (Th. 2.1)
AF part. isol. from NF (Th. 2.1)
AF part. isol. from SF (Th. 2.1)
SF part. isol. from NF (Th. 2.1)
SF not isol. from AF (Th. 2.1), AF not compl. isol. from SF (Th. 2.2)

By some more studying the models representing the different fault modes, it
can be realized that some isolability properties are actually stronger than this.
All isolability properties have been collected in the following table:

NF AF SF
NF - not uniformly completely
AF uniformly partially - uniformly partially
SF uniformly completely not -

The entries in the table shows the isolability of the fault mode of the row from
the fault mode of the column. For example, the first row says that NF is not
isolable from AF and NF is uniformly and completely isolable from SF .

Note that the isolability is not a symmetric property. For instance, in the
example above, NF is not isolable from AF but AF is uniformly and partially
isolable from NF .

From Theorem 2.1 and 2.2 it is clear that to facilitate isolation, we want to
avoid that the fault modes are related with the submode-relation. One reason for
the presence of submode-relations between the fault modes, is that faults have
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been modeled by too general fault models. That is, too general fault models
implies that it becomes difficult (or impossible) to isolate between different
faults. When designing a model-based diagnosis-system, this fact implies that
the following advice is of high importance:

To facilitate fault isolation, fault models should be made as specific
as possible.

In practice this means for example that when a fault can be modeled as a
deviation in a constant parameter, then the fault should not be modeled with
an arbitrary fault signal. Also, when parameters θi are known to be limited in
range, this information should be incorporated into the fault model.

2.6.1 Refining the Diagnosis Statement

When fault modes are related by the submode relation, they are in accordance
with Theorem 2.1 not isolable from each other. This means that if A 4∗ B
and the fault mode present in the system is A, then if the diagnosis statement
contains A, it is very likely to also contain B, i.e. S = {A,B, . . . }.

Now from another point of view, assume that we encounter a diagnosis state-
ment S = {A,B}. This in principle means that both A and B can explain the
data. However, since A 4∗ B, i.e. A is more restricted than B, it is much more
likely that the data has been generated by a system with fault mode A present.
It is possible to extend the diagnosis system with this kind of reasoning, and in
that case the fault statement would become the single fault mode A. In general,
all fault modes in the diagnosis statements which are “supermodes” of other
fault modes in the diagnosis statement, should be neglected. In this way we can
produce a refined diagnosis statement S̄ which becomes

S̄ = {F1 ∈ S | ∀F2 ∈ S. F2 6= F1 → F2 64 F1} (2.12)

For example, NF is likely to be related to all other fault modes Fi as NF 4∗ Fi.
Because of this, even though NF is the present fault mode, it will never be
the only fault mode in S. From a slightly different viewpoint, this was also
discovered in Section 2.3.1. However, if the refined diagnosis statement (2.12)
is used, it becomes S̄ = {NF}.

2.7 Conclusions

This chapter has introduced a general theoretical framework for describing and
analyzing diagnosis problems. In contrast to other existing frameworks, e.g.
the residual view, this framework is not limited to any special type of faults.
We have shown how common types of fault modeling techniques fits into the
framework, e.g. faults modeled as arbitrary signals, deviations in constants,
and abrupt changes of variables. Also multiple faults are naturally integrated
so that no special treatment is needed. The important term fault mode has been
defined and it will be frequently used in all the following chapters of the thesis.
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A general architecture for a diagnosis system has been introduced and a re-
lation to methods based on propositional logic is indicated. We have introduced
the idea that the output from a diagnosis system can be several possible faults.

Using the framework, many conceptually important terms have been de-
fined, e.g. fault, fault diagnosis, fault isolation, detected fault, isolated fault,
fault isolability, fault detectability, etc. The meanings of the terms isolability
and detectability have been shown to have quite many nuances. A submode
relation between fault modes have been defined. It has been shown that this
relation has important consequences for isolability and detectability. An impor-
tant conclusion is that fault models should not be made too general since then,
it becomes difficult to isolate faults from each other.
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Appendix

2.A Summary of Example

This section contains a summary of the sensor-bias example given in Sections 2.1
and 2.2.

Notation Summary

Θ set of all fault states
Θγ fault state space for fault mode γ
θ fault state
Di fault state space of component i
Diψ fault state space of component i and component fault-mode ψ
θi fault state of component i
θγ free fault state parameter for fault mode γ
M(θ) complete system model
Mγ(θ) =Mγ(θγ) system model for fault mode γ

Sensor-Bias Example

The system is described by the following equations:

ẋ =f(x, u) (2.13a)
y1 =h1(x) + b1 (2.13b)
y2 =h2(x) + b2 (2.13c)
b1 ≥0 (2.13d)
b2 ≥0 (2.13e)

The constants b1 and b2 represents sensor bias faults and it is assumed that only
positive biases can occur.

The system contains two components: sensor 1 and sensor 2. The component
fault-modes are summarized in the following table:

component component component component
number i name fault-modes fault-state
1 Sensor 1 NF1, B1 b1
2 Sensor 2 NF2, B2 b2

The fault mode B1 is a positive bias in sensor 1 and B2 is positive bias in
sensor 2. The set of component fault-modes implies that there are four possible
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system fault-modes:

NF =[NF1, NF2]
B1 =[B1, NF2]
B2 =[NF1, B2]

B1&B2 =[B1, B2]

The fault state of the system is described by the vector θ = [b1 b2]. The
parameter spaces for b1 and b2 are defined by

b1 ∈D1 = D1
NF1 ∪ D1

B1

b2 ∈D2 = D2
NF1 ∪ D2

B1

D1
NF1 ={0}
D2
NF2 ={0}
D1
B1 ={x > 0}
D2
B2 ={x > 0}

The parameter spaces for θ are defined by

θ ∈Θ = D1 ×D2 = ΘNF ∪ΘB1 ∪ΘB2 ∪ΘB1&B2

ΘNF ={θ|b1 ∈ D1
NF1 ∧ b2 ∈ D2

NF2} = {θ|b1 = 0 ∧ b2 = 0}
ΘB1 ={θ|b1 ∈ D1

B1 ∧ b2 ∈ D2
NF2} = {θ|b1 > 0 ∧ b2 = 0}

ΘB2 ={θ|b1 ∈ D1
NF1 ∧ b2 ∈ D2

B2} = {θ|b1 = 0 ∧ b2 > 0}
ΘB1&B2 ={θ|b1 ∈ D1

B1 ∧ b2 ∈ D2
B2} = {θ|b1 > 0 ∧ b2 > 0}

The model M(θ) =M([b1 b2]) is defined by (2.13).
The models associated with the four fault modes are

MNF(θ) =M(θ)|θ∈ΘNF =MNF

MB1(θ) =M(θ)|θ∈ΘB1 =MB1(b1)
MB2(θ) =M(θ)|θ∈ΘB2 =MB2(b2)

MB1&B2(θ) =M(θ)|θ∈ΘB1&B2
=MB1&B2([b1 b2])



Chapter 3

Structured Hypothesis
Tests

In this chapter, we will see how classical hypothesis testing can be utilized for
model based diagnosis and especially fault isolation. The literature is quite
sparse on this subject but some related contributions can be found in (Riggins
and Rizzoni, 1990; Grainger, Holst, Isaksson and Ninnes, 1995; Bøgh, 1995;
Basseville, 1997).

The formalism from the previous chapter will be used to define a new general
approach called structured hypothesis tests. As its name indicates, the approach
uses a structure of several hypothesis tests. Structured hypothesis tests may be
seen as a generalization of the well known method structured residuals (Gertler,
1991), but have the additional advantage that it is theoretically grounded in
classical hypothesis testing and also propositional logic.

As a result of this, the model of the system can be fully utilized in a system-
atic way. This implies that it is possible to diagnose a large variety of different
types of faults within the same framework and same diagnosis system. For exam-
ple both faults modeled as changes in parameters and faults modeled as additive
signals are easily handled. Further, the approach is quite intuitive and very sim-
ilar to the reasoning involved when humans are doing diagnosis. Several other
principles for diagnosis can be seen as special cases, e.g. parameter estimation
(Isermann, 1993), observer schemes (Patton et al., 1989), structured residuals
(Gertler, 1991), and statistical methods (Basseville and Nikiforov, 1993).

The basics of structured hypothesis tests is given in Sections 3.1 and 3.2,
and exemplified in Section 3.3. Design and analysis of the hypothesis tests
is shortly mentioned, but the most of this discussion is left to Chapter 4. Sec-
tion 3.4 discusses incidence structures and decision structures, which are related
to the residual structure. This relation is then investigated in Section 3.5, which
discusses the relation between structured hypothesis tests and the method struc-
tured residuals.

47
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3.1 Fault Diagnosis Using Structured Hypothe-
sis Tests

Using the principle of structured hypothesis tests, each of the individual tests
δk are assumed to be hypothesis tests. Then the diagnosis system consists of a
set of hypothesis tests, δ1 to δn, and the decision logic. Except for this general
connection to hypothesis testing, structured hypothesis tests has also a closer
connection to the method intersection-union test, that can be found in statistical
literature, e.g. (Casella and Berger, 1990).

The classical, statistical or decision theoretic, definition of hypothesis test
is adopted, e.g. see (Berger, 1985; Lehmann, 1986; Casella and Berger, 1990).
This means that a hypothesis test is a procedure to, based on sample data, se-
lect between exactly two hypotheses characterized by θ ∈ Θ0 and θ ∈ ΘC

0 . This
is in contrast to “multiple hypothesis testing” that is often found in literature,
e.g. (Basseville and Nikiforov, 1993). Note that when using hypothesis testing,
we can have a probabilistic (statistical) or a deterministic view. Therefore, the
method structured hypothesis tests is valid either we have probabilistic knowl-
edge, in terms of probability density functions of e.g. the signal z (described in
Section 2.1.1) or measurement noise, or not.

As before, the test δk(x), now a hypothesis test, is a function of u and y and
Sk = δk(x) = δk([u y]). The null hypothesis for the k:th hypothesis test, i.e.
H0
k , is that the fault mode, present in the process, belongs to a specific set Mk

of fault modes. The alternative hypothesis H1
k is that the present fault mode

does not belong to Mk. This means that if hypothesis H0
k is rejected, and thus

H1
k is accepted, the present fault mode can not belong to Mk, i.e. it must belong

to MC
k . In this way, each individual hypothesis test contributes with a piece

of informations about which fault modes that can be present. As before, the
decision logic then combines this information to form the diagnosis statement.

Let Fp again denote the present system fault-mode. Then for the k:th hy-
pothesis test, the null hypothesis and the alternative hypothesis can be written

H0
k : Fp ∈Mk ”some fault mode in Mk can explain the measured data”

H1
k : Fp ∈MC

k ”no fault mode in Mk can explain the measured data”

An alternative is to use the definition of the sets Θγ to describe the hypotheses.
This is done via the sets Θ0

k which are defined as

Θ0
k =

⋃
γ∈Mk

Θγ (3.1)

The hypotheses can now be expressed as

H0
k : θ ∈ Θ0

k ”some value of θ ∈ Θ0
k can explain the measured data”

H1
k : θ /∈ Θ0

k ”no value of θ ∈ Θ0
k can explain the measured data”
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The convention used here and also commonly used in hypothesis testing liter-
ature, is that when H0

k is rejected, we assume that H1
k is true. Further, when

H0
k is not rejected, we will for the present not assume anything. This latter

fact will be slightly modified in Section 3.2, where we discuss how we also can
assume something when H0

k is not rejected.
How the hypothesis tests are used to diagnose and isolate faults is illustrated

by the following example.

Example 3.1

Assume that the diagnosis system contains the following set of three hypothesis
tests:

H0
1 : Fp ∈M1 = {NF,F1} H1

1 : Fp ∈MC
1 = {F2, F3}

H0
2 : Fp ∈M2 = {NF,F2} H1

2 : Fp ∈MC
2 = {F1, F3}

H0
3 : Fp ∈M3 = {NF,F3} H1

3 : Fp ∈MC
3 = {F1, F2}

Then if only H0
1 is rejected, we can draw the conclusion that Fp ∈ MC

1 =
{F2, F3}, i.e. the present system fault-mode is either F2 or F3. If both H0

1

and H0
2 are rejected, we can draw the conclusion that Fp ∈ MC

1 ∩ MC
2 =

{F2, F3} ∩ {F1, F3} = {F3}, i.e. the present system fault-mode is F3.

We see that in this context, it is natural to let the diagnosis statement be
represented by sets as was introduced in Section 2.3.1.

For the two possible decisions of a hypothesis test δk, we use the notation
S0
k and S1

k. This means that

Sk =

{
S1
k = MC

k if H0
k is rejected (H1

k accepted)
S0
k = Ω if H0

k is not rejected
(3.2)

where Ω denotes the set of all fault modes. We will in Section 3.2 below, relax
the definition of S0

k such that it may be a subset of Ω, i.e. S0
k ⊆ Ω. Depending on

how S0
k and S1

k are defined, a diagnosis system based on structured hypothesis
tests can be either speculative or conclusive.

All together, the diagnosis-system architecture presented in Section 2.3, and
the use of hypothesis tests, is closely related to human reasoning about diagnosis.
A human being naturally speculates around a set of different hypotheses and
then his/her diagnosis statement is composed of individual conclusions of how
well his/her observations match the different hypotheses. An example of such
reasoning is: “if it is the fuse that is broken, then no lamps in this room would
be lighted”. Then he/she may observe that there are lighted lamps and thus
the hypothesis “the fuse that is broken” must be rejected.

Much of the engineering work involved in constructing a diagnosis system is
to use the modelM(θ) to construct the individual hypothesis tests. The design
of the hypothesis tests will be discussed in more detail in the next section and
also in Chapter 4.
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3.2 Hypothesis Tests

For each hypothesis test δk, we need to find a test quantity and a rejection
region. The sample data x for each hypothesis is plant inputs u and outputs y.
The sample data can further be all such data up to present time or a subset of
this data. The test quantity is a function Tk(x) from the sample data x, to a
scalar value which is to be thresholded by a threshold Jk. Thus δk will have a
structure according to Figure 3.1.

Test Quantity
Calculation

Thresholding

δk(x)

Tku

y
Jk Sk

Figure 3.1: Hypothesis test δk(x).

The test quantity Tk(x) is in many texts instead called a test statistic. How-
ever, the name test statistic indicates that Tk(x) is a random variable which in
general may not be a desired view. The test quantity Tk(x) may for example
be a residual generator1 or a sum of squared prediction errors of a parameter
estimator. In many applications, a deterministic view is taken and Tk(x) is seen
just as a function of the data and not as a random variable.

Formally the hypothesis test δk is defined as

Sk = δk(x) =

{
S1
k if Tk(x) ≥ Jk
S0
k if Tk(x) < Jk

(3.3)

The rejection region of each test is thereby implicitly defined.
The definition (3.3) means that we need to design a test quantity Tk(x) such

that it is low or at least below the threshold if the data x matches the hypothesis
H0
k , i.e. a fault mode in Mk can explain the data. Also if the data come from

a fault mode not in Mk, Tk(x) should be large or at least above the threshold.
Using traditional terminology, the fault modes in Mk are said to be decoupled.

How well the hypothesis test meets these requirements is quantified by the
power function βk(θ) defined as

βk(θ) = P (reject H0
k | θ) = P (Tk(x) ≥ Jk | θ)

We want the power function to be low for θ ∈ Θ0
k and large for θ /∈ Θ0

k. To be
able to make the assumption that H1

k is true when H0
k is rejected, we need to

design the hypothesis tests such that the significance level α, defined as

α = sup
θ∈Θ0

k

βk(θ)

1Here residual generator refers to specific filters used in the fault diagnosis literature, e.g.
(Gertler, 1991), to indicate faults.
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has a small value. This implies that the threshold Jk must be set relatively
high. This in turn means that the value of βk(θ) does not necessarily become
large for all values θ /∈ Θ0

k. For instance, if the present fault mode is Fi and
Fi ∈ MC

k , then for some θ ∈ ΘFi , the probability to reject H0
k may be very

small. This is the reason why we up to now, have assumed that S0
k = Ω, i.e. we

can not assume anything when H0
k is not rejected.

Now if it actually holds that the power function is large for all θ ∈ ΘFi , then
we do not take any large risk if we assume that Fi has not occured when H0

k is
not rejected. If this is the case, Fi should be excluded from S0

k. The relation
between the power function and the decisions S0

k and S1
k is further investigated

in Section 4.7.2.
How the test quantities Tk(x) are constructed depends on the actual case,

and only for some specific classes of systems and fault models, general design
procedures have been proposed, e.g. linear systems with fault modeled as inputs
(Nyberg and Frisk, 1999).

To develop the actual hypothesis tests, we first need to decide the set of
hypotheses to test. One solution is to use one hypothesis test for each fault
mode. In this case, the set of hypothesis tests can be indexed by γ ∈ Ω, i.e. δγ ,
and becomes

H0
γ : Fp ∈Mγ (3.4a)

H1
γ : Fp ∈MC

γ (3.4b)

γ ∈ Ω (3.4c)

3.2.1 How the Submode Relation Affects the Choice of
Null Hypotheses

The choice of null hypotheses is not a completely free choice but restricted by
the submode relation defined in Section 2.4. The restriction can be expressed
as:

If A 4∗ B, then the null hypotheses Fp ∈ {A,B} and Fp ∈ {A} are
good choices but Fp ∈ {B} is not.

The motivation is that if the null hypothesis is Fp ∈ {B}, then the test quantity
is low for Fp = B but since A 4∗ B, the test quantity will be equally low for
also Fp = A. Consider for example the fault modes “sensor bias” SB and NF .
With the discussion of Example 2.13 in mind, we can expect that NF 4∗ SB
and therefore we should never use Fp ∈ {SB} as a null hypothesis but instead
Fp ∈ {NF, SB}.

3.3 Examples

This section contains two examples that illustrates how hypothesis tests and
especially test quantities can be constructed.
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3.3.1 Faults Modeled as Deviations of Plant Parameters

Consider a process which can be modeled as

y(t) = θ1u1(t) + θ2u2(t) + θ3u3(t)

The fault state vector is θ = [θ1 θ2 θ3]. Four fault modes are considered:

NF θ = [1 1 1]
F1 θ1 6= 1, θ2 = θ3 = 1
F2 θ2 6= 1, θ1 = θ3 = 1
F3 θ3 6= 1, θ1 = θ2 = 1

To diagnose this system, we use four hypothesis tests whose null hypotheses
are defined by the sets Mk:

M0 = {NF}
M1 = {NF,F1}
M2 = {NF,F2}
M3 = {NF,F3}

The null and alternative hypotheses become

H0
k : Fp ∈Mk

H1
k : Fp ∈MC

k

for k = 0, 1, 2, 3. Then we have that S1
k = MC

k and S0
k is chosen as S0

k = Ω.
As test quantities, we use the functions

T0(x) =
N∑
t=0

(
y − ŷ

)2 =
N∑
t=0

(
y − u1 − u2 − u3

)2 (3.5a)

T1(x) = min
θ1

N∑
t=0

(
y − ŷ

)2 = min
θ1

N∑
t=0

(
y − θ1u1 − u2 − u3

)2 (3.5b)

T2(x) = min
θ2

N∑
t=0

(
y − ŷ

)2 = min
θ2

N∑
t=0

(
y − u1 − θ2u2 − u3

)2 (3.5c)

T3(x) = min
θ3

N∑
t=0

(
y − ŷ

)2 = min
θ3

N∑
t=0

(
y − u1 − u2 − θ3u3

)2 (3.5d)

Note that these functions are in principle parameter estimators and that Tk(x)
is the sum of squared prediction errors. It is obvious that the functions (3.5)
are small when the present fault mode belongs to the corresponding set Mk.
For example if F1 is the present fault mode, then T1(x) will produce a good
estimate of θ1 which implies that the simulation error and T1(x) will become
small. Also, for at least “large” faults and large inputs, the functions (3.5) are
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large when the present fault mode does not belong to the corresponding set Mk.
For example if F1 is the present fault mode, and the fault is “large”, then T0(x),
T2(x), and T3(x) will all become large. All this means that the functions (3.5)
satisfy our requirements on test quantities.

3.3.2 Faults Modeled as Arbitrary Fault Signals

Consider a process which can be modeled as

x(t + 1) = Ax(t) +B
(
u(t) + fu(t)

)
y1(t) = C1x(t) + f1(t)
y2(t) = C1x(t) + f2(t)

where the signals fu, f1, and f2 represent an actuator fault and faults in sensor
1 and 2 respectively. The fault state vector is θ = [fu(t) f1(t) f2(t)]. Four fault
modes are considered:

NF θ = [0 0 0]
Fu θ = [fu(t) 0 0], fu(t) 6≡ 0
F1 θ = [0 f1(t) 0], f1(t) 6≡ 0
F2 θ = [0 0 f2(t)], f2(t) 6≡ 0

To diagnose this system, we use the two hypothesis tests

H0
1 : Fp ∈M1 = {NF,F1} H1

1 : Fp ∈MC
1 = {Fu, F2}

H0
2 : Fp ∈M2 = {NF,F2} H1

2 : Fp ∈MC
2 = {Fu, F1}

To calculate the test quantities, we first use the following two observers

x̂(t+ 1) = Ax(t) +Bu(t)−K(y1(t)− ŷ1(t)) (3.6a)
ŷ1(t) = C1x(t) (3.6b)

x̂(t+ 1) = Ax(t) +Bu(t)−K(y2(t)− ŷ2(t)) (3.7a)
ŷ2(t) = C2x(t) (3.7b)

Then the test quantities can be defined as

T1(x) = |y2(t)− ŷ2(t)|
T2(x) = |y1(t)− ŷ1(t)|

These test quantities Tk(x) are zero or small if the present fault mode belongs to
the corresponding sets Mk. For example, if F1 is the present fault mode, then
the observer (3.7) will produce a good estimate ŷ2(t) since the calculation of
ŷ2(x) is not affected by a fault in sensor 1. This means that T1(x) will become
small. Also when F1 is present, it can be shown that T2(x) will become large or
at least non-zero. This means that T1(x) and T2(x) serves well as test quantities.
This configuration of observers, in which each observer is fed by only one of the
output signals, is called a dedicated observer scheme (Clark, 1979).
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3.4 Incidence Structure and Decision Structure

This section describes the concept of incidence structure and decision struc-
ture which can be seen as generalizations of the well known residual structure
(Gertler, 1998). We here introduce a distinction between the incidence structure,
describing how the faults affects the test quantities, and the decision structure,
describing how the fault decision depend on the thresholded test quantities. We
will also see that the decision structure relates to structured hypothesis tests in
the same way as the residual structure relates to the isolation method method
structured residuals (Gertler and Singer, 1990).

3.4.1 Incidence Structure

To get an overview of how faults in different fault modes ideally affect the test
quantities, it is useful to set up an incidence structure. With ideally, we mean
that the system behaves exactly in accordance with the model and all stochastic
parts have been neglected, e.g. no unmodeled disturbances exists and there is
no measurement noise. An incidence structure is a table or matrix containing
0:s, 1:s, and X:s. The X:s will be called don’t care. An example of an incidence
structure is

NF F1 F2 F3

T1(x) 0 0 1 0
T2(x) 0 0 1 1
T3(x) 0 X 0 1

(3.8)

A 0 in the k:th row and the j:th column means that if the system fault-mode
present in the system, is equal to the system fault-mode of the j:th column, then
the test quantity Tk(x) will not be affected, i.e. it will be exactly zero. A 1
in the k:th row and the j:th column means that for all2 faults belonging to
the fault mode of the j:th column, Tk(x) will always be affected, i.e. it will be
non-zero. An X in the k:th row and the j:th column means that for some faults
belonging to the fault mode of the j:th column, Tk(x) will under some operating
conditions be affected, i.e. it will be non-zero.

As said above, although a distinction has not been made between incidence
structures and decision structures in previous literature, the basic idea of using
incidence structures (or residual structures) is not new. However, compared to
previous works involving incidence structures, a major difference is that we have
here added the use of don’t care.

The incidence structure is derived by studying the equations describing the
process model and how the test quantities Tk(x) are calculated. This is illus-
trated in the following example:

2As noted in (Wünnenberg, 1990), we may have to relax the requirement to almost all
faults; e.g. when faults are modeled as arbitrary signals, we can not require that faults that
are solutions to the differential equation Tk(x) = 0, affects test quantity.
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air mass-flow

manifold pressure

engine speed

throttle

Figure 3.2: A principle illustration of an SI-engine.

Example 3.2

Consider Figure 3.2, containing a principle illustration of a spark-ignited com-
bustion engine. The air enters at the left side, passes the throttle and the
manifold, and finally enters the cylinders. The engine in the figure have sen-
sors measuring the physical variables air mass-flow, throttle angle, and manifold
pressure.

The air flow ṁ past the throttle can be modeled as a non-linear function of
the throttle angle α and the manifold pressure p:

ṁ = (1 − cosα)Φ(p) (3.9)

where the dΦ(p)/dp = 0 for supersonic air-speeds which occurs for all p < 53kPa
(Heywood, 1992). The throttle angle α is always between 0 and π/2.

Three system fault modes are considered: no fault NF , air mass-flow sensor
fault M , and manifold pressure sensor fault P . For both M and P , the faults
are modeled as an arbitrary signal added to the sensor signals:

ṁs =ṁ+ fṁ (3.10a)
ps =p+ fp (3.10b)

where the index s indicates sensor signals. As test quantity, we can use

T (x) = T ([ṁs, αs, ps]) = ṁs − (1 − cosαs)Φ(ps) (3.11)

To see how the faults affects the test quantity, we can substitute (3.9) and (3.10)
into (3.11):

T (x) = ṁ+ fṁ − (1− cosα)Φ(p+ fp) =
= fṁ + (1− cosα)Φ(p)− (1− cosα)Φ(p+ pf )

We see that a fault in M will always affect T (x). Also, a fault in P will affect
T (x) if and only if p > 53kPa or p+ pf > 53kPa.
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This means that the incidence structure for the test quantity T (x) becomes

NF M P
T (x) 0 1 X

(3.12)

Let skj denote the entry in the k:th row and the j:th column of an incidence
structure. Then the interpretation or semantics of 0:s, 1:s, and X:s can be
formalized as

Fp = Fj → Tk(x) = 0 if skj = 0 (3.13a)
Fp = Fj → Tk(x) 6= 0 if skj = 1 (3.13b)

where Fp, as before, denotes the present system fault-mode. Note that the
implication, denoted by the arrow, is not symmetric. Note also that the inter-
pretation of X is implicitly contained in these two formulas.

In the next section, we will also define interpretations of 1:s, 0:s, and X:s
for the decision structure. To the author’s knowledge, no such strict interpre-
tation has been defined in previous literature. The motivation for these strict
definitions, is that we can discuss relations to for example propositional logic
and hypothesis testing. In addition, these interpretations of 1:s, 0:s, and X:s
alone, also defines the function of the whole diagnosis system.

By using the formulas (3.13), it is possible to formally describe the inter-
pretation of a whole incidence structure. We will exemplify this below, by
giving the interpretation of the incidence structure (3.8), but note first that
Fp /∈ {F2} ≡ Fp ∈ Ω − {F2}. The symbol ⇐⇒ will be used to denote tau-
tological equivalence. Now, the interpretation of the incidence structure (3.8)
becomes

T1 = 0← Fp ∈ {NF,F1, F3} ⇐⇒ T1 6= 0→ Fp = F2
T1 6= 0← Fp = F2 ⇐⇒ T1 = 0→ Fp ∈ {NF,F1, F3}
T2 = 0← Fp ∈ {NF,F1} ⇐⇒ T2 6= 0→ Fp ∈ {F2, F3}
T2 6= 0← Fp ∈ {F2, F3} ⇐⇒ T2 = 0→ Fp ∈ {NF,F1}
T3 = 0← Fp ∈ {NF,F2} ⇐⇒ T3 6= 0→ Fp ∈ {F1, F3}
T3 6= 0← Fp = F3 ⇐⇒ T3 = 0→ Fp ∈ {NF,F1, F2}

By using if-and-only-if relations, these formulas can be written on a slightly
shorter form:

T1 = 0↔ Fp ∈ {NF,F1, F3} ⇐⇒ T1 6= 0↔ Fp = F2
T2 = 0↔ Fp ∈ {NF,F1} ⇐⇒ T2 6= 0↔ Fp ∈ {F2, F3}
T3 = 0← Fp ∈ {NF,F2} ⇐⇒ T3 6= 0→ Fp ∈ {F1, F3}
T3 6= 0← Fp = F3 ⇐⇒ T3 = 0→ Fp ∈ {NF,F1, F2}

As seen, the if-and-only-if relation can only be used with rows, in the incidence
structure, which have no X:s.
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3.4.2 Decision Structure

The incidence structure corresponds to the case where ideal conditions holds.
If this were the case, we could derive the diagnosis statement S by using the
incidence structure, the formulas (3.13), and the values of the test quantities
Tk(x). In practice, the model is not perfect, unmodeled disturbances affects the
process, and there is measurement noise. All this means that the formulas (3.13)
are not valid and can therefore not be used to form the diagnosis statement.

In practice, we have to relax the assumptions of ideal conditions and the
formulas (3.13) can be replaced by a formulation based on the use of thresholds,
i.e hypothesis testing. Doing this, we obtain a decision structure. Still letting
skj denote the entry in the k:th row and the j:th column, the new interpretation
or semantics of 0:s, 1:s, and X:s becomes

Fp = Fj → Tk(x) < Jk if skj = 0 (3.14a)
Fp = Fj → Tk(x) ≥ Jk if skj = 1 (3.14b)

or by using the terminology of hypothesis testing:

Fp = Fj → not rej. H0
k if skj = 0 (3.15a)

Fp = Fj → reject H0
k if skj = 1 (3.15b)

The implications are not completely true, but we assume that they holds. This
corresponds to the basic assumptions, discussed in Section 3.2, that when H0

k

is rejected, we assume that H1
k holds. However, there is a conflict between

the two rules (3.15a) and (3.15b). To make the assumption that (3.15a) holds
reasonable, the significance level αk of all tests must be low. This means that the
thresholds must be chosen relatively high. Further, this violates the assumption
that (3.15b) holds. To achieve reasonable assumptions, some or probably most
1:s from the incidence structure must be replaced by X:s. It might seem that
another choice is to replace 0:s by X:s, but the problem with this is that for
all small faults, the assumption of (3.15b) still not becomes reasonable. We
will see later that representing a diagnosis system with a decision structure, is
equivalent to a representation using the sets Mk, S0

k, and S1
k.

An example of a decision structure is obtained by considering the incidence
structure (3.8) which can be transformed to, for instance the following decision
structure:

NF F1 F2 F3

δ1(x) 0 0 X 0
δ2(x) 0 0 X 1
δ3(x) 0 X 0 X

(3.16)

Because the decision structure is related to the whole hypothesis tests and not
only the test quantities, we use δk to label the rows instead of Tk.

The process of replacing 1:s with X:s is further illustrated by the following
example:
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Example 3.3

Consider again Example 3.2. When the fault mode M is present, we have that

T (x) = fṁ + v

where v is a signal that represents model errors, disturbances, and measurement
noise. Even for fault mode NF , which implies fṁ = 0, the test quantity T (x)
will not be zero. This means that the threshold J must be raised above zero.
Then for small fṁ, T (x) will not reach the threshold.

If the incidence structure (3.12) would be used as decision structure, we
would have the rule

M → T (x) ≥ J

However, according to what was said above, the implication will not hold for
a small fṁ. This means that to obtain the decision structure, the 1 in (3.12)
must be replaced by an X, i.e.

NF M P
δ 0 X X

A decision structure together with the formulas (3.14) can be used to derive
the diagnosis statement. Consider for example the decision structure (3.16),
which have the interpretation

T1 < J1 ← Fp ∈ {NF,F1, F3} ⇐⇒ T1 ≥ J1 → Fp = F2
T2 < J2 ← Fp ∈ {NF,F1} ⇐⇒ T2 ≥ J2 → Fp ∈ {F2, F3}
T2 ≥ J2 ← Fp = F3 ⇐⇒ T2 < J2 → Fp ∈ {NF,F1, F2}
T3 < J3 ← Fp ∈ {NF,F2 ⇐⇒ T3 ≥ J3 → Fp ∈ {F1, F3}

Now if T1 < J1, T2 ≥ J1, and T3 ≥ J1, we know by using the rules, that Fp ∈
{F2, F3} and Fp ∈ {F1, F3}. This means that F3 must be the present fault mode.
It is clear that there must be a strong relationship between this procedure, i.e.
forming the diagnosis statement S by using the decision structure, and how the
diagnosis statement S is formed by using the individual diagnosis statements
Sk.

The relationship between the decision structure and the sets S0
k and S1

k is as
follows. A 0 in the k:th row for δk and the j:th column means that the set S0

k

contains the fault mode of the j:th column and S1
k does not contain this fault

mode. A 1 in the k:th row and the j:th column means that the set S1
k contains

the fault mode of the j:th column and S0
k do not contain this fault mode. An

X in the k:th row and the j:th column means that both S0
k and S1

k contain the
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fault mode of the j:th column. For example, the sets S0
k and S1

k for the decision
structure (3.16), are

S0
1 ={NF,F1, F2, F3} S1

1 ={F2}
S0

2 ={NF,F1, F2} S1
2 ={F2, F3}

S0
3 ={NF,F1, F2, F3} S1

3 ={F1, F3}

In this way, the decision structure can be seen as an overview of a diagnosis
system based on structured hypothesis tests. In accordance with the formu-
las (3.15), we can read out that when the result of a test is S0

k, then the fault
modes with 0:s and X:s in the decision structure, are the possible present fault
modes. When the result is S1

k, then the fault modes with 1:s and X :s are the
possible present fault modes.

Still in accordance with the formulas (3.15), we can from a decision structure
also read out which tests that will respond, i.e. which null hypothesis that
will be rejected, when a particular fault mode is present. For the decision
structure (3.16), we know that if NF is the present fault mode, then no tests
will respond, because the corresponding column has only zeros. Also, if F3 is
the present fault mode, then test δ1 will not respond, test δ2 will respond, and
test δ3 may respond.

3.5 Comparison with Structured Residuals

This section contains a comparison between the well known isolation method
structured residuals (Gertler, 1991) and structured hypothesis tests. Isolation
with structured residuals is based on a residual structure which in principle is
a combined incidence and decision structure.

A residual structure contains only 0:s and 1:s and an example is

f1 f2 f3
r1 0 1 0
r2 0 1 1
r3 1 0 1

(3.17)

A minor notational difference between the residual structure and the decision
structure is that usually ri is used to label the rows instead of δi and also
that the column related to the case no fault is usually not included in the
residual structure. Further, when using structured residuals, faults are usually
modeled as arbitrary fault signals. These fault signals fj are then used to “label”
the columns instead of fault modes. Usually one fault signal is used for each
component which means that, as long as only single fault-modes are considered,
there is a one-to-one correspondence between the fault modes Fj and the fault
signals fj .

The residual structure can be interpreted as an incidence structure in accor-
dance with the formulas (3.13). In addition, the residual structure is also used
to form the diagnosis statement. That is, it is interpreted as a decision structure
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in accordance with the formulas (3.14) and (3.15). Thus a 1 in the k:th row
and the j:th column means that we assume that for all faults belonging to the
fault mode of the j:th column, Tk(x) will be above the threshold Jk. However
this assumption is mostly far from the truth. In reality, a 1 in the k:th row and
the j:th column means that for some faults belonging to the fault mode of the
j:th column, Tk(x) will under some operating conditions be above the threshold
Jk. Thus a more correct interpretation would be obtained by replacing most 1:s
with X:s.

Usually it is required that the residual structure must be isolating, which
means that all columns must be distinct. This together with the fact that there
are only 1:s in the residual structure, implies that the fault statement always
contain at the maximum one fault mode. That is, a diagnosis system using the
principle of structured residuals with an isolating residual structure, is always
conclusive (remember the definition from Section 2.3.3). This is illustrated in
the following example:

Example 3.4

Consider the following two structures

NF F1 F2 F3

r1 0 0 1 0
r2 0 0 1 1
r3 0 1 0 1

NF F1 F2 F3

δ1(x) 0 0 X 0
δ2(x) 0 0 X 1
δ3(x) 0 X 0 X

Assume that the left structure is a residual structure and the right is a decision
structure for the same set of test quantities and thresholds. Then Table 3.1 con-
tains a comparison between the diagnosis statement generated from the residual
structure and the diagnosis statement generated from the decision structure.
The leftmost column lists all possible results of thresholding the test quantities.
For example, the second row 001 means that T1 < J1, T2 < J2, and T3 > J3.
Note the diagnosis statements S = {}, meaning that no fault modes can explain
the behavior of the system.

Struct. res. Struct. hyp. tests
1 2 3 S S
0 0 0 {NF} {NF,F1, F2}
0 0 1 {F1} {F1}
0 1 0 {} {F2, F3}
0 1 1 {F3} {F3}
1 0 0 {} {F2}
1 0 1 {} {}
1 1 0 {F2} {F2}
1 1 1 {} {}

Table 3.1: The diagnosis statement using structured residuals compared to
structured hypothesis tests.
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Diagnosis System
using Structured
Hypothesis tests

Filter
u

y

Sstruc−hyp Sstruc−res

Figure 3.3: A diagnosis system using structured residuals as a filtered version
of structured hypothesis tests.

As seen in Example 3.4, the “unnatural” 1:s, in the residual structure, make
the diagnosis statement empty in many situations, where the diagnosis state-
ment from structured hypothesis tests is not empty, e.g. study the third row.
This difference is fundamental. The diagnosis system using structured hypoth-
esis tests is in general speculative, i.e. it gives possible fault modes that can
explain the system behavior. As we said above, a diagnosis system using struc-
tured residuals, is on the other hand conclusive.

Regardless of what diagnosis method that is used, it may be the case that
several different fault modes can explain the system behavior. This information
is contained in the behavior of the thresholded test quantities also when using
structured residuals. However the diagnosis system neglects this information
and in principle says that no faults can explain the system behavior. This in
turn, is usually interpreted as no faults are present and no alarm is therefore
generated. All this means that structured residuals can be viewed as a filtered
version of structured hypothesis tests. This view is illustrated in Figure 3.3.
The filter filters out useful information that could have been utilized in some
way. On the other hand, there may be situations where we want to limit the
information from the diagnosis system, which in that case would motivate such
a filter.

As was said above, the empty diagnosis statement is usually interpreted as
no faults are present. For example, in the fault free case, it might happen
that one test quantity is above the threshold by mistake. A diagnosis system
using structured residuals would in this case not generate an alarm but on
the contrary, structured hypothesis tests would generate an alarm. It might
therefore be argued that structured residuals is more robust to false alarms than
structured hypothesis tests. This conclusion is however not fair since structured
hypothesis tests is more powerful than structured residuals in the sense that
the diagnosis statement contains more information. In addition, the same level
of robustness can be achieved in also structured hypothesis tests by raising the
thresholds.

As mentioned above, the interpretation of the 1:s is in most cases unreal-
istic. This implies that it may often happen that some test quantities, that
according to the residual structure should reach the thresholds, are below the
threshold. The effect is serious since it can happen that wrong fault is isolated.
To compensate for this, it is often required that the residual structure should be
strongly isolating. This means that when a test quantity is not above the thresh-
old, even though it should, there should be no other column that matches the
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thresholded test quantities. For example, consider the residual structure (3.17),
and assume that fault f3 is present. Especially for small faults, it can very well
happen that T1 < J1, T2 < J2, and T3 > J3. However, this last fact conflicts
with the rule (3.14b) and this has the consequence that the thresholded test
quantities matches the column for fault f1. Thus the residual structure (3.17)
is not strongly isolating. Note that in the framework of structured hypothesis
tests, we do not need to introduce requirements of a strongly isolating decision
structure as a way to compensate for an unrealistic interpretation of the 1:s.

We end this section by discussing the last major difference between struc-
tured residuals and structured hypothesis tests. As seen in Section 3.4.2 above,
there is a one-to-one correspondence between the representation based on the
decision structure and a representation based on hypothesis tests, i.e. the sets
S0
k and S1

k. When using structured hypothesis tests, the interpretation of the
1:s corresponds well to standard conventions within general hypothesis testing
literature. This makes it easy to relate to other traditional areas of fault diag-
nosis, e.g. statistical views, logic based methods. The structured residuals on
the other hand, have an interpretation of 1:s that is not compatible with these
standard conventions.

Concluding Remarks

We have concluded that in the method structured residuals, the 1:s in a residual
structure, are interpreted as the 1:s in the decision structure, using the method
structured hypothesis tests. This interpretation is however unrealistic since it
claims that even small faults results in that the test quantity becomes above the
threshold. The “unnatural” 1:s in structured residuals has three main conse-
quences, which were all discussed above: (1) useful information is unnecessarily
neglected, (2) the “ad-hoc” compensation of strongly isolating residual structure
must be used, and (3), the thresholded test quantities can not be interpreted as
standard hypothesis tests.

3.6 Conclusions

This chapter has refined the general diagnosis-system architecture from Chap-
ter 2 by saying that the tests δk are hypothesis tests. We have formalized the
procedure of how the diagnosis statement is formed from the real-valued test
quantities (or residuals). This is achieved by using a standard interpretation
of the functionality of each hypothesis tests. The formation of the diagno-
sis statement is then obtained in accordance with the function of the general
diagnosis-system architecture from Chapter 2.

We have seen that the choice of null hypothesis in each hypothesis test is
not a completely free choice, but is restricted by the submode relation between
fault modes. Structured hypothesis tests can be used with arbitrary types of
faults and this has been indicated in some examples. This topic will be further
investigated in the next chapter where the design of the test quantities will be
discussed.
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In contrast to structured residuals, we have introduced a distinction between
the incidence structure, describing how faults ideally affect the test quantities,
and the decision structure, describing how the faults affect the formation of the
diagnosis statement. By doing so, we have been able to define meanings of the
0:s, 1:s, and X:s, present in the incidence/decision structure. We have motivated
that an introduction of X:s (don’t care) in the incidence/decision structure is
necessary since only using 0:s and 1:s often places unrealistic requirements on
the test quantities (or residuals).
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Chapter 4

Design and Evaluation of
Hypothesis Tests for Fault
Diagnosis

In the previous chapter, the diagnosis-system architecture structured hypothesis
tests was proposed. To get a complete diagnosis system, the engineer has also
to construct the individual hypothesis tests. In fact, this is a large portion of
the total engineering work involved when constructing a diagnosis system. The
question is how to use the model of the system, including the fault models, to
design the best possible individual hypothesis tests. The topic of this chapter
is to try to find some answers this question.

Design of hypothesis tests has been extensively discussed in general hypothe-
sis testing literature, e.g. see (Lehmann, 1986). In this chapter we try to collect
some general principles that are particularly useful for the purpose of model
based diagnosis. We will see that the general framework of hypothesis test-
ing brings structure to the field. Links between several different methods will
become clear, for example: the likelihood principle from statistics vs residual
generation, adaptive thresholds vs likelihood ratio, and parameter estimation
methods vs residual generation.

Since the goal is to find “good” or “best” test quantities, we have to know
what “good” or “best” means. Therefore we also discuss measures to evaluate
hypothesis tests. Although many specific cases will be exemplified, the general
principles, of how to design and evaluate the hypothesis tests, are valid for all
kinds of fault models.

We start in Sections 4.1 to 4.4 to discuss general principles for test-quantity
design. Three main principles are identified: the prediction, the estimate, and
the likelihood principle. Then the issue of robustness is approached via normal-
ization in Section 4.5. In Section 4.6, the measures for evaluating hypothesis
tests are discussed. These measures are then used in Section 4.7 to select the
parameters Jk, S0

k, and S1
k of a hypothesis test. The evaluation measures are

also used in Section 4.8 to compare the prediction and the estimate principle.

65
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4.1 Design of Test Quantities

From the previous chapter, we realize that the assumption (or conclusion) we
make when performing a hypothesis test δk, can be written

Fp ∈
{
MC
k if Tk(x) ≥ Jk

Ω if Tk(x) < Jk
(4.1)

where Fp denotes the present fault mode. In (4.1), we have again assumed that
S0
k = Ω. As said before, the test quantity Tk(x) should be designed such that if

the data x come from a system, whose present fault mode belongs to MC
k , then

Tk(x) should be large. On the other hand, if the data x matches the hypothesis
H0
k , i.e. a fault mode in Mk can explain the data, then Tk(x) should be small.

This can be restated by using the notation of the model (2.6):

The test quantity Tk(x) should be small if the data x matches any
of the modelsMγ(θ), γ ∈Mk, and large otherwise.

Thus the test quantity can be seen as a measure of the validity of some models
Mγ(θ).

Several principles for constructing such measures exists and we will here
discuss three of them: the prediction principle, the estimate principle, and the
likelihood principle. These principles should be sufficient to solve most diagnosis
problems. Note that although these principles are different, it can very well
happen that, in some specific cases, the derived expressions for Tk(x) equal
each other.

4.1.1 Sample Data and Window Length

One way to define the sample data x is as a matrix:

x(t) =
[
u(t−N) u(t−N + 1) . . . u(t)
y(t−N) y(t−N + 1) . . . y(t)

]
(4.2)

This corresponds to the use of a finite time window and as seen, the data x
becomes a function of time t. This time window can be a sliding window,
which means that consecutive data sets are overlapping. Another choice is to
let consecutive data sets be non-overlapping.

The time window can also be infinite, at least conceptually. This corresponds
to that N = ∞ in (4.2). In reality this means that all available data are
used from the time-point when the diagnosis started (i.e. the window length
is actually growing). An example of when an infinite time window is desirable,
is when recursive techniques are used to calculate the test quantities. Another
example is general residual generation which can be seen as a special case of the
prediction principle. This will be further discussed in Section 4.2.2.

Theoretically, the optimal choice of window length is always infinite. This
since it makes no sense to throw away any data, no matter what kind of data we
have. However, if computational aspects are considered, it is often advantageous
to use a finite window length.
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4.2 The Prediction Principle

We will now discuss the prediction principle. In addition to giving general
methods that can be used for test-quantity design, one purpose of this section
is also to show how some well known approaches to fault diagnosis fit into the
general framework proposed in this thesis.

Using the prediction principle, the calculation of the test quantity is based
on a model validity measure Vk(θ,x) which in turn is based on a comparison
between signals and/or predictions (or estimates) of signals. Typically an output
signal y is compared with an estimate ŷ, but it is also possible to for example
compare two estimates of the same signal.

To get a more precise definition, recall first the definition of Θ0
k:

Θ0
k =

⋃
γ∈Mk

Θγ

Consider now the case where Θ0
k consists of several values θ. Using the prediction

principle, the test quantity can be written as

Tk(x) = min
θ∈Θ0

k

Vk(θ, x) (4.3)

The function Vk(θ, x), where θ is fixed, is a measure of the validity of the model
M(θ), for a fixed θ, in respect to the measurement data x. The test quantity
Tk(x) then becomes a measure of the validity of any the modelsMγ(θ), γ ∈Mk,
where θ is assumed free.

If Θ0
k consists of only one value θ0, the test quantity becomes

Tk(x) = Vk(θ0, x) (4.4)

and thus no minimization is needed.
To calculate (4.3), we need in principle to perform a parameter estimation.

The prime interest here is fault isolation but it is obvious that this parameter
estimation means that fault identification implicitly becomes a part of fault
isolation. Note that the term decoupling in principle corresponds to estimation.
The faults (or fault modes) that are decoupled are the fault modes described
by the parameters we estimate.

Note that although the model validity measure Vk(θ, x) in (4.3) is indexed
by k, meaning that it is specific for the hypothesis test δk, it is often possible
(and also quite elegant) to use the same V (θ, x) for all hypothesis tests. In
that case, the only thing that differs test quantities in different tests, is the set
Θ0
k over which the minimization is performed. This approach will be discussed

more in Chapter 5.
In adaptive model based diagnosis, we need to use adaptive test quantities.

This means that the set of parameters we need to estimate is expanded to
include also the unknown or uncertain parameters that we want to adapt to.
Another case where the set of estimated parameters needs to be expanded, is
when disturbances must be handled. From Section 2.1.1, we remember the
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parameter φ which describes the disturbances, and decoupling of disturbances
is therefore achieved by replacing (4.3) with

Tk(x) = min
θ∈Θ0

k,φ∈Φ
Vk(θ, φ, x)

where Φ is the space of possible disturbances.
In general, one could think of several types of model validity measures, but

the characteristic property of the prediction principle is that we let Vk(θ, x)
be based on comparisons between signals and/or predictions of signals. One
choice is to compare an output y(t) with its prediction y(t|θ, x), derived from
an assumption of a specific θ and the measured data x. That is, the model
validity measure becomes the prediction error y(t)− y(t|θ, x). The principle to
use the prediction error to calculate the test quantity is very natural and a so
common choice, that we will denote it by its own name name: the prediction
error principle. From now on, the focus will be mostly on this principle.

To reduce the sensitivity to noise and unmodeled disturbances it is advan-
tageous to weight together several prediction errors. One possibility is to use
a mean of some measure of prediction errors. This means that the function
Vk(θ, x) becomes

Vk(θ, x) =
1
N

N∑
t=1

‖y(t)− ŷ(t|θ, x)‖ (4.5)

For notational convenience, we have here assumed unit time. The measure ‖ · ‖
can for example be the quadratic norm. Another possibility is to first apply the
sum operation and then the measure ‖ · ‖. Then the function Vk(θ, x) becomes

Vk(θ, x) = ‖
N∑
t=1

y(t)− ŷ(t|θ, x) ‖ (4.6)

It is also possible to use a measure dependent on time and/or the data
itself. One reason would for example be that the model accuracy varies with
the operating point of the system. Another case is when recursive parameter
estimation is used. Recursive techniques implies that an infinite time-window
is used and old data is by means of a time-dependent measure usually weighted
less. These issues are thoroughly discussed in the general system identification
literature, e.g. (Ljung, 1987).

The following four examples illustrates the prediction error principle for
different types of fault modeling.

Example 4.1

Consider a system that can be modeled as

y(t) = gu(t) + b+ v(t) v(t) ∈ N(0, σ) θ = [b, g]
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Assume that we want to consider three fault modes:

NF g = 1, b = 0 “no fault”
Fb g = 1, b 6= 0 “bias fault”
Fg g 6= 1, b = 0 “gain fault”

Further we want to design a test quantity for the hypotheses

H0 : Fp ∈ {NF,Fb}
H1 : Fp = Fg

For these hypotheses, Θ0 becomes Θ0 = {[b, g] | g = 1}. By using the formu-
las (4.3) and (4.5), we get

T (x) = min
θ∈Θ0

k

1
N

N∑
t=1

‖y(t)− ŷ(t|θ, x)‖ = min
b

1
N

N∑
t=1

(
y(t)− ŷ(t|b, x)

)2 (4.7)

The estimate ŷ(t|b) (we have skipped the argument x) can be obtained as

ŷ(t|b) = u(t) + b

Inserting this expression into (4.7) means that the test quantity becomes

T (x) = min
b

1
N

N∑
t=1

(y(t)− u(t)− b)2 (4.8)

The minimization is simple since it can be shown that the minimizing value of
b is

b̂ =
1
N

N∑
t=1

y(t)− u(t)

The test quantity (4.8) will be small under H0 and thus the bias fault is decou-
pled in T (x).

The following example illustrates how the prediction error principle can be
applied to a change detection problem.

Example 4.2

Consider a signal y(t) which can be modeled as

y(t) = v(t) + a(t)

where v(t) is independent and N(0, σ). The function a(t) is a(t) ≡ µ0 = 0 in
the fault free case, but can contain an abrupt change to an unknown value µ1

if a fault occurs.
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Assume that we want to consider three fault modes:

NF “no fault”
Fµ “an abrupt change in a(t) at the time tch”
Fσ “an abrupt change in standard deviation σ at the time tch”

This means that the fault-state vector can be described as θ = [tch, µ, σ].

Further we want to design a test quantity for the following hypotheses:

H0 : Fp ∈ {NF,Fµ}
H1 : Fp ∈ {Fσ}

By using the general expression (4.3), the test quantity becomes

T (x) = min
θ∈Θ0

V (θ, x) = min
[tch,µ]

N∑
t=1

(y(t)− ŷ(t|tch, µ))2

where

ŷ(t|tch, µ) =

{
0 if t < tch

µ if t ≥ tch

The test quantity can further be rewritten as

T (x) = min
tch

( tch∑
t=1

(y(t))2 + min
µ

N∑
t=tch+1

(y(t)− µ)2
)

The next example illustrates how test quantities can be designed in the case
where one fault is modeled as an arbitrary input and another fault is modeled
as a constant parameter. Also illustrated is how the submode relation from
Section 2.4 affects the design.

Example 4.3

Consider a system that can be modeled as

x(t+ 1) = ax(t) + u(t)
y(t) = x(t) + f(t)

Assume that we want to consider three fault modes:

NF a = 0.5 no fault
Fa a 6= 0.5, f(t) ≡ 0 a fault in the dynamics
Ff a = 0.5, f(t) 6≡ 0 an arbitrary sensor fault
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This definition of fault modes implies that the three fault modes are related
as NF 4∗ Fa 4 Ff . According to the discussion in Section 3.2.1, the only
possible choices of Mk are then {NF}, {NF,Fa}, and {NF,Fa, Ff}. The last
one is useless for fault isolation and therefore we decide to design test quantities
for two hypothesis tests with the hypotheses

H0
1 : Fp ∈ {NF,Fa} H1

1 : Fp = Ff

H0
2 : Fp = NF H1

2 : Fp ∈ {Ff , Fa}

The test quantity for the first test becomes

T1(x) = min
a

1
N

N∑
t=1

(y(t)− ŷ(t|a))2 =
1
N

N∑
i=1

(y(t)− ây(t− 1)− u(t− 1))2

where â is the least square estimate of a. For the second test, the set Θ0
2 contains

only one element. Thus, the test quantity using the formula (4.4) becomes

T2(x) =
1
N

N∑
t=1

(y(t)− ŷ(t))2 =
1
N

N∑
i=1

(y(t)− 0.5y(t− 1)− u(t− 1))2

Now assume that the present fault mode is Fa and H1
2 is accepted but H0

1

is not rejected, i.e. T1 < J1 and T2 > J2. This will imply that the diagnosis
statement becomes

S = {NF,Ff , Fa} ∩ {Ff , Fa} = {Ff , Fa}

That is, both Ff and Fa can explain the process behavior. However, it is
quite unlikely that the arbitrary fault signal f(t) behaves in such a way that the
process output matches the modelMFa(θ). Therefore, using a refined diagnosis
statement in accordance with Section 2.6.1, we may draw the conclusion that
the fault mode Fa is the one present in the process.

The following example shows how traditional in-range monitoring can be
fitted into this framework using the prediction principle.

Example 4.4

Assume that under a no-fault situation, a state x is limited in range, cl < x < ch.
Assume further that x is measured using a sensor y as y(t) = x(t). If no more
models are available, a prediction of y(t) can in any case be written

ŷ(t|c) = c cl < c < ch

By using the general expression (4.3), the test quantity becomes

T (x) = min
cl<c<ch

V (c, x) = min
cl<c<ch

|y(t)− ŷ(t|c)|

This shows that traditional in-range testing can be seen as a special case of the
prediction error principle.
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The above example is also a clear illustration on how knowledge of range lim-
itations of θ should be incorporated into the fault model to improve diagnosis
performance. More specifically, without the knowledge cl < c < ch, the sensor
y can not be diagnosed.

4.2.1 The Minimization of Vk(θ, x)

The procedure to compute (4.3), i.e. to minimize Vk(θ,x), has not been ad-
dressed so far. The technical details are not going to be discussed here, but the
interested reader is referred to general literature on optimization, e.g. (Luenberger,
1989), and system identification, e.g. (Ljung, 1987). In many cases the mini-
mization procedure required in (4.3) is quite straightforward. However, in some
cases, the computational load of doing the actual minimization in (4.3) can be
quite heavy. One solution can be to use a two-step approach:

1. Find a θ̂ that minimizes another function V̄k(θ,x), i.e.

θ̂ = arg min
θ∈Θ0

k

V̄k(θ,x)

2. Calculate the test quantity as

Tk(x) = Vk(θ̂,x) (4.9)

The point with this two-step approach is that V̄k(θ,x) can be chosen such
that it is much easier to minimize compared to Vk(x). Further, let V̄k(θ,x) be
chosen such that the minimizing value θ̂, under H0

k , is close to the value that
minimizes Vk(θk,x). Then in the case H0

k holds, it is reasonable to assume that

min
θ∈Θ0

k

Vk(θ,x) ≈ Vk(θ̂,x)

This means that if we use the test quantity Tk(x) = Vk(θ̂k,x), we can expect
approximately the same result compared to if (4.3) was used.

Example 4.5

Consider a system that can be modeled as

y1 = u+ f1 (4.10)
y2 = 2u+ f1 + f2 (4.11)

Assume that we want to consider three fault modes:

NF f1(t) ≡ 0, f2(t) ≡ 0
F1 f1(t) 6≡ 0, f2(t) ≡ 0
F2 f1(t) ≡ 0, f2(t) 6≡ 0



Section 4.2. The Prediction Principle 73

Further we want to design a test quantity for a hypothesis test with the hy-
potheses

H0 : Fp ∈ {NF,F1}
H1 : Fp ∈ {F2}

Let y = [y1 y2]T and also let the predictions of y1 and y2 be ŷ1(f̂1) = u+ f̂1 and
ŷ2(f̂1) = 2u + f̂1. Then using the prediction error principle, the test quantity
can be constructed as

T (x) = min
f1

V (f1, x) = min
f1

(
y − ŷ(f1)

)T (
y − ŷ(f1)

)
=

= min
f1

(
y1 − ŷ1(f1)

)2 +
(
y2 − ŷ2(f1)

)2 (4.12)

The minimizing value of f1 is f̂1 = f1 + f2/2. This implies that

T (x) =
(
y1 − u− f1 −

f2
2

)2 +
(
y2 − 2u− f1 −

f2
2

)2 =

=
(
u+ f1 − u− f1 −

f2
2

)2 +
(
2u+ f1 + f2 − 2u− f1 −

f2
2

)2 =
f2
2

2

Even though the minimization required in (4.12) is very simple, let us now
consider a test quantity using the two-step approach. The estimate f̂1 is first
found as

f̂1 = argmin
f̂1

V̄ (f̂1, x) = argmin
f̂1

(
y1 − ŷ1(f̂1)

)2 = arg min
f̂1

(
u+ f1 − u− f̂1

)2

It is obvious that this will result in that f̂1 = f1. The test quantity then becomes

T2-step(x) = V (f̂1, x) = V (f1, x) =
(
y1 − u− f1

)2 +
(
y2 − 2u− f1

)2 =

= 0 + f2
2 = f2

2

Under H0, the minimizing value of V (f1, x) equals the minimizing value of
V̄ (f1, x). Under H0 it also holds that T (x) = T2-step(x).

From the above example it is clear that for θ /∈ Θ0, it can happen that

T (x) = min
θ∈Θ0

k

V (θ, x) < T2-step(x) = V (θ̂, x) (4.13)

and the difference can be significant. Note that this is acceptable as long as
T (x) ≈ T2-step(x) or, as in the example, T (x) = T2-step(x) for θ ∈ Θ0. Moreover,
this is actually an advantage of the two-step approach, since we want the test
quantity to become as large as possible for θ /∈ Θ0. Thus the two-step approach
has the potential to improve the test quantities.
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4.2.2 Residual Generation

The term residual generation, as it is most often used in fault diagnosis lit-
erature, is a special case of the prediction error principle. Also the following
restrictions are made:

• The faults are modeled as arbitrary inputs which are zero in the fault free
case.

• A new value of the test quantity is calculated at every sample time-point.
Also continuous time is often considered.

• A sliding time window is used and the length is finite or infinite.

When using residual generation, the test quantity is called residual (or resid-
ual generator). Linear residual generation is illustrated in the following two
examples and will be further studied in Chapters 7 and 8.

Example 4.6

Consider a system that can be modeled as

y1 =
1

q−1 + 1
(u+ f1) (4.14)

y2 =
1

q−1 + 2
(u+ f1) + f2 (4.15)

Assume that we want to consider three fault modes:

NF f1(t) ≡ 0, f2(t) ≡ 0 no fault
F1 f1(t) 6≡ 0, f2(t) ≡ 0 actuator fault
F2 f1(t) ≡ 0, f2(t) 6≡ 0 fault in sensor 2

Further we want to design a test quantity for a hypothesis tests with the hy-
potheses

H0 : Fp ∈ {NF,F1}
H1 : Fp ∈ {F2}

A linear residual generator that can be used as a test quantity is

r =
(q−1 + 2)y2 − (q−1 + 1)y1

q−1 + 3
(4.16)

It will now be shown how the same test quantity can be obtained by using the
general expression (4.5) for the prediction error principle.

We use the two-step approach and this means that we first have to estimate
the parameter (now a signal) f1(t). From the model (4.14), the fault signal f1(t)
can be estimated as

f̂1 = arg min
f1

(
y1 −

1
q−1 + 1

(u+ f1)
)2 = (q−1 + 1)y1 − u (4.17)
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With this estimate and by using the general expression (4.5), the test quantity,
using an infinite window length, can be formed as

T1(x) = V (f̂1, x) =
∞∑
t=0

‖y2(t)− ŷ2(t|f̂1)‖

By means of the estimate (4.17), the prediction error can be expressed as

y2 − ŷ2(f̂1) =y2 −
1

q−1 + 2
(u + f̂1) = y2 −

q−1 + 1
q−1 + 2

y1

Then choose the measure ‖ · ‖ as

∞∑
n=0

cnq
−1

(
·
)

where
∞∑
n=0

cnq
−1 =

q−1 + 2
q−1 + 3

This means that

T1(x) =
∞∑
n=0

cnq
−1

(
y2(t)− ŷ2(t|f̂1)

)
=
q−1 + 2
q−1 + 3

(
y2(t)−

q−1 + 1
q−1 + 2

y1(t)
)

= r

We have thus shown how the residual generator (4.16) can be obtained in the
framework of the prediction error principle. Note that the sign of T1(x) can be
negative and thus, it is the absolute value of T1(x) that should be thresholded.

Example 4.7

Assume that we have a non-linear model

ẋ =f(x, u) (4.18)
y1 =h1(x, u) + f1 (4.19)
y2 =h2(x, u) (4.20)

Here f is a signal modeling a fault in sensor 1. Then assume that an observer
for x can be constructed as

˙̂x = f(x̂, u) +K
(
y2 − h2(x̂, u)

)
(4.21)

Then

r = y2 − ŷ2 = y2 − h2(x̂, u) (4.22)
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is a residual generator which will be insensitive to faults in sensor 1. This means
that the corresponding null hypothesis is described byMk = {NF,F1} where F1

is the fault mode for f1 6≡ 0. Obviously, r is also a test quantity that is naturally
constructed with the prediction error principle in accordance with formula (4.5).

According to the expression (4.3), the parameter f1 should be implicitly es-
timated when calculating the test quantity. This is not the case for the test
quantity (4.22). However, it is possible to derive the expression (4.22) by us-
ing (4.3) and the two-step approach. First let f1 be estimated as

f̂1 = arg min
f1

(y1 − ŷ1)2 = arg min
f1

(y1 − h1(x, u) + f1)2 = y1 − h1(x̂, u)

Then in accordance with the formula (4.5), the test quantity becomes

T (x) = V (f̂1, x) = |y − ŷ| =
∣∣∣∣y1 − ŷ1(f̂)
y2 − ŷ2

∣∣∣∣ =
∣∣∣∣y1 − h1(x̂, u)− f̂
y2 − h2(x̂, u)

∣∣∣∣ =

=
∣∣∣∣y1 − h1(x̂, u)− y1 + h1(x̂, u)

y2 − h2(x̂, u)

∣∣∣∣ =
∣∣∣∣ 0
y2 − h2(x̂, u)

∣∣∣∣ = |y2 − h2(x̂, u)| = |r|

4.3 The Likelihood Principle

When the probability density functions of the noise is known, or can be as-
sumed to be known, it is possible to use the likelihood principle. The likelihood
principle is based on the likelihood function which is defined as

Definition 4.1 (Likelihood Function) Let f(x|θ) denote the probability den-
sity function of the sample X = [X1, X2, . . . Xn]. Then, given that X = x is
observed, the function of θ defined by

L(θ|x) = f(x|θ) (4.23)

is called the likelihood function.

Given a model, it is possible to set up a likelihood function which become
a measure for how well the measured data matches the model. Recall from
Section 4.1 that this is exactly what we want when constructing test quantities.
This is also the reason why likelihood functions are a common choice for test
quantities in general statistical hypothesis testing. Thus, using the likelihood
principle, the measure Vk(θ, x) in (4.3) corresponds to L(θ|x). In contrast to
the prediction error principle, the likelihood function becomes large when mea-
surement data matches the model and small when the data does not match the
model. When using the likelihood principle, the null hypothesis H0

k is rejected
if Tk(x) < Jk. Note that > has been changed to <, compared to previous cases.

If the set Θ0
k consists of only one element, then the likelihood function (4.23)

can be used directly as a test quantity. When Θ0
k consists of several elements, we
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have to use optimization in accordance with (4.3). However, since the likelihood
function becomes large when measurement data matches the model, the mini-
mization must be replaced by maximization. The test quantity then becomes

Tk(x) = max
θ∈Θ0

k

L(θ|x) (4.24)

This principle is usually called the maximum likelihood principle. The two-step
approach described in the context of the prediction principle is of course possible
to use also for the maximum likelihood.

Often it is assumed that the data are independent and identically distributed
such that

f(x|θ) =
N∏
i=1

f(xi|θ)

Here xi means x(ti). This means that the likelihood function becomes

L(θ|x) =
N∏
i=1

f(xi|θ)

and thus, much simpler to calculate.
A further simplification is obtained by using the log-likelihood function de-

fined as

l(θ|x) = ln L(θ|x)

If the assumption about independent data is used, we get

l(θ|x) = ln L(θ|x) = ln
N∏
i=1

f(xi|θ) =
N∑
i=1

ln f(xi|θ)

Note that since the logarithm function ln(x) is monotone, a hypothesis test
based on the log-likelihood function l(θ|x) is equivalent to a test based on the
basic likelihood function L(θ|x).

Example 4.8

Consider again Example 4.1 but instead of (4.7), we use the likelihood principle
to obtain the test quantity. Let xi denote y(i) − u(i) which means that xi ∼
N(b, σ). The test quantity then becomes

T (x) = max
θ∈Θ0

L(θ|x) = max
b

N∏
i=1

1
σ
√

2π
exp{− (xi − b)2

2σ2
}

The log-likelihood version of this test quantity becomes

T ′(x) = max
θ∈Θ0

l(θ|x) = max
b

N∑
i=1

ln
1

σ
√

2π
exp{− (xi − b)2

2σ2
} =

= max
b
−N ln σ

√
2π − 1

2σ2

N∑
i=1

(xi − b)2
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Note that the last expression contains a constant term. This term can be ne-
glected and the remaining expression is then equivalent to.

min
θ∈Θk

N∑
i=1

(xi − θ)2

Now note that it happens to be the case that this expression is equal to the
expression obtained in Example 4.1. This means in this particular problem, the
prediction error principle and the likelihood principle are equivalent.

The drawback with the likelihood principle, compared to the prediction error
principle, is that to make the calculations tractable, we must usually assume
that the data are independent and normally distributed. On the other hand
the likelihood principle is very universal. It can for example easily handle faults
that are modeled as an increase in the variance of a signal.

4.4 The Estimate Principle

Both the prediction error end the likelihood principle are based on the idea that
the test quantity should be a model validity measure. A somewhat different
approach to construct the test quantity is the estimate principle. We have seen
that in both the prediction error and the likelihood principle, it is common
that a parameter estimation is involved. The idea of the estimate principle is
to construct a test quantity that more directly uses the estimated parameter.
Note however that the principle goal of that the test quantity should be a model
validity measure, is still the same.

One solution is to estimate a component fault state θi and then compare it
with the nominal value θ0i . This means that the set DiNF must contain only one
element, i.e. DiNF = {θ0i }. First consider the case where the set Θ0

k consists of
only one element. Then a test quantity can be constructed as

Tk(x) = ‖θ̂i − θ0i ‖ θ̂i = arg min
θi∈Di

V ′(θi, x) (4.25)

where V ′(θi, x) is some model validity measure. This is a common solution used
in literature, e.g. (Isermann, 1993). The measure ‖ · ‖ can for example be the
quadratic norm.

When the set Θ0
k consists of more than one element, the test quantity can

be constructed as

Tk(x) = ‖θ̂i − θ0i ‖ θ̂i = arg
θi

min
θ∈Θ0

k∪Θ̄i
V ′(θ, x) (4.26)

where Θ̄i = {θ | θi ∈ Di, θj 6=i ∈ DjNF }. That is, in addition to estimate the
parameter θi we also have to estimate the free parameters in Θ0

k, i.e. the ones
corresponding to faults that are decoupled. For an illustration of this technique,
see the test quantity (4.49) in Section 4.8.1.
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Note that compared to when using the prediction and likelihood principle,
one extra parameter must be estimated. That is, in addition to all parameters
that we want to decouple, we also need to estimate the parameter that is used
in the test quantity. This implies that decoupling might be more difficult for
the estimate principle.

We will see later in Section 4.5 that test quantities based on estimates may
imply that the test quantity under H0 is dependent on u. In that case, it must
be normalized which is also described in Section 4.5.

The estimate principle has both advantages and disadvantages compared
to the prediction error end the likelihood principle. Test quantities based on
estimates can have very good performance for the fault mode corresponding to
the estimated parameter. However for other fault modes, the performance might
be quite bad and also highly dependent on the input signal. This is investigated
more in Section 4.8.

4.5 Robustness via Normalization

When constructing test quantities, a goal is that they should be insensitive to
uncontrolled effects such as changes in inputs u and state x, disturbances d,
model errors, etc. Sometimes, the constructed test quantities meet these goals
but often they do not. The reasons why the test quantities become sensitive to
uncontrolled effects are

• Approximate decoupling. Because of fundamental limitations it is some-
times impossible to completely decouple disturbances and effects of faults
(i.e. the faults belonging to fault modes in the null hypothesis).

• Model Errors. Most unmodeled disturbances, incorrect model structure,
and unmodeled noise etc. implies that the performance of the test quanti-
ties is degraded. The most serious problem is usually that the significance
level is raised.

• Modeled noise. Even though noise terms are included in the model, it
is mostly impossible to avoid that the noise is going to affect the test
quantities.

The discussion above is closely related to the issue of robustness. More
exactly, robustness can be defined as the ability of the test quantities to satisfy
some specific performance goals while the uncontrolled effects are present to
a certain degree. In connection with linear residual generation, methods to
achieve and analyze robustness have been extensively studied, e.g. see (Chen
and Patton, 1999)(Frisk and Nielsen, 1999). In many of these methods, the
robustness issue is hardly integrated as a part of the design process for the test
quantities. A somewhat different approach is to first design the test quantity
without robustness considerations and then afterwards consider robustness as
an additional design step by adjusting and compensating the originally designed
test quantity. It is interesting to note that there are experimental results showing
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the advantage of the latter robustness approach, e.g. (Höfling and Isermann,
1996), while the literature is very sparse on experimental experience with the
former robust method.

As a way to achieve and improve robustness by adjusting and compensating
already designed test quantities, we will here consider normalization. Normal-
ization is to compensate the test quantity for unmodeled effects by multiplying
it with a cleverly chosen variable that is a function of the measured data x. Here
we investigate normalization for the estimate principle, prediction principle and
the likelihood principle.

4.5.1 The Estimate Principle

The discussion here will be limited to an example.

Example 4.9

Consider a system which can be modeled as

y(t) = bu(t) + v(t)

where v(t) ∼ N(0, σv). The nominal (i.e. corresponding to the no fault case)
value of b is b0. We will use the notation U , Y , and V to denote column vectors
of u, y, and v respectively.

Assume a test quantity based on the estimate principle:

T2(x) = (b̂− b0)2 b̂ =
1

UTU
UTY (4.27)

where b̂ is the least square estimate of b. Consider the fault free case, i.e. b = b0,
which means that

b̂− b0 =
1

UTU
UT (U + V )− 1 = b0 − 1 +

1
UTU

UTV = (4.28)

=
1
Np

UTV ∼ N(0,
σv√
Np

) (4.29)

where Np = UTU , and p is the mean power of u. We see that b̂ − 1 has a
standard deviation that is dependent on u. If the mean power of u varies, this
is undesirable since the significance level of a hypothesis test will then depend
on u. The solution is to use normalization and we multiply therefore (4.28) with√
Np. Then we have that √

Np(θ̂ − 1) ∼ N(0, σv) (4.30)

The corresponding normalization for the test quantity (4.27) becomes

T ′2(x) = Np(θ̂ − 1)2 b̂ =
1

UTU
UTY (4.31)

Thus, using (4.31) means that a fixed threshold will imply a fixed significance
level independent on u.
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In terms of robustness, a hypothesis test based on the normalized test quan-
tity (4.31) and with a fixed threshold, will satisfy the performance goal that
the significance level must not be above a certain level. This will hold for any
u. However, there is no guarantee that other performance goals, such as the
probability of T ′2(x) < J2 when a fault is present, are satisfied.
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0
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time [s]

Figure 4.1: An example of the use of an adaptive threshold, with the test
quantity (solid), the adaptive threshold (dashed), and as a comparison, the
fixed threshold (dotted).

4.5.2 The Prediction Principle and Adaptive Thresholds

The basic idea of adaptive thresholds is that since disturbances and other uncon-
trolled effects vary with time, also the thresholds should vary with time instead
of being fixed to a constant value. An example is shown in Figure 4.1. The
solid line represents the a test quantity, the dashed line is the adaptive thresh-
old, and the dotted line the fixed threshold. There is a fault occuring at time
t = 75 s, but because of disturbances, the test quantity is above zero also before
this time-point. To avoid false alarm, the fixed threshold has been set high.
This means that the fault is missed if the fixed threshold is used. The adaptive
threshold “adapts” to the disturbances and therefore follows the test quantity
as long as there are no faults. When the fault occurs, the residual crosses the
threshold and the fault is detected.

One technique for computing adaptive thresholds in connection with linear
residual generation, is presented in (Ding and Frank, 1991). Consider a system
which can be described as

y =
(
G(s) + ∆G(s)

)
u+Gd(s)d +Gf (s)f + v
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where ∆G(s) is a model error, u is the input, d is the disturbance, f is the fault,
and v is measurement noise. Consider then a residual described by

r =Hy(s)y +Hu(s)u =

= Hy(s)
(
G(s)u + ∆G(s)u +Gd(s)d+Gf (s)f + v

)
+Hu(s)u

If measurement noise v is neglected and it is assumed that the input u and the
disturbance d are perfectly decoupled, then in the fault free case, the residual
becomes

r = Hy(s)∆G(s)u

It is seen that the size of the residual in the fault free case depends on the
absolute size of the model error ∆G(s) and the input u(t). If δ > ‖∆G(s)‖
denotes a known bound of ∆G(s), the adaptive threshold can be selected as

Jadp(t) = δ‖Hy(s)u‖ (4.32)

This approach relies on that a bound on the model uncertainty can be deter-
mined with confidence. If this is the case, it is guaranteed that no false alarm,
caused by model uncertainties, will be generated.

Another approach is proposed in (Höfling and Isermann, 1996). This ap-
proach is more ad-hoc because the computation of the adaptive threshold is
determined by tuning some design parameters. On the other hand, it is proba-
bly more generally applicable because it can handle more kinds of disturbances,
i.e. not only model uncertainties. A generalized description of how the threshold
is computed is the non-linear expression

Jadp(t) = kHLP (s)
(
|Hd(s)u(t)|+ c

)
(4.33)

where HLP (s) and Hd(s) are linear filters, and k and c constants. The filter
Hd(s) functions as a weighting, in the frequency domain, of model uncertainties.
For frequency ranges where the model uncertainty is high, the filter gain should
be high and vice versa. For example if the model is good for low frequencies
but uncertain for higher frequencies, the filter Hd(s) should be a high-pass
filter. The value of the constant c is determined by the amount of other kinds
of disturbances, such as measurement noise, and makes the threshold become
greater than zero even though the input is zero. Finally HLP (s) is a low-pass
filter for smothering of the threshold.

By using adaptive thresholds according to the principles described above, it
is possible to get a nearly fixed significant level, independent on changes in the
input signal. In this sense, the adaptive threshold is similar to the normaliza-
tion described for the estimate principle. Robustness is achieved in the sense
that a certain significant level can be guaranteed independently of the input.
Note however that if overall performance gains are desirable, these robustness
techniques are never a substitute for using better models.

Both kinds of adaptive thresholds, i.e. (4.32) and (4.33), can be written on
the more general form

Jadp = c1W (u, y) + c2 (4.34)
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whereW (u, y) is some measure of the model uncertainty present for the moment.
To use an adaptive threshold is equivalent to normalize the test quan-

tity. Consider the use of a test quantity T (x) in combination with the thresh-
old (4.34):

T (x) = T (x) ≥ Jadp (reject H0)

By using normalization, this relation can instead be written as

T ′(x) =
T (x)

c1W (u, y) + c2
≥ 1 (reject H0)

where T ′(x) is the normalized test quantity. The new threshold becomes J = 1.
Two measures W (u, y) of the model uncertainty are implicitly given in the

expressions (4.32) and (4.33). Another alternative is to use a minimized sum of
prediction errors:

W (u, y) = min
θ∈Θ

V (θ, x) = min
θ∈Θ

N∑
t=1

(y(t)− ŷ(t|θ))2 (4.35)

Note that the minimization is over all possible θ. The expression 4.35 might
seem to be difficult to calculate but if the same V (θ, x) is used for all hypothesis
tests, as was described in Section 4.2, then the calculation of 4.35 becomes easy.
This will be demonstrated in Section 5.8.

Now assume that c2 = 0. Then an adaptive threshold becomes

Jadp = min
θ∈Θ

W (θ, x) c1 (4.36)

With this adaptive threshold, the normalized version of a test quantity based
on the expression (4.3) becomes

T ′(x) =
minθ∈Θ0

k
V (θ, x)

minθ∈Θ V (θ, x)
> c1 (reject H0)

We will see that this expression has strong similarities with the likelihood ratio
described next.

4.5.3 The Likelihood Principle and the Likelihood Ratio

Now consider the likelihood principle and an adaptive threshold similar to the
one defined by (4.35) and (4.36):

Jadp = max
θ∈Θ

L(θ|x) c1

Thus H0 is rejected if

T (x) = max
θ∈Θ0

L(θ|x) < max
θ∈Θ

L(θ|x) c1
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By using normalization, we get a new test quantity T ′(x) and H0 is now rejected
if

T ′(x) =
maxθ∈Θ0 L(θ|x)
maxθ∈Θ L(θ|x) < c1 (4.37)

The test quantity T ′(x) is called the likelihood ratio test quantity (or statistic).
To emphasize that a maximization is involved, the term maximum likelihood
ratio or generalized likelihood ratio is also used in the literature.

A number of different variations of the maximum likelihood ratio exists. One
variation is to switch the numerator and the denominator. Another is to make
the maximization in the denominator of (4.37) over Θ1 = Θ0C instead of Θ. It
can be shown that in this case, it is equivalent to make the the maximization over
Θ (Lehmann, 1986). Further, the maximization is often replaced by supremum.
Two examples of variations are

T (x) =
supθ∈Θ L(θ|x)
supθ∈Θ0 L(θ|x) (4.38)

T (x) =
maxθ∈Θ1 L(θ|x)
maxθ∈Θ0 L(θ|x) (4.39)

The likelihood ratio test quantity is widely used in statistics. The reason is
partly that it is the optimal test quantity in the case both the null hypothesis
and the alternative hypothesis are simple, i.e. Θ0 and Θ1 consists each of only
one element (Neyman-Pearson lemma). Optimality proofs also exists for many
other cases where H0 is simple (P.H.Garthwaite, 1995). For many cases where
a theoretical justification is missing, the likelihood ratio has still been shown to
be very good in practice (Lehmann, 1986). However, there are also cases for
which the likelihood ratio is not good (Lehmann, 1986).

Commonly the maximum log-likelihood ratio is used. This together with a
change detection application is illustrated in the following example:

Example 4.10

Consider a signal x(t) which can be modeled as

x(t) = v(t) + θ(t)

where v(t) is independent and N(0, σ). Before the change-time tch, θ(t) = 0
and after the change time, θ(t) = µ.

The following two hypotheses are considered:

H0 : “no change in mean µ of x(t) occurs”
H1 : “an abrupt change in mean µ occurs”

By using the assumption of independent data, the likelihood ratio test quantity
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on the form (4.38) becomes

T (x) =
supθ∈Θ L(θ|x)
supθ∈Θ0

L(θ|x) =
sup[tch,µ] L([tch, µ]|x)

L([N, 0]|x) =

=
sup[tch,µ]

∏tch−1
i=0 f(x(i)|0)

∏N
i=tch

f(x(i)|µ)∏N
i=0 f(x(i)|0)

= sup
[tch,µ]

∏N
i=tch

f(x(i)|µ)∏N
i=tch

f(x(i)|0)

Now by using the assumption of Gaussian data, and switching to the log-
likelihood ratio, we get the following test quantity:

T ′(x) = sup
[tch,µ]

ln

∏N
i=tch

f(x(i)|µ)∏N
i=tch

f(x(i)|0)
=

= sup
[tch,µ]

N∑
i=tch

ln f(x(i)|µ)−
N∑

i=tch

ln f(x(i)|0) =

= sup
[tch,µ]

− 1
2σ2

N∑
i=tch

(µ− 2x(i))µ =∗ sup
tch

sup
µ
− 1

2σ2

N∑
i=tch

(µ− 2x(i))µ =

=
1

2σ2
sup
tch

sup
µ
−(N − tch + 1)µ2 + 2µ

N∑
i=tch

x(i)

The equality marked with =∗ can be shown to hold in special cases, including
this one, but is not generally valid.

Note the relation between this example and Example 4.2, where a similar prob-
lem was solved by using the prediction error principle.

4.6 Evaluation of Hypothesis Tests Using Statis-

tics and Decision Theory

The basic concepts presented in this section are probably well known to statis-
ticians and decision theorists. However, because of their usefulness for fault
diagnosis problems, especially in the view of this thesis, they deserve some at-
tention. The performance measures used for evaluation here are risk functions
and power functions. There exists also other performance measures, e.g. the
ARL function (Basseville and Nikiforov, 1993).

When the null hypothesis H0
k is true, we want to not reject H0

k . The mistake
to reject H0

k when H0
k is true is called a TYPE I error. Similarly, to not reject

H0
k when the alternative hypothesis H1

k is true is called a TYPE II error. In
fault diagnosis, there is a connection between these errors and the probability
of false alarm, missed detection, and missed isolation. We will not go into these
details here but this connection will be discussed in Chapter 6. At this point, it
is at least clear that to achieve low probabilities of false alarm, missed detection,
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and missed isolation, we need to keep the probabilities of the TYPE I and II
errors low.

Thus the probabilities of the TYPE I and II is a kind of performance measure
for a single hypothesis test. However a more precise measure is the power
function or more generally a risk function from decision theory (Berger, 1985).
The risk function is obtained by first defining a loss function. A loss function
L(θ, Sk) should reflect the “loss” for a given specific fault state and a specific
decision Sk of the hypothesis test δk. The loss function for the hypothesis test
δk can be defined as

Lk(θ, Sk) =


0 if θ ∈ Θ0

k and Sk = S0
k

0 if θ /∈ Θ0
k and Sk = S1

k

cI(θ) if θ ∈ Θ0
k and Sk = S1

k

cII(θ) if θ /∈ Θ0
k and Sk = S0

k

(4.40)

where the functions cI(θ) and cII(θ) are chosen by the user to for example indi-
cate that some faults are more important to detect that other. In Section 6.1.1,
we will use the functions cI(θ) and cII(θ) to distinguish between significant and
insignificant faults.

From decision theory, the definition of risk function is as follows:

Definition 4.2 (Risk Function) The risk function R(θ, δ) of a decision rule
δ(x) is

R(θ, δ) = Eθ{L(θ, δ(X))}

where Eθ denotes expectation for a fixed θ.

With the loss function (4.40), the risk function R(θ, δk) becomes

R(θ, δk) =

{
0 · P (Sk = S0

k|θ) + cI(θ)P (Sk = S1
k|θ) if θ ∈ Θ0

k

cII(θ)P (Sk = S0
k|θ) + 0 · P (Sk = S1

k|θ) if θ /∈ Θ0
k

Recall from the previous chapter, the definition of power function:

βk(θ) = P (reject H0
k | θ) = P (Tk(x) ≥ Jk | θ)

By using the power function, the risk function can be written as

R(θ, δk) =

{
cI(θ)βk(θ) if θ ∈ Θ0

cII(θ)
(
1− βk(θ)

)
if θ /∈ Θ0

(4.41)

Thus to get a usable performance measure of δk, we need to define the functions
cI(θ) and cI(θ) and also know the power function βk(θ). Commonly a so called
0-1 loss is considered. This means that cI(θ) = cI(θ) = c.
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Figure 4.2: Two power functions.

4.6.1 Obtaining the Power Function

Either we want to use the risk function (4.41) as a performance measure or
alternatively, the power function alone, we need the power function. As was
said in Section 3.2, the power function is also used to calculate the significance
level α.

The power function can in rare cases be derived analytically. Commonly
we need to assume independent data which is also Gaussian distributed. An
analytical derivation of a power function is demonstrated in the following ex-
ample.

Example 4.11

Consider again Example 4.9. To use (4.31) in a hypothesis test is equivalent to
using (4.30). Since the distribution of (4.30) b̂ is known, it is easy do derive the
power function for a test based on the test quantity (4.31). In Figure 4.2 this
power function is plotted as a solid line.

In cases where it is not possible to derive the power function analytically,
but the distribution of the measured data is known, we can use (Monte Carlo)
simulations. Another method is to estimate the power function β(θ) by using
measurements on the real process. The method is similar to simulations but we
do not need to know or assume any distribution of the measured data. This
method can be described as follows:

1. To calculate β(θ) for a specific θ, we manipulate the process such that the
fault state θ is obtained.
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2. Collect a number of measurement series xi, i = 1, . . .N . Each xi is an
instance of x, i.e. a matrix of inputs u and outputs y from different times
in accordance with Section 4.1.1.

3. For each data series xi, calculate the value ti of the test quantity, i.e.
ti = T (xi).

4. Collect all the N values ti in a histogram. This histogram is now an
estimation of the probability density function f(t|θ).

5. By using a fixed threshold Jk, β(θ) can now be estimated.

This procedure can be repeated for a number of different θ:s, and thereby the
power function β(θ) can be obtained as a sampled function of θ.

4.6.2 Comparing Test Quantities

The risk function alone can be used to compare different hypothesis tests. How-
ever it is needed that thresholds are defined. Thus to compare test quantities
we must first specify thresholds. When a 0-1 loss is chosen, the performance of
a hypothesis test can equally well be described by its power function. However
if a more general loss is used, we may have to consider the risk function.

Consider first the case of a 0-1 loss and that we want to compare two test
quantities T1(x) and T2(x). A hypothesis test for each test quantity is con-
structed and the thresholds are chosen such the significance levels equal each
other. Both the power functions β1(θ) (dashed) and β2(θ) (solid) can then be
calculated and studied. In Figure 4.2, an example of two power functions are
plotted. The set Θ0

k is assumed to be Θ0
k = {1}. From this plot we can conclude

that the test based on β2(θ) is better than the test based on β1(θ). This is
because β2(θ) > β1(θ) for all θ except θ = 1.

Now assume that cI(θ) and cII(θ) are not constants. Then for a case where
β2(θ) ≥ β1(θ) for all θ, the decision theoretic view of studying the risk R(θ, δk)
is equivalent to only studying the power function. The reason is that for each
value θ, the functions cI(θ) and cI(θ) only affects as a scaling factor. However,
if it is the case that β2(θ) ≥ β1(θ) for only some θ, we could not tell which
test is the best. Then other principles have to be used and the functions cI(θ)
and cII(θ) may then play a more important role. This will to some extent be
discussed in Chapter 6.

4.7 Selecting Parameters of a Hypothesis Test

Except for constructing the test quantity, we need to select the threshold. For
a complete hypothesis test δk we need also to define the decisions S0

k and S1
k.

These “parameter” choices are discussed in this section.
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4.7.1 Selecting Thresholds

The selection of thresholds in each test, largely affects the performance of the
hypothesis tests and the diagnosis system. To analyze this, we will study how
the risk function is affected when varying the thresholds. The threshold Jk will
be regarded as a design parameter of the hypothesis test and to denote the
hypothesis test, we will therefore use the notation δk(Jk). The risk function
then becomes R(θ, δk(Jk)), i.e a function of two variables, θ and Jk. If a 0-1
loss is used, the risk function will for a specific θ and a threshold Jk indicate
the probability that test δk does not responds according to a desired response1.
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Figure 4.3: A risk function R(θ, δk(Jk)) as a function of two variables, θ and
Jk.

Now assume that we use a 0-1 loss and consider a risk function R(θ, δk(Jk))
for the test quantity (4.31) from Example 4.9. In Figure 4.3, this risk function
is plotted as a function of θ and J . This plot should be compared with the
solid plot in Figure 4.2, which is the corresponding power function for one fixed
threshold. The “peak” and the “valley” visible in Figure 4.3, corresponds to
θ = θ0 = 1 and thus the fault free case.

In Figure 4.4, the same risk function is plotted as a function of J for seven
different values of θ. The dashed line corresponds to the case θ = 1 and because
a 0-1 loss is used, this is the probability of a TYPE I error, i.e. significance
level, as a function of the threshold. This means that this kind of plot is useful
to determine the significance level of a test. At the same time, we see how the
probability of a TYPE II error for different θ:s varies as the threshold changes.
The dash-dotted lines represents small faults, i.e. θ close to 1. It is obvious that

1An exact definition of desired response will be given in Section 6.1.4.
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Figure 4.4: The same risk function R(θ, δk(Jk)) as in Figure 4.3.

for these small faults, the probability of a TYPE II error will be quite large for
any reasonable low significance level. As said in the previous section, it is easy
to make such a plot based on real measurement data. For an example of this,
see Figure 6.10 in Section 6.4.5.
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Figure 4.5: The risk R(θ, δ1(J1)) as a function of the threshold level J1.

So far, we have studied how the risk function varies along one axis of the fault
state space Θ. This usually corresponds to that only one fault mode, in addition
to NF , is considered. However, since it is mostly interesting to investigate the
performance for more than one fault mode, the risk function must be studied
along several axes. In Figure 4.5, the risk function, for a test δ1, is plotted as
a function of the threshold for four different θ:s, which we denote θA, θB , θC ,
and θD. These four θ:s are assumed to belong to the fault modes FA, FB , FC ,
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and FD respectively. This could for example correspond to a row, in a decision
structure, like

FA FB FC FD
δ1 0 0 X 1

For each threshold level, the plots show the probability of an undesirable
response. For example if the threshold Jthresh = 2, the probability of an un-
desirable response is at the maximum about 0.2. The tradeoff between false
alarms and missed detections are clearly visible in this plot. If FA is the fault
mode NF , it is obvious that the threshold must be chosen above 3 to get a low
probability of “false firing” and also a false alarm of the whole system. On the
other hand, this will result in that test δ1 will with high probability miss that
θ = θC .

Choice of Threshold

In this section we have mainly discussed how the choice of threshold affects
the performance the hypothesis test, and also how to represent this information
by plotting the risk function. However, we have not discussed which threshold
value to choose. This problem is difficult since the choice of threshold in each
test, is dependent on the choice of thresholds in the other tests. In addition,
the relation between the performance of a single hypothesis test and the whole
diagnosis system is quite complex, as we will see in Chapter 6.

If non-constant functions cI(θ) and cII(θ) are defined, then an ad-hoc choice
can be to use the minimax principle (see Section 6.2.2). This corresponds to
selecting the threshold as

Jk = argmin
J

max
θ
R(θ, δk(J))

For example, consider again Figure 4.4. If cI(θ) ≡ 1, and cII(θ) is chosen as
cII(θ) ≡ 0 for the small faults (dash-dotted lines), and cII(θ) ≡ 1 for the large
faults (solid lines), then the threshold, chosen with the minimax principle, would
be J = 1.6.

Another threshold choice (still a bit ad-hoc) is to choose the threshold such
that a specific significance level is obtained. For example, if the significance
level 0.025 is desirable in Figure 4.4, then the threshold should be chosen as
J = 0.2. If the thresholds are chosen such that all hypothesis tests get the
same fixed significance level, then the analysis of the diagnosis system becomes
particularly simple, as we will see in Chapter 6.

4.7.2 Specifying Hypothesis Tests

From the discussion around Figure 4.5, it should be clear that there is a close
relation between the the risk or power function and the decision structure or
equivalently the choice of S0

k and S1
k. We will here describe how the power

function can be used to specify a hypothesis test δk, i.e. to choose the sets Mk,
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S0
k, and S1

k. The basic principle is that if the power function βk(θ) is low for all
θ belonging to a fault mode γ, then we should choose Mk such that γ ∈ Mk.
As said before, this also gives the set S1

k since S1
k = MC

k . This means that S1
k

can be described as

S1
k = Ω− {γ | ∀θ ∈ Θγ . βk(θ) small} (4.42)

Further, if the power function βk(θ) is large for all θ belonging to a fault mode
γ, then we should choose S0

k such that γ /∈ S0
k. This means that S0

k can be
described as

S0
k = Ω− {γ | ∀θ ∈ Θγ .βk(θ) large} (4.43)

Remember that this also completely specifies the contents of the decision struc-
ture, i.e. where to put 0:s, 1:s, and X:s. How small “small” is and how large
“large” is, depends on the actual case, but these sizes are related to the proba-
bility of taking wrong decisions for the diagnosis system. Also the significance
level αk is related to this probability and the sizes “small” and “large” should
therefore be chosen to be around αk and 1− αk respectively.

1
β1(θ)

θNF θA θB θC θD
θ

Figure 4.6: The power function.

Example 4.12

Assume we want to consider five fault modes:

NF θ = θNF

A θ = θA

B θ = θB

C θ = θC

D θ = θD

Further assume that we have designed a test quantity T1(x) which together with
a specific threshold J1 gives the (discrete) power function shown in Figure 4.6.
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Then using the expressions (4.42) and (4.43), the sets S0
1 and S1

1 becomes

S1
1 = {NF,A,B,C,D} − {NF,C} = {A,B,D}
S0

1 = {NF,A,B,C,D} − {A} = {NF,B,C,D}

NF
SF LF

1
β(θ)

θ

Figure 4.7: The power function.

Consider a specific fault mode γ. As has been said before, it is often difficult
or impossible to construct a power function that is large for all θ belonging
to Θγ . Still it may be the case that β(θ) is large for a subset ΘL of Θγ , i.e.
ΘL ⊆ Θγ . The set ΘL typically corresponds to “large” fault sizes. If H0 is not
rejected in a case like this, we would be tempted to draw the conclusion that
θ /∈ ΘL, i.e. the fault is not large. If this kind of reasoning is desired, the fault
mode γ can be splitted into two: γ-small and γ-large. This is further illustrated
by the following example:

Example 4.13

Assume we want to consider three fault modes:

NF θ = 0 no fault
SF 0 < θ < c small fault
LF c ≥ θ large fault

Further assume that we have designed a test quantity T1(x) which together with
a specific threshold J1 gives the power function shown in Figure 4.7. Then the
decision structure becomes

NF SF LF
δ1(x) 0 X 1

Thus if H0
1 is not rejected, the diagnosis statement becomes S = {NF, SF}, i.e.

a large fault has not occured. Also if H0
1 is rejected, S = {SF,LF}, i.e. some

fault (small or large) has definitely occured.
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4.8 A Comparison Between the Prediction Er-
ror Principle and the Estimate Principle

When constructing test quantities, it is often difficult to know which one of the
prediction, likelihood, or estimate principle that is the best choice. The definite
answer can of course be found by studying the risk functions for each specific
case, but it is nevertheless interesting to also have a more general discussion. We
will here discuss how a test quantity based on the estimate principle performs
compared to a test quantity based on the prediction error principle. This will
be done by studying an example.

Consider a system which can be modeled as

y(t) = b|u|ϕsgnu+ a+ v (4.44)

where v(t) ∼ N(0, σv) and sgnu is the sign of u, i.e. -1, 0, or 1. The nominal
(i.e. corresponding to the no fault case) values for the three parameters are
b0 = 1, a0 = 0, and ϕ0 = 1. The four fault modes considered are

NF b = 1, a = 0, ϕ = 1
Fb b 6= 1, a = 0, ϕ = 1
Fϕ b = 1, a = 0, ϕ 6= 1
Fa b = 1, a 6= 0, ϕ = 1

We will start by comparing the two test quantities

T1(x) =
N∑
1

(y − u)2 (4.45)

T2(x) = Np(b̂− b0)2 b̂ = (UTU)−1UTY (4.46)

where b̂ is the least square estimate of b. The comparison study will be made
by using the power function, as was described in Section 4.6.2. In Example 4.9,
we saw that

√
Np(b̂− b0) is N(0, σv) under H0. This implies that T2(x)/σ2

v is
χ2(1)-distributed. Similarly it can be shown that T1(x)/σ2 is χ2(N)-distributed
under H0. The knowledge of these distributions can be used to find thresholds
J1 and J2 such that a specific significant level is obtained.

To evaluate the test quantities (4.45) and (4.46), two tests are constructed,
δ1 based on T1(x) and δ2 based on T2(x). The standard deviation σv is assumed
to be 0.2 and then the thresholds are chosen such that the significance level for
both tests becomes α = 0.0034.

4.8.1 Studying Power Functions

We will now compare the the test quantities in three different cases: when
fault mode Fb is present, when fault mode Fϕ is present, and when fault mode
Fb is present and the test quantities are modified such that fault mode Fa is
decoupled.
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Fault Mode Fb Present

This case corresponds to that the power functions for the case a = a0, and
ϕ = ϕ0 are studied, i.e. along the b-axis of the fault state space. This means
that the system model becomes linear and can be written as

y(t) = bu+ v (4.47)

Further, the power functions becomes functions of b, i.e. β1(b) and β2(b).
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Figure 4.8: The power functions β1(θ) (solid) and β2(θ) (dashed) for two tests
based on T1(x) and T2(x). The result for 9 different input signals u is shown.

The power function for δ2 can be obtained analytically in accordance with
Example 4.11. However the power function for δ1 can not be so easily obtained.
Instead, simulations have to be used. The power functions β1(b) and β2(b) for
9 different input signals u, estimated by means of simulations, are plotted in
Figure 4.8.

In the figure, it is seen that for all 9 different u:s, the two power functions
are equal for large deviations from θ0 but for many other values, β2(θ) (dashed)
is greater than β1(θ) (solid), i.e. T2(x) is better than T1(x). In other words, the
estimate principle, with the estimated parameter the same as the one modeling
the fault, here outperforms the prediction error principle.

Fault Mode Fϕ Present

Now consider the fault mode Fϕ, which means that ϕ is a free variable while
b0 = 1 and a0 = 0. The model (4.44) now becomes

y(t) = |u|ϕsgnu+ v
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Figure 4.9: The power functions β1(ϕ) (solid) and β2(ϕ) (dashed) for two tests
based on T1(x) and T2(x). The result for 9 different input signals u is shown.

The two power functions βk(ϕ) for T1(x) and T2(x) respectively, are plotted
in Figure 4.9. As before 9 different input signals u have been considered. In
contrast to Figure 4.8, there are large differences between the different plots.
This holds for both power functions β1(ϕ) and β2(ϕ). However, it is clear that
T2(x) is very sensitive to different u:s while T1(x) is more robust. Also, in all
plots it no longer holds that β2(ϕ) ≥ β1(ϕ) for all ϕ. In most of the plots, β1(ϕ)
is actually larger than β2(ϕ). It is obvious that the overall performance of T1(x)
is much better than T2(x). Thus, in this case where the estimate principle uses
an estimate of a parameter not modeling the fault, the prediction error principle
outperforms the estimate principle.

The incidence structure for the two test quantities and for the fault modes
NF , Fb, and Fϕ, is

NF Fb Fϕ
T1(x) 0 1 1∗

T2(x) 0 1 1

From the discussion above it is clear that the 1 marked 1∗ is much “weaker”
than the other 1:s. However in a diagnosis system containing several hypothesis
tests, it is enough if the power function of a specific test is high in only one or a
few directions. For example, when using the two tests based on T1(x) and T2(x)
described here, it is enough if only T2(x) has high power for the fault mode
corresponding to ϕ. The reason is that either H1

1 or H1
2 or both are accepted,

the diagnosis statement will become the same, namely S = {Fb, Fϕ}.
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Decoupling of Fa and Fault Mode Fb Present

Next we will investigate how the test quantities T1(x) and T2(x) are affected
by decoupling of the fault mode Fa. To do this, we construct two new test
quantities T1a(x) and T2a(x) in accordance with (4.3) and (4.26) respectively:

T1a(x) = min
a

N∑
t=1

(
y(t)− ŷ(t|a)

)2 = min
a

N∑
t=1

(
y(t)− u(t)− a

)2 (4.48)

T2a(x) = Np(b̂− 1)2 b̂ = arg
b

min
b,a

N∑
t=1

(
y(t)− bu(t)− a

)2 (4.49)

The least square estimate of a that minimizes (4.48) is

â = ȳ − ū =
1
N

N∑
t=1

y(t)− 1
N

N∑
t=1

u(t)

The least square estimate of a and b that minimizes (4.49) is

b̂ =
∑N
t=1(u(t)− ū)(y(t)− ȳ)∑N

t=1(y(t)− ȳ)2
(4.50)

â = ȳ − b̂ū (4.51)
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Figure 4.10: The power functions β1a(b) (solid), β2a(b) (dashed), β1(b) (dash-
dotted), and β2(b) (dotted) for tests based on T1a(x), T2a(x), T1(x), and T2(x)
respectively. The result for 4 different input signals u is shown.

Tests using T1a(x) and T2a(x) are constructed with the significance level
α = 0.0034 (the same as before). The parameter a is chosen as a = 1. The



98 Chapter 4. Design and Evaluation of Hypothesis Tests for Fault Diagnosis

resulting power functions βk(b) corresponding T1a(x), and T2a(x) are then esti-
mated via simulations. Included in the study are also T1(x) and T2(x), i.e. (4.45)
and (4.46), but here with data compensated for the non-zero a, i.e. y′ = y − 1.
The power functions for T1a(x), T2a(x), T1(x), and T2(x) are plotted in Fig-
ure 4.10. Here 4 different input signals u have considered. We can see that the
estimate principle also for this case, i.e. including decoupling, outperforms the
prediction error principle. It should be remembered though, that the estimate
principle implies that one extra parameter must be estimated, and this can in
general be a substantial problem.

Also seen in the plots is that the dotted line is above the dashed, meaning
that the test quantity T2(x) performs better than T2a(x). However, this is
the expected result since one less parameter has to be estimated using T2(x)
compared to T2a(x). Theoretically this can be explained by comparing the
distribution of the estimate (4.50), i.e.

b̂ ∼ N(b,
σv√∑N

t=1(u(t)− ū)2
)

with the distribution (4.28). It holds that

N∑
t=1

(u(t)− ū)2 ≤
N∑
t=1

(u(t))2

and therefore the variance of b̂ obtained via (4.50) and corresponding to T2a(x),
is greater than the variance of b̂ corresponding to T2(x). This explains the
difference between the power functions β1a(b) and β2a(b).

4.8.2 A Theoretical Study

To find a theoretical motivation to why the estimate principle is better than
the prediction error principle, we will here study a somewhat simplified case.
Consider the model (4.47) but assume that b ≥ 0 and the no fault case corre-
sponds to b = b0 = 0. We will consider two test quantities: T1(x) from (4.45)
and T ′′2 (x) which we define as

T ′′2 (x) =
√
Np b̂ =

√
Np (UTU)−1UTY

Power functions for corresponding tests are plotted in Figure 4.11. The result
is the same as in Figure 4.8, i.e. the test quantity based on the estimate prin-
ciple, i.e. T ′′2 (x), is better than the test quantity T1(x) based on the prediction
principle.

Now consider the following theorem (Casella and Berger, 1990):

Theorem 4.1 If f(x|θ) is the joint probability density function of X, and q(t|θ)
is the probability density function of T (X), then T (X) is a sufficient statistic
for θ if, and only if, for every x in the sample space, the ratio f(x|θ)/q(T (x)|θ)
is constant as a function of θ (i.e. independent of θ).
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Figure 4.11: The power functions β1(b) (solid) and β2(b) (dashed) for two tests
based on T1(x) and T ′′2 (x). The result for 9 different input signals u is shown.

With this theorem it can be shown that T ′′2 (x), is a sufficient statistic for b.
Next consider the following theorem (Casella and Berger, 1990):

Theorem 4.2 Consider testing H0 : θ ∈ Θ0 versus H1 : θ ∈ ΘC
0 . Suppose a test

based on a sufficient statistic T with rejection region S, satisfies the following
three conditions:

a. The test is a level α test.

b. There exists a θ0 ∈ Θ0 such that P (T ∈ S | θ0) = α.

c. Let g(t|θ) denote the probability density function of T . For the same θ0
as in (b), and for each θ′ ∈ ΘC

0 , there exists a k′ ≥ 0 such that

t ∈ S if g(t|θ′) > k′g(t|θ0) and t ∈ SC if g(t|θ′) < k′g(t|θ0)

Then this test is a UMP2 level α test of H0 versus H1.

The conditions (a) and (b) are trivially fulfilled and to show condition (c), we
must show that

∀t > J . g(t|b) > g(J |b)
g(J |0)

g(t|0) (4.52)

2A test with power function β(θ) is a UMP (uniformly most powerful) level α test if there
exist no other test with the same significance level α and with a power function β′(θ) such
that β′(θ) > β′(θ) for any θ.
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where J is the threshold of the test, and g(t|b) is the probability density function
of T ′′2 (x) ∼ N(

√
Np b, σv). It is easy to realize that (4.52) holds and therefore

we have the result that a hypothesis test based on T ′′2 (x) is a UMP test. This
means that there can not exist any test quantity better than T ′′2 (x) for this
hypothesis test.

4.8.3 Concluding Remarks

Even though the discussion has mainly focused on specific examples, we are able
to summarize the following conclusions:

• Test quantities based on estimates can have very good performance for
the fault mode corresponding to the estimated parameter.

• For other fault modes, the performance might be quite bad and also highly
dependent on the input signal.

• Decoupling degrades the performance of both the prediction error principle
and the estimate principle but the relation that the estimate principle is
better than the prediction error principle still holds.

4.9 Conclusions

In Chapters 2 to 4, a new general framework for fault diagnosis has been pro-
posed. We have seen that we do not need separate frameworks for statistical vs
deterministical approaches to fault diagnosis. Both views are contained in the
general framework presented here.

The framework is also general with respect to what types of faults that can
be handled. Many papers in the field of fault diagnosis discuss decoupling of
faults modeled as additive arbitrary signals. It is realized that the principle of
decoupling has in this chapter been generalized to include decoupling of faults
modeled in arbitrary ways, e.g. as deviations of constant parameters or abrupt
changes of parameters.

For the design of test quantities, we have identified three different principles:
the prediction, the likelihood, and the estimate principle. For all three principles
we have discussed how robustness can be achieved by means of normalization.
The known techniques adaptive threshold and likelihood ratio tests are in fact
shown to be special cases of normalization. The importance of normalization,
when using the estimate principle, has been emphasized.

Statistics and decision theory is used to define measures to evaluate hypoth-
esis tests and test quantities. We have also discussed how these measures can be
used to select the threshold and the sets S0 and S1 of a hypothesis test. Finally
we applied the evaluation measures to compare the prediction and the estimate
principle in some cases. The conclusion was that the estimate principle is, in at
least one common case, superior to the prediction principle.



Chapter 5

Applications to an
Automotive Engine

In the field of automotive engines, environmentally based legislative regula-
tions such as OBDII (On-Board Diagnostics II) (California’s OBD-II Regula-
tion, 1993) and EOBD (European On-Board Diagnostics) specifies hard re-
quirements on the performance of the diagnosis system. This makes the area
a challenging application for model-based fault-diagnosis. Other reasons for
incorporating diagnosis in vehicles are repairability, availability and vehicle pro-
tection. The importance of diagnosis in the automotive engine application is
highlighted by the fact that up to 50% of the code in present engine-management
systems are dedicated to diagnosis.

Model-based diagnosis for automotive engines, has been studied in several
works, e.g. (Gertler, Costin, Fang, Hira, Kowalalczuk, Kunwer and Mona-
jemy, 1995; Krishnaswami, Luh and Rizzoni, 1994; Nyberg and Nielsen, 1997b).
Although the techniques in these papers are not fully developed, it is obvious
that there is much to gain by using a model based approach to diagnosis of
automotive engines.

In this chapter, the framework, theory, and methods from the previous chap-
ters are demonstrated on a real application: the air-intake system of a turbo-
charged automotive engine. Design of diagnosis systems is discussed, as well as
theoretical issues and results of practical experiments. First, the modeling work
is presented in Sections 5.1 to 5.3. Then diagnosis of leakage is discussed in Sec-
tions 5.4 and 5.5. Finally, diagnosis of leakage and sensor faults is investigated
in Sections 5.6 to 5.8.

Diagnosis of leakage is an important problem. This is because a leakage can
cause increased emissions and drivability problems. If the engine is equipped
with an air-mass flow sensor, a leakage will result in that this sensor does not
correctly measure the amount of air entering the combustion. This in turn will
result in a deviation in the air-fuel ratio. A deviation in the air-fuel ratio is
serious because it causes the emissions to increase since the catalyst becomes
less efficient. Also misfires can occur because of a too lean or rich mixture.

101
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In addition, drivability will suffer and especially in turbo-charged engines, a
leakage will result in loss of horsepowers.

The above requirements imply that it is important to detect leaks with an
area as small as some square millimeters. For the engine management system,
it is also important to get an estimate of the size of the leakage. This is to
know what appropriate action that should be taken, e.g. give a warning to the
driver. Additionally if the size of the leak is known, it is possible to reconfigure
the control algorithm so that at least the increase in emissions, caused by the
leak, will be small. We will see that the diagnosis principles developed in this
chapter fulfills these requirements.

As said above, we will also discuss the diagnosis of sensors connected to the
air-intake system. For the same reasons as in the leakage case, this is also an
important diagnosis problem. Faults in the sensors degrade the performance of
the engine control system, which in turn is likely to cause increased emissions
and drivability problems. One of the interests is to investigate how to diagnose
both leakage and different types of sensor faults at the same time. For instance,
a leakage can easily be mis-interpreted as a air-mass flow sensor fault if not extra
care is taken. The presented solution to this problem is a good illustration of
the usefulness of the general principle of structured hypothesis tests and related
theory.

Note that the purpose of this chapter is not to present complete and good
designs of diagnosis systems, but rather to exemplify the techniques presented
in the previous chapters in a real application.

0 200 400 600 800 1000 1200
500

1000

1500

2000

2500

3000

sp
ee

d 
[r

pm
]

time [s]

0 200 400 600 800 1000 1200
20

40

60

80

100

pm
an

 [k
P

a]

time [s]

Figure 5.1: Engine speed and manifold pressure during the FTP-75 test-cycle
for a car with automatic transmission.
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5.1 Experimental Setup

All experiments in this chapter were performed on a 4 cylinder, 2.3 liter, turbo-
charged, spark-ignited SAAB production engine. It is constructed for the SAAB
9-5 model. The engine is mounted in a test bench together with a Schenck
“DYNAS NT 85” AC dynamometer. Both during the model building and the
validation, the engine was run according to Phase I+II of the FTP-75 test-cycle.
The data for the test cycle had first been collected on a car with automatic
transmission. This resulted in the engine speed and manifold pressure shown in
Figure 5.1. In addition, static tests were performed in 172 different operating
points defined by engine speed and manifold pressure.

Turbo

Intercooler

mth mcyl

manifold leak

boost leak

Pboost
Pman

α

m

n

T

Figure 5.2: The turbo-charged engine. Air-mass flows that are discussed in the
text are marked with gray arrows.

A schematic picture of the air-intake system is shown in Figure 5.2. Ambient
air enters the system and an air-mass flow sensor measures the air-mass flow
rate m. Next, the air passes the compressor side of the turbo-charger and then
the intercooler. This results in a boost pressure pb and a temperature T that are
both higher than the ambient pressure and temperature respectively. Next, the
air passes the throttle and the flow mth is dependant on pb, T , the throttle angle
α, and the manifold pressure pm. Finally the air leaves the manifold and enters
the cylinder. This flow mcyl is dependant on pm and the engine speed n. Also
shown in the figure are the two possible leaks: the boost leak somewhere between
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the air-mass flow sensor and the throttle, and the manifold leak somewhere in
the manifold.

Leaks were applied by using exchangeable bolts. One bolt were mounted in
the wall of the manifold and the other in the wall of the air tube 20 cm in front
of the throttle. The exchangeable bolts had drilled holes of different diameters
ranging from 1 mm to 8 mm.

Data were collected by a DAQ-card mounted in a standard PC. All data
were filtered with a LP-filter with a cutoff frequency of 2 Hz.

5.2 Model Construction - Fault Free Case

For the purpose of fault diagnosis, a simple and accurate model is desirable. In
this work, the air-intake system is modeled by a mean value model (Hendricks,
1990). This means that no within-cycle variations are covered by the model. The
automotive engine is a non-linear plant and it has been indicated in a pre-study
that diagnosis based on a linear model is not sufficient for the engine application.
This has also been concluded by other authors (Gertler, Costin, Fang, Hira,
Kowalczuk and Luo, 1991; Krishnaswami et al., 1994). This motivates the
choice of a non-linear model in this work.

A model is first developed for the case when no leakage is present. Because
there is no need for extremely fast detection of leakage, it is for the model
sufficient to consider only static relations. The model for the fault-free air-
intake system is described by the following equations

m = mth (5.1a)
mth = mcyl (5.1b)

These equations say that the measured intake air-flow is equal to the air-flow
past the throttle which in turn is equal to the air-flow into the cylinders. The
models for the air-flows mth and mcyl are presented next.

5.2.1 Model of Air Flow Past the Throttle

The air-mass flow past the throttle mth is described well by the formula for flow
through a restriction (Heywood, 1992) (Taylor, 1994):

mth =
CdAthpboost√

RT
Ψ(

pman
pboost

) (5.2)
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where Ath is the throttle plate open area, Cd the discharge coefficient, and
Ψ( pmanpboost

) is

Ψ(
pman
pboost

) =



√
2κ
κ−1

{(
pman
pboost

) 2
κ −

(
pman
pboost

) κ+1
κ

}
if

(
pman
pboost

)
≥

(
2

κ+1

) κ
κ−1

√
κ

(
2

κ+1

) κ+1
κ−1

otherwise

By defining the coefficient Kth as

Kth =
CdAth√

R
(5.3)

and

β(T, pboost, pman) =
pboost√
T

Ψ(
pman
pboost

)

the flow model (5.2) can be rewritten as

mth = Kthβ(T, pboost, pman) (5.4)

From m-, T -, pboost-, and pman-data collected during the FTP-75 test-cycle, the
Kth coefficient can for each sample be computed as

Kth =
m

β(T, pboost, pman)

if dynamics is neglected and therefore mth = m. This calculated Kth coefficient
is plotted against throttle angle in Figure 5.3. It is obvious that the throttle
angle by its own describes the Kth coefficient well. From Equation 5.3, we see
that the Kth coefficient is dependant on the throttle plate open area Ath. A
physical model of this area is

Ath = A1(1 − cos(a0α+ a1)) +A0 (5.5)

where A1 is the area that is covered by the throttle plate when the throttle is
closed and A0 is the leak area present even though the throttle is closed. The
parameters a0 and a1 are a compensation for that the actual measured throttle
angle may be scaled and biased because of production tolerances.
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If values of CdA0/
√
R, CdA1/

√
R, a0, and a1 are identified from the data

shown in Figure 5.3, this results in a model of the Kth coefficient as function of
the throttle angle α. In Figure 5.3, this model is plotted as a dashed line and
we can see that the match to measured data is almost perfect except for some
outliers for low throttle angles. It should be noted the these outliers are very few
compared to the total amount of data. The reason for the outliers are probably
unmodeled dynamic effects. The good fit obtained means that it is possible
to assume that the discharge coefficient Cd is constant and independent of the
throttle angle. In conclusion, the Kth coefficient together with equation (5.4)
defines the model of the air-mass flow past the throttle.
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Figure 5.3: The Kth coefficient for different throttle angles. It is obvious that
the throttle angle by its own describes the Kth coefficient well.

5.2.2 Model of Air Flow into Cylinders

There are no accurate and simple physical models describing the flow from the
manifold into the cylinders. Therefore a black box approach is chosen. From the
mapping data, the air-mass flow is, in Figure 5.4, plotted against engine speed
and manifold pressure. The preliminary model of the air flow into the cylinder
mcyl consists of a linear interpolation of the data in Figure 5.4. It is assumed
that the manifold temperature variation do not affect the flow. In the indoor
experimental setup used, with the engine operating at approximately constant
temperature, there was no way to validate this assumption.
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Figure 5.4: The air flow out from the manifold into the cylinders as a function
of engine speed and manifold pressure.

When the engine operating point, defined by engine speed and manifold
pressure, leaves the range where mapping data is available, it is not possible
to do interpolation. Because the mapping range is chosen to match normal
operating, this happens rarely, but when it happens, the model will produce no
output data.

For the construction of the final model, also data from the test cycle were
used. To incorporate these data in the model, a parametric model including
four fitting parameters is introduced:

m̂cyl = b0 interpolate(n, pman) + b1n+ b2pman + b3 (5.6)

The parameters bi were found by using the least-square method. The benefit
with this approach, i.e. to use of interpolation in combination with a parametric
model, is that it is possible to include both test-cycle data and mapping data
when building the model. In addition, the parametric model provides for a
straightforward way to adapt the model for process variations and individual-
to-individual variations. Also the throttle model, described in the previous
section, with its four parameters, has this feature.

5.2.3 Model Validation

The models (5.4) of mth and (5.6) of mcyl are validated during the FTP-75
test-cycle. Data were chosen from another test run, so the modeling data and
the validation data were not the same. The upper plot of Figure 5.5 shows the
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measured air flow m and the estimated air flow, for the two models respectively.
Only one curve is seen, which means that the estimated air flow closely follows
the measured. In the middle and lower plot, the difference between measured
and estimated air flow are shown for both models respectively. It is again seen
that both models manage to estimate the measured air flow well.
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Figure 5.5: The upper plot shows measured and estimated air-mass flow. The
other plots show the model error for mth and mcyl respectively.

5.3 Modeling Leaks

When a leak occurs, air will flow out of or into the air-intake system depending
on the air pressure compared to ambient pressure. By using the measured air
flowm, and the values m̂th and m̂cyl from the models (5.4) and (5.6) respectively,
the leakage air-flow can be estimated as

∆mboostLeak = m− m̂th
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for boost leakage and

∆mmanLeak = m̂th − m̂cyl

for manifold leakage.
Figure 5.6 shows ∆mboost and ∆mman for a case where a 6.5 mm boost leak

is present. In the lower plot it can be seen that ∆mman is almost zero, meaning
that no leak air is added or lost in the manifold. However in the upper plot it is
seen that measured air flow deviates from the estimate m̂th, which means that
air is lost somewhere between the air-mass flow sensor and the throttle. In the
lower plot, data are missing around time 200 s. The reason for this is that the
interpolation involved in calculating m̂cyl fails because the operating point of
the engine leaves the range of the map shown in Figure 5.4.
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Figure 5.6: The upper plot shows ∆mboost and the lower plot ∆mman when a
6.5 mm boost leak is present.

Thus by looking at the level and also the variance of ∆mboost and ∆mman,
it is possible to roughly detect when a leak is present. However to accurately
estimate the size of the leak becomes difficult. To obtain high performance in
terms of detecting leaks accurately a more sophisticated approach is needed; we
need to model the air flow through the leaks.
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5.3.1 Model of Boost Leaks

In the engine used in this work, the boost pressure is during normal operation
always higher than ambient pressure. This means that the air flow through a
boost leak will always be in the direction out from the air tube. This air flow
is modeled as an air flow through a restriction, like the model for flow past the
throttle, i.e. (5.2). The flow is dependent on the ambient pressure pamb which is
known because the engine is also equipped with a pressure sensor for measuring
ambient pressure. The equation describing this air flow is

mboostLeak = kbhb(pb) = kb
pb√
T

Ψ(
pamb
pb

) (5.7)

The parameter kb is proportional to the leakage area and therefore denoted
equivalent area.

The model for the whole air-intake system with a boost leak present is ob-
tained by replacing Equation (5.1a) with

m = mth +mboostLeak

5.3.2 Model of Manifold Leaks

During most part of the operation of the engine, the manifold pressure is below
ambient pressure. Therefore a manifold leak will mostly result in an air flow in
the direction into the manifold. This flow is modeled in the same way as the
model of flow through boost leaks, i.e.

mmanLeak = kmhm(pm) = km
pamb√
Tamb

Ψ(
pm
pamb

) (5.8)

The model for the whole air-intake system with manifold leak present is
obtained by replacing Equation (5.1b) with

mth +mmanLeak = mcyl (5.9)

In the case the manifold pressure is higher than ambient pressure, which can
occur because of the turbo-charger, the leak air-flow will be in the opposite
direction. This means that the term mmanLeak in (5.9) will change sign and
pamb and pm in (5.8) are interchanged.

5.3.3 Validation of Leak Flow Models

For the validation of the leakage models, different leaks were applied to the
engine and the FTP-75 test-cycle was used. First we investigate if the leakage
model is able to correctly predict the leakage air-flow as a function of the pressure
difference. Then the dependence on the leakage area is investigated.
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Dependence on Pressure Difference

First “well behaved” leaks with known area, according to Section 5.1, were
applied. The leaks ranged from 1 to 8 mm in diameter.

In Figure 5.7, a boost leak with 5 mm diameter, i.e. 19.6 mm2, has been
applied, and data collected during a test cycle have been used to calculate
∆mboost and ∆mman. In the upper plot, estimated air flow through the boost
leak ∆mboost is plotted against pboost. In the lower plot, estimated air flow
through the manifold leak ∆mman is plotted against pman. It is seen in the
upper plot that for boost pressures close to ambient pressure (100 kPa), the
estimated air flow through the leak is around zero. For higher boost pressures,
the leak air-flow increases. The estimated air flow through the manifold leak is
around zero for all manifold pressures.
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Figure 5.7: Estimated air flow through boost leak (upper plot) and manifold
leak (lower plot) when a 5 mm (diameter) boost leak is present.

Correspondingly for a manifold leak with 5 mm diameter, i.e. 19.6 mm2,
Figure 5.8 shows similar data. This time, it is the estimated flow through the
boost leak that is around zero and the estimated flow through the manifold leak
that differs from zero. For the data collected in the test cycle, the manifold
pressure is always less than ambient pressure. This results in a ∆mman which
is always positive.

From Figures 5.7 and 5.8, it can be concluded that it is, from the estimations
∆mboost and ∆mman, possible to conclude if there is a leak and if the leak is
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Figure 5.8: Estimated air flow through boost leak (upper plot) and manifold
leak (lower plot) when a 5 mm (diameter) manifold leak is present.

before or after the throttle. Also included in Figures 5.7 and 5.8 are the outputs
from the models (5.7) and (5.8) of the leak air-flow. These are represented by
the dashed lines. For each case, the coefficients kb and km have been obtained by
using the least-square method to fit the curves to the data in the plots. Except
for some outliers, which are very few compared to the total amount of data, it
is seen that the estimated leak air-flows are described well by the models (5.7)
and (5.8).

To validate this principle in the case of more realistic leaks, an experiment
was performed in which the tube between the intercooler and the throttle was
loosened at the throttle side. This had the effect that air leaked out from the
system just before the throttle. In Figure 5.9 the estimated leak air-flows are
again plotted against boost and manifold pressure respectively. It can be seen
that also for this “realistic” leak, the model (5.7) is able to describe the leak
air-flow well.

Dependence on Leakage Area

The coefficients kb and km are, according to the leak flow models, proportional
to the leakage area. This is validated in the following experiment. The kb and
km coefficients were obtained by fitting the leak flow models to measurement
data for leaks with six different diameters: 1, 2, 3.5, 5, 6.5, and 8 mm. For the



Section 5.3. Modeling Leaks 113

95 100 105 110 115 120
−2

0

2

4

6

de
lta

 b
oo

st
 a

ir 
[g

/s
]

pboost [kPa]

20 30 40 50 60 70 80 90 100
−2

0

2

4

6

de
lta

 m
an

ifo
ld

 a
ir 

[g
/s

]

pman [kPa]

Figure 5.9: Estimated air flow through boost leak (upper plot) and manifold
leak (lower plot) when a realistic boost leak is present.

manifold leak it was only possible to use the first five diameters, because the
air-fuel mixture became too lean for the 8 mm hole.

The result of this study is shown in Figure 5.10 in which the estimated kb
and km coefficients are plotted against leakage area. The estimated kb coefficient
is plotted as solid lines and the estimated km coefficient is plotted as dashed
lines. Both boost leaks and manifold leaks were studied. The experiments
with boost leaks are marked with circles and the experiments with manifold
leaks are marked with x-marks. It is seen in the figure that the kb and km
coefficient are close to linearly dependant on the leakage area. Also seen is
that the coefficient, that should be zero for each leakage case, is close to zero
for both boost and manifold leaks. The estimations of kb for the case when
a boost leak is present, and km for the case when a manifold leak is present,
differs by a factor. One explanation is that because the bolts in these two cases,
were mounted differently, the discharge coefficient were different even though
the leakage area were equal.

For the “realistic” leak which were illustrated by Figure 5.9, the kb coefficient
is estimated to a value kb = 0.26. In Figure 5.10 we can see that this corresponds
to an equivalent area of 34 mm2.
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Figure 5.10: Estimated kb coefficient (solid) and km coefficient (dashed), vs
leakage area when boost leak is present (circles) and when manifold leak is
present (x-marks).

5.4 Diagnosing Leaks

In the following sections, diagnosis of the air-intake system of the automotive
engine, is discussed. First we will consider diagnosis of leakage only. Later in
Section 5.6, the design of a diagnosis system capable of also diagnosing different
kinds of sensor faults will be discussed. The discussion will be based on the
framework and theory developed in the previous chapters. Especially we will
use structured hypothesis tests which was described in Chapter 3. The objective
is not to present a complete design but rather to give some examples that
illustrates solutions for some typical cases.

Only single fault-modes are considered and for the diagnosis of leaks, we
have three system fault-modes:

NF No Fault
BL Boost Leak
ML Manifold Leak

Associated with these three fault modes, we have the modelsMNF ,MBL(kb),
andMML(km). This means that we have implicitly assumed two components:
the boost pipe that will be indexed by b, and the manifold that will be indexed
by m.
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The model MNF is obtained by using the fault-free model described in
Section 5.2 in combination with

ms =m (5.10a)
pb,s =pb (5.10b)
pm,s =pm (5.10c)
αs =α (5.10d)
ns =n (5.10e)

where the index s denotes that for example ms is the sensor signal in contrast
to m which is the physical quantity. The identities (5.10) corresponds to the
assumption that all sensors are fault-free. The resulting model MNF can be
written as

m = f(pb,s, αs, pm,s) (5.11a)
f(pb,s, αs, pm,s) = g(pm,s, ns) (5.11b)

where the function g(pm,s, ns) describes the air-flowmcyl in accordance with (5.6)
and the function f(pb,s, αs, pm,s) describes the air-flow mth in accordance with
(5.2) and (5.5).

The modelMBL(kb) is obtained by using the model described in Section 5.3.1
together with the identities (5.10). The scalar parameter kb defines the equiv-
alent area of the leakage and is in the model MBL(kb) constrained by kb ∈
DbBL = ]0, 0.5]. This means that the model MBL(kb) can be written as

m− kbhb(pb) = f(pb,s, αs, pm,s) (5.12a)
f(pb,s, αs, pm,s) = g(pm,s, ns) (5.12b)

where the function hb(pb) describes the air-flow through the boost leakage and
was defined in (5.7).

The model MML(km) is obtained in analogy with MBL(kb). The scalar
parameter km is in the model MML(km) constrained by km ∈ DmML = ]0, 0.5].

From the above definitions of models, it is clear that the following relations
between the fault-modes hold:

NF 4∗ BL (5.13a)
NF 4∗ ML (5.13b)

The knowledge of these relations will be used when discussing the construction
of the hypothesis tests which is done next.

5.4.1 Hypothesis Tests

To develop the actual hypothesis tests, we first need to decide the set of hypothe-
ses to test. With the relations (5.13) in mind, we know from Section 3.2.1 that
the only possible setsMk are {NF}, {NF,BL}, {NF,ML}, and {NF,BL,ML}.
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Of these four possibilities, the first three are meaningful but we choose to use
only two here:

MBL ={NF,BL}
MML ={NF,ML}

These two sets means that there are two hypothesis tests and as seen, we have
chosen to index the hypothesis tests with BL and ML. The two hypothesis
tests δBL and δML become

H0
BL : Fp ∈MBL = {NF,BL} H1

BL : Fp ∈MC
BL = {ML}

H0
ML : Fp ∈MML = {NF,ML} H1

ML : Fp ∈MC
ML = {BL}

Next we will discuss the design of the test quantities. Only the prediction
principle and the estimate principle will be discussed. In both cases we assume
that the data x are all the measured sensor values and have been collected in a
time window of length N .

Prediction Principle

As described in Section 4.2, the prediction principle is based on a comparison of
signals and/or predictions of signals. It is straightforward to use this principle
based on the models MBL(kb) andMML(km) described above.

Consider first the construction of the test quantity T ppBL(x). (The index pp
denotes “prediction principle” to distinguish this test quantity from the one
constructed in the next section.) This test quantity should be a measure of the
validity of the model (5.12). This can in a first step be achieved in accordance
with the formulas (4.3) and (4.5) as follows:

T pp
′

BL(x) = min
kb∈Dm

VBL(kb, x) =

= min
kb∈Dm

1
N

N∑
t=1

(
ms − kbhb(pb)− f(pb,s, αs, pm,s)

)2
+

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns)

)2 (5.14)

To save space, the time-argument of all variables have been skipped. The ex-
pression (5.14) consists of two terms. Ideally, the first of these terms will always
be zero for all possible fault modes. However, in reality the first term is non-
zero and acts as an unknown disturbance in the test quantity T pp

′
BL(x). Since

the first term only acts as a disturbance, it can be skipped which results in the
test quantity

T ppBL(x) =
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns)

)2 (5.15)
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Similarly, the test quantity TBL(x) is constructed as

T ppML(x) =
1
N

N∑
t=1

(
ms − f(pb,s, αs, pm,s)

)2 (5.16)

Also here we have skipped the term that is close to zero all the time. The only
drawback with this approach, to skip one of the terms, is when an unpredicted
fault occurs, i.e. a fault not belonging to any of the fault modes BL or ML.
Then it can happen that this fault is mistaken to belong to BL or ML.

In conclusion, the test quantity T ppBL(x) has been constructed so that the
fault modes BL and NF are decoupled, and T ppML(x) has been constructed so
that the fault modes ML and NF are decoupled. This fulfills the requirements
of the two hypothesis tests δBL and δML specified above.

Estimate Principle

Using the estimate principle in accordance with Section 4.4, we base our test
quantities on estimates of the equivalent areas kb and km. First we discuss
the construction of the test quantity T epML(x). This test quantity is formed in
accordance with the formula (4.26):

T ep
′

ML(x) = ‖k̂b − 0‖ = k̂b = arg
kb

min
kb∈Dm,km∈Db

V1([km, kb], x) =

= arg
kb

min
kb∈Dm,km∈Db

1
N

N∑
t=1

(
ms − kbhb(pb)− f(pb,s, αs, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns) + kmhm(pm)

)2 =∗

=∗ arg min
kb∈Db

1
N

N∑
t=1

(
ms − kbhb(pb)− f(pb,s, αs, pm,s)

)2 = arg min
kb∈Db

V2(kb, x)

Note that the measure ‖·‖ is here defined as the identity function. The function
V1([km, kb], x) is a model validity measure for the modelM([km, kb]). It is here
trivially derived in analogy with TBL(x) and TML(x) (which are also model
validity measures) from the previous section. The equality marked =∗ follows
from the fact that the coefficient kb is only present in one of the terms of
V1([km, kb], x).

The minimization of V2(kb, x) is a linear regression problem which means
that the least-square technique can be used. This results in an estimate

k̂b = arg min
kb∈DBL

V2(kb, x) = (ϕTb ϕb)
−1ϕTb Yb (5.17)

where

ϕb =

hb(pb,s(t1))...
hb(pb,s(tN ))

 Yb =

 f(ms(t1)− pb,s(t1), αs(t1), pm,s(t1))
...

f(ms(tN )− pb,s(tN ), αs(tN ), pm,s(tN ))
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The test quantity T ep
′

BL, i.e. the estimate k̂m, is formed in the same way with
corresponding matrices ϕm and Ym.

From Section 4.5.1, we know that we should use normalization to make the
significance level of the hypothesis tests independent of the input signals. With
normalization, the two test quantities T epBL(x) and T epML(x) become

T epBL(x) =
√
ϕTmϕmT

ep′
BL(x) =

√
ϕTmϕmk̂m (5.18a)

T epML(x) =
√
ϕTb ϕbT

ep′
ML(x) =

√
ϕTb ϕbk̂b (5.18b)

As in the previous section, test quantities T epBL(x) and T epML(x) have been
constructed and decoupling has been achieved in accordance with the specifica-
tions of the two hypothesis tests δBL and δML.

5.4.2 A Comparison Between the Prediction Principle and
the Estimate Principle

The diagnosis problem investigated here is in principle the same as the one
investigated in Section 4.8.2. There we saw that the estimate principle gives
the best possible test quantity. This means that the test quantities T epBL(x)
and T epML(x) given in (5.18) should be better than T ppBL(x) and T ppML(x) given
in (5.15) and (5.16) respectively.

The comparison of the performance of the two types of test quantities will be
based on the principles discussed in Section 4.6.2. To compare T epBL(x) against
T ppBL(x), we will construct two hypothesis tests δepBL and δppBL. To compare
T epML(x) against T ppML(x), we will construct two hypothesis tests δepML and δppML.

To make the comparison, we need to obtain the power function for all four
tests. In this situation, where there is no knowledge or assumptions about the
model errors or the measurement errors, a good solution is to use the method
based on measurements on the real process. In accordance with the proce-
dure in Section 4.6.1, only a limited number of leakage areas are studied, i.e.
corresponding to 0, 1, 2, and 3.5 mm diameter. To estimate the probability
density function in this case is difficult because of the large amount of data that
would be needed. Only 24 independent data sets were used for the analyses and
therefore a simpler and less accurate approach has to be chosen.

Both boost leakage and manifold leakage were studied. The results of these
studies are shown in Figures 5.11 to 5.14. Consider first manifold leakage and
Figure 5.11. The x-axis represents the different leakage areas corresponding to
0, 1, 2, and 3.5 mm diameter. For each leakage area, the test quantities T epBL(x)
and T epML(x) were calculated for each of the 24 data sets. The values of T epBL(x)
and T epML(x) are indicated with “x” and “o” respectively. To make the plot
more clear, all “x”:s have been moved slightly to the right. For each leakage
area, also the mean and the standard deviation are calculated and shown as
horizontal bars. The middle bar is the mean and the upper and lower bars are
two times the standard deviation.
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Figure 5.11: The test quantities T epBL(x) (x-marks) and T epML(x) (circles), based
on the estimate principle, for different manifold-leakage areas.
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Figure 5.12: The test quantities T ppBL(x) (x-marks) and T ppML(x) (circles), based
on the prediction principle, for different manifold-leakage areas.
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Figure 5.13: The test quantities T epBL(x) (x-marks) and T epML(x) (circles), based
on the estimate principle, for different boost-leakage areas.
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Figure 5.14: The test quantities T ppBL(x) (x-marks) and T ppML(x) (circles), based
on the prediction principle, for different boost-leakage areas.
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According to Section 4.6.2, thresholds need to be chosen such that the signifi-
cance level in two compared hypothesis tests becomes equal. Since we don’t have
the probability density function, this can not achieved. Instead, each threshold
is chosen as the maximum value of the corresponding calculated test quantity
in the fault-free case. Consider again Figure 5.11. The maximum values of the
test quantities T epBL(x) and T epML(x) for the fault-free case, i.e. leakage area 0,
are marked by the dashed and solid lines respectively. Similarly, one can see
how the thresholds for the test quantities T ppBL(x) and T ppML(x) are chosen by
studying Figure 5.14.

The power function is the probability to reject H0, i.e. the probability that
the test quantity is above the threshold. As was said above, we don’t have
the probability density function, which means that exact values of the power
function can not be calculated. However, by studying Figure 5.11 and looking
at the mean and standard deviation values, we can quite easily get a coarse
estimate of the probability that the test quantity is above the threshold. For
example, it is obvious that the power function βepBL([0 km]), corresponding to
T epBL(x), will increase as the leakage area increases. Also, we can conclude that
the power function for the leakage with an area of 3.1 mm2 is large, which
means that it should be no problem to detect a manifold leakage with this
area. Further, the power function for the leakage with an area of 0.8 mm2, is
probably quite low, which means that it is hard to distinguish this leakage from
the no-leakage case.

Now return to the comparison of test quantities. First compare Figure 5.11,
showing the test quantities T epBL(x) and T epML(x), and Figure 5.12, showing the
test quantities T epBL(x) and T epML(x). We see that the test quantity T epBL(x)
is slightly more above the threshold than T ppBL(x). This means that the power
function βepBL([0 km]) is very likely to be larger than βppBL([0 km]). In other words,
for the manifold leakage, the estimate principle is better than the prediction
principle.

Next compare Figure 5.13 and Figure 5.14. From these figures it can be
concluded that the power functions βepML([kb 0]) and βppML([kb 0]), along the
“boost-leakage axis”, are not as large as βepBL([0 km]) and βppBL([0 km]), along
the “manifold-leakage axis”. However, it is obvious that βepML([kb 0]) is larger
than βppML([kb 0]). Consider for example the leakage area 3.1 mm2. For this case
βppML([kb 0]) should be close to zero and βepML([kb 0]) is probably larger than 0.5.
Again we can conclude that the estimate principle is better than the prediction
principle.

Discussion

Even though we have not been able to estimate density functions, we can from
this study conclude that, of the two principles studied, the best principle for di-
agnosing leakage is the estimate principle. This is no surprise since we already in
Section 4.8, in different similar situations, drew the same conclusion. However,
in for example the theoretical study in Section 4.8.2, we used the assumption of
independently and identically Gaussian distributed noise. This assumption do
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not hold in the real case investigated in this section, but nevertheless it is obvi-
ous that the conclusion that the estimate principle is better than the prediction
principle, still holds.

In production cars, a principle similar to the prediction principle is often
used, e.g. see (Air Leakage Detector for IC Engine, 1994). A reason for this
is that models of the leaks are not required (see the test quantities described
by (5.15) and (5.16)). It is interesting to note that the technique developed here,
i.e. to use models of the leaks and then estimate the leakage area, performs
better than the solution common in production cars. This method is patent
pending by SAAB Automobile. With this better solution, it is possible to make
the legislative regulations harder, which means that all car manufacturer are
forced to built diagnosis systems with better leakage detection performance. In
the end this hopefully means that lower fleet emissions can be obtained.

5.5 Comparison of Different Fault Models for

Leaks

So far we have modeled the leaks as deviations of constant parameters from their
nominal values. Here we will extend the discussion and consider the following
three different fault models from Section 2.1.4:

• The leakage area is assumed to be constant (as before).

• The leakage area is assumed to be changing slowly. That is, the leakage
area is interpreted as a signal with low bandwidth.

• The leakage-area is assumed to be changing once and abruptly, i.e. the
abrupt change model is assumed.

It can be argued that each of these fault models is good in some sense.
Although not further discussed here, it is also possible to assume that the

leakage area is piecewise constant. Another possibility is for instance to use a
combination of the low-bandwidth assumption together with the abrupt-change
assumption, i.e. the leakage area is mainly of low bandwidth but contains abrupt
jumps.

Next we will discuss the estimate and the prediction principle separately. In
all cases, we assume that we can use all data generated up to the time-point
the diagnosis is performed. This means that the time window is chosen to be
growing (or infinite). Other choices, e.g. a sliding fixed-length time-window,
are also possible.

5.5.1 Using the Estimate Principle

We will only discuss a test quantity based on the estimate k̂b. However, all
results are applicable also for a test quantity based on the estimate k̂m.

For the constant model, the least square algorithm can be used, in accordance
with (5.17). The estimate k̂b will in this case be the average leakage area over
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all time. However when a leakage occurs, it will take a long time before this
average grows. A better choice is to weight recent data more. A common choice
is to obtain k̂b, at the time t, as follows:

k̂b = arg min
kb∈DBL

1
N

t∑
k=0

λt−k
(
ms(k)− kbhb(pb(k))− f(pb,s(k), αs(k), pm,s(k))

)2

(5.19)

Depending on the choice of λ, convergence time is traded against accuracy. In
a recursive form, this is the RLS (Recursive Least Square) algorithm (Ljung,
1987). The test quantity TML(x) can then be chosen as

TML(x) = k̂b (5.20)

or possibly by also using some normalization.
Using the low-bandwidth model, i.e. the leakage area is assumed to be

changing slowly, the parameter describing the leakage becomes a function of
time, i.e. θb = kb(t). An estimate of kb(t) can be obtained by using for example
the RLS-algorithm in combination with (5.19). Since θ̂b = k̂b(t) is now a signal,
it is not obvious how to form the test quantity, i.e. how to choose the measure
‖ · ‖ in (4.26). One solution is however to choose the most recent value of k̂b(t)
and in that case, the test quantity becomes equivalent to (5.20).

Using the abrupt-change model, we need to estimate both the change time
tch and the leakage area kb, i.e. θb = [tch kb]. However, in contrast to the
approaches above, this is not a simple linear regression problem. The test
quantity can then simply be chosen as the estimate k̂b, possibly normalized.

Experimental Results

The performance of an estimate with a weighting of recent data more, in ac-
cordance with (5.19), was validated by experiments. As was said above, this
can correspond to the constant or the low-bandwidth model. The estimation
of kb and km are shown in Figures 5.15 and 5.16. Also for this experiment,
the FTP-75 test-cycle was used. After approximately 500 seconds, a leak was
applied suddenly. The most realistic fault model would therefore probably be
the abrupt-change model.

The upper plot in both figures shows the kb estimate as a function of time
and the lower plot, the km estimate as a function of time. It is seen that the
kb estimate in both figures have discontinuities. The reason is that the on-line
estimation of kb is applied only when the boost pressure is higher than 102
kPa. This is because for boost pressures close to ambient pressure, the air flow
through the boost leak is very small which means that the measurement data
will contain no or very little information about the value of the kb coefficient. If
also these data were used, the kb estimate would easily drift away from its real
value. In other words, the exclusion of data corresponding to boost pressures
lower than 102 kPa, is a primitive way of achieving robustness and should be
seen as an alternative to normalization.
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Figure 5.15: Estimation of the kb coefficient (upper plot) and km coefficient
(lower plot) when a 3.5 mm (diameter) manifold leak occurs at around t = 500 s.
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Figure 5.16: Estimation of the kb coefficient (upper plot) and km coefficient
(lower plot) when a 5 mm (diameter) boost leak occurs at around t = 500 s.
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In Figure 5.15, the leak is a 3.5 mm manifold leak and it can be seen that the
km estimate responds quickly when the leak occurs. Similarly in Figure 5.16,
we see how the kb estimate responds when a 5 mm boost leak occurs. In this
case the estimate converges more slowly. The reason is, as said above, that the
estimation is only active when the boost pressure is higher than 102 kPa.

From the clear responses shown in Figures 5.15 and 5.16, it is obvious that
test quantities based on the estimates k̂m and k̂b, will be quite good. Further, a
diagnosis system using these test quantities is likely to have highly satisfactory
performance.

5.5.2 Using the Prediction Principle

When discussing the prediction principle, we will assume that the test quantity is
on a form similar to (5.14). That is, the test quantity is a model validity measure
of the whole model and not only half the model as in (5.15). This means that
the calculation of the test quantity must include a parameter estimation, as is
seen in for example (5.14). We will discuss only the test quantity TBL(x), but
the results are valid also for TML(x).

As for the estimate principle, the use of a constant model without weighting
recent data more, will result in bad performance. This is actually the case for
the test quantity T pp

′
BL(x) defined by (5.14). When a leakage occurs, it takes a

long time before the estimate of kb becomes good. This means that, from the
moment the leakage occurs, to the moment kb becomes good, the test quantity
T pp

′
BL(x) will become large and the decoupling of the fault mode BL will be bad.

The underlying reason is of course that any leakage that occurs, in other words
a leakage that is not present all the time, does not match the model assumption
of constant leakage-size. As for the estimate principle, it is also possible to
weight recent data more. This would result in that the estimation more quickly
becomes good when a leakage occurs, which further implies improved decoupling
of the fault mode BL.

If instead a low-bandwidth model is used and also the occurred leakage
matches this fault model, then we can expect good results. This means that the
test quantity can be written as

TLPBL (x) = min
kb(t)∈LP

1
N

N∑
t=1

(
ms(t)−f(pb,s(t), αs(t), pm,s(t))−kb(t)hb(pb,s(t))

)2+

+
1
N

N∑
t=1

(
f(pb,s(t), αs(t), pm,s(t))− g(pm,s(t), ns(t))

)2 (5.21)

where LP is the set of low-bandwidth signals considered. To solve the opti-
mization involved in calculating (5.21) can be quite difficult. However, by using
the two-step approach from Section 4.2.1, the signal kb(t) can first be estimated
by using the RLS-algorithm based on (5.19). This was done in the experiments
reported below.
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If the leakage occurs abruptly, the test quantity based on the low-bandwidth
model will perform better than a test quantity based on the constant model.
However, the performance will still not be perfect. The reason is again that the
time-variant behavior of the leakage doesn’t match the fault model. To handle
the situation of abruptly changing leakage well, we need to use the abrupt-
change model. By using similar ideas as in Example 4.2, we can construct such
a test quantity as

T acBL(x) = min
tch,kb

1
tch − 1

tch−1∑
t=1

(
ms − f(pb,s, αs, pm,s)

)2 +

+
1

N − tch

N∑
t=tch

(
ms − f(pb,s, αs, pm,s)− kbhb(pb,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns)

)2

Again the two-step approach can be used when calculating this test quantity.
In the experiments reported below, the CUSUM algorithm (Basseville and Niki-
forov, 1993) was first used to detect the change, i.e. to find tch.

Experimental Results

Diagnosis based on the low-bandwidth and the abrupt-change model were vali-
dated in experiments. Again the FTP-75 test cycle was used and in all experi-
ments, the leakage occurs suddenly after around 500 seconds.

In Figures 5.17 and 5.18, the test quantities TLPBL (x) and TLPML(x) are plotted
as a function of time. In Figures 5.19 and 5.20, the test quantities T acBL(x) and
T acML(x) are plotted as a function of time.

Since all leaks occurs suddenly, the most accurate fault model should be the
abrupt-change model. Therefore, the test quantities based on this model, i.e.
T acBL(x) and T acML(x), should perform better than the ones based on the low-
bandwidth model. If this is the case we should expect to see some differences in
the plots at least around the time the leakage occurs, i.e. around time t = 500s.
By comparing the plots of TLPML(x) and T acML(x) for the manifold leakage, we
see that TLPML(x) has a small bump right after t = 500. Also by comparing the
plots of TLPBL (x) and T acBL(x) for the boost leakage, we see that also TLPBL (x) has
a small bump right after t = 500.

This means that the test quantities based on the abrupt-change model better
manage to perform decoupling. Since the decoupling for T acBL(x) and T acML(x)
are better, we should be able to use lower thresholds and in that way obtain
larger power functions. In other words, the test quantities T acBL(x) and T acML(x),
that are based on the fault model that best matches the real situation, are the
best.
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Figure 5.17: The test quantities TLPBL (x) (upper plot) and TLPML(x) (lower plot),
using the low-bandwidth model, when a 3.5 mm (diameter) manifold leak occurs
at around t = 500 s.
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Figure 5.18: The test quantities TLPBL (x) (upper plot) and TLPML(x) (lower plot),
using the low-bandwidth model, when a 5 mm (diameter) boost leak occurs at
around t = 500 s.



128 Chapter 5. Applications to an Automotive Engine

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

time [s]

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

time [s]

T
L

P
B

L
(x

)
T

L
P

M
L
(x

)

Figure 5.19: The test quantities T acBL(x) (upper plot) and T acML(x) (lower plot),
using the abrupt-change model, when a 3.5 mm (diameter) manifold leak occurs
at around t = 500 s.
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Figure 5.20: The test quantities T acBL(x) (upper plot) and T acML(x) (lower plot),
using the abrupt-change model, when a 5 mm (diameter) boost leak occurs at
around t = 500 s.
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5.6 Diagnosis of Both Leakage and Sensor Faults

This section presents the design of a diagnosis system capable of diagnosing
both sensor faults and leakage. The constructed diagnosis system is then exper-
imentally validated in Sections 5.7 and 5.8. Again we remind the reader that the
objective is not to present a complete design but rather to illustrate principles.

index component component
i name fault modes
b boost pipe NF b, BL (Boost Leak)
m manifold NFm, ML (Manifold Leak)
bs boost pressure sensor NF bs, BB (Boost pressure sensor Bias),

BAF (Boost pressure sensor Arbitrary Fault)
ms manifold pressure sensor NFms,

MG (Manifold pressure sensor Gain-fault),
MC (Manifold pressure sensor Cut-off)

ts throttle sensor NF ts, TLF (Throttle sensor Linear Fault)
as air mass-flow sensor NF as,

ALC (Air mass-flow sensor Loose Contact)

Table 5.1: The components and component fault-modes considered.

5.6.1 Fault Modes Considered

The different components and corresponding component fault-modes that will
be considered, are listed in Table 5.1. Further, the system fault-modes con-
sidered are listed in Table 5.2. In accordance with Section 2.2.1, the system
fault-modes are written in bold-face letters to distinguish them from the com-
ponent fault-modes. As seen, only single fault-modes are considered. Compared
to the study in Section 5.4, six more fault modes have been included and all the
new ones are related to sensor faults.

NF No Fault
BL Boost Leak
ML Manifold Leak
BB Boost Pressure Sensor Bias
BAF Boost Pressure Sensor Arbitrary Fault
MG Manifold Pressure Sensor Gain-Fault
MC Manifold Pressure Sensor Cut-Off
TLF Throttle Sensor Linear Fault
ALC Air Mass-Flow Sensor Loose Contact

Table 5.2: The system fault-modes considered.
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The definitions of each fault mode, in the form of models Mγ(θ), will be
given later in Section 5.6.3, where at the same time, the construction of the
test quantities is described. There we will realize that the following relations
between the (system) fault-modes hold:

NF 4∗ BL (5.22a)
NF 4∗ ML (5.22b)
NF 4∗ BB 4 BAF (5.22c)
NF 4∗ MG (5.22d)
NF 4∗ TLF (5.22e)
NF 4∗ ALC (5.22f)

Note that there is no relation involving the fault mode MC. The reason and
consequences of this will become clear later.

5.6.2 Specifying the Hypothesis Tests

To develop the actual hypothesis tests, we first need to decide the set of hy-
potheses to test. We will use one hypothesis test for each fault mode. Thus the
set of hypothesis tests becomes

H0
k : Fp ∈Mk (5.23a)

H1
k : Fp ∈MC

k (5.23b)
k ∈ {NF,BL,ML,BB,MG,MC,TLF,ALC,BAF}

Because of the relations (5.22), we know from Section 3.2.1 that the choice of
sets Mk is not completely free. The choice to use one hypothesis test dedicated
to each system fault-mode, together with a desire to decouple as few fault modes
as possible in each test quantity, leads to the unique choice of sets Mk shown
in Table 5.3.

k Mk

NF {NF}
BL {NF,BL}
ML {NF,ML}
BB {NF,BB}
BAF {NF,BB,BAF}
MG {NF,MG}
MC {MC}
TLF {NF,TLF}
ALC {NF,ALC}

Table 5.3: The sets Mk for the nine hypothesis tests.

In the next section, the design of test quantities will be discussed. There,
also all fault modes will be defined via models Mγ(θ). All these definitions of
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Mγ(θ) will result in a fault-state vector θ as

θ = [θb θm θbs θms θts θas] = [kb, km, (bpb , c2(t)), gpm , (gα, bα), c1(t)]

where c1(t) and c2(t) are signals while the other parameters are scalar constants.

5.6.3 Fault Modeling and Design of Test Quantities

The test quantities will be designed using the prediction principle. Then we
know, from Section 4.2, that the problem of designing the test quantities Tk(x)
consists of determining the model validity measure Vk(θ,x) and the set Θ0

k. The
test quantity Tk(x) then becomes

Tk(x) = min
θ∈Θ0

k

Vk(θ, x) (5.24)

Next, Vk(θ,x) and Θ0
k will be defined for all nine hypothesis tests corresponding

to the sets Mk given in Table 5.3. Also the modelsMγ(θ) and the sets Θγ will
be defined.

No Fault NF

The modelMNF, corresponding to the fault mode NF, has already been given
in (5.11). The parameter space ΘNF is ΘNF = {[0, 0, 0,0, 1, 1, 0,1]}, where
bold-face numbers denote vectors. The set MNF was defined as MNF = {NF}.
By remembering the expression for Θ0

k from (3.1), we realize that this means
that the set Θ0

NF becomes Θ0
NF = ΘNF.

Since Θ0
NF contains exactly one value of θ, the test quantity becomes, in

accordance with (4.4), TNF(x) = VNF(x). The measure VNF(x) is defined as

VNF(x) =
1
N

N∑
t=1

(
ms − f(pb,s, αs, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns)

)2 (5.25)

Note that, to simplify notation, we have dropped the time-argument of signals.
Using the measure (5.25) implies that if the present fault mode is NF, then

the test quantity becomes small and for all other fault modes, the test quantity
becomes large, or at least larger. This fulfills the specification of the hypothesis
test δNF given by (5.23).
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Boost Leak BL

The model MBL(kb) was given already by (5.12). The scalar parameter kb
defines the equivalent area of the leakage and is, as before, constrained by kb ∈
DbBL = ]0, 0.5]. The measure VBL(kb,x) is

VBL(kb,x) =
1
N

N∑
t=1

(
ms − f(pb,s, αs, pm,s)− kbhb(pb,s)

)2
+

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns)

)2 (5.26)

Compared to the measure used in (5.15), this expression contains two terms.
The motivation for this here, is that we want the test quantity TBL(x) to respond
to as many of the other fault modes as possible. That is, in all cases the present
fault mode does not belong to MBL = {NF,BL}, we want the null hypothesis
H0

BL to be rejected.
The parameter spaceDbBL also defines ΘBL, in accordance with Section 2.2.1.

The definition of the set MBL implies that the set Θ0
BL becomes Θ0

BL = ΘNF ∪
ΘBL.

Using the measure (5.26) implies that if the present fault mode belongs to
MBL, then the test quantity becomes small and for all other fault modes, the
test quantity becomes large. This fulfills the specification of the hypothesis test
δBL given by (5.23).

Manifold Leak ML

The model MML(km) is obtained in analogy with MBL(kb). The scalar pa-
rameter km is constrained by km ∈ DmML = ]0, 0.5] and the measure VML(km,x)
is

VML(km,x) =
1
N

N∑
t=1

(
ms − f(pb,s, αs, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns) + kmhm(pm,s)

)2

The sets ΘML and Θ0
ML follows accordingly.

Boost Pressure Sensor Bias BB

The modelMBB(bpb) corresponding to this fault mode is obtained by using the
fault-free model (5.11) together with identities (5.10) but replacing (5.10b) with
pb,s = pb + bpb . This means that the model MBB(bpb) can be written as

m = f(pb,s − bpb , αs, pm,s)
f(pb,s − bpb , αs, pm,s) = g(pm,s, ns)
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The scalar parameter bpb is constrained by bpb ∈ [−30, 0[ ∪ ]0, 30] which
means that the parameter θbs = [bpb c2(t)] is constrained by θbs ∈ DbsBB =
[−30, 0[ ∪ ]0, 30]× {0}N .

The measure VBB(bpb ,x) is

VBB(bpb ,x) =
1
N

N∑
t=1

(
ms − f(pb,s − bpb , αs, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s − bpb , αs, pm,s)− g(pm,s, ns))

)2

The sets ΘBB and Θ0
BB follows as before.

Boost Pressure Sensor Arbitrary Fault BAF

The modelMBAF(c2(t)) corresponding to this fault mode is obtained by using
the fault-free model (5.1) together with identities (5.10) but replacing (5.10b)
with pb,s = pb + c2(t). The parameter c2(t) is now a signal taking arbitrary
values. This means that the parameter space DbsBAF becomes DbsBAF = {0} ×
(RN −{0}N). Note that this definition of the modelMBAF(c2(t)) explains the
relation BB 4 BAF noted already in (5.22). That is, for each bpb , the signal
c2(t) can always be chosen as c2(t) ≡ bpb , which implies that MBB(bpb) =
MBAF(c2(t))

The measure VBAF(c2(t),x) is

VBAF(c2(t),x) =
1
N

N∑
t=1

(
ms − f(pb,s − c2, αs, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s − c2, αs, pm,s)− g(pm,s, ns))

)2

The set ΘBAF follows as before. The set Θ0
BAF could be chosen via the expres-

sion (3.1) but an equivalent choice, which is computationally simpler, is Θ0
BAF =

ΘNF ∪ΘBAF. This was implicitly assumed when designing VBAF(c2(t),x).

Manifold Pressure Sensor Gain-Fault MG

The model MMG(gpm) corresponding to this fault mode is obtained by using
the fault-free model (5.1) together with identities (5.10) but replacing (5.10c)
with pm,s = gpmpm. The constraint on the scalar parameter gpm is gpm ∈
DmsMG = [0.5, 1[ ∪ ]1, 2].
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The measure VMG(gpm ,x) is

VMG(gpm ,x) =
1
N

N∑
t=1

(
ms − f(pb,s, αs, pm,s/gpm)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s/gpm)− g(pm,s/gpm , ns))

)2

The sets ΘMG and Θ0
MG follows accordingly.

Manifold Pressure Sensor Cut-Off MC

This fault mode represents a cut-off in the electrical connection to the man-
ifold pressure sensor. The model MMC corresponding to this fault mode is
obtained by using the fault-free model (5.1) together with identities (5.10) but
replacing (5.10c) with pm,s = gpmpm. The parameter gpm takes value 1 in the
fault-free case and value 0 when there is a cut-off present. This means that for
the model MC, gpm ∈ DmsMC = {0}.

The definition of DmsMC = {0} means that the set ΘMC contains exactly one
value. Remember that the set MMC was defined as MMC = {MC}. This
implies that the set Θ0

MC becomes Θ0
MC = ΘMC and thus, contains only one

value. Therefore we have that TMC(x) = VMC(x). The measure VMC(x) is

VMC(x) =
1
N

N∑
t=1

p2
b,s

Note that, in spite of the simpleness of this expression, the test quantity TMC(x)
will become very large for all θ /∈ ΘMC. The reason is that the manifold pressure
never becomes zero. We can assume that this knowledge is implicitly included
in the model of the air-intake system. This is also true for the fault mode NF
which explains why, according to the relations (5.22), NF is not a submode (in
the limit) of MC. Remember that this was the reason why the fault mode NF
was not included in MMC.

Throttle Sensor Linear Fault TLF

The modelMTLF([gα bα]) corresponding to this fault mode is obtained by using
the fault-free model (5.1) together with identities (5.10) but replacing (5.10d)
with αs = gαα + bα. The vector valued parameter [gα bα] is constrained by
[gα bα] ∈ DtsTLF = R2 − {1, 0} and the measure VTLF(θts,x) = VTLF([gα bα],x)
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is

VTLF([gα bα],x) =

=
1
N

N∑
t=1

(
ms − f(pb,s, (αs − bα)/gα, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, (αs − bα)/gα, pm,s)− g(pm,s, ns))

)2

The sets ΘTLF and Θ0
TLF follows as before.

Air Mass-Flow Sensor Loose Contact ALC

The modelMALC(c1(t)) corresponding to this fault mode is obtained by using
the fault free model (5.1) together with identities (5.10) but replacing (5.10a)
with ms(t) = m(t)c1(t). The parameter θas = c1(t) is a stochastic process
taking values such that c1(t) ∈ {0, 1}. This means that the parameter space
DasALC becomes DasALC = {0, 1}N − {0}N and the measure VALC(c1(t),x) is

VALC(c1(t),x) =
1
N

N∑
t=1

(
ms − c1f(pb,s, αs, pm,s)

)2 +

+
1
N

N∑
t=1

(
f(pb,s, αs, pm,s)− g(pm,s, ns))

)2

The sets ΘALC and Θ0
ALC follows as before.

5.6.4 Decision Structure

With the test quantities defined in the previous section, the decision structure
becomes as shown in Figure 5.21. There are a few interesting things with this
decision structure, which will be discussed in this section.

By using the definition of S1
k, i.e. (3.2), the fact that the set MMC doesn’t

contain NF means that

S1
MC = MC

MC = {NF,BL,ML,BB,BAF,MG,TLF,ALC}

Remembering the relationship between the decision structure and the sets S0
k

and S1
k, discussed in Section 3.4.2, this means that the row for δMC must contain

non-zero entries in all places except in the column for MC. We see in Figure 5.21
that this is really the case.

We noted in the previous section that the test quantity TMC(x) will be large
for all faults in all fault modes except MC. This means that the corresponding
power function will be large for all fault modes except MC. According to the
discussion in Section 4.7.2 and especially formula (4.43), the set S0

MC becomes

S0
MC = {MC}
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NF BL ML BB BAF MG MC TLF ALC
δNF 0 X X X X X X X X
δBL 0 0 X X X X X X X
δML 0 X 0 X X X X X X
δBB 0 X X 0 X X X X X
δBAF 0 X X 0 0 X X X X
δMG 0 X X X X 0 X X X
δMC 1 1 1 1 1 1 0 1 1
δTLF 0 X X X X X X 0 X
δALC 0 X X X X X X X 0

Figure 5.21: The decision structure for the hypothesis tests using the test quan-
tities defined in Section 5.6.3.

Again using the relationship between the decision structure and the sets S0
k and

S1
k, discussed in Section 3.4.2, this means that all entries in the row for δMC,

except for MC, must be 1:s.
Next, study the entry 0 in the row for δBAF and the column for BB. This

entry follows from the definition of MBAF as follows:

S1
BAF = MC

BAF = {BL,ML,MG,MC,TLF,ALC}

That is, since S1
BAF does not contain NF, BB, or BAF, there must be 0:s in

the corresponding locations in the decision structure, including the column for
BB.

We conclude this section by pointing out the fact that for all hypothesis
tests, except δMC, the sets S0

k are S0
k = Ω. Also, all sets S1

k are defined by
S1
k = MC

k .

5.6.5 The Minimization of Vk(x)

The procedure to compute (5.24), i.e. to minimize the measures Vk(x), has not
been addressed so far. In many cases the minimization procedure required is
quite straightforward. However, for some of the test quantities defined above,
the computational load of doing the actual minimization in (5.24) can be quite
heavy, if not some special care is taken.

For the test quantity TBAF(x), we want to perform minimization of
VBAF(c2(t),x) with respect to a signal. This can be solved by using the two-step
approach from Section 4.2.1. Instead of minimizing VBAF(c2(t),x) we choose
to minimize the following function:

V̄BAF(c2(t),x) =
1
N

N∑
t=1

(
ms − f(pb,s − c2, αs, pm,s)

)2

This function is conveniently minimized by choosing

c2(t) = pb,s − f−1(ms(t), αs(t), pm,s(t))
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where f−1(ms(t), αs(t), pm,s(t)) is the inverse of f(pb,s, αs, pm,s), with respect
to pb,s, and gives an estimate of pb,s.

Also for the test quantity TALC(x), the minimization needs to be done with
respect to a signal. First we realize that to minimize VALC(kb,x) is equivalent
to minimizing

VALC(c1(t),x) =
1
N

N∑
t=1

(
ms − c1f(pb,s, αs, pm,s)

)2

When the engine is running, the air-mass flow m is always positive and above 4
g/s. This can for example be seen in Figure 5.4. This means that the function
V̄ALC(c1(t),x) can be conveniently minimized by choosing

c1(t) =

{
0 ms(t) < ε

1 ms(t) ≥ ε

where ε is some constant between 0 and 4.

5.6.6 Discussion

The fault modeling in Section 5.6.3 above illustrates the fact that it can be
useful to model faults in a number of different ways. For some fault modes, i.e.
BL, ML, BB, MG, the fault is modeled as a change in a continuous scalar
parameter. The fault modes MC and TLF are examples in which the fault is
modeled as a change in a discrete and multidimensional parameter respectively.
In contrast to this, a fault belonging to the fault mode BAF is modeled as an
additive arbitrary signal. Then we have ALC, in which the fault is a signal, or
a parameter, that jumps between two distinct values.

All these examples clearly show the large variety of fault models that can
be used in conjunction with structured hypothesis tests. In fact, while in many
papers, only constant parameters or only additive arbitrary signals are consid-
ered, it is shown here that almost any kind of fault models can be handled and
this within the same framework and same diagnosis system.

5.7 Experimental Validation

The diagnosis system described in the previous section was implemented in Mat-
lab and tested extensively with the experimental setup described in Section 5.1.
The leakage faults were implemented in hardware, which was also described in
Section 5.1. All other faults were emulated in software by applying appropriate
changes to the sensor signals. For each fault mode, a number of different fault
sizes were tested.

Good functionality was obtained for all kinds of faults but to limit the dis-
cussion, only four cases have been selected and these are shown in Tables 5.4
to 5.7. These four cases are not selected because they are representative but
rather because they illustrates some interesting features of the diagnosis system.
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In all these cases, the data length was N = 1000 which corresponds to 100 s.
No special effort was made to find optimal threshold values Jk; they were all
chosen to be Jk = 0.4.

5.7.1 Fault Mode NF

In Table 5.4, the present fault mode of the process was NF. Each row show
the result of one individual hypothesis test δk. The value of the test quantity
Tk(x) for each hypothesis δk is shown in the second column. The threshold Jk
is shown in the third column (as said above, all were chosen to the same value).
The fourth column shows the diagnosis decision Sk of each hypothesis test. We
remember from formula (3.3) that Sk = S1

k = MC
k if Tk(x) > Jk, i.e. H0

k is
rejected, and Sk = S0

k otherwise.
For the case shown in the table, only the null hypothesis H0

MC is rejected.
This result is the one expected because the set MMC do not contain the fault
mode NF while all other sets Mk do contain NF. Applying the intersection
of the decision logic, i.e. (2.7), implies that the diagnosis statement contains 8
possible fault modes that can explain the behavior of the process. One of the
fault modes is NF which means that we should not generate an alarm. As was
said in Section 2.6.1, we can also use the refined diagnosis statement S̄, which
would imply that the output from the diagnosis system becomes NF only.

k Tk(x) Jk MC
k

NF 0.2074 0.4 Ω
BL 0.2063 0.4 Ω
ML 0.2075 0.4 Ω
BB 0.2043 0.4 Ω
MG 0.2027 0.4 Ω
MC 3608 0.4 ALC BAF BB BL MG ML NF TLF
TLF 0.2061 0.4 Ω
ALC 0.2074 0.4 Ω
BAF 0.1491 0.4 Ω
Diagnosis Statement: ALC BAF BB BL MG ML NF TLF
NO ALARM

Table 5.4: The hypothesis tests and the diagnosis statement for fault mode NF
present.

5.7.2 Fault Mode TLF

In Table 5.5, the present fault mode of the process was TLF. Now all individual
null hypothesis are rejected except H0

TLF. The diagnosis statement is the single
fault mode TLF. That is, the diagnosis system managed to isolate the present
fault mode TLF. Because the diagnosis statement does not contain NF, an
alarm is generated.
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k Tk(x) Jk MC
k

NF 250.8 0.4 ALC BAF BB BL MC MG ML TLF
BL 170.7 0.4 ALC BAF BB MC MG ML TLF
ML 230.2 0.4 ALC BAF BB BL MC MG TLF
BB 247 0.4 ALC BAF BL MC MG ML TLF
MG 175.6 0.4 ALC BAF BB BL MC ML TLF
MC 3608 0.4 ALC BAF BB BL MG ML NF TLF
TLF 0.2025 0.4 Ω
ALC 250.8 0.4 BAF BB BL MC MG ML TLF
BAF 273.7 0.4 ALC BL MC MG ML TLF
Diagnosis Statement: TLF
ALARM

Table 5.5: The hypothesis tests and the diagnosis statement for fault mode TLF
present.

5.7.3 Fault Mode ML

In Table 5.6, the present fault mode of the process was ML. The actual fault
was fairly small, which is reflected in the result that it could not be isolated.
The diagnosis statement contains the fault modes MG, ML, and TLF. This
should be interpreted as that in addition to the present fault mode ML, the
fault modes MG and TLF can also explain the behavior of the process. Because
the fault statement does not contain NF, an alarm is generated.

k Tk(x) Jk MC
k

NF 0.4921 0.4 ALC BAF BB BL MC MG ML TLF
BL 0.4985 0.4 ALC BAF BB MC MG ML TLF
ML 0.1881 0.4 Ω
BB 0.423 0.4 ALC BAF BL MC MG ML TLF
MG 0.328 0.4 Ω
MC 3742 0.4 ALC BAF BB BL MG ML NF TLF
TLF 0.3623 0.4 Ω
ALC 0.4921 0.4 BAF BB BL MC MG ML TLF
BAF 0.4642 0.4 ALC BL MC MG ML TLF
Diagnosis Statement: MG ML TLF
ALARM

Table 5.6: The hypothesis tests and the diagnosis statement for fault mode ML
present.
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5.7.4 Fault Mode BB

In Table 5.7 the present fault mode of the process was BB. The actual fault was
not very small but in spite of this, it is obvious from the diagnosis statement that
the present fault mode BB can not be isolated. This was very much expected
since we have the relation

NF 4∗ BB 4 BAF

and according to Theorem 2.1 and also Section 2.6.1, it is then impossible to
isolate BB from BAF. In other words, the fault mode BAF, which represent
an arbitrary boost-pressure sensor fault, is so general that it can also explain
data generated from the process when fault mode BB is present.

When both BB and BAF can explain the data, as in this case, it is much
more likely that the data has been generated by a process with fault mode BB.
In agreement with the discussion in Section 2.6.1, we can use the refined diag-
nosis statement S̄ which would imply that the only output from the diagnosis
system would be BB.

k Tk(x) Jk MC
k

NF 1.958 0.4 ALC BAF BB BL MC MG ML TLF
BL 1.96 0.4 ALC BAF BB MC MG ML TLF
ML 1.96 0.4 ALC BAF BB BL MC MG TLF
BB 0.2043 0.4 Ω
MG 0.6725 0.4 ALC BAF BB BL MC ML TLF
MC 3608 0.4 ALC BAF BB BL MG ML NF TLF
TLF 0.419 0.4 ALC BAF BB BL MC MG ML
ALC 1.958 0.4 BAF BB BL MC MG ML TLF
BAF 0.1491 0.4 Ω
Diagnosis Statement: BAF BB
ALARM

Table 5.7: The hypothesis tests and the diagnosis statement for fault mode BB
present.

5.8 On-Line Implementation

For implementation in on-board diagnosis systems in a vehicle, on-line perfor-
mance is crucial. The experiments presented in Section 5.7, were based on data
x collected during a quite long time. This may imply that it also takes quite
a long time before a fault is detected. One way to obtain a faster response to
faults, is to decrease the length of the time window. The consequences of this
are discussed in this section.

One thing that becomes important is the fact that the absolute accuracy
of the model is dependent on how the system is excited, which is something
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that changes over time. The solution to this is, according to Section 4.5, to use
normalization, or more exactly an adaptive threshold. The adaptive thresh-
old used here, is chosen in accordance with the ideas presented in the end of
Section 4.5.2. Consider first the following relation

min
θ∈Θ

V (θ, x) = min
γ

min
θ∈Θγ

V (θ, x) = min
k

min
θ∈Θ0

k

V (θ, x) = min
k
Tk(x(t))

Here, V (θ, x) is a model validity measure for the modelM(θ) obtained in anal-
ogy with all measures Vk(θ, x) presented in Section 5.6.3. Then the adaptive
threshold is chosen as

Jadp(t) = min
k
Tk(x(t)) + c (5.27)

The first term serves as a measure of the overall accuracy of the model at time
t and the second term is a tuning parameter, here chosen as c = 0.05. The
expression (5.27) should be compared to (4.36) which was shown to be based
on similar ideas as the likelihood ratio.

The adaptive threshold (5.27) was used in all hypothesis tests except for
δMC which was based on a model, whose accuracy does not change over time.

5.8.1 Experimental Results

To illustrate the performance in an on-line implementation, the following ex-
periment was setup. The fault mode of the process was MG and the size of
the fault parameter was gpm = 1.2. The whole data set (from the FTP-75 test-
cycle) spans over a time of 21 minutes. A non-overlapping window of length
N = 100 was used which corresponds to a time-length of 10 s. This means that
the original data set was divided in totally 125 smaller data sets.

Fault Mode Number of Instances
NF 0
BL 0
ML 57
BB 2
MG 120
MC 0
TLF 1
ALC 0
BAF 0
unknown fault 1

Table 5.8: The number of instances of different fault modes in the diagnosis
statement during the on-line experiment.

For all 125 data sets, the diagnosis system managed to detect a fault. The
number of times each fault mode was contained in the diagnosis statement is
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shown in Table 5.8. It is seen that except for the fact that ML was in the
diagnosis statement 57 number of times, the performance was very good.
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Figure 5.22: The test quantities TML(x(t)) (dashed) and TMG(x(t)) (solid)
together with the adaptive threshold Jadp(t) (dotted).

To understand why ML is contained in the diagnosis statement so many
times, Figure 5.22 has been included. The test quantities TML(x(t)) and TMG(x(t))
are plotted together with the adaptive threshold Jadp(t). Only data from time
window #50 to #125 is shown. Ideally the test quantities TMG(x(t)) should
be below the threshold and TML(x(t)) should be above the threshold. This is
the case most of the time but in some cases, both test quantities are below
the threshold. These are the cases in which ML is contained in the diagnosis
statement.

From the figure it is obvious that for some states of the process, the test
quantity TML(x(t)) gets approximately the same value as TMG(x(t)). This is
due to a property of the air-intake system and not the diagnosis system. For
example, during constant conditions, e.g. idle conditions, it is often possible to
find a km in the model MML(km) such that this model match the data also
when the fault mode MG is present. We can because of this reason not expect
that ML is, at all times, excluded from the diagnosis statement, no matter how
the diagnosis system is designed.
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5.9 Conclusions

This chapter has presented designs for two diagnosis systems for the air-intake
system of an automotive engine. The whole design chain, including the modeling
work, has been discussed. From this work, it is realized that a large part of the
total work involved, when constructing a model-based diagnosis-system, may be
to build the model including the fault models.

The first diagnosis system constructed, only focuses on diagnosis of leaks.
The theoretical results from Section 4.8.2, regarding the optimality of the esti-
mate principle, were validated in experiments on a real engine. Also investigated
is how different types of fault models, with respect to the time-variant behavior
of the leaks, affect the performance of the diagnosis system. It is concluded via
experiments that, to choose a fault model with correct time-variant behavior, is
important to maximize the diagnosis performance.

The method for leakage detection, often used in production cars, is the
prediction principle, which in this case requires no leakage models. Therefore it
is interesting to note that the method developed here, to use models of the leaks
and then estimate the leakage area, performs better than the solution common
in production cars.

The second diagnosis system constructed, is capable of diagnosing both leak-
age and a wide range of different types of sensor faults. Also in this case, the
results were validated in experiments using data from a real engine. This ap-
plication is an excellent example of the versatility of the method structured
hypothesis tests. While in many papers, fault modeling using only constant
parameters or only additive arbitrary signals are considered, it is shown here
that almost any kind of fault models can be handled and this within the same
framework and same diagnosis system. To the authors knowledge, a diagnosis
system with this capacity, to diagnose such a large variety of different faults,
can not be constructed using previous approaches to fault diagnosis.

This chapter has shown how a large part of the theory developed in earlier
chapters, can be used in a real application. It has been shown that the theory has
practical relevance for both design and analysis of diagnosis systems. The role
of this automotive engine application has, during the work with this thesis, been
more than only a validation of the techniques developed. In fact, this application
inspired much of the development of the theoretical framework, since existing
frameworks could not deal with many of the requirements.
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Chapter 6

Evaluation and Automatic
Design of Diagnosis
Systems

When constructing a model-based diagnosis system, it is desirable that the so-
lutions are the best possible or at least good. However, first we need to define
what we mean by “good” and “best”. This means that we need to develop per-
formance measures and also a scheme for comparing different diagnosis systems.
The topic of this chapter is to develop tools for this. These tools will also be
used to develop a procedure for automatic design of diagnosis systems.

The performance measures and the comparison scheme developed are based
on decision theory and is presented in Section 6.1 and 6.2. The performance
measures become in most cases equal to for example probability of false alarm
and probability of missed detection.

As said above, the second objective of this chapter is to find an automatic
procedure for design of diagnosis systems. One motivation for this is to minimize
the time-consuming engineering work, that is frequently needed for the design
of diagnosis systems. Also it is desirable that we have a systematic, preferably
automatic, procedure that gives diagnosis systems with as good performance as
possible.

One area, in which it is highly desirable to have systematic and automatic
procedures for diagnosis-system design, is the area of automotive engines. As
was said in Chapter 5, environmentally based legislative regulations such as
OBDII and EOBD specifies hard requirements on the performance of the diag-
nosis system. Automotive engines are rarely designed from scratch but often
subject to small changes, e.g. for every new model year. Then usually also
the diagnosis system needs to be changed. Since this may happen quite often
and a car manufacturer typically has many different engine models in produc-
tion, it is important for the car manufacturers that diagnosis systems can be
reconstructed with minimal amount of work involved. Also, the diagnosis sys-
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tems are often calibrated by personnel without extensive control background
and it would therefore be beneficial to have an automatic procedure so that the
diagnosis system could be calibrated with minimal human involvement.

For manufacturers of independent automotive diagnosis systems, to be used
in independent repair-shops, the situation is even more critical. They need to
design diagnosis systems for a large amount of different car brands and models.
This makes it necessary to find procedures so that diagnosis systems can be
constructed with very limited amount of engineering work.

Identification

Construction of
Hypothesis Tests

Model

Measurements

Diagnosis System

Model Structure Measurements

Selection and Tuning of
Hypothesis Tests

Figure 6.1: The process of constructing a diagnosis system.

The design process for construction of a diagnosis system is assumed to
follow the flow-chart shown in Figure 6.1. The first part is to construct the
model, in which at least it is possible to automatize parameter identification.
The next part is the construction of hypothesis tests that we possibly want to
include in the diagnosis system. Then the last step is to select hypothesis tests
to be included, and also to tune the hypothesis tests, which should include at
least tuning of thresholds.

This chapter deals with the step “selection and tuning of the hypothesis
tests”, for which an automatic procedure is presented in Section 6.3. The
procedure is based on the performance measures and the comparison scheme
developed in Section 6.1 and 6.2.

In Section 6.4, the construction of a diagnosis system for the air-intake sys-
tem of a real automotive engine is approached using the automatic procedure
developed. All steps in Figure 6.1 are discussed, i.e. modeling, construction of
hypothesis tests, and the application of the automatic procedure for selection
and tuning of hypothesis tests. The design is then experimentally evaluated in
Section 6.4.6.

6.1 Evaluation of Diagnosis Systems

To evaluate a diagnosis system, we need some kind of measure of the perfor-
mance. Here, this is done by first defining a loss function and then using the
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risk function as a performance measure.

6.1.1 Defining a Loss Function

A loss function should reflect the “loss” for a given specific fault state of the
plant and a specific decision made by the diagnosis system. The loss function is
denoted L(θ, S) and to define a loss function, we need to assign a value to each
pair 〈θ, S〉. For each θ, the set of all S can be divided into subsets which we
will call events.

For the case θ ∈ ΘNF , i.e. the fault free case, we define two events:

NA = {S; NF ∈ S} No Alarm
FA = {S; NF /∈ S} False Alarm

For the case θ ∈ ΘFi , i.e. fault mode Fi is present and Fi 6= NF , we define
four events:

CI = {S; NF /∈ S ∧ S = {Fi}} Correct Isolation
MD = {S; NF ∈ S} Missed Detection
ID = {S; NF /∈ S ∧ Fi /∈ S} Incorrect Detection
MI = {S; NF /∈ S ∧ Fi ∈ S ∧ S 6= {Fi}} Missed Isolation

The relation between these events are clarified in the tree-like structure in
Figure 6.2. Each node defines an event as the intersection of the events corre-
sponding to the particular node and all its parent nodes. A branch represents
two disjunct events.
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NF ∈ S
MD

NF /∈ S

Fi /∈ S
ID

Fi ∈ S

S = {Fi}
CI

S 6= {Fi}
MI

Figure 6.2: Relation between events.
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It is obvious that NA and CI are the preferred events and should therefore
correspond to L(θ, S) = 0. Also obvious is that the events FA, MD, ID, and
MI should be “punished” by using a nonzero loss-function. With this in mind,
the loss function L(θ, S) can be defined as

L(θ, S) =

{
0 if NF ∈ S , i.e. S ∈ NA
cFA(θ) if NF /∈ S , i.e. S ∈ FA

θ ∈ ΘNF

and

L(θ, S) =


0 if S = {Fi} , i.e. S ∈ CI
cMD(θ) if NF ∈ S , i.e. MD

cID(θ) if NF /∈ S ∧ Fi /∈ S , i.e. ID
cMI(θ) if NF /∈ S ∧ Fi ∈ S ∧ S 6= {Fi} , i.e. MI

θ ∈ ΘFi

In general, the event MI is not as serious as MD and ID. This can be reflected
in that cMD(θ), cID(θ), and cMI(θ) are selected such that cMI(θ) < cID(θ),
and cMI(θ) < cMD(θ).

We will classify faults into insignificant faults Θinsign and significant faults
Θsign. Insignificant faults are those faults that are “small” and we are not very
interested in detecting. Significant faults are those faults that are “large” and
that we really want to detect. It is reasonable to assume that if there is a 1,
in the column for Fi in the decision structure, then all faults belonging to fault
mode Fi, are significant.

For insignificant faults, the events MD and MI are not very serious. This
should be reflected in that cMD(θ) and cMI(θ) are chosen such that for θ ∈
Θinsign, cMD(θ) and cMI(θ) are small or even zero. On the other hand, for
significant faults, i.e. for θ ∈ Θsign, cMD(θ) and cMI(θ) should be large.

This reasoning about the choice of cMD(θ), cID(θ), and cMI(θ) can be sum-
marized in a table:

CI MD ID MI
significant faults 0 cMD(θ) cID(θ) cMI(θ)
insignificant faults 0 ≈ 0 cID(θ) ≈ 0

Examples of choices of the functions cMD(θ), cID(θ), and cMI(θ) are given in
Figure 6.3, 6.4, and 6.5. For MD and MI, two examples are given, represented
by the solid and dashed line. The exact choice of cMD(θ), cID(θ), and cMI(θ)
depends on the specific application.
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Insignificant Faults Significant Faults

cMD(θ)

θ

Figure 6.3: The function cMD(θ).

Insignificant Faults Significant Faults

cID(θ)

θ

Figure 6.4: The function cID(θ).

Insignificant Faults Significant Faults

cMI(θ)

θ

Figure 6.5: The function cMI(θ).
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6.1.2 Calculating the Risk Function

Recall the definition of risk function from Section 4.6. By using the loss function
defined in the previous section, the risk function becomes

R(θ, δ(x)) =

{
cFA(θ)P (FA) if θ ∈ ΘNF

cMD(θ)P (MD) + cID(θ)P (ID) + cMI(θ)P (MI) if θ ∈ ΘFi

(6.1)

Note that the probabilities for the events MD, ID, and MI have been lumped
together. It might be possible that it is interesting to study these probabilities
individually. In the framework of loss and risk functions, this would correspond
to a vector-valued loss and risk.

To calculate the risk function in the general case, it is obvious that we need
to know the probabilities P (FA), P (MD), P (ID), and P (MI). The problem
is that the probability density functions are multidimensional; the dimension
equals the number of tests. In addition, the distributions can be complicated
functions. This makes it hard to derive the probabilities analytically. Simula-
tions is an alternative but since the probabilities of interest are related to the
tails of the density functions, and they are multidimensional, an unrealistically
large amount of data would be needed. In spite of the above stated problems,
it is possible to calculate bounds of the risk function. The rest of Section 6.1
will be devoted to this issue, but as an alternative to (6.1), we will consider a
somewhat simpler risk function.

A simpler risk function is obtained by defining the new event MIM = MD∪
ID ∪MI. Further we assume that for significant faults, cMD(θ) = cID(θ) =
cMI(θ) , cMIM (θ) and for insignificant faults, cMD(θ) = cMI(θ) = 0. The
dashed lines in Figure 6.3, 6.4, and 6.5 correspond to this assumption. With
this assumption, the risk function becomes

R(θ, δ(x)) =


cFA(θ)P (FA) if θ ∈ ΘNF

cMIM (θ)P (MIM) if θ ∈ ΘFi and θ ∈ Θsign

cID(θ)P (ID) if θ ∈ ΘFi and θ ∈ Θinsign

(6.2)

The reason why this risk function is considered to be simpler than (6.1), is that
the sums of probabilities, present in (6.1), have all been eliminated.

6.1.3 Expressing Events with Propositional Logic

This section explores how general events, e.g. FA, MD, and MIM , can be
expressed by propositional logic formulas where the atoms are events for the
individual hypothesis tests. For example, consider the event FA. With the set
representation of the decisions Sk, this event can be written

FA = {S; NF /∈ S} = {S; NF /∈
⋂
k

Sk} = {S;
∨
k

NF /∈ Sk}
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To describe events, also a shorter form will be used, e.g. FA is written as

FA =
∨
k

NF /∈ Sk

We can further develop this expression by using the realistic assumption that
NF ∈ Mk for all k. This means that NF /∈ Sk is equivalent to Sk = S1

k, and
the event FA can be written

FA =
∨
k

{Sk = S1
k} (6.3)

In general, the probability for an arbitrary event A can be expressed as

P (A) = P (ϕ)

where ϕ is a propositional logic expression in the proposition symbols {Sk = S1
k}

and {Sk = S0
k}.

In the next section we will assume that the events FA, MD, ID, MI, and
MIM are expressed by a propositional logic expression in minimal disjunctive
normal form. Before we give the definition of the minimal disjunctive normal
form, consider the definition of disjunctive normal form (DNF):

Definition 6.1 (Disjunctive Normal Form) If

ϕ =
∨
i

∧
j

ϕi,j

where ϕi,j is atomic or the negation of an atom, then ϕ is a disjunctive normal
form (DNF).

The minimal disjunctive normal form is then defined as:

Definition 6.2 (Minimal Disjunctive Normal Form) A DNF ϕ is mini-
mal if there exist no other DNF ϕ′ where ϕ′ have a smaller total number of
connectives ∧ and ∨.

To transform a DNF to a minimal DNF, the algorithm proposed by Quine-
McCluskey (McCluskey, 1966) can be used. The principles of expressing events
with propositional logic and minimal DNF’s, is illustrated in the following ex-
ample:

Example 6.1

Consider a diagnosis system with decision structure

NF F1 F2 F3

δ1 0 X 0 X
δ2 0 1 X 0
δ3 0 0 X 0
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Expression (6.3) implies that the probability P (FA) can be written

P (FA) = P (NF /∈ S) = P (S1 = S1
1 ∨ S2 = S1

2 ∨ S3 = S1
3) (6.4)

in which the event is described by a minimal DNF.

The probability of the event ID of F3 can be written

P (ID) = P (NF /∈ S ∧ F3 /∈ S) = P
(( ∨

k

NF /∈ Sk
)
∧

( ∨
k

F3 /∈ Sk
))

=

= P
((
S1 = S1

1 ∨ S2 = S1
2 ∨ S3 = S1

3

)
∧

(
S2 = S1

2 ∨ S3 = S1
3

))
(6.5)

This formula is not even a DNF but can be transformed to

P (ID) = P (S2 = S1
2 ∨ S3 = S1

3) (6.6)

which is a minimal DNF.

Thus we have shown two examples of how events can be expressed by propo-
sitional logic formulas and in particular, minimal DNF’s.

6.1.4 Calculating Probability Bounds

This section gives two lemmas and two presumptions . Together, these can be
used to calculate bounds of the probabilities P (FA), P (ID), and P (MIM).
However, we first need to introduce the terms desired response and completely
undesirable event:

Definition 6.3 (Desired Response) Let the desired response of test k to
fault mode Fi be

Sdesk (Fi) =

{
S1
k if Fi ∈ S1

k

S0
k otherwise

Definition 6.4 (Completely Undesirable Event) An event A is completely
undesirable if for any minimal DNF ϕ, describing A,

ϕ =
∨
i

∧
j

ϕi,j

it holds that

ϕi,j = {Skj 6= Sdeskj }

For example, both events described by (6.4) and (6.6) are completely undesir-
able.

The following two presumptions give bounds for general events that are
completely undesirable. In all realistic cases, these presumptions are probably
true or at least approximately true. Further, in Section 6.4.6, the validity of
these bounds is confirmed using experimental data.
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Presumption 6.1 For a completely undesirable event A described by a minimal
DNF ϕ,

ϕ =
∨
i

∧
j

ϕi,j

it holds that

P (A) = P (ϕ) = P
( ∨
i

∧
j

ϕi,j
)
≤ 1−

∏
i

max
j

(
1− P (ϕi,j)

)
(6.7)

Presumption 6.2 For a completely undesirable event A described by a minimal
DNF ϕ,

ϕ =
∨
i

∧
j

ϕi,j

it holds that

P (A) = P (ϕ) = P
( ∨
i

∧
j

ϕi,j
)
≥ max

i

∏
j

P (ϕi,j) (6.8)

Motivation of Presumption 6.1 and 6.2

To motivate Presumption 6.1 and 6.2, we need the following lemma:

Lemma 6.1 If a set of n events Ai can be ordered such that

P (A2 | A1) ≥P (A2) (6.9)
P (A3 | A1 ∩A2) ≥P (A3) (6.10)

... (6.11)
P (An | A1 ∩A2 ∩ · · · ∩An−1) ≥P (An) (6.12)

then

P (
n⋂
i=1

Ai) ≥
n∏
i=1

P (Ai) (6.13)

Proof: By using the definition of conditional probability, the relation (6.9)
can be rewritten as

P (A2 ∩A1)
P (A1)

≥ P (A2)

which implies

P (A2 ∩A1) ≥ P (A1)P (A2)



154 Chapter 6. Evaluation and Automatic Design of Diagnosis Systems

By continuing in this fashion with all relations (6.9) to (6.12), we arrive at the
relation (6.13).

We first motivate the upper bound given by Presumption 6.1. First define
the event Ai:

Ai = {S;
∧
j

ϕi,j}

and note that P (A) = P (
⋃
iAi). Now assume that AC1 has occurred. Since the

event A is completely undesirable, the event AC1 can be written

AC1 = {S;
∨
¬ϕ1,j} = {S;

∨
j

{Skj = Sdeskj }}

This implies that Sk = Sdesk for some k, i.e. some tests responds according to
the desired response. In the same way, AC2 can also be interpreted as there is
some tests (not necessarily the same as for AC1 ) responding according to the
desired response. Now study the relation

P (AC2 | AC1 ) ≥ P (AC2 )

This relation says that the event that some tests responds according to the de-
sired response, given that some other tests responds according to the desired
response, is at least as probable as the case when there are no a priori infor-
mation given. It is reasonable to assume that this relation holds. It is also
reasonable to assume that we can obtain a a whole set of relations that satisfies
the requirements of Lemma 6.1. Then by using Lemma 6.1, we can conclude
that

P (
⋂
i

ACi ) ≥
∏
i

P (ACi )

which is equivalent to

P (A) = P (
⋃
i

Ai) = 1− P (
⋂
i

ACi ) ≤ 1−
∏
i

P (ACi ) = 1−
∏
i

P (
∨
j

¬ϕi,j)

From the fact that

P (
∨
j

¬ϕi,j) = P (
⋃
j

{S; ¬ϕi,j}) ≥ max
j
P ({S; ¬ϕi,j) = max

j

(
1− P (ϕi,j)

)
we get the upper bound given in Presumption 6.1.

To motivate the lower bound given in Presumption 6.2, we first note that

P (A) = P (
⋃
i

Ai) ≥ max
i
P (Ai) (6.14)

Now assume that the event described by ϕi,1 has occurred. This means that
Sk 6= Sdesk for some k, i.e. some test do not respond according to the desired
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response. In the same way, the event described by ϕi,2 means that another
test is not responding according to the desired response. By using the same
reasoning as above, we can conclude that a reasonable assumption is

P (ϕi,2 | ϕi,1) ≥ P (ϕi,2)

and further, again using Lemma 6.1, that

P (Ai) = P (
∧
i

ϕi,j) ≥
∏
i

P (ϕi,j)

This relation together with (6.14) gives the lower bound in Presumption 6.2.

Undesirability of ID, MIM , and FA

We will now prove that the events ID, MIM , and are completely undesirable.
The reason why we want to prove this is that, if this is the case, Presumption 6.1
and 6.2 can be used to give probability bounds for ID, MIM , and FA.

We start with ID and MIM in the following lemma, which shows that if the
decision structure contains no 1:s, then the events ID and MIM are completely
undesirable.

Lemma 6.2 If the decision structure contains no 1:s, and the column for NF
only 0:s, then the events ID and MIM of F are completely undesirable.

To prove Lemma 6.2, we first need the following lemma:

Lemma 6.3 If ϕ is a minimal DNF, a is an atom, and a ∨ ϕ = ϕ 6≡ T , then
for one of the ϕi =

∧
j ϕi,j , it must hold that ϕi ≡ a.

Proof: Assume that the lemma does not hold. This means that ϕ can be
written as

ϕ ≡ β1 ∨ · · · ∨ βn ∨ a ∧ γ1 ∨ · · · ∨ a ∧ γm

where βi and γi are conjunctions not containing a. Because of the minimality of
the DNF, it can be shown that it is possible to make the valuations a = T and
βi = γi = F . This implies that ϕ = F and a ∨ ϕ = T . Thus a contradiction,
which means that the Lemma must hold.

Now return to the proof of Lemma 6.2:
Proof: Assume that the event, ID or MIM , is described by a minimal
DNF ϕ

ϕ =
∨
i

∧
j

ϕi,j

The proof consists of two parts corresponding to ID and MIM respectively.
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ID of Fault Mode F

Consider first ID of fault mode F . Study the i′:th conjunction of ϕ:

ϕi′ =
∧
j

ϕi′,j

The corresponding event must belong to ID. Since the decision structure con-
tains no 1:s in the column for F , it must hold that ∀k.F ∈ S0

k. We also know
that ID means F /∈ S. These two facts imply that the conjunction ϕi′ must
contain a ϕi′,j′ such that ϕi′,j′ ≡ {Skj′ = S1

kj′
} and that F /∈ S1

kj′
. By using the

assumption that the decision structure contains only 0:s in the column for NF ,
this means that ϕi′,j′ alone must imply both NF /∈ S and F /∈ S and thus, the
corresponding event belongs to ID. Therefore, ϕi′,j′ ∨ ϕ = ϕ and by applying
Lemma 6.3, we can conclude that either

ϕ ≡ · · · ∨ ϕi′,j′ ∨ · · · ∨ ϕi′ ∨ · · · (6.15)

or that

ϕ ≡ · · · ∨ ϕi′,j′ ∨ · · · (6.16)

where the conjunction ϕi′ is not present in (6.16). Assume the ϕ corresponds
to the first of these two expressions. Then it holds that

ϕi′,j′ ∨ ϕi′ = ϕi′,j′

and thus, ϕ cannot be a minimal DNF. Therefore, ϕ must correspond to (6.16)
and we can write

ϕi′ ≡ ϕi′,1 ≡ {Sk1 = S1
k1}

Now since F /∈ S1
k1

, we know from Definition 6.3 that Sdesk1
= S0

k1
. This

further implies that

ϕi′ ≡ {Sk1 6= Sdesk1 }

which means that the event ID is completely undesirable. This ends the part
of the proof for ID.

MIM of Fault Mode F

Now consider MIM and again an arbitrary chosen ϕi′ . From the definition
of MIM we know that each ϕi implies F /∈ S or that {F, Fc} ⊆ S for some
Fc 6= F .

Consider first a ϕi′ such that F /∈ S. Then the reasoning for ID can be
applied to ϕi′ and we can conclude that it must be the case that ϕi′ ≡ {Sk = S1

k}
and {Sdesk = S0

k}.
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Now consider a ϕi′ such that {F, Fc} ⊆ S and assume that ϕi′,1 ≡ {Sk1 =
S1
k1
}. Then {F, Fc} ⊆ Sk1 and Fc 6= NF . Since the decision structure contains

no 1:s, which implies that ∀k.F ∈ S0
k, we also know that

ϕ̄i′ = ¬ϕi′,1 ∧ ϕi′,2 ∧ . . .

must imply {F, Fc} ⊆ Sk1 . This means that ϕ̄i′ belongs to MIM , which further
implies that

ϕ̄i′ ∨ ϕ = ϕ (6.17)

Also we have that

ϕ̄i′ ∨ ϕi′ ≡ (¬ϕi′,1 ∧ ϕi′,2 ∧ · · · ) ∨ (ϕi′,1 ∧ ϕi′,2 ∧ · · · ) = ϕi′,2 ∧ · · · = ϕ′i′
(6.18)

Expression (6.17) and (6.18) together implies that

ϕ ≡ · · · ∨ ϕi′∨ = ϕ̄i′ ∨ · · · ∨ ϕi′∨ = · · · ∨ ϕ′i′ ∨

where ϕ′i′ have fewer terms than ϕi′ and thus ϕ cannot be a minimal DNF. This
contradiction gives that ϕi′,1 and consequently all ϕi′,j must satisfy

ϕi′,j ≡ {Skj = S0
kj}

Suppose now that ϕi′,1 ≡ {Sk1 = S0
k1
} = {Sk1 = Sdesk1

}, i.e. Sdesk1
= S0

k1
.

This implies that F /∈ S1
k1

, and therefore ¬ϕi′,1 = {Sk1 = S1
k1
} alone must

belong to ID and also MIM . This further implies

¬ϕi′,1 ∨ ϕ = ϕ

Using Lemma 6.3 implies that one of the conjunctions in ϕ is ¬ϕi′,1. It holds
that

ϕ ≡ · · · ∨ ¬ϕi′,1 ∨ · · · ∨ ϕi′ ∨ · · · ≡
≡ · · · ∨ ¬ϕi′,1 ∨ · · · ∨ (ϕi′,1 ∧ ϕi′,2 ∧ · · · ) ∨ · · · = · · · ∨ (ϕi′,2 ∧ · · · ) ∨ · · · ≡
≡ · · · ∨ ϕ′′i′ ∨ · · ·

where ϕ′′i′ have fewer terms than ϕi′ and thus ϕ cannot be a minimal DNF. This
contradiction gives that ϕi′,1 and consequently all ϕi′,j must satisfy

ϕi′,j ≡ {Skj = S0
kj} = {Skj 6= Sdeskj }

In conclusion, for each conjunction ϕi of ϕ, it holds that either

ϕi ≡ {Sk = S1
k} = {Sk 6= Sdesk }

or that

ϕi ≡
∧
j

{Skj = S0
kj} = {Skj 6= Sdeskj }
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This means that MIM is completely undesirable.

For the event ID, the proof of Lemma 6.2 is valid also for the less restrictive
case that the decision structure contains no 1:s in the columns for F but still
only 0:s in the column for NF .

The following lemma shows that the event FA is completely undesirable,
which implies that Presumption 6.1 and 6.2 can be used.

Lemma 6.4 If the decision structure contains no 1:s, and the column for NF
only 0:s, then the event FA is completely undesirable.

Proof: Define a new fault mode Fnew that has a column in the decision
structure which is identical with the column for NF . Then the event FA is
equivalent to ID of fault mode Fnew . Further, Lemma 6.2 implies that the
event ID of Fnew is completely undesirable and therefore also the event FA is
completely undesirable.

6.1.5 Some Bounds for P (FA), P (ID), and P (MIM)

The purpose of this section is to exemplify the use of Presumption 6.1 and 6.2,
and at the same time derive some relations useful for selecting the significance
level αk of the individual tests. With the notation used here, the significance
level becomes

αk = sup
θ∈Θ0

k

P (reject H0
k | H0

k true) = sup
θ∈Θ0

k

P (Sk = S1
k | θ)

where Θ0
k =

⋃
γ∈Mk

Θγ . We will assume that ΘNF = {θ0} and that

sup
θ∈Θ0

k

P (Sk = S1
k | θ) = P (Sk = S1

k | θ0)

Thus, it holds that

αk = P (Sk = S1
k | θ ∈ ΘNF ) (6.19)

In the following subsections, we will derive bounds for the probabilities
P (FA), P (ID), and P (MIM). In all cases we will assume that the decision
structure contains no 1:s and the column for NF contains only 0:s.

Bounds for FA

Consider the event FA which can be described by the minimal DNF (6.3). In
most expressions for probabilities below, we will assume that a specific θ is given,
but to get a simple notation, this is not written out, i.e. P (. . . |θ) is written
P (. . . ). Lemma 6.4 makes it possible to apply Presumption 6.1 and 6.2 to (6.3).
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Figure 6.6: The functions 1− (1−α)n (solid) and nα (dashed) for α = 0.05 and
0.02.

For the event FA, we know that θ ∈ ΘNF and by noting that αk = P (Sk = S1
k),

the bounds become

max
k

αk = max
k

P (Sk = S1
k) ≤ P (FA) ≤

≤ 1−
∏
k

(
1− P (Sk = S1

k)
)

= 1−
∏
k

(
1− αk

)
Now assume that the significance of all tests are equal to α, i.e. ∀k.αk = α.
This implies that the bounds become

α ≤ P (FA) ≤ 1− (1− α)n

where n is the number of tests. In Figure 6.6, the functions 1− (1−α)n (solid)
and nα (dashed) have been plotted as a function of n for α = 0.05 and α = 0.02.
It is obvious that 1 − (1 − α)n < nα and also that 1 − (1 − α)n ≈ nα. This
means that the simple expression nα is an upper level of P (FA) and also an
approximation of the upper level 1− (1− α)n.

Bounds for ID

Now consider the event ID of fault mode F . The probability P (ID) can be
written

P (ID) = P (
( ∨
k

NF /∈ Sk
)
∧

( ∨
k

F /∈ Sk
)
) =

= P (
( ∨
k

{Sk = S1
k}

)
∧

( ∨
k∈µ
{Sk = S1

k}
)
) = P (

∨
k∈µ
{Sk = S1

k}) (6.20)
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where

µ = {k; F /∈ S1
k}

That is, µ is the set of indices for tests δk with a 0 in the decision structure for
F .

The rightmost expression of (6.20) is a minimal DNF which together with
Lemma 6.2 implies that it is possible to use Presumption 6.1 and 6.2. With
βk(θ) denoting the power function of the k:th test, i.e. βk(θ) = P (Sk = S1

k | θ),
the bounds become

max
k∈µ

βk(θ) = max
k∈µ

P (Sk = S1
k) ≤ P (ID) ≤

≤ 1−
∏
k∈µ

(
1− P (Sk = S1

k)
)

= 1−
∏
k∈µ

(
1− βk(θ)

)
Now it is reasonable to assume that for θ ∈ ΘF and k ∈ µ, it holds that βk(θ) =
βk(θ′) where θ′ ∈ ΘNF . This together with (6.19) means that βk(θ) = αk and
the bounds become

max
k∈µ

αk ≤ P (ID) ≤ 1−
∏
k∈µ

(
1− αk

)
By assuming that ∀k.αk = α, and again using the relationship 1−(1−α)n < nα,
the bounds can be further simplified to

α ≤ P (ID) ≤ 1− (1 − α)nµ < nµα

where nµ denotes the number of elements in µ.

Bounds for MIM

Next consider the eventMIM (= MD∪ID∪MI) of fault mode F . By studying
the proof of Lemma 6.2 it can be realized that the probability P (MIM) can be
expressed with a minimal DNF as

P (MIM) = P (
∨
k∈µ
{Sk = S1

k}
∨

i=1...nX

Ai) (6.21)

where

µ = {k; F /∈ S1
k}

and

Ai =
∧
k∈ψi

{Sk = S0
k}

for some, typically small, number nX and some sets ψi.
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Since the formula in (6.21) is a minimal DNF, Lemma 6.2 implies that it is
possible to use Presumption 6.1 and 6.2. The lower bound becomes

P (MIM) ≥max{max
k∈µ

P (Sk = S1
k), max

i...nX

∏
k∈ψi

P (Sk = S0
k)} =

= max{max
k∈µ

αk, max
i...nX

∏
k∈ψi

(1 − βk(θ))} (6.22)

where we again have used the assumption βk(θ) = αk for k ∈ µ. The upper
bound becomes

P (MIM) ≤1−
∏
k∈µ

(
1− P (Sk = S1

k)
) nX∏
i=1

max
k∈ψi
{1− P (Sk = S0

k)} =

= 1−
∏
k∈µ

(
1− αk

) nX∏
i=1

max
k∈ψi

βk(θ) (6.23)

Now if, for each test δk, it holds that βk(θ) ≥ 1− αk, then an upper bound
for (6.22) is

max{max
k∈µ

αk, max
i...nX

∏
k∈ψi

αk}

By again assuming ∀k.αk = α, this expression becomes equal to

max{α, max
i...nX

αnψi} = α (6.24)

where nψi denotes the number of elements in ψi. Similarly, an upper bound
for (6.23) becomes

1−
∏
k∈µ

(
1− αk

) nX∏
i=1

max
k∈ψi

(1− αk)

and with the assumption ∀k.αk = α, this expression becomes equal to

1− (1 − α)nµ(1− α)nX = 1− (1 − α)nµ+nX ≤ (nµ + nX)α (6.25)

where nµ denotes the number of elements in µ.
In conclusion, we have derived the bound (6.25), which is a upper bound to

the upper bound (6.23) of P (MIM), and (6.24), which is an upper bound to
the lower bound (6.22) of P (MIM). The usage of the bound (6.24) is that if
we know that it is small, then the lower bound of P (MIM) will be small.

Concluding Remarks

The bounds for P (FA), P (ID), and P (MIM) derived in this section are sum-
marized in Table 6.1. Although derived using some assumptions, the relations
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Probability Lower Bound Upper Bound Simple Upper Bound
P (FA) α 1− (1− α)n nα
P (ID) α 1− (1− α)nµ nµα
P (MIM) (6.22) ≤ α 1− (1− α)nµ+nX (nµ + nX)α

Table 6.1: Bounds for P (FA), P (ID), and P (MIM) when ∀k.αk = α. The
bounds for MIM are obtained when βk(θ) ≥ 1− αk.

in Table 6.1 and also the other relations derived in this section, are useful to be
aware of when choosing the significant levels of the individual tests.

From above it is clear that the probabilities P (FA), P (ID), etc., can be
estimated if we have the probabilities P (Sk = S1

k) = 1 − P (Sk = S0
k). In

principle, we are interested in the probability P (Sk = S1
k) for all different θ.

That is, we need to estimate the power function βk(θ) = P (Sk = S1
k | θ) for all

θ. As described in Section 4.6.1, the power function can be estimated directly or
in some cases derived analytically by knowing the distribution of the measured
data.

Assume that βk(θ) is estimated directly by using measured data. In that
case note that even though the amount of data needed to get accurate estimates
can be large, it is still much less compared to if e.g. P (FA) was going to be
estimated directly.

6.1.6 Calculating Bounds of the Risk Function

The bounds (6.7) and (6.8) give upper and lower bounds of the probabilities
P (FA), P (MIM), and P (ID). These bounds can now be used to calculate
the bounds of the risk function (6.2). The lower and upper bounds of the risk
function R(θ, δ) will be denoted R(θ, δ) and R(θ, δ) respectively. The derivation
of bounds is exemplified in the following example:

Example 6.2

Consider the same diagnosis system as in Example 6.1. To calculate bounds of
R(θ, δ) in the case θ ∈ ΘNF , we need bounds of P (FA). Since (6.4) is a minimal
DNF, Presumption 6.1 and 6.2 together with Lemma 6.4 give the bounds

R(θ, δ) = cNF (θ)
[
1− P (S1 = S1

1)P (S2 = S1
2)P (S3 = S1

3)
]

and

R(θ, δ) = cNF (θ)max{P (S1 = S1
1), P (S2 = S1

2)P (S3 = S1
3)}

Next consider the case θ ∈ ΘF3∩Θinsign , i.e. the fault belongs to fault mode
F3 and it is insignificant. To calculate the risk function (6.2), we need P (ID)
given by (6.6), which is a minimal DNF. Then Presumption 6.1 and 6.2, and
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Lemma 6.2 give the bounds

R(θ, δ) = cID(θ)
[
1− P (S2 = S2

0)P (S3 = S3
0)

]
and

R(θ, δ) = cNF (θ)max{P (S2 = S2
0), P (S3 = S3

0)}

For each δ(x) and θ we get one lower and one upper bound. If a finite set of
θ:s is considered, the values of the bounds for a certain δ(x) can be represented
in a table:

θi R(θ, δ) R(θ, δ)

...
...

...

6.2 Finding the “Best” Diagnosis System

Given a set C of diagnosis systems, we will here discuss if we can find the
“best” diagnosis system in C, and in that case how to do it. The measure of
performance is the risk function defined in Section 6.1.2 and we thus want to
find the diagnosis system δ with minimal risk R(θ, δ). The problem is that
R(θ, δ) for a given δ, is not a constant but a function of θ. Given two diagnosis
systems δ1 and δ2, it can happen that R(θ, δ1) < R(θ, δ2) for some values of θ
while R(θ, δ1) > R(θ, δ2) for some other values of θ. For example δ1 performs
better with respect to false alarm and δ2 performs better with respect to missed
detection. It is obvious that the original goal, of finding the best diagnosis
system, must be modified and instead, we should try to find a, preferably small,
set of good diagnosis systems.

The problem of a performance measure that is a function is not something
unique for diagnosis systems. Actually, it is a common situation in general
decision problems. In decision theory, several principles have therefore been
developed to deal with this issue. In the next two sections, we discuss how
these general principles can be applied to the problem of finding the “best” or
at least good diagnosis systems.

6.2.1 Comparing Decision Rules (Diagnosis Systems)

Since this section discusses finding diagnosis systems from the standpoint of
general decision theory, we will mainly refer to general decision rules instead of
diagnosis systems.

To be able to compare different decision rules (here diagnosis systems), the
relations better and equivalent are defined:
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Definition 6.5 (Better) A decision rule δ1 is better than a decision rule δ2
if

∀θ.R(θ, δ1) ≤ R(θ, δ1)

and

∃θ.R(θ, δ1) < R(θ, δ1)

A decision rule δ1 is equivalent to a decision rule δ2 if

∀θ.R(θ, δ1) = R(θ, δ1)

In the case where the risk is not available but instead, we have both an upper
and a lower bound, the definition of better and equivalent must be modified:

Definition 6.6 (Better) A decision rule δ1 is better than a decision rule δ2
if

∀θ. R(θ, δ1) ≤ R(θ, δ2) ∧ R(θ, δ1) ≤ R(θ, δ2)

and

∃θ. R(θ, δ1) < R(θ, δ2) ∨ R(θ, δ1) < R(θ, δ2)

A decision rule δ1 is equivalent to a decision rule δ2 if

∀θ.R(θ, δ1) = R(θ, δ2)

and

∀θ.R(θ, δ1) = R(θ, δ2)

The relations 6.5 and 6.6 define a partial order on the set of decision rules
(or diagnosis systems). Corresponding to minimal elements of a partial order,
decision theory uses the term admissible:

Definition 6.7 (Admissible Decision Rule) A decision rule δ is admissible
if there exists no better decision rule δ′.

It is obvious that we need to consider only admissible decision rules (diagnosis
systems) when trying to find good diagnosis systems. If C is the set of diagnosis
systems considered, we use the notation Cadm for the set of admissible diagnosis
systems in C.

6.2.2 Choosing Diagnosis System

Even though the concept of admissibility reduces the set of diagnosis systems
we need to consider to Cadm, it is probable that the set Cadm is still to large. We
need a principle to pick out one or possibly a few δ in Cadm that represents a
good choice. We will here discuss three such principles: the Bayes’ risk principle,
the minimax principle, and the approximate minimization principle. The first
two of these originates from classical decision theory and the third is presented
in this work.
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The Bayes’ Risk Principle

Using the Bayes’ risk principle, we assume that there is a prior distribution π(θ)
on the parameter space Θ. Then we can evaluate the Bayes’ risk:

r(δ) = E{R(θ, δ(X))}

with expectation taken with respect to both θ and X (X is the data). Then the
Bayes’ risk principle is to choose the diagnosis system with lowest Bayes’ risk.
The problem with this principle is that a prior π(θ) is rarely available, i.e. we
seldom know the probability of different faults. However, an alternative is to
see π(θ) as a design parameter.

The Minimax Principle

Consider the quantity

sup
θ∈Θ

R(θ, δ) (6.26)

which represents the worst thing that can happen if δ is used. The minimax
principle is to choose the diagnosis system which minimizes (6.26). The problem
with this principle is that, even though it is the worst case, only one θ-value for
each δ is used.

Figure 6.7 illustrates the problem. With the minimax principle, the diagnosis
system δ2 with the right risk function would be preferred to a diagnosis system
δ1 with the left risk function. However, in most cases the δ1 would be a much
better choice since its performance approximately equals the performance of δ2
for small θ-values, and for all other θ-values, δ1 outperforms δ2. It can also
be the case that the prior π(θ) for small θ-values is very small and then the
minimax principle would be even worse.

R(θ, δ1) R(θ, δ2)

θθ

Figure 6.7: The problem with the minimax principle.

The Approximate Minimization Principle

As described above, there are arguments to not use the well-known Bayes’ or
minimax principles. There is a need for a principle that do not require a prior
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but in some way consider more than one θ-value. To meet these requirements,
we first define the function

Rmin(θ) = min
δ
R(θ, δ)

which for each θ represents the best performance of any diagnosis system. Then
we define a scalar measure of a risk function:

‖R(θ, δ)‖ = sup
θ

(
R(θ, δ)−Rmin(θ)

)
The approximate minimization principle is then to choose the diagnosis system
which minimizes ‖R(θ, δ)‖. It can be the case that not one single diagnosis
system minimizes ‖R(θ, δ)‖, but rather a whole set, which we will denote C≈min.
The result can be seen as that R(θ, δ) is “almost” minimized for each θ-value,
thereby the name “approximate minimization”.

With this principle, the functions cFA, cMD, etc. defined in (6.1.1) works as
weighting functions that can be used to emphasize different θ-values.
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Figure 6.8: Illustration of the Approximate Minimization principle.

Example 6.3

Consider Figure 6.8. The parameter set is Θ = {1, 2, 3}. Four decision rules
are considered and their risk functions have been plotted, marked with ∗, ◦, ×,
and + respectively. The value of Rmin(θ) becomes [0.1 0.07 0.3]. The measure
‖R(θ, δ)‖ becomes

‖R(θ, δ)‖
∗ 0.4
◦ 0.1
× 0.1
+ 0.15

and thus the measure is minimized by ◦ and ×. The size of this minimized
measure is shown in the figure as a vertical bar.
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6.3 A Procedure for Automatic Design of Diag-
nosis Systems

With the theory presented in the previous sections, it is quite straightforward to
formulate a procedure for systematic and automatic design of diagnosis systems.
The procedure presented here has been developed from procedures in (Nyberg
and Nielsen, 1997a) and (Nyberg, 1998).

Consider the set of all diagnosis systems D. Then by using the loss function
defined in Section 6.1.1, we want to search in D for admissible diagnosis systems
and then apply the principle of approximate minimization. The problem is
that D is too large. A solution is to first restrict D to a set C ⊂ D, which
hopefully contains most of the good diagnosis systems. Thus, the first step in
the procedure is to find a good initial set C.

6.3.1 Generating a Good Initial Set C of Diagnosis Sys-
tems

As input to the procedure, we use a set of hypothesis tests T , called test can-
didates, and a set of measurement data M = 〈M1, . . .Mn〉. By using the
measurement data M and computing the test quantities, we can estimate the
correlation between them By restricting the set T so that it does not contain
highly correlated test quantities, the size of T can be reduced. This is desirable
to save computational load in later steps of the procedure.

Also by using measurement data, the tests can be tuned for good perfor-
mance. For each test, this should include at least tuning of the threshold so
that a desired significance level is obtained. Also possible to include is a “tun-
ing” of the sets S1

k and S0
k, i.e. to add or remove some fault modes. Note that

an equivalent way of describing this is that the decision structure is modified,
e.g. some 0:s are changed to X:s.

The selection of threshold and sets S1
k and S0

k in each test, largely affects
the performance of the tests and also the diagnosis system. To analyze this,
we can use the principles that were discussed in Section 4.7. There it was
concluded that we need the power function βk(θ) which can be estimated from
the measurement dataM in accordance with Section 4.6.1.

Optimal thresholds values are difficult to obtain but we can use the heuristic
to choose a certain level of significance α and then select the thresholds of each
test δk such that αk = α. This has the advantage that the probability of the
events FA, ID, and MIM can be quite easily expressed in α as shown in
Section 6.1.5 and especially in Table 6.1.

The set S1
k can be tuned by using the formula (4.42). That is, fault modes

for which the power function is not small, should be added to S1
k. This means

that, if the incidence structure was used to determine a first choice of S1
k, many

fault modes may not have been included in S1
k. However, when measurement

data are used, model errors become important, and some of the fault modes,
that were not originally included in S1

k, must now be added. It is possible to
also use a similar “tuning” of the sets S0

k by using the formula (4.43).
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Note that it is also possible to include two or more different tunings of a
single hypothesis test, in the set T . For example, assume that the original
set S1

3 does not contain a fault mode F1, but the power function derived from
measurement data shows that F1 should be added to S1

3 . Then, it is possible to
include two tests δ3 and δ3′ , corresponding to different choices of S1

3 , in the set
T .

After that each hypothesis test has been tuned, and possibly several varia-
tions of some tests have been included in T , the set C is obtained as all possible
nonempty subsets of T , i.e.

C = 2T − ∅

6.3.2 Summary of the procedure

The whole procedure for systematic and automatic diagnosis system design can
be summarized as follows.

Input: The input is 〈T ,M〉, where T is a set of hypothesis test candidates and
M a set of measurement data.

Step 1: Generate a good set C of diagnosis systems:

1. Start with a set of test candidates T .

2. Use measurement dataM to estimate correlation and reduce T such
that it does not contain highly correlated test quantities.

3. For each test candidates in T , use measurement data M, and esti-
mate βk(θ) for different thresholds and for different θi:s corresponding
the measurementsMi.

4. Use the estimated βk(θ) to tune each test, which includes tuning of
thresholds and possibly also the sets S1

k and S0
k.

5. Let C be all possible nonempty subsets of T .

Step 2: Calculate R(θi, δ) and R(θi, δ) for all δ ∈ C:

1. For each δ ∈ C, derive propositional logic expressions for the events
FA, ID, and MIM , for the different fault modes.

2. For each δ ∈ C, transform the propositional logic expressions to min-
imal DNF’s.

3. For each δ ∈ C, use the minimal DNF’s, Presumption 6.1 and 6.2,
and the estimate of βk(θ) to calculate probability bounds for the
cases θ1, . . . , θn.

4. For each δ ∈ C, use the probability bounds to calculate R(θi, δ) and
R(θi, δ).

Step 3: Pick out the admissible set Cadm ⊆ C.

Step 4: Apply approximate minimization to get C≈min ⊆ Cadm.
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Output: The output is C≈min.
An alternative to the above procedure is to switch the order of steps 3 and 4.

It can be realized that this gives the same result, i.e.

{Cadm}≈min = {C≈min}adm
The reason for switching steps 3 and 4 is that the operation of extracting a set
of admissible decision rules is computationally more heavy than the operation
of approximate minimization.

As said in Section 6.2.2, the output C≈min can be more than one diagnosis
system. If this is the case, the diagnosis system containing the least number of
hypothesis tests should be chosen for implementation. This is to minimize the
diagnosis system complexity and computational load.

6.3.3 Discussion

Design of diagnosis systems is an optimization problem. The optimization prob-
lem addressed by the procedure described above, is to optimize the risk with
respect to thresholds (and possibly other parameters of the individual tests) and
selection of individual tests to be included. In the solution of the procedure,
the optimization problem is divided into two subproblems: first the thresholds
are fixed for each test and then, hypothesis tests to be included are selected.
Because this “two-stage approach” is used, global optimum is not guaranteed.
However, if sufficient computer power is available, it is possible to try several
thresholds for each test. This could be done by increasing the size of T such
that each test is included more than once, but with different thresholds. This
makes it possible to get closer to a globally optimal solution. Another reason
for non-optimality is that minimizing the bounds may not necessarily result in
that the actual risks are minimized.

One potential problem with using the procedure is application specific re-
quirements of low probabilities of false alarm, missed detection, etc. Because of
this, the thresholds must be chosen such that the probabilities of P (Sk = S1

0)
becomes highly dependent on the tail of the density functions of the test quan-
tities. In this area, the probability estimates become unreliable which further
implies that the bounds of the risk function becomes unreliable. The output
from the procedure might be far from optimal.

To overcome this problem there are at least three possible solutions. One
is to use longer measurement sequences. However, practical limitations can
make this difficult. Another solution is to estimate parametric models of the
probability density functions, e.g. see (Gustavsson and Palmqvist, 1997). The
third solution is to accept a higher rate of undesirable events, i.e. false alarm,
missed detection, etc., and then take care of these undesirable events by adding
some after-treatment of the output from the diagnosis system. For example, the
time, for which the original diagnosis system signals alarm, can be summed up
and the alarm can be suppressed until the time-sum reaches a threshold.

The whole procedure is automatic, i.e. when input data are provided, all
steps can be performed without any human involvement. This means that the
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only thing left to automatize is the construction of the test quantities in the
hypothesis tests. A general solution to this is a topic of future research but for
limited classes of diagnosis problems, e.g. for the case of linear systems with
fault modeled as additive signals, solutions are already available.

The procedure has been implemented as a Matlab command. The part of
the procedure, requiring most computing power, is to derive the minimal DNF’s
of the events FA, ID, etc. However, in many cases it might be possible to “pre-
calculate” minimal DNF expressions for the events of interest.

6.4 Application to an Automotive Engine

When constructing a model-based diagnosis system for automotive engines, it
is desirable to strive for an optimum performance and at the same time mini-
mize the amount of engineering work required. Automotive engines are rarely
designed from scratch but often subject to small changes, e.g. for every new
model year. Then usually also the diagnosis system needs to be changed. Since
this may happen quite often and a car manufacturer typically has many differ-
ent engine models in production, it is important for the car manufacturers that
diagnosis systems can be reconstructed with minimal amount of work involved.

For manufacturers of independent diagnosis systems, to be used in inde-
pendent repair-shops, the situation is even more critical. They need to design
diagnosis systems for a large amount of different car brands and models. This
makes it necessary to find procedures such that diagnosis systems can be con-
structed with very limited amount of work.

Thus, in the automotive area, there is a large need for a systematic and
automatic procedure like the one presented in the previous section. In this
section, the procedure is applied to the construction of the diagnosis system for
the air-intake system. The resulting diagnosis system is then experimentally
evaluated in Section 6.4.6.

6.4.1 Experimental Setup

The engine is a 2.3 liter 4 cylinder SAAB production engine mounted in a test
bench together with a Schenk “DYNAS NT 85” AC dynamometer. Note that
this is not the same engine as the one used in Chapter 5. The measured variables
are the same as the ones used for engine control. A schematic picture of the
whole engine is shown in Figure 6.9.

The part of the engine, that is considered to be the air-intake system, is
everything to the left of the dashed line in Figure 6.9. When studying the air
intake system, also the engine speed must be taken into account because it
affects the amount of air that is drawn into the engine.

6.4.2 Model Construction

As we noted in Chapter 5, the automotive engine is a non-linear plant and it
has been indicated in several works by different authors, that for the purpose of
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Figure 6.9: A basic automotive engine.

diagnosis, a linear model is not sufficient. As for the applications in Chapter 5,
there is no need for extremely fast fault detection, and therefore a so called
mean value model (Hendricks, 1990) is chosen. This means that no within cycle
variations are covered by the model. The model is continuous and has one state
which is the manifold pressure. The air dynamics is derived from the ideal gas
law.

The process inputs are the throttle angle α (which is assumed to be un-
known), and the engine speed n. The outputs are the throttle angle sensor αs,
the air-mass flow sensor ms and the manifold pressure sensor ps. The equations
describing the fault-free model can be written as

ṗ =
RTman
Vman

(mth −mac) (6.27a)

mth = f(p, α) (6.27b)
mac = g(p, n) (6.27c)

where p is the manifold pressure, R the gas constant, Tman the manifold air
temperature, Vman the manifold volume,mth the air-mass flow past the throttle,
mac the air-mass flow out from the manifold into the cylinders, α the throttle
angle, and n the engine speed.

The model consists of a physical part, (6.27a), and a black box part, the
functions (6.27b) and (6.27c). Even if variations in ambient pressure and tem-
perature do affect the system, they are here assumed to be constant. The static
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functions f(p, α) and g(p, n), are represented by polynomials. The identification
of the functions f and g, and the constant Vman, is described in (Nyberg and
Nielsen, 1997b).

6.4.3 Fault Modes Considered

The components that are to be diagnosed are the throttle angle sensor, the air-
mass flow meter, and the manifold pressure sensor. Four system fault modes
are considered:

NF No Fault
M air-Mass sensor fault
A throttle-Angle sensor fault
P manifold-Pressure sensor fault

As seen only single-fault modes are considered. In all cases the faults are mod-
eled as arbitrary signals added to the physical quantities, i.e.

ms(t) =m(t) + fM (t) (6.28a)
αs(t) =α(t) + fA(t) (6.28b)
ps(t) =p(t) + fP (t) (6.28c)

where the index s represents measured sensor signals. For fault mode NF , all
functions fM (t), fA(t), and fP (t) are zero and for each of the other fault modes,
one of the three functions are nonzero.

All this means that the fault state parameter θ at a particular time t0 is

θ = [fM (t) fA(t) fP (t)] t ≤ t0

That is, θ is a vector of three functions. The definition of the parameter spaces
Θ, ΘNF , ΘM , ΘA, and ΘP follows naturally.

6.4.4 Construction of the Hypothesis Test Candidates

The inputs to the diagnosis system, and therefore also the individual tests, are
ms, αs, ps, and n. Because the faults are modeled as additive arbitrary signals,
the test quantity in each of the hypothesis tests becomes a residual generator.

The model of the air-intake system is non-linear. Because of the scarcity
of design methods for residual generators for non-linear systems, we have to
rely mostly on ad-hoc design. To not introduce unnecessary constraints, the
design of residuals is not restricted to one method. Instead a combination
of static relationships, non-linear diagnostic observers, and parity equations is
used to construct 12 residuals of the type where an output is compared to an
estimate of the output, or two estimates of the same output are compared. The



Section 6.4. Application to an Automotive Engine 173

computational form of these 12 residuals are

r1 = ms − m̂1(αs, ps)
r2 = ms − m̂2(n, ps)
r3 = ps − p̂1(αs, n, ps)
r4 = ms − m̂3(αs, n,ms)
r5 = ps − p̂2(as,ms, n)
r6 = αs − â1(u, αs,ms, ps)
r7 = ms − m̂4(αs, n, ps)
r8 = r2 − r1 = m̂1(αs, ps)− m̂2(n, ps)
r9 = r4 − r2 = m̂2(n, ps)− m̂3(αs, n,ms)
r10 = r4 − r1 = m̂1(αs, ps)− m̂3(αs, n,ms)
r11 = r3 − r5 = p̂2(αs,ms, n)− p̂1(αs, n, ps)
r12 = αs − α̂2(ms, ps)

where m̂i, α̂i, and p̂i are different estimates of the output signals. The details
on how these estimates are formed can be found in Appendix 6.A.

Each of the 12 residuals is used to form a hypothesis test and thus we have a
set T of 12 hypothesis test candidates. Different test quantities (i.e. the residual
generators) are sensitive to different faults. This can be seen by studying the
equations of the residuals and is summarized in Table 6.2, which contains the
incidence structure for the 12 test quantities. As can be seen, there are some X:s
in the incidence structure. The reason for this was explained in Example 3.2.

From the incidence structure, the decision structure is derived by replacing
1:s by X:s. Because of how the fault models (6.28) are constructed, the decision
structure will contain only 0:s and X:s.

NF M A P
r1 0 1 1 X
r2 0 1 0 X
r3 0 0 1 1
r4 0 1 1 0
r5 0 1 1 1
r6 0 1 1 1
r7 0 1 1 X
r8 0 1 0 1
r9 0 1 1 1
r10 0 1 1 1
r11 0 1 1 1
r12 0 1 1 1

Table 6.2: The incidence structure of the test quantities for the 12 hypothesis
test.
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6.4.5 Applying the Procedure for Automatic Design

Following is a description of how all steps in the procedure, listed in Sec-
tion 6.3.2, is applied to the design of a diagnosis system for the air-intake system.

Input

The input to the procedure is the set of 12 test candidates T defined in the
previous section and a set of measurement dataM. The measurement dataM
were collected from the real engine during a one minute fault-free test cycle, see
(Nyberg and Nielsen, 1997b). All faults were added to fault-free measurements
and constant bias faults were chosen. The fault sizes were ±2%, ±4%, and
±6% for the α-fault, ±2.5%, ±5%, and ±7.5% for the m-fault, and ±2%, ±4%,
and ±6% for the p-fault. For each sensor, the two smallest fault sizes (negative
or positive) are considered to be insignificant faults and rest of the four fault
sizes are considered to be significant faults. In addition there were one fault-free
measurement. This means that measurements have been collected for 19 points
in the infinitely large parameter space Θ.

Step 1: Generation of the set C

The measurement data set in M corresponding to θ ∈ ΘNF , i.e. fault free
measurements, is used to calculate correlation between the test quantities of
the tests T . From studying the correlation coefficients, it is concluded that
test quantities 1 and 7 are highly correlated, C(r1, r7) = 0.99, and also test
quantities 5 and 11, C(r5, r11) = 0.99. Therefore, test quantities 7 and 11 are
omitted from T . This means that we are left with a T ′ containing 10 test
candidates.

The power function βk(θ) is estimated, using the measurement dataM, for
thresholds in the range 0 to 20. With its help, P (Sk 6= Sdesk ; | θi) is plotted
in Figure 6.10. The fact that test quantities 1 and 7, and 5 and 11, are highly
correlated is seen in these plots because the plots for the corresponding pairs
are very similar.

By using the power function βk(θ) for θ ∈ ΘNF , the threshold Jk for each
test δk is chosen such that the significance level becomes αk = 0.05. Table 6.3
shows the threshold levels Jk for all tests in T . The sets S1

k and S0
k need not to

be modified because formulas (4.42) and (4.43) are fulfilled.
Now when thresholds and sets S1

k and S0
k have been fixed, let C be all possible

nonempty subsets of T ′. The size of C is 210 − 1 = 1023.

Step 2: Calculation of R(θi, δ) and R(θi, δ)

The power functions βk(θ) estimated in the previous step can now be used to
obtain estimates of the probabilities P (Sk = S1

k |θ) for all θi, i = 1, . . . , 19
and all tests in T . This means that 19 · 10 = 190 probabilities are estimated.
These are used to estimate the bounds R(θi, δ) and R(θi, δ). In total, there are
1023 · 19 · 2 = 38874 bounds.
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Figure 6.10: The probability P (Sk 6= Sdesk ) for each test as a function of the
threshold. The lines for significant faults are solid and for insignificant faults
dashed. Also the lines for fault mode NF are solid.
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δk Jk
δ1 2.15
δ2 2.55
δ3 2.05
δ4 3.15
δ5 4.85
δ6 4.25
δ7 2.15
δ8 2.15
δ9 2.55
δ10 2.25
δ11 5.05
δ12 9.85

Table 6.3: The thresholds for all tests in T .
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Figure 6.11: The risk bounds for 16 different diagnosis systems.
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In Figure 6.11, these bounds for 16 different diagnosis systems δ ∈ C have
been plotted. The x-axis in each diagnosis system shows the index i of θi
and the y-axis shows the value of R(θi, δ) and R(θi, δ). The x-marks represent
R(θi, δ) and the circles represent R(θi, δ). By visual inspection, it is seen that
the diagnosis system represented by the top left plot, is the best of these 16.

Step 3&4: Finding the Admissible Set and Approximate Minimiza-
tion

The admissible set Cadm contains 15 diagnosis systems. After applying approx-
imate minimization, there is only 1 diagnosis systems left in the set C≈min. We
will denote this diagnosis system with δbest. The decision structure for δbest is

NF M A P
δ2 0 0 X X
δ3 0 X 0 X
δ4 0 X X 0

The risk bounds for δbest are plotted in the top left plot of Figure 6.11.
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Figure 6.12: Confirmation of the diagnosis system δbest for the cases, NF ,
insignificant A, and significant A.

6.4.6 Confirmation of the Design

To confirm the design, the single diagnosis system, that was the output from
the procedure, is tested using the 19 fault cases that was used for the design.
Of these 19 cases, the result of 6 cases are shown in Figure 6.12 and 6.13.
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Figure 6.13: Confirmation of the diagnosis system δbest for the cases significant
M , insignificant P , and significant P .

Each column of plots represents one test case and the present fault mode
is indicated on the top. Each row of plots represents the indicator functions
IS(t)(Fi) for each of the fault modes (indicated to the left). The indicator
function IS(t)(Fi) has the value 1 if Fi ∈ S(t) and 0 if Fi /∈ S(t). For example
consider the leftmost column of Figure 6.12. In this case, the present fault mode
is NF which means that the event of interest is FA and to prevent that FA
occurs, NF should belong to S all the time. As seen in the upper left plot, this
is however not the case. On several occasions, the indicator function goes to
zero which means that NF /∈ S, i.e. the event FA occurs.

Consider next the second column of Figure 6.12. The present fault mode is
A and the fault is insignificant. This means that the event of interest is ID and
to prevent ID, the indicator function for A (the second row) must be one. Also
here, there are some occasions where this indicator function goes to zero, which
means that ID occurs.

For the third column of Figure 6.12, the present fault mode is also A but
this time, the fault is significant. Thus, the event of interest is MIM and to
prevent MIM , the indicator function for A must be one and all other indicator
functions must be zero. As seen in the plots, this is true almost all the time.

It is clear that the automatic procedure successfully manage to construct
a diagnosis system for the air-intake system of the engine. The performance
is not perfect but we should remember that the fault sizes that are considered
to be significant faults are comparably small for this application. If better
performance, in terms of fewer false alarms etc., is required, then the smallest
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faults in Θsign must be moved to Θinsign. Then the threshold levels can be
increased, with maintained low probability of MIM , and the probability of FA
and ID will get lower.

The result of all 19 confirmation tests is summarized in Table 6.4. The first
column shows the index i of the measurement. The second column shows the
fault mode present during each measurement. Depending on what fault mode
is present and if it is significant or not, the risk function is proportional to the
probability of the event listed in the third column (compare with (6.2)). Then
in columns four to six, the pre-calculated bounds of the risk function R(θi, δ) is
compared to the actual relative frequency of the corresponding events. It is seen
that, although the bounds are derived using certain assumptions, they manage
to surround the actual value in almost all cases. Only for the 5:th test case, the
actual value is outside the range specified by the bounds. Also for this case,
the bound is still pretty good although not perfect. The reason for this may be
that the actual value is only the relative frequency and not the expectation, or
that the assumptions made to derive the bounds do not hold.

i Fault Mode Event R(θi, δ) actual R(θi, δ)
Present frequency

1 NF FA 0.0454 0.112 0.129
2 A ID 0.0454 0.0454 0.0454
3 A ID 0.0454 0.0454 0.0454
4 A MIM 0.0454 0.0454 0.0454
5 A MIM 0.0454 0.0573 0.0567
6 A MIM 0.0454 0.0454 0.0454
7 A MIM 0.0454 0.0573 0.0587
8 M ID 0.0451 0.0451 0.0451
9 M ID 0.0451 0.0451 0.0451
10 M MIM 0.12 0.151 0.159
11 M MIM 0.0451 0.0495 0.0651
12 M MIM 0.0451 0.0451 0.0451
13 M MIM 0.0451 0.0451 0.0451
14 P ID 0.0441 0.0441 0.0441
15 P ID 0.0441 0.0441 0.0441
16 P MIM 0.172 0.191 0.208
17 P MIM 0.0441 0.0464 0.0609
18 P MIM 0.0441 0.0441 0.0441
19 P MIM 0.0441 0.0441 0.0441

Table 6.4: The actual frequency and the risk bounds.
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6.5 Conclusions

It is highly desirable to systematize and automate the process of designing
diagnosis systems. The reason is that in many applications, high diagnosis
performance is required and at the same time, the time-consuming engineering
work of designing diagnosis systems must be minimized. In this chapter model-
based diagnosis based on structured hypothesis tests was considered, and for
this kind of diagnosis systems, a systematic and automatic design procedure
has been proposed.

Concepts from decision theory are used to define a performance measure,
which reflects the probability of e.g. false alarm and missed detection. These
kinds of probabilities are usually hard to obtain, since they typically require
knowledge and analysis of multidimensional density functions. However, this
problem is solved here by using measurement data to estimate one-dimensional
density functions and then using relations developed, to derive the probability
of e.g. false alarm.

The automatic procedure tries to optimize the performance measure by se-
lecting the optimal set of hypothesis tests to be included, and also by tuning
each hypothesis test with respect to thresholds and sets S1

k and S0
k. The pro-

cedure is successfully applied to the problem of designing a diagnosis system
for the air-intake system of an automotive engine. The complete design chain
has been discussed, including model construction, design of test quantities, and
selection and tuning of the hypothesis tests. The resulting diagnosis system is
then experimentally validated.
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Appendix

6.A Estimation of Engine Variables

Below, we shortly presents how the estimates of the engine variables p, m, and
α are formed. The estimation principles relies on the model (6.27) which was
developed in (Nyberg and Nielsen, 1997b).

Estimates of Manifold Pressure p

The two different estimates of the manifold pressure p are based on observers
of p, and are formed as:

˙̂p =
RTman
Vman

(
f(p̂, αs)− g(p̂, n) +K1(ps − p̂)

)
p̂1(αs, n, ps) = p

˙̂p =
RTman
Vman

(
f(p̂, αs)− g(p̂, n) +K2

(
ms − f(p̂, αs)

))
p̂2(αs,ms, n) = p

Estimates of Air-Mass Flow m

For the estimates of the air-mass flow m, we can use both static and dynamic
relationships in the model (6.27). In forming m2(n, ps) we assume that an
estimate of ṗ is available. The four different estimates of m are:

m̂1(αs, ps) = f(p, αs)

m̂2(n, ps) = g(ps, n)− Vman
RTman

ˆ̇p

˙̂p =
RTman
Vman

(
f(p̂, αs)− g(p̂, n) +K3

(
ms − f(p̂, αs)

))
m̂3(αs,ms, n) = f(p̂, αs)

˙̂p =
RTman
Vman

(
f(p̂, αs)− g(p̂, n) +K4(ps − p̂)

)
m̂4(αs, n, ps) = f(p̂, αs)
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Estimates of Throttle Angle α

The first estimate of the throttle angle α utilizes the fact that the throttle is
controlled by a DC-servo and that we know the input u(t) to the DC-servo.
Also, we have an model available of the DC-servo, and this model have two
states: the angular velocity ω and the throttle angle α. The load disturbance
originating from the air-flow past the throttle must also be taken into account.
This air flow is modeled by a static function h(ps,ms, αs). More information
on the DC-servo model can be found in (Nyberg and Nielsen, 1997b).

The estimate α̂1 is formed by using an observer of the DC-servo states:

˙̂ω = aω̂ + b
(
u(t)− h(ps,ms, αs)

)
+ k1(αs − α̂)

˙̂α = ω̂ + k2(αs − α̂)
α̂1(u, αs,ms, ps) = α

The second estimate of α is derived by first assuming that α is a state with
dynamics α̇ = 0. Then the estimate α̂2 is formed by using an observer for the
state α:

˙̂α = K(ms − f(ps, α̂))
α̂2(ms, ps) = α



Chapter 7

Linear Residual Generation

Residual generation was shortly mentioned in Section 4.2.2 as a special case of
the prediction principle. When talking about residual generation, we assume
that all faults are modeled as signals f(t) and a setup with a residual generator
can therefore be illustrated as in Figure 7.1. The residual generator filters the
known signals and generates a test quantity which is seen as a signal r(t), the
residual. The residual should be “small” (ideally 0) in the fault-free case and
“large” when a fault is acting on the system.

In Figure 7.1, we have also assumed that all, if any, disturbances are modeled
as signals denoted d(t). We remember from Section 4.2 and 4.5 that the test
quantity, here the residual, should be made insensitive to disturbances. That
is, when generating the residual r(t), disturbances should be decoupled.

Process

Residual
Generator

- -

- �

? ?

?

u y

f d

r

Figure 7.1: A residual generator.

This chapter is a study of how to design linear residual generators for linear
systems with no model uncertainties. Most of the discussion will be focused on
decoupling. Further, only perfect decoupling of the disturbances is considered,
and the issue of approximate decoupling associated with e.g. robust diagnosis
(see Section 4.5) is not considered here.
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The limitation to linear models is quite hard since few real systems are
modeled well by linear models. As was said in Chapter 1, this limitation is also
much harder in diagnosis compared to closed-loop control. The reason is that
the feedback, used in closed-loop control, tends to be forgiving against model
errors. Diagnosis should be compared to open-loop control since no feedback
is involved. All model errors propagates through the diagnosis system and
degrades the diagnosis performance.

In Section 7.1, we will more exactly formulate the problem of linear residual
generation. We will see that the actual problem is to design polynomial parity
functions. Most of this chapter contains discussions around two design methods
for polynomial parity functions (or equivalently linear residual generators): the
novel minimal polynomial approach and the well-known Chow-Willsky scheme.
In Section 7.2, the minimal polynomial approach is presented and the notion of
a basis for all polynomial parity functions is introduced. Then in Section 7.3, it
is proved that a basis of degree less or equal to the order of the system, always
exists. The Chow-Willsky scheme is explained in Section 7.4, and the relation
between the minimal polynomial approach and the Chow-Willsky scheme is
investigated in Section 7.5. Finally Section 7.6 contains a design example.

Many concepts and terms from linear systems theory will be used. The most
important ones are summarized in Appendix 7.B.

7.1 Problem Formulation

As was said in Section 4.2, to be able to perform isolation, not only the distur-
bances but also some faults need to be decoupled. It is convenient to distinguish
between monitored and non-monitored faults. Monitored faults are the fault
signals that we want the residual to be sensitive to. Non-monitored faults are
the fault signals that we want the residual to be not sensitive to, i.e. the faults
that we want to decouple.

A formal definition of a residual is as follows:

Definition 7.1 (Residual) A residual is a scalar signal that for all known
inputs u(t) and all disturbances d(t) (including non-monitored faults), should be
zero, i.e. r(t) ≡ 0, in the fault-free case, and should be non-zero, i.e. r(t) 6≡ 0,
when monitored faults are present.

We also define a residual generator formally:

Definition 7.2 (Residual Generator) A residual generator is a system that
takes process input and output signals as inputs and generates a residual.

The residual generator can be a static system if it is based on static redundancy,
or a dynamic system if it is based on temporal redundancy. Note that from the
residual generator point of view, there is no difference between disturbances and
non-monitored faults. Therefore, everywhere the word disturbance is used in
this chapter, it also includes non-monitored faults.
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Residual generator design in general includes a large amount of model build-
ing. However, here we consider the model to be given. Also, although many
different types of considerations are important when designing residual genera-
tors, we will here solely study the decoupling of disturbances. Altogether, the
problem studied in this chapter will be called the decoupling problem and can
be phrased as follows:

Decoupling Problem 1 Given a model, the decoupling problem is to design
a residual generator so that the residual becomes insensitive to the known in-
put u and the disturbance d (including non-monitored faults) and sensitive to
monitored faults f , i.e.

(a) For all u(t) and d(t), it should hold that f(t) ≡ 0 implies r(t) ≡ 0.

(b) For all u(t) and d(t), it should hold that f(t) 6≡ 0 implies r(t) 6≡ 0.

The restriction to limit the discussion to the above decoupling problem may seem
to be hard; other important issues, not covered by the decoupling problem, are
for example response time and sensitivity to disturbances. However, it should
be noted that this restriction is made in most diagnosis literature.

7.1.1 The Linear Decoupling Problem

From now on, the discussion will be restricted even more, namely to linear
systems. Then the model given is linear and represented either by transfer
functions or in state-space form. The transfer function representation is

y = G(σ)u +H(σ)d + L(σ)f (7.1)

where y is the measured output with dimension m, u is the known input with
dimension ku, d is the disturbance with dimension kd, f is the fault with dimen-
sion kf , and G(σ), H(σ), and L(σ) are transfer-matrices of suitable dimensions.
Note again that we will always assume that d includes the non-monitored faults
and f does only contain monitored faults. The operator σ represents the differ-
entiation operator p (or s) in the continuous case and the time-shift operator q
(or z) in the discrete case.

The state-space form representation is

σx(t) = Ax(t) + Buu(t) +Bdd(t) +Bff(t) (7.2a)
y(t) = Cx(t) +Duu(t) +Ddd(t) +Dff(t) (7.2b)

and, unless especially mentioned, no assumptions about controllability or ob-
servability are made.

A general linear residual generator is a linear filter and can be written

r = Q(σ)
[
y
u

]
(7.3)
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i.e. Q(σ) is a transfer matrix with dimension 1× (m+ ku). We will define the
order of a linear residual generator to be its McMillan degree, i.e. the number
of states in a minimal realization.

A number of design methods for designing linear residual generators, have
been proposed in literature, see for example (Patton and Kangethe, 1989)
(Wünnenberg, 1990; White and Speyer, 1987; Massoumnia, Verghese and Will-
sky, 1989; Nikoukhah, 1994; Chow and Willsky, 1984; Nyberg and Nielsen,
1997c). All these methods are methods to design the transfer matrix Q(σ).
Note that this includes for example the case when the residual generator is
based on observers formulated in state space.

If expression (7.3) is developed, we see that a linear residual generator can
also be represented as

r = Q(σ)
[
y
u

]
=c−1(σ)F (σ)

[
y
u

]
= (7.4)

=
A1(σ)y1 + . . .+Am(σ)ym +B1(σ)u1 + . . .+Bk(σ)uku

c(σ)
(7.5)

where F (σ) is a polynomial row-vector and Ai(σ), Bj(σ), and c(σ), are scalar
polynomials in σ. Note that the order of the residual generator is equal to the
degree of the polynomial c(σ).

According to the Decoupling Problem, the objective is to create a signal that
is affected by monitored faults but not by any other signals. This is equivalent
to finding a filter Q(σ) which fulfills the following two requirements:

• The transfer functions from known inputs u and disturbances d, to the
residual must be zero.

• The transfer functions from monitored faults f to the residual must be
non-zero.

These two requirements introduce a constraint on the numerator polynomial
of (7.5) only, i.e. F (s) or equivalently Ai(σ) and Bj(σ). The only constraints
on the denominator polynomial c(σ) is that the residual generator must be
realizable and asymptotically stable. The first of these constraints means that
it must have a degree greater or equal to the row-degree of F (σ), i.e. the largest
degree of the numerator polynomials Ai(σ) and Bj(σ). That is, the minimal
order of the residual generator is determined by the row-degree of F (σ). The
second constraint means, for example in the continuous case, that c(σ) must
have all its zeros placed in the left half plane.

It is obvious that c(σ), or equivalently the poles of the residual generator,
can be chosen almost arbitrarily. This statement is valid for a large class of
residual generator design methods, including diagnostic observer design, e.g.
eigenstructure (Patton and Kangethe, 1989) or the unknown input observer
(Wünnenberg, 1990), in which poles also are placed arbitrarily. Although we
can choose c(σ) arbitrarily, is often suitable to choose it so that a low-pass
filtering effect is achieved.
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It is clear that the numerator of (7.5) is of great importance for residual
generation. In fact, when the Decoupling Problem is considered, the numerator
is the only thing we need to care about. This numerator will be called a poly-
nomial parity function. In accordance with (Chow and Willsky, 1984), we also
define the order of the polynomial parity function as the highest degree α of
σα, which is present in the parity function, i.e. the row-degree of the polynomial
vector F (s).

The linear decoupling problem can now be expressed as follows:

Linear Decoupling Problem 1 Given a linear model, (7.1) or (7.2), the lin-
ear decoupling problem is to design a polynomial parity function, or equivalently
a polynomial vector F (s), so that

(a) For all u(t) and d(t), it should hold that f(t) ≡ 0 implies F (σ)
(
y
u

)
≡ 0.

(b) For all u(t) and d(t), it should hold that f(t) 6≡ 0 implies F (σ)
(
y
u

)
6≡ 0.

Although the following result may have been realized at this point, it is here
expressed as a theorem to emphasize its importance.

Theorem 7.1 When linear models and linear residual generators are consid-
ered, the Decoupling Problem is equivalent to the Linear Decoupling Problem.

Proof: Assuming a scalar polynomial c(σ) that is non-zero, it holds that

F (σ)
(
y
u

)
≡ 0 (7.6)

if and only if

c−1(σ)F (σ)
(
y
u

)
≡ 0 (7.7)

and this proves the theorem.

There are indications that this theorem can be generalized to also the case when
robust residual generation is considered (Frisk, 1998).

We will in this chapter discuss two algorithms for design of polynomial par-
ity functions: the new minimal polynomial basis approach and the well-known
Chow-Willsky scheme. There will be a focus on the following three questions:

• Does the method find all possible polynomial parity functions?

• Does the method explicitly find polynomial parity functions of minimal
order?

• Does the solution represent a minimal parameterization, of all polynomial
parity functions, or is it over parameterized?



188 Chapter 7. Linear Residual Generation

The reason for the interest in the minimal order property of the polynomial
parity function is primarily that we want to depend on the model as little as
possible. A low order usually implies that only a small part of the model is
utilized. Since all parts of the model has errors, this further means that few
model errors will affect the residual. The residual will then become small when
no faults are present.

It is obvious that if we can find a design algorithm, for which the answer
is “yes” to all these questions, then we have also found a design algorithm
for residual generators that can find all possible residual generators, explicitly
the ones of minimal order, and with a minimal parameterization. In addition
to the above three questions, we will also discuss numerical properties of the
algorithms. All of these questions are quite natural but in spite of this, they
have not gained very much attention before in the literature.

7.1.2 Parity Functions

Before the discussion of the algorithms, we will try to bring some clarity to the
terms parity function, parity equation etc., that are frequently encountered in
the diagnosis literature.

In the seventies, research about using analytical redundancy for fault detec-
tion and diagnosis was intensified. One main area of interest was fault detec-
tion for aircrafts and especially their control and navigation systems. In a work
within this field, Potter and Suman (1977) defined parity equation and parity
function (and also parity space and parity vector). This was originally a concept
for utilizing analytical redundancy in the form of linear direct redundancy. In
1984 the concept was generalized by Chow and Willsky (1984) to include also
dynamic systems, i.e. to utilize temporal redundancy. However only discrete
time parity equations were considered.

Since then, a number of different usages of the term parity function and
parity equation have occured in the literature. However, no other usages of the
term parity equations, than in accordance with the definitions made by Potter
and Suman (1977) and later extended by Chow and Willsky (1984), have been
widely accepted in the research community.

To clarify the meaning here, we use the terms polynomial parity equation and
polynomial parity functions, which are the type of parity equations/functions
defined in (Chow and Willsky, 1984).

The definition of polynomial parity functions becomes:

Definition 7.3 (Polynomial Parity Function) A polynomial parity function
is a function h(u(t), y(t)) that can be written as

h(u, y) = A(σ)y +B(σ)u

where A(σ) and B(σ) are polynomial vectors in σ. The value of the function is
zero if no faults are present.

A polynomial parity equation is then basically a polynomial parity function set
to zero, i.e. h(u, y) = 0.
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Some researchers, e.g. (Höfling, 1993), have worried about that polynomial
parity functions are not possible to implement directly or a least give bad per-
formance. However, in these cases they forget to add the poles represented by
c(s) in expression (7.5).

Remark: Parity equations that are not polynomial are often mentioned in the
literature, e.g. ARMA parity equation (Gertler, 1991), dynamic parity relations
(Gertler and Monajemy, 1995). In accordance with standard mathematical no-
tion, these should be called rational parity equations. A rational parity function
is then identical with a linear residual generator.

Note that parity equations/functions are in this view not a design method;
it is solely an equation/function with specific properties.

Example 7.1

Consider the discrete linear system

y(t) =
B(q)
A(q)

u(t) + f(t)

where u is the input, y the output and f the fault. If the fault is omitted, this
relationship can be rewritten as

A(q)y(t) = B(q)u(t)

This is an example of one polynomial parity equation that can be formed, and
it will be satisfied as long as the fault is zero. From the polynomial parity
equation, we can derive the parity function

h(t) = A(q)y(t) −B(q)u(t)

It is obvious that this polynomial parity function will respond to the fault f . If
this expression is multiplied with an appropriate backward time-shift q−n, the
resulting parity function can therefore serve as a residual generator.

In the following sections, we will discuss the two methods for designing
polynomial parity functions: the minimal polynomial basis approach and the
well-known Chow-Willsky scheme. These methods are explicitly focused on
polynomial parity functions but in principle, all linear residual generator de-
sign methods are methods, at least implicitly, for design of polynomial parity
functions.

7.2 The Minimal Polynomial Basis Approach

This section introduces the minimal polynomial basis approach to the design of
polynomial parity functions. With this approach, it is shown that the Decou-
pling Problem is transformed into finding a minimal basis for a null-space of
a polynomial matrix. This is a standard problem in established linear systems
theory, which means that numerically efficient computational tools are generally
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available. It is shown that the minimal polynomial basis approach can find all
possible residual generators, explicitly those of minimal order, and the solution
has a minimal parameterization. All derivations are performed in the continuous
case but the corresponding results for the time-discrete case can be obtained by
substituting s by z and improper by non-causal. To simplify notation, the term
parity function will from now on be used instead of polynomial parity function.
Several concepts from linear systems theory, especially polynomial matrices,
will be used. A short description of some key terms and concepts are given in
Appendix 7.B.

7.2.1 Basic Idea

By utilizing the model description (7.1), a parity function can be expressed as

F (s)
[
y
u

]
= F (s)

[
G(s) H(s)
I 0

] [
u
d

]
+ F (s)

[
L(s)

0

]
f

It is obvious that to fulfill condition (a) of the Linear Decoupling Problem, it
must hold that

F (s)
[
G(s) H(s)
I 0

]
= 0

This condition is fulfilled if and only if F (s) belongs to the left null-space of

M(s) =
[
G(s) H(s)
I 0

]
(7.8)

The left null-space of the matrix M(s) will be denoted NL(M(s)).
The polynomial vector F (s) needs to fulfill two requirements: belong to the

left null-space of M(s) and also have good fault sensitivity properties. If, in a
first step of the design, all F (s) that fulfill the first requirement are found, then
a single F (s) with good fault sensitivity properties can be selected. Thus, in a
first step of the design of the parity function F (s)[yT uT ]T , we need not consider
f or L(s). The problem is then to find all polynomial vectors F (s) ∈ NL(M(s)).
Of special interest are the parity functions of minimal order, i.e. the polynomial
vectors F (s) of minimal row degree.

Thus we want to find all F (s) ∈ NL(M(s)) and explicitly those of mini-
mal order. This can be done by finding a minimal polynomial basis for the
rational vector-space NL(M(s)). Procedures for doing this will be described
in Section 7.2.2 and 7.2.3. Let the basis be formed by the rows of a matrix
denoted NM (s). By inspection of (7.8), it can be realized that the dimension of
NL(M(s)) (i.e. the number of rows of NM (s)) is

Dim NL(M(s)) = m+ ku − RankM(s) = m+ ku − (kuRankH(s)) =
= m− RankH(s) =∗ m− kd (7.9)

where m is the number of outputs, i.e. the dimension of y(t), and kd is the
number of disturbances, i.e. the dimension of d(t). The last equality, marked
=∗, holds only if rank H(s) = kd, but this should be the normal case.
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Forming a Parity Function

The second and final design-step is to use the polynomial basis NM (s) to form
the parity function. For this, consider the following theorem:

Theorem 7.2 ((Kailath, 1980), Irreducible Basis) If the rows of N(s) is
an irreducible polynomial basis for a space F , then all polynomial row vectors
f(s) ∈ F can be written f(s) = φ(s)N(s) where φ(s) is a polynomial row vector.

The proof is given in Appendix 7.B.
The minimal polynomial basis NM (s) is irreducible (see Theorem 7.14 Ap-

pendix 7.B) and then, according to Theorem 7.2, all decoupling polynomial
vectors F (s) can be parameterized as

F (s) = φ(s)NM (s) (7.10)

where φ(s) is a polynomial vector of suitable dimension. The parameterization
vector φ(s) can for example be used to shape the fault-to-residual response or
simply to select one row in NM (s). Since NM (s) is a basis, the parameterization
vector φ(s) have minimal number of elements, i.e. a minimal parameterization.

One of the rows of NM (s) corresponds to a parity function of minimal order.
The reason for this can be explained as follows. Consider a basis NM (s)

with three rows and the row-degrees are d1, d2, and d3 respectively. Since
NM (s) is a minimal polynomial basis, we know that d1 + d2 + d3 is minimal
(see Theorem 7.14 Appendix 7.B). Now assume that the minimal order of any
parity function is dmin and that dmin < di for all di. Then by using a minimal
order parity function, we can obtain a new basis with less order. Thus NM (s)
can not be a minimal basis, which shows that one of the rows of NM (s) must
correspond to a parity function of minimal order.

7.2.2 Methods to find a Minimal Polynomial Basis to NL(M(s))

The problem of finding a minimal polynomial basis to the left null-space of the
rational matrix M(s) can be solved by a transformation to a problem of finding
a minimal polynomial basis to the left null space of a polynomial matrix. This
transformation can be done in several different ways. In this section, three
possibilities are demonstrated, where the first is used if the model is given on the
transfer function form (7.1), the second if the model is given in the state-space
form (7.2), and the third if the model contains no disturbances. A description
on how to compute a basis for the null-space of a polynomial matrix, will be
given in Section 7.2.3.

The motivation for this transformation to a polynomial problem, is that
there exists well established theory (Kailath, 1980) regarding polynomial matri-
ces. In addition, the generally available Polynomial Toolbox (Henrion, Kraffer,
Kwakernaak, M.Sebek and Strijbos, 1997) for Matlab contains an extensive
set of tools for numerical handling of polynomial matrices. We will see that the
results in this and the next section, give us a a computationally simple, efficient,
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and numerically stable method, to find a polynomial basis for the left null-space
of M(s).

Frequency Domain Solution

One way of transforming the rational problem to a polynomial problem is to
perform a right MFD on M(s), i.e.

M(s) = M̃1(s)D̃−1(s) (7.11)

One simple example is

M(s) = M̃1(s)d−1(s)

where d(s) is the least common multiple of all denominators. By finding a
polynomial basis for the left null-space of the polynomial matrix M̃1(s), a basis
is found also for the left null-space of M(s). No solutions are missed because
D̃(s) (e.g. d(s)) is of full normal rank. Thus the problem of finding a minimal
polynomial basis to NL(M(s)) has been transformed into finding a minimal
polynomial basis to NL(M̃1(s)).

State-Space Solution

Assume that the system is described the state-space form (7.2). To be able
to obtain a basis that is irreducible, will need to require that the state x is
controllable from only u and d. If this requirement is not fulfilled, the system
must be transformed to a realization[

ẋ
ż

]
=

[
Ax A12

0 Az

] [
x
z

]
+

[
Bu,x

0

]
u+[

Bd,x
0

]
d+

[
Bf,x
Bf,z

]
f (7.12a)

y = [CxCz]
[
x
z

]
+Duu+Ddd+Dff (7.12b)

where the state x is controllable from
[
uT dT

]T and the state z is controllable
from the fault f . It is assured from Kalman’s decomposition theorem that such a
realization always exists. Finally it is assumed that the state z is asymptotically
stable, which is the same as saying that the whole system is stabilizable. The
notations A, Bu, Bd, Bf , and C will still be used and with the same meaning
as before, e.g. C = [Cx Cz ] and Bu = [BTu,x 0]T . To denote the dimension of
the states x and z, we will use nx and nz respectively. Also we use n to denote
the dimension of the total state, i.e. n = nx + nz.

To find the left null-space to M(s) it is convienient to use the system matrix
in state-space form (Rosenbrock, 1970). The system matrix has been used
before in the context of fault diagnosis, see e.g. (Nikoukhah, 1994; Magni and
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Mouyon, 1994). Denote the system matrix Mx(s), describing the system with
disturbances as inputs:

Mx(s) =
[

Cx Dd

−sI +Ax Bd,x

]
Define the matrix Px as

Px =
[
I −Du,x

0 −Bu,x

]
Then the following theorem gives a direct method on how to find a minimal
polynomial basis to NL(M(s)) via the system matrix.

Theorem 7.3 If the pair {Ax, [Bu,x Bd,x]} is controllable and the rows of the
polynomial matrix V (s) is a minimal polynomial basis for NL(Mx(s)), then
W (s) = V (s)Px is a minimal polynomial basis for NL(M(s)).

Before this theorem can be proven, a lemma is needed:

Lemma 7.1 Let M(s) be the system matrix of any realization (not necessarily
controllable from

[
uT dT

]T ), i.e.

Ms(s) =
[

C Dd

−(sI −A) Bd

]
Then it holds that

DimNL(M(s)) = DimNL(Ms(s))

The proof of this lemma is placed in Appendix 7.A.
Now, return to the proof of Theorem 7.3:

Proof: In the fault free case, i.e. f = 0, consider the following relation
between the matrices M(s) and Mx(s):

Px

(
y
u

)
= PxM(s)

(
u
d

)
=

[
Cx(sI −Ax)−1Bu,x Cx(sI −Ax)−1Bd,x +Dd

−Bu,x 0

](
u
d

)
=

=
[

Cx Dd

−(sI −Ax) Bd,x

] [
(sI −Ax)−1Bu,x (sI −Ax)−1Bd,x

0 Ikd

] (
u
d

)
=

= Mx(s)
(
x
d

)
If V (s)Mx(s) = 0, then since the signals u(t) and d(t) can be chosen arbitrarily,
PxM(s) must also be 0. This implies that W (s)M(s) = V (s)PxM(s) = 0, i.e.
W (s) ∈ NL(M(s)). It is also immediate that if V (s) is polynomial, W (s) =
V (s)Px is also polynomial.

From Lemma 7.1, we have that DimNL(Mx(s)) = DimNL(M(s)). Then
since both V and W (s) has the same number of rows, the rows of W (s) must
span the whole null-space NL(M(s)), i.e. W (s) must be a basis for NL(M(s)).
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It is clear that the following relation must hold:

V (s)[Px Mx(s)] = V (s)
[
I −Du Cx Dd

0 −Bu,x −(sI −Ax) Bd,x

]
= [W (s) 0] (7.13)

Consider the matrix [Px Mx(s)]. Since the state x is controllable from u and d,
the PBH test (see Appendix 7.B) implies that the lower part of this matrix has
full rank for all s, i.e. it is irreducible. Now assume that W (s) is not irreducible,
i.e. there is a s0 such that W (s0) does not have full row-rank. This means that
there exists a γ 6= 0 such that γV (s0)[Px Mx(s0)] = γ[W (s0) 0] = 0. Since
[Px Mx(s0)] has full row-rank it must hold that γV (s0) = 0. Therefore, V (s)
cannot be irreducible but this contradicts with the fact that V (s) is a minimal
polynomial basis. This contradiction implies that W (s) must be irreducible.

The matrix W (s) is now proven to be a polynomial, irreducible basis for
NL(M(s)). According to Theorem 7.14, the only thing left to prove is that
the basis W (s) is row-reduced. Partition V (s) = [V1(s) V2(s)] according to the
partition of Mx(s). Let

V1(s) = S1(s)V1,hr + q1(s)
V2(s) = S2(s)V2,hr + q2(s)

The matrices Si(s) is diagonal matrices with diagonal elements skij where kij is
the row-degrees of Vi(s). The constant matrices Vi,hr is the highest-row-degree
coefficient matrix and qi(s) is the rest polynomial. Since V (s) ∈ NL(Mx(s)), it
holds that V1(s)Cx = V2(s)(sI −Ax), i.e.

S1(s)V1,hrCx + q1(s)Cx = S2(s)V2,hr(sI −Ax) + q2(s)(sI −Ax)
= sS2(s)V2,hr + q̃2(s)

By identifying the highest order terms on each side it is immediate that sS2(s) =
S1(s), i.e. each row in V2(s) has lower degree than the corresponding row in
V1(s)Cx. It also holds that the row-degrees in V1(s)Cx has less or equal row-
degrees than V1(s) since Cx is a constant matrix. Thus, each row-degree in V2(s)
has less degree than the corresponding row in V1(s) and therefore Vhr = [V1,hr 0].
Since V (s) is a minimal polynomial basis, it is row reduced. That is, the highest-
row-degree coefficient matrix for V (s) has full row rank. Since Vhr = [V1,hr 0],
it follows that V1,hr has full row rank.

From the definition of Px it follows that

[W1(s) W2(s)] = [V1(s) (−V1(s)Du − V2(s)Bu,x)]

From the degree discussion above it follows that the highest-row-degree coef-
ficient matrix of W (s) looks like Whr = [V1,hr ?], which obviously has full
row-rank, i.e. W (s) is row reduced.

Thus we have shown that W (s) is an irreducible basis and row reduced,
which implies that it is a minimal polynomial basis.
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The next result tells us what happens when the realization considered is not
controllable from

[
uT dT

]T . For this consider a system matrix

Ms(s) =
[

C Dd

−(sI −A) Bd

]
and the pair {A, [Bu Bd]} is not necessarily controllable.

Theorem 7.4 If the rows of the polynomial matrix V (s) is a polynomial basis
for NL(Ms(s)), then W (s) = V (s)P is a polynomial basis for NL(M(s)).

Proof: The first part of the proof of Theorem 7.3 is valid also for this theorem.

Note that compared to Theorem 7.3, we have in Theorem 7.4 relaxed the re-
quirements of controllability and the minimality of the basis V (s). The result
is that W (s) becomes here only a basis and not a minimal basis. Theorem 7.4
is only of theoretical interest in the context of parity function design but will
be used for the detectability analysis presented in the next chapter.

The following examples illustrates Theorem 7.4. Also, it shows that the
condition that {A, [Bu Bd]} must be controllable, is really necessary when con-
structing a minimal polynomial basis for NL(M(s)).

Example 7.2

The system has one disturbance and two outputs:

A =
[
−2 −3
0 −1

]
Bu =

[
1
0

]
Bd =

[
−2
0

]
Bf =

[
−6
−6

]

C =
[

1 4
2 4

]
Du =

[
0
0

]
Dd =

[
6
5

]
Df =

[
−2
0

]

It is clear that the second state is not controllable from
[
uT dT

]T . By setting
up Ms(s) and finding a minimal polynomial basis V (s) for NL(Ms(s)), we form
the basis NM (s) as

NM (s) = V (s)P =

=
[
−0.833s2 − 1.83s− 1 s2 + 2.67s+ 1.67 −1.167s− 1.167

]
=

= (s+ 1)
[
−0.833s− 1 s+ 1.67 −1.167

]
The basis NM (s) is not irreducible since it looses rank for s = −1.

In conclusion, as in the previous subsection, the problem of finding a minimal
polynomial basis to NL(M(s)) has been transformed into finding a minimal
polynomial basis to a polynomial matrix, in this case the system matrix Mx(s).
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No Disturbance Case

If there are no disturbances, i.e. H(s) = 0, the matrix M(s) gets a simpler
structure

Mnd(s) =
[
G(s)
I

]
(7.14)

A minimal polynomial basis for the left null-space of Mnd(s) is particularly
simple due to the special structure and a minimal basis is then given directly
by the following theorem:

Theorem 7.5 ((Kailath, 1980)) , If G(s) is a proper transfer matrix and
D̄G(s), N̄G(s) form an irreducible left MFD, i.e. N̄G(s) and D̄G(s) are left
co-prime and G(s) = D̄−1

G (s)N̄G(s). Then,

NM (s) = [D̄G(s) − N̄G(s)] (7.15)

forms a minimal basis for the left null-space of the matrix

M(s) =
[
G(s)
I

]
Here, the dimension of the null-space is m, i.e. the number of measurements,
and the order of the minimal basis is given by the following theorem:

Theorem 7.6 The set of observability indices of a transfer function G(s) is
equal to the set of row-degrees of D̄G(s) in any row-reduced irreducible left MFD
G(s) = D̄−1

G (s)N̄G(s).

A proof of the dual problem, controllability indices, can be found in (Chen, 1984)
(p. 284).

Thus, a minimal polynomial basis for matrix Mnd(s) is given by a left MFD
of G(s) and the order of the basis is the sum of the observability indices of G(s).

The result (7.15) implies that finding the left null-space of the rational trans-
fer matrix (7.8), in the general case with disturbances included, can be reduced
to finding the left null-space of the rational matrix

M̃2(s) = D̄G(s)H(s) (7.16)

By performing a right MFD on H(s), e.g. H(s) = N̄H(s)d−1
H (s), the prob-

lem becomes to find a basis for the left null-space of the polynomial matrix
D̄G(s)N̄H(s). In other words, this is an alternative to the use of the matrix
M̃1(s) in (7.11). This view closely connects with the so called frequency domain
methods, which are further examined in Section 7.2.4.
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7.2.3 Finding a Minimal Polynomial Basis for the null-
space of a General Polynomial Matrix

For the general case, including disturbances, the only remaining problem is how
to find a minimal polynomial basis to a polynomial matrix. This is a well-known
problem in the general literature on linear systems and a number of different
algorithms exist. In this section, two algorithms will be presented. The first is
based on the Hermite form (Kailath, 1980) and a second algorithm is based on
the polynomial echelon form (Kailath, 1980). Both methods are implemented in
the Polynomial Toolbox (Henrion et al., 1997) for Matlab. Again we remind
the reader of Appendix 7.B in which many of the terms used in this section are
explained.

The two algorithms have very different numerical properties. Although the
algorithm based on Hermite form is easy to understand, it has poor numerical
properties. It is included here mostly to gain some basic understanding of the
problem. However the algorithm based on polynomial echelon form is both fast
and numerically stable and should therefore be the preferred choice for design.

The Hermite Form Algorithm

Any polynomial matrix can be transformed into column Hermite form by ele-
mentary row operations. Assume M(s) is a p × q matrix. Then there exists a
p× p, unimodular matrix U(s) = [UT1 (s) UT2 (s)]T such that[

U1(s)
U2(s)

]
M(s) =

[
R(s)

0

]
where R(s) is a (p − r) × q matrix and r is the normal rank of M(s). The,
non-unique, matrix U(s) can be found e.g. as described in Theorem 6.3-2 in
(Kailath, 1980). The last r rows in U(s), i.e. U2(s), thus spans the left null-
space of M(s). The matrix U2(s) is irreducible because U(s) is unimodular.
U2(s) is however not necessarily row-reduced, i.e. U2(s) is not necessarily a
minimal basis. However, U2(s) can be made row-reduced by elementary row
operations. This is best illustrated with an example that shows the main idea
and also illustrates how the minimality property is connected with the row-
reduced property.

Example 7.3

Consider the polynomial matrix M(s) with rank r = 2

M(s) =


1 0 −s
0 s3 + 2s2 + s s3 + 2s2 + s
s s3 + 2s2 + s s3 + s2 + s
s2 0 −s3
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The column Hermite form of M(s) is
1 0 0 0
0 1 0 0
−s −1 1 0
−s2 0 0 1

M(s) =


1 0 −s
0 s+ 2s2 + s3 s+ 2s2 + s3

0 0 0
0 0 0


Here, the last two rows of U(s) form a basis for the left null-space of M(s) and
is denoted F (s).

F (s) =
[
−s −1 1 0
−s2 0 0 1

]
The matrix F (s) is obviously irreducible, it is however not row-reduced because
the highest-row-degree coefficient matrix Fhr is

Fhr =
[
−1 0 0 0
−1 0 0 0

]
and not of full rank. However, by multiplication from the left with a suit-
ably chosen unimodular matrix, F (s) can be made row-reduced. General al-
gorithms to find the unimodular matrix making F (s) row-reduced is available,
e.g. (Callier, 1985). In the example above,[

−1 0
−s 1

]
F (s) =

[
s 1 −1 0
0 s −s 1

]
= Fmin(s)

The matrix Fmin(s) is both irreducible and row-reduced, and accordingly to
Theorem 7.14 (in Appendix 7.B), it is a minimal basis for the left null-space.

The Polynomial Echelon Form Algorithm

The polynomial echelon form method is described in (Kailath, 1980; Kung,
Kailath and Morf, 1977). Below follows a very brief description of the algorithm
to illustrate the algorithm usage and computational complexity. The concepts
presented here are also needed later in both this and the next chapter.

Consider the polynomial equation

F (s)M(s) = 0 (7.17)

Assume that the polynomial basis F (s) is in canonical polynomial echelon form.
This assumption is not restrictive because of the following theorem

Theorem 7.7 ((Kailath, 1980), Section 6.7.21) For each space of rational
vectors, there exists a minimal polynomial basis in (canonical) polynomial ech-
elon form.

1This theorem is not stated as a theorem in (Kailath, 1980), but the fact is contained in
the text.
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Proof: The theorem follows from the fact that all full row rank polynomial
matrices can be transformed to polynomial echelon form by elementary row
operations, i.e. by multiplication from the left with a unimodular matrix.

The left hand side of (7.17) can be rewritten as

F (s)M(s) =(F0 + F1s+ . . . Fνs
ν)M(s) = [F0 . . . Fν ]


M(s)
sM(s)

...
sνM(s)

 =

=F̃M(s) = F̃M̃Ψku+kd(s)

which also defines M(s) and the coefficient matrices F̃ and M̃. (The matrix
M̃ is also known as the generalized resultant matrix of M(s).) Note that the
integer ν is usually not known a priori.

By examining the rows ofM(s), from top to bottom, the rows can be clas-
sified as independent rows or dependent rows. A row is dependent if it can be
written as a linear combination of previous rows, using only constant coeffi-
cients. The procedure to search for dependent rows in this way will be refered
to as the row-search algorithm. Independent and dependent rows can equally
well be determined from the coefficient matrix M̃. Note that the order, here
top-to-bottom, is important. The order bottom-to-top would result in another
set of dependent rows.

Since F (s) is in polynomial echelon form, the rows of F̃ must define a set
of primary dependent rows in M(s). Also from the fact that F (s) is in poly-
nomial echelon form, we know that of all sets of primary dependent rows, the
set defined by F̃ must be of minimal order. That is, there is no other set of
primary dependent rows, containing the same number of rows and with lower
row-degrees.

Each set of primary dependent rows spans a subspace of Nl(M(s)). There-
fore, since F (s) spans the whole left null-space of M(s), the set of primary
dependent rows defined by F̃ , must be of largest possible size.

With these statements in mind, we know that the matrix F̃ , and also F (s),
can be found by searching, from top to bottom, in M̃ for the largest upper-
most set of primary dependent rows. We summarize this result in the following
theorem:

Theorem 7.8 ((Kailath, 1980), Section 6.7.21) Let M̃ be the coefficient
matrix of M. Let {w1 . . . wp} be a set, of largest possible size, with primary
dependent rows, in order top-to-bottom, of M̃. Then if the rows of F̃ define
these dependencies, the matrix F (s) is in quasi-canonical polynomial echelon
form. The matrix F (s) is also a row-reduced, but not necessarily irreducible,
polynomial basis for NL(M(s)).

Furthermore, if {w1 . . . wp} is the uppermost set (i.e. the first encountered
when searching top-to-bottom), of largest possible size, with primary dependent
rows of M̃, then the matrix F (s) is a minimal polynomial basis for NL(M(s)).
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Proof: It follows trivially that F (s) is in quasi-canonical polynomial ech-
elon form. A matrix in quasi-canonical polynomial echelon form is always
row-reduced and does always have full rank. Further, it trivially holds that
F (s)M(s) = 0.

According to Theorem 7.7, there exist a minimal polynomial basis Fmin(s)
in polynomial echelon form. Assume that the dimension of this basis is q. Since
the basis Fmin(s) is in polynomial echelon form, its rows define a set of primary
dependent rows of M̃. This set of primary dependent rows is of size q. Thus
any set, of largest possible size, with primary dependent rows must have q
elements. Therefore, the basis F (s) has also dimension q which shows that it is
a polynomial basis for NL(M(s)).

If {w1 . . . wp} is the uppermost set, this means that the corresponding poly-
nomial basis will have the same order as a minimal order basis Fmin(s) and thus
is a minimal polynomial basis.

In general, a search for the largest and uppermost set of primary dependent
rows does not result in a unique basis, and thereby the name quasi-canonical
polynomial echelon form. However if the dependencies are described in a specific
way, the basis will be in canonical polynomial echelon form and thus unique.

When performing the search for primary dependent rows, it is important to
know when to stop. That is, we need to know what the largest possible size, of a
set of primary dependent rows, is. There are two possibilities. The first is that
we know the rank of M(s). Then the largest set of primary dependent rows will
contain p− rankM(s) rows. The other possibility is to use a known upper limit
of ν, when constructing the matrixM(s). Note that this is equivalent to that we
know an upper limit of the maximum row-degree of a minimal basis. According
to (Henrion et al., 1997), there is such an upper limit, i.e. ν ≤ (p−1) degM(s),
where degM(s) denotes the maximum row (and column) degree of M(s). We
will see in Section 7.3, that in the special case of a minimal basis for the left null-
space of the matrix (7.8), an upper limit of ν is actually nx, i.e. the dimension
of the state controllable from

[
uT dT

]T .
Next follows an example to illustrate the calculation procedure.

Example 7.4

Consider the matrix

M(s) =


s4 + 2s3 − 5s− 4 2s3 + 2s2 − 2s− 8

−s4 + 7s3 + 7s2 + 14s+ 6 −2s4 − 5s3 + s2 + 3s
−2s3 − s2 − 17s− 9 2s4 + 3s3 − s2 − s− 2

2s4 + 3s3 − s2 − 9s− 4 0
0 2s4 + 3s3 − s2 − 9s− 4


which has rank 2. Without no special reason, we will try to use the polynomial
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echelon form algorithm with ν = 2. Then the coefficient matrix M̃ becomes

M̃ =



−4 −8 −5 −2 0 2 2 2 1 0 0 0 0 0
6 0 14 3 7 1 7 −5 −1 −2 0 0 0 0
−9 −2 −17 −1 −1 −1 −2 3 0 2 0 0 0 0
−4 0 −9 0 −1 0 3 0 2 0 0 0 0 0

0 −4 0 −9 0 −1 0 3 0 2 0 0 0 0
0 0 −4 −8 −5 −2 0 2 2 2 1 0 0 0
0 0 6 0 14 3 7 1 7 −5 −1 −2 0 0
0 0 −9 −2 −17 −1 −1 −1 −2 3 0 2 0 0
0 0 −4 0 −9 0 −1 0 3 0 2 0 0 0
0 0 0 −4 0 −9 0 −1 0 3 0 2 0 0
0 0 0 0 −4 −8 −5 −2 0 2 2 2 1 0
0 0 0 0 6 0 14 3 7 1 7 −5 −1 −2
0 0 0 0 −9 −2 −17 −1 −1 −1 −2 3 0 2
0 0 0 0 −4 0 −9 0 −1 0 3 0 2 0
0 0 0 0 0 −4 0 −9 0 −1 0 3 0 2


By searching from the top to the bottom, we find that row 8, 9, 13, 14 and 15

are dependent. Of these, row 8, 9 and 15 is the largest set of primary dependent
row with least order. The number of rows in this set is 3 which corresponds to
the dimension of the null-space which means that we do not have to consider
any other dependent rows. The dependencies in these three primary dependent
rows can be described by

F̃ =

 0 1 2 −3 −1 1 1 1 0 0 0 0 0 0 0
−1 0 0 1 2 −2 0 0 1 0 0 0 0 0 0
−3 −5 −6 9 9 −10 −1 0 0 −1 1 1 0 0 1


The corresponding polynomial matrix F (s) in polynomial echelon form is

F (s) =

 s s+ 1 s+ 2 −3 −1
−2s− 1 0 0 s+ 1 2

s2 − 10s− 3 s2 − s− 5 −6 9 s2 − s+ 9


which is also a minimal polynomial basis for the left null-space of M(s).

Numerical Considerations

The two algorithms presented in this section have very different numerical prop-
erties. Although the algorithm based on Hermite form is easy to understand,
no (to the author’s knowledge) numerically stable algorithm exists. Simula-
tions have shown that the algorithm to make the basis row-reduced, proposed
in (Callier, 1985) and implemented in (Henrion et al., 1997), is numerically
unstable.

On the other hand, the algorithm based on the polynomial echelon form
is both fast and numerically stable. The critical step in the algorithm is the
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search for primary dependent rows in the matrix M̃. The search for dependent
rows can be performed by using a numerically stable projection algorithm de-
scribed in (Chen, 1984), p. 546. First transform M̃ to lower triangular form by
multiplication from the right with a matrix L. The matrix L is obtained by a
series of numerically stable Householder transformations ((G.H. Golub, 1996),
Chapter 5). Now the matrix that defines the dependent rows, is easily obtained
by solving for A in the equation

AM̃L = 0

Since M̃L is lower triangular, A can be obtained by straightforward, numeri-
cally stable substitutions (Chen, 1984). This algorithm is implemented in the
Polynomial Toolbox, (Henrion et al., 1997).

7.2.4 Relation to Frequency Domain Approaches

A number of design methods described in literature are called frequency domain
methods where the residual generators are designed with the help of different
transfer matrix factorization techniques. This section discusses the relation
between the minimal polynomial basis approach and these frequency domain
methods. Examples of frequency domain methods are (Frank and Ding, 1994a)
for the general case with disturbances and (Ding and Frank, 1990; Viswanad-
ham, Taylor and Luce, 1987) in the non-disturbance case. These methods can
be summarized as methods where the residual generator is parameterized as

r = R(s)[D̃(s) − Ñ(s)]
(
y
u

)
(7.18)

= R(s)(D̃(s)y − Ñ(s)u)

where D̃(s) and Ñ(s) form a left co-prime factorization of G(s) over RH∞,
i.e. the space of stable real-rational transfer matrices. Note the close relation-
ship with Equation (7.15) where the factorization is performed over polynomial
matrices instead of over RH∞.

Inserting (7.1) into Equation (7.18) and as before assuming f = 0, gives

r = R(s)D̃(s)H(s)d

Therefore to achieve disturbance decoupling, the parameterization transfer ma-
trix R(s), must be belong to the left null-space of D̃(s)H(s), i.e.

R(s)D̃(s)H(s) = 0

Here, note the close connection with M̃2(s) in (7.16). This solution however
does not generally generate a residual generator of minimal order. In (Ding
and Frank, 1990) and (Frank and Ding, 1994a), the co-prime factorization is
performed via a minimal state-space realization of the complete system, includ-
ing the disturbances as in equation (7.2). This results in D̃(s) and Ñ(s) of
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McMillan degree n that, in the general case, is larger than the lowest possible
McMillan degree of a disturbance decoupling residual generator. Thus, to find
a residual generator of minimal order or a basis of minimal order that spans
all residual generators Q(s) = R(s)[D̃(s) − Ñ(s)], extra care is required since
“excess” states need to be canceled. Note that the polynomial basis approach
on the other hand, has no need for cancelations and is in this sense more elegant.

7.3 Maximum Row-Degree of the Basis

This section shows that a minimal polynomial basis for the left null-space of
the matrix (7.8), has a maximum row-degree (or column-degree) less or equal
to nx, i.e. the dimension of the state controllable from

[
uT dT

]T . This is the
result of Corollary 7.1, which is a direct consequence of Theorem 7.9, and both
are presented below.

Related problems have been investigated in (Chow and Willsky, 1984) and
(Gertler, Fang and Luo, 1990). In (Chow and Willsky, 1984), it was shown
that, in the no-disturbance case, there exist a parity function of order ≤ n. In
(Gertler et al., 1990), it was shown that for a restricted class of disturbances,
there exist a parity function of order ≤ n. However the result of Corollary 7.1
is much stronger since it includes arbitrary disturbances and shows that there
exist a basis in which the maximum row-degree is ≤ nx.

The result of Corollary 7.1 are important for at least three reasons:

• The parity functions obtained directly from the minimal basis, are in one
sense the only ones needed. All other are filtered versions (i.e. linear
combinations) of these parity functions. With this argument, Corollary 7.1
shows that we do not need to consider parity functions of order greater
than nx.

• When calculating a basis for the left-null space of M(s) using the poly-
nomial echelon form algorithm, the maximum row-degree of the basis is
needed as an input to the algorithm, i.e. ν. To keep the computational
load down it is important to have a ν as small as possible. Without the re-
sult of Corollary 7.1, we are forced to used the bound ν ≤ (p−1) degM(s)
(Henrion et al., 1997). Consider finding a basis for NL(Mx(s)). Then ν is
chosen as

ν ≤ (p− 1) degMx(s) = nx +m− 1 ≥ nx

This means that the bound nx is tighter than ν ≤ (p − 1) degM(s). As
will be seen in the upcoming sections, the number ν is, of the same reason,
important also for the Chow-Willsky scheme.

• For the detectability analysis presented in Chapter 8, it is important to
know ν. We will see that ν is needed explicitly in detectability condi-
tions based on the Chow-Willsky scheme and implicitly in some other
detectability conditions.
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Next, Theorem 7.9 is presented:

Theorem 7.9 A matrix whose rows form a minimal polynomial basis for NL(Ms(s))
has row-degrees ≤ n.

Note that the theorem does not require the pair {Ax, [Bu,x Bd,x]} to be control-
lable. Instead Ms(s) can be based on any realization, but the most interesting
is of course to use it with Mx(s) which represents a minimal realization. Before
Theorem 7.9 can be proven, we need two lemmas.

Lemma 7.2 Let P (s) be a matrix with maximum row-degree 1. Then the max-
imum row-degree of a minimal polynomial basis for NL(P (s)) is less or equal to
RankP (s).

Proof: The matrix P (s) is a matrix pencil, i.e. P (s) = sE + F . By
constant elementary row and column operations, P (s) can be transformed to to
Kronecker canonical form (Kailath, 1980). This means that there exists non-
singular matrices U and V such that

P̄ (s) = UP (s)V = block diag {Lµ1 , . . . , Lµα , L̃ν1 , . . . , L̃νβ , sJ − I, sI −K}

where L̃νi is a (νi + 1)× νi matrix of the form
s

−1
. . .
. . . s

−1


This matrix has rank νi, so it is obvious that νi ≤ RankP (s). All other matrices,
i.e. Lµi , sJ−I, and sI−K, have full row-rank. Therefore, a minimal polynomial
basis for the left null-space of P̄ (s), i.e. NL(P̄ (s)), is

N(s) =

 0 . . . 1 s . . . sν1 0 . . . 0
. . .

0 . . . 0 1 . . . sνβ 0 . . . 0


A basis for NL(P (s)) is then N(s)U . The matrix N(s) is irreducible, row-
reduced, and has maximum row-degree RankP (s). Multiplication from the
right with U doesn’t change these facts and thus, N(s)U is also irreducible, row-
reduced. This means that N(s)U is minimal polynomial basis with maximum
row-degree RankP (s).

Lemma 7.3 It holds that

RankMs(s) = Rank
[
Dd

Bd

]
+ RankNT

DB

[
−C

sI −A

]
where the columns of NDB form a basis for the left null-space of [DT

d BTd ]T .



Section 7.3. Maximum Row-Degree of the Basis 205

Proof: Without loss of generality, we can assume that NT
DBNDB = I. Since

NDB and [DT
d BTd ]T together span the whole space Rm+n, there is a Y (s) and

an X(s) such that [
−C

sI −A

]
= NDBY (s) +

[
Dd

Bd

]
X(s)

where

Y (s) = NT
DB

[
−C

sI −A

]
Further we have that

RankNT
DB

[
−C

sI −A

]
= Rank

[
−CT sI −AT

]
NDBN

T
DB

[
−C

sI −A

]
≤

≤ RankNDBNT
DB

[
−C

sI −A

]
≤ RankNT

DB

[
−C

sI −A

]
which means that it must hold that

RankNT
DB

[
−C

sI −A

]
= RankNDBNT

DB

[
−C

sI −A

]
(7.19)

Then

RankMs(s) =Rank
[
−C Dd

sI −A Bd

]
= Rank

[
NDBY (s) +

[
Dd

Bd

]
X(s),

[
Dd

Bd

] ]
=

=Rank
[
NDBY (s),

[
Dd

Bd

] ]
= RankNDBY (s) + Rank

[
Dd

Bd

]
=

=RankNDBNT
DB

[
−C

sI −A

]
+ Rank

[
Dd

Bd

]
=

=RankNT
DB

[
−C

sI −A

]
+ Rank

[
Dd

Bd

]
where (7.19) has been used in the last step.

Now return to the proof of Theorem 7.9.
Proof: Consider the matrix

Ms(s) =
[
−C Dd

sI −A Bd

]
and let the columns of NDB be a basis for the left null-space of [DT

d B
T
d ]T . Then

we have that

NT
DBMs(s) =

[
NT
DB

[
−C

sI −A

]
, 0

]
(7.20)



206 Chapter 7. Linear Residual Generation

The left part of the matrix (7.20) has rank ≤ n. From Lemma 7.2 we know that
a minimal polynomial basis for (7.20) has row degrees less or equal to n. Let
the rows of a matrix Q(s) form such a basis.

The basis NDB has m+ n− Rank [DT
d BTd ] columns. The left null-space of

NT
DBMs(s) has therefore the dimension

d = m+ n− Rank
[
Dd

Bd

]
− RankNT

DB

[
−C

sI −A

]
This must also be the rank of Q(s).

Now study the matrix Q(s)NT
DB. Since Q(s) is irreducible and NT

DB has
full row-rank, also the matrix Q(s)NT

DB must be irreducible. Since Q(s) is row-
reduced, it can be written Q(s) = S(s)Dhr+L(s), where Dhr has full row-rank.
Multiplication from the right with NT

DB, which is also full row-rank, results in
DhrN

T
DB which has also full row-rank. This implies that the matrix Q(s)NT

DB

is row-reduced.
It must hold that RankQ(s)NT

DB = RankQ(s). By using Lemma 7.3, we
know that the rank of Q(s)NT

DB is

RankQ(s)NT
DB = RankQ(s) = m+ n− Rank

[
Dd

Bd

]
− RankNT

DB

[
−C

sI −A

]
=

= m+ n− RankMs(s)

All this implies that Q(s)NT
DB is a minimal polynomial basis for NL(Ms(s)).

Further the row-degrees of Q(s)NT
DB is ≤ n. Then since all minimal polynomial

bases have the same set of row-degrees, it holds that all minimal polynomial
bases of Q(s)NT

DB have row-degrees ≤ n.

From Theorem 7.9, we now get the following result:

Corollary 7.1 A matrix whose rows form a minimal polynomial basis for NL(M(s))
has row-degrees ≤ nx.

Proof: According to Theorem 7.3, W (s) = V (s)Px is a minimal polynomial
basis for NL(M(s)) if V (s) is a minimal polynomial basis for NL(Mx(s)). Since
we know from Theorem 7.9 that the maximum row-degree of V (s) is nx, then
also the maximum row-degree of W (s) is nx.

7.4 The Chow-Willsky Scheme

The most well-known method for direct construction of polynomial parity func-
tions was presented in (Chow and Willsky, 1984). This method is usually re-
ferred to as the Chow-Willsky scheme. In (Chow and Willsky, 1984), it was for-
mulated for discrete systems but before that, similar ideas had been developed
by Mironovskii (1980), who considered both discrete and continuous systems.
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Based on the method in (Chow and Willsky, 1984), a number of extensions
have been proposed. One important extension, provided by Frank (1990), in-
cludes also decoupling of disturbances and non-monitored faults into the design.
Among other extensions is for example the handling of the case when perfect
decoupling is not possible (Lou, Willsky and Verghese, 1986).

The Chow-Willsky scheme and its extensions have been extensively used
in the literature, probably because of its simplicity compared to many other
residual generator design methods. However, the Chow-Willsky scheme can for
high order systems be numerically unstable, as will be explained in Section 7.5.2,
and care should therefore be taken when practical residual generator design is
considered.

In this section we will see that the original formulation of the Chow-Willsky
scheme (and also its extensions) have several disadvantages. First, it is not able
to generate all parity functions for some linear system. Second, the solution does
not give a parity function of minimal order. However, by a stepwise improvement
we will in this section show how the Chow-Willsky scheme can be modified so
that these disadvantages dissappear. In Section 7.5.1, the Chow-Willsky scheme
will be even further modified so that it generates a minimal polynomial basis in
similarity with the minimal polynomial basis approach. Related results, valid
for some special cases and showing a relation between parity functions and a
polynomial-like method, were noted in (Massoumnia and Velde, 1988).

7.4.1 The Chow-Willsky Scheme Version I: the Original
Solution

The following description of the Chow-Willsky scheme mainly follows (Frank,
1990), except for that the description here is formulated for the continuous case.
However by replacing s by z (or the time-shift operator q) all formulas are valid
also for the discrete case. The Chow-Willsky scheme assumes that the system
model is given in the state-space form:

sx = Ax+Buu+Bdd+Bff (7.21a)
y = Cx+Duu+Ddd+Dff (7.21b)

Now by substituting (7.21a) into (7.21b), we can obtain sy as

sy = Csx+Dusu+Ddsd+Dfsf =
= CAx + CBuu+Dusu+ CBdd+Ddsd+ CBff +Dfsf

By continuing in this fashion for s2y . . . sρy, the following equation can be
obtained:

Y (t) = Rx(t) +QU(t) +HV (t) + PF (t) (7.22)

where Q is a lower triangular Toeplitz matrix describing the propagation of
the input u through the system. Similarly, H and P describes the propagation
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of the disturbance d and the fault f respectively. Written out, the matrices
in (7.22) are

Y (t) =


y(t)
sy(t)

...
sρy(t)

 R =


C
CA
...

CAρ



Q =


Du 0 0 . . .
CBu Du 0 . . .

...
. . .

CAρ−1Bu . . . CBu Du

 U(t) =


u(t)
su(t)

...
sρu(t)



H =


Dd 0 0 . . .
CBd Dd 0 . . .

...
. . .

CAρ−1Bu . . . CBd Dd

 V (t) =


d(t)
sd(t)

...
sρd(t)



P =


Df 0 0 . . .
CBf Df 0 . . .

...
. . .

CAρ−1Bf . . . CBf Df

 F (t) =


f(t)
sf(t)

...
sρf(t)


The size of Y is (ρ+1)m× 1, R is (ρ+1)m×n, Q is (ρ+1)m× (ρ+ 1)ku, U is
(ρ+1)ku×1, H is (ρ+1)m×(ρ+1)kd, V is (ρ+1)kd×1, P is (ρ+1)m×(ρ+1)kf ,
and F is (ρ+ 1)kf × 1. The constant ρ determines the maximum possible order
of the parity function. The choice of ρ is discussed in Section 7.4.3.

Now, with a column vector w of length (ρ+ 1)m, a function h(y, u) can be
formed as

h(y, u) = wT (Y −QU) (7.23)

For later use, note that this function can also be written as

h(y, u) = w [Ψm(s) −QΨku(s)]
[
y
u

]
(7.24)

where

Ψm(s) =


Im
sIm

...
sρIm

 Ψku(s) =


Iku
sIku

...
sρIku


Equation (7.22) implies that the following equality will hold:

h(y, u) = wT (Rx+HV + PF ) (7.25)
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If h(y, u) is going to be a parity function, it must hold that it is zero in the fault
free case and the disturbances must be decoupled. This is fulfilled if w satisfies

wT [RH ] = 0 (7.26)

In other words, if w belongs to the left null-space of [R H ]. For use in fault
detection, it is also required that the parity function is non-zero in the case of
faults. This is assured by letting

wTP 6= 0 (7.27)

In conclusion, using the Chow-Willsky scheme, a parity function is con-
structed by first setting up all the matrices in (7.22) and then finding a w such
that (7.26) and (7.27) are fulfilled.

7.4.2 The Original Chow-Willsky Scheme is Not Universal

Following is an example showing that the Chow-Willsky scheme is not universal,
i.e. there are cases in which it can not generate all possible parity functions.
This happens when the system has dynamics controllable only from the fault.

Example 7.5

Consider a system described by the transfer functions

y1 =
1

s− 1
u+

1
s+ 1

f y2 =
1

s− 1
u+

s+ 3
s+ 1

f

and the realization

ẋ =
[

1 0
0 −1

]
x+

[
1
0

]
u+

[
0
1

]
f

y =
[

1 1
1 2

]
x+

[
0
1

]
f

Also consider the function

h = (1− s+ s2)y1 − s2y2 + u (7.28)

If y1 and y2 in (7.28) are substituted with their transfer functions we get

h =
1

s− 1
(
(1− s+ s2)− s2 + (s− 1)

)
u+

+
1

s+ 1
(
(1− s+ s2)− s2(s+ 3)

)
f =

−s3 − 2s2 − s+ 1
s+ 1

f

We see that h is zero in the fault free case and becomes non-zero when the fault
occurs. Therefore the function (7.28) is, according to Definition 7.3, a parity
function. With the matrices used in Equation (7.22), the parity function (7.28)
can be written as

h = [1 0 − 1 0 1 − 1] (Y −QU) = wT (Y −QU)
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in which w is uniquely defined. With the realization above, the matrix R is

R =


1 1
1 2
1 −1
1 −2
1 1
1 2


The first column of R is orthogonal to w but not the second. This means that
the parity function (7.28) can not be obtained from the Chow-Willsky scheme.

The problem in the previous example is the second column ofR. This column
originates from x2, which is controllable only from the fault f . The problem is
solved if we can relax the requirement that w must be orthogonal to the second
column of R. This is the topic of the next section.

7.4.3 Chow-Willsky Scheme Version II: a Universal Solu-
tion

To make the Chow-Willsky scheme universal, we need to require that the re-
alization is controllable from [uT dT ]T . If this requirement is not fulfilled, the
system must be transformed to the realization (7.12). We can compare this
with the state-space solution in the minimal polynomial basis approach, where
we also had to require that the realization is controllable from [uT dT ]T .

Now assume that the realization is on the form (7.12). Then the matrix R
can be partitioned into R = [Rx Rz ] where

Rx =


Cx
CxAx

...
CxA

ρ
x


This means that equation (7.25) can be written

h(y, u) = wT (Rxx+Rzz +HV + PF )

As with the minimal polynomial approach, we need only to consider the fault
free case, i.e. z can be assumed to be zero. Then a sufficient and necessary
condition to make this expression a parity function is that w must satisfy

wT [Rx H ] = 0 (7.29)

The first column R in Example 7.5 corresponds to Rx and the second column to
Rz. Thus, if we had used the condition (7.29), the parity function (7.28) could
have been generated by the Chow-Willsky scheme.
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Replacing condition (7.26) with (7.29) results in a modified Chow-Willsky
scheme which in this work is referred to as the Chow-Willsky scheme, version
II. This version of the Chow-Willsky scheme is universal in the sense that it can
generate all parity function up to order ρ. This fact is shown in the following
theorem:

Theorem 7.10 Consider the matrix M(s) in (7.8). For each vector F (s) ∈
NL(M(s)) and with a row-degree ≤ ρ, there is a vector w such that F (s) =
wT [Ψm(s) −QΨku(s)] and wT [Rx H ] = 0.

Proof: If F (s) ∈ NL(M(s)), then we know that for all inputs u and distur-
bances d, and in the fault free case, it holds that

h =F (s)
[
G(s) H(s)
Iku 0

] [
u
d

]
= [F1(s) F2(s)]

[
y
u

]
= (7.30)

=[F̃1Ψm(s) F̃2Ψku(s)]
[
y
u

]
= F̃

[
Y
U

]
= 0 (7.31)

where F̃i is the coefficient matrix of Fi(s). By using (7.22), (7.31) can be
rewritten as [

F̃1 F̃2

] [
Y
U

]
=

[
F̃1 F̃2

] [
Rxx+QU +HV

U

]
=

= F̃1(Rxx+QU +HV ) + F̃2U =

= F̃1Rxx+ F̃1HV + (F̃1Q+ F̃2)U = 0

Since x is controllable from inputs and disturbances, this equation must hold
for all x, all U , and all V , which implies F̃1Rx = 0, F̃1H = 0, and F̃1Q+ F̃2 = 0.

Now choose w as wT = F̃1, which is clearly a possible choice since we know
that F̃1 [Rx H ] = 0. This together with the fact F̃2 = −F̃1Q = −wTQ, implies
that

wT [Ψm(s) −QΨku(s)] =[F̃1Ψm(s) − F̃1QΨku(s)] =

=[F̃1Ψm(s) F̃2Ψku(s)] = F (s)

which proves the theorem.

The Chow-Willsky scheme, version II, implies that all possible parity equa-
tions are parameterized as follows. Let NRxH denote a matrix of dimension
η × (ρ + 1), and let its rows form a basis for the η-dimensional left null-space
of the matrix [Rx H ]. Then all parity functions up to order ρ can be obtained
by in (7.24) selecting w as wT = γNRxH , where γ is an arbitrary row vector of
dimension η. Thus, a complete parameterization of all decoupling row-vectors
F (s) of maximum row-degree ρ (i.e. all parity functions up to order ρ), is

F (s) = γNRxH [Ψm(s) −QΨku(s)] (7.32)
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This expression should be compared to (7.10) which was also complete pa-
rameterization of all decoupling row vectors F (s). The difference is that the
parameter γ in (7.32) is constant while the parameter φ(s) in (7.10) is poly-
nomial. Also, (7.10) covers arbitrary row-degree while (7.32) can only handle
row-degrees up to ρ.

In Section 7.3, we argued that only parity functions up to order nx need to
be found. The reason is that any other parity function, of arbitrary order, is a
filtered version of a parity function of an order less or equal to nx. All this is a
consequence of Corollary 7.1. If this reasoning is applied to the Chow-Willsky
scheme version II, we see that it is sufficient to chose ρ = nx. In other words,
ρ = nx is sufficient to generate a basis for the left null-space of M(s) in (7.8).

As was said in the end of Section 7.2.1, the minimal polynomial basis ap-
proach implies that parity functions, and therefore also residual generators, of
minimal order are explicitly found. This is not the case with the Chow-Willsky
scheme (version I or version II). The reason is that the only requirement of the
vector w, or alternatively the basis NRxH , is that wT [Rx H ] = 0. This means
that in general, the parity function will be of order ρ. However, we can place
further constraints on the vector w such that minimal order parity functions are
obtained and this is done next.

7.4.4 Chow-Willsky Scheme Version III: a Minimal Solu-
tion

From a numerical perspective, the preferred algorithm for finding the null space
to a general constant matrix is often the SVD (Singular Value Decomposition).
As was said above, this does not in general imply that the parity functions
get minimal order. However, a minimal solution is obtained if w (or NRxH) is
instead found with the row-search algorithm, shortly described in Section 7.2.3.
If we search from top-to-bottom in [Rx H ] for dependent rows, the matrix
describing these dependencies is then a basis for the left null-space of [Rx H ].
Since the search is from the top to the bottom, we realize from the structure
of (7.24) that a minimal order parity function is obtained. To explicitly use this
procedure for finding w (or NRxH) will here be called the Chow-Willsky scheme
version III. Note that the minimal order parity function can also be found by
using the Chow-Willsky scheme version II with ρ = 0 and then incrementally
trying larger and larger values of ρ.

In our stepwise improvement of the Chow-Willsky scheme, we have now
arrived in an algorithm which can generate a matrix FCW (s) as

FCW (s) = NRxH [Ψm(s) −QΨku(s)] (7.33)

This matrix FCW (s) will span the left null-space of [Rx H ] and it has a certain
minimality property. However it is still not a basis since it in general have more
than m− kd rows, which was the dimension of NL(M(s)) according to (7.9).
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7.5 Connection Between the Minimal Polyno-
mial Basis Approach and the Chow-Willsky
Scheme

Even though many pieces of the relation between the minimal polynomial ba-
sis approach and the Chow-Willsky scheme have already been discussed in the
previous section, there are some pieces left. Here we will investigate more thor-
oughly the properties of the matrix FCW (s) defined in the previous section. The
result of this investigation is that the Chow-Willsky scheme can in fact be mod-
ified even further so that the matrix FCW (s) becomes a minimal polynomial
basis for NL(M(s)).

We start by considering the equation

F (s)
[
Iku 0
G(s) H(s)

]
= F (s)M ′(s) = 0 (7.34)

where F (s) is here a minimal polynomial basis for the left null-space of M ′(s).
Note that we have switched the lower and upper part of this matrix, compared
to M(s) in (7.8). This will lead to simplifications later during the investigation.

Next we realize from Section 7.2.3 that solving (7.34) is equivalent to solving

[F0 F1 . . . Fν ]



Iku 0
G(s) H(s)
sIku 0
sG(s) sH(s)

...
...

sνIku 0
sνG(s) sνH(s)


= 0 (7.35)

where again ν is not known a priori. The goal now, is to show that the minimal
polynomial basis F (s) can in fact be obtained by searching for the largest and
uppermost set of primary dependent rows in [Rx H ]. For this we will use three
lemmas.

Lemma 7.4 For any vector or matrix F̃ = [F0 F1 . . . Fν ], it holds that equa-
tion (7.35) is fulfilled if and only if

[F0 F1 . . . Fν ]



0 [Iku 0 . . . 0] 0
R0 Q0 H0

0 [0 Iku . . . 0] 0
R1 Q1 H1

...
...

...
0 [0 . . . 0 Iku ] 0
Rν Qν Hν


= 0 (7.36)
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Proof: Let us first study the rows of (7.35) containing G(s) and H(s). The
transfer matrix [G(s) H(s)] can be written

[G(s) H(s)] = C(sI −A)−1[Bu Bd] + [Du Dd] =

=
∞∑
i=1

CAi−1[Bu Bd]s−i + [Du Dd] (7.37)

where {A, [Bu Bd], C, [Du Dd]} is any controllable realization of the transfer
function [G(s) H(s)]. Define

X(s) =
∞∑
i=1

s−iAi−1[Bu Bd] (7.38)

Now note that

sj
∞∑
i=1

s−iAi−1 =
j∑
i=1

sj−iAi−1 +
∞∑

i=j+1

sj−iAi−1 =

=
j−1∑
i=0

sj−i−1Ai +
∞∑
i=1

s−iAi−1+j =
j−1∑
i=0

siAj−1−i +Aj
∞∑
i=1

s−iAi−1 (7.39)

By using both (7.37), (7.38) and (7.39) we can derive the following relation:

sj [G(s) H(s)] = CAjX(s) + C

j−1∑
i=0

siAj−1−i[Bu Bd] + [Du Dd]sj (7.40)

This formula implies that we can write


Im
sIm

...
sνIm

 [G(s) H(s)] =

=

 C
...

CAν

X(s) +


[Du Dd]

C[Bu Bd] + [Du Dd]s
...

CAν−1[Bu Bd] + CAν−2[Bu Bd]s+ · · ·+ [Du Dd]sν

 =

= RX(s) + [Q H ]
[
Ψku(s) 0

0 Ψkd(s)

]
= [R Q H]

 X(s)[
Ψku(s) 0

0 Ψkd(s)

] (7.41)
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Now Equation (7.35) can be rewritten

[F0 F1 . . . Fν ]



0 [Iku 0 . . . 0] 0
R0 Q0 H0

0 [0 Iku . . . 0] 0
R1 Q1 H1

...
...

...
0 [0 . . . 0 Iku ] 0
Rν Qν Hν


 X(s)[

Ψku(s) 0
0 Ψkd(s)

] = 0 (7.42)

where Ri, Qi, and Hi denotes the i:th block of m rows in each matrix R, Q,
and H respectively. By studying the definitions of X(s), Ψku(s), and Ψkd(s),
it can be realized that the coefficient matrix for the rightmost matrix in (7.42)
becomes


. . . A2[Bu Bd] A[Bu Bd] [Bu Bd] 0 . . . 0

Iku+kd

. . .
Iku+kd

 (7.43)

Note that this matrix has an infinite number of columns. This means that the
coefficient matrix for the right matrix of (7.35) becomes



0 [Iku 0 . . . 0] 0
R0 Q0 H0

0 [0 Iku . . . 0] 0
R1 Q1 H1

...
...

...
0 [0 . . . 0 Iku ] 0
Rν Qν Hν




. . . A2[Bu Bd] A[Bu Bd] [Bu Bd] 0 . . . 0

Iku+kd

. . .
Iku+kd


(7.44)

Since the realization is controllable, the matrix [An−1[Bu Bd] . . . [Bu Bd]] has
full row-rank and therefore also the matrix (7.43). This means that (7.42)
implies (7.36). The converse follows trivially, and since (7.42) is equivalent
to (7.35), the lemma is proven.

From Section 7.2.3 and Theorem 7.8, we know that a minimal polynomial basis
for the left null-space of the matrix M ′(s) in (7.34) can be obtained by searching
for the largest and uppermost set of primary dependent rows in the right matrix
of (7.35) (or equivalently in the coefficient matrix (7.44)). Lemma 7.4 implies
that we can equally well perform the search for primary dependent rows in the
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matrix 

0 [Iku 0 . . . 0] 0
R0 Q0 H0

0 [0 Iku . . . 0] 0
R1 Q1 H1

...
...

...
0 [0 . . . 0 Iku ] 0
Rν Qν Hν


(7.45)

It will be shown that this row search can be simplified even further and for this
we first need the following lemma.

Lemma 7.5 There exists a vector t̄ = [t0 . . . tl] 6= 0 and

[t0 . . . tl]

R0 H0

...
...

Rl Hl

 = 0 (7.46)

if and only if there exists a vector t̄′ = [v0 t0 . . . vl tl] 6= 0 and

[v0 t0 v1 t1 . . . vl tl]



0 [Iku 0 . . . 0] 0
R0 Q0 H0

0 [0 Iku . . . 0] 0
R1 Q1 H1

...
...

...
0 [0 . . . 0 Iku ] 0
Rl Ql Hl


= 0 (7.47)

where

vi = −[ti . . . tl]


D
CBu

...
CAl−i−1B


Proof: The only-if part of the proof is realized by inspection of the definition
of vi and the equation (7.47).

For the if part, assume the specific case l = 2, and study the matrix (7.45),
which becomes

0 Iku 0 0 0 0 0
C Du 0 0 Dd 0 0
0 0 Iku 0 0 0 0
CA CBu Du 0 CBd Dd 0
0 0 0 Iku 0 0 0

CA2 CABu CBu Du CABd CBd Dd

 (7.48)
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From this example it is obvious that the elements ti can not be zero. This is
enough to prove that (7.46) holds and that t̄ 6= 0.

The next lemma is the last needed to prove Theorem 7.11, which will tell us
how to find a minimal polynomial basis with the Chow-Willsky scheme.

Lemma 7.6 There is a one-to-one correspondence between the dependent rows,
in order top-to-bottom, of the matrix (7.45), and the dependent rows of the
matrix [R H ]. That is, the row for the k:th output in the l:th block of [R H ]
is a dependent row if and only if the row for the k:th output in the l:th block
of (7.45) is a dependent row.

Proof: Consider a dependent row, in order top-to-bottom, in [R H ] and
assume it is in the l+ 1:th block of rows. Then let the vector [t0 . . . tl] describe
this dependency. Then from Lemma 7.5, we know that (7.47) is fulfilled. This
further means that the the corresponding row in the matrix (7.45) must also be
a dependent row.

For the converse, assume the specific case l = 2, and study the matrix (7.45)
which become (7.48). It is seen that it generally must hold that all dependent
rows in the matrix (7.45) must occur in the rows starting with CAi. By again
using Lemma 7.5, it is seen that a dependent row in the matrix (7.45) directly
implies that the corresponding row in [Rx H ] also must be dependent.

Note that the primary dependent rows are a subset of the dependent rows.
Therefore, Lemma 7.6 shows that the search for primary dependent rows in the
right matrix of (7.35) can be performed by a row-search in the much simpler
matrix [R H ], which can be recognized from the Chow-Willsky scheme.

7.5.1 Chow-Willsky Scheme Version IV: a Polynomial Ba-
sis Solution

All results reached so far are summarized in the following theorem:

Theorem 7.11 Let W define the largest and uppermost set of primary depen-
dent rows in [Rx H ]. Then FCW (s) = W [Ψm(s) − QΨku(s)] is a minimal
polynomial basis for the left null-space of

M(s) =
[
G(s) H(s)
Iku 0

]
Proof: LetW define the largest and uppermost set of primary dependent rows
in [Rx H ]. Then according to Lemma 7.6, this uniquely identifies the largest
and uppermost set of primary dependent rows in also (7.45). From Theorem 7.8
and Lemma 7.4, we realize that this gives a minimal polynomial basis for[

Iku 0
G(s) H(s)

]
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From Lemma 7.5, we see that each row-vector f(s) in the polynomial basis, can
be written as

f(s) = [v0 t0 . . . vl tl]



Iku 0
0 Im

sIku 0
0 sIm
...

...
slIku 0

0 slIm


= [t0 . . . tl]

−Q

Iku
sIku

...
slIku



Im
sIm

...
slIm




Note that the second equality follows from the definition of vi in Lemma 7.5.
Then a basis for NL(M(s)) is trivially FCW (s) = W [Ψm(s) −QΨku(s)].

From Theorem 7.11, we realize that an alternative to searching for primary
dependent rows in M̃, a minimal polynomial basis can be obtained by searching
for primary dependent rows in the matrix [Rx H ]. This means that we now know
how to use the Chow-Willsky scheme to generate a minimal polynomial basis
for NL(M(s)). This final modification of the Chow-Willsky scheme becomes
version IV.

The next theorem answers the question of what happens when the primary
dependent rows are searched in the matrix [R H ] instead of [Rx H ]. This result
is of minor importance here but will be used to derive a detectability criterion
in Chapter 8. However, note that to use [R H ] instead of [Rx H ] has exactly
the same effect as to use a realization not controllable from [uT dT ]T , in the
state-space solution of the minimal polynomial basis approach. The following
Theorem 7.12 should be compared with Theorem 7.4.

Theorem 7.12 Let W define the largest and uppermost set of primary depen-
dent rows of [R H ]. Then F (s) = W [Ψm(s) −QΨku(s)] is a polynomial basis
(not necessarily irreducible) for the left null-space of

M(s) =
[
G(s) H(s)
Iku 0

]
Before this theorem can be proven, we need a lemma:

Lemma 7.7 Consider the matrix

[Rx H ] =


Cx Dd

CxAx CxBd,x Dd

...
...

. . .
CxA

ρ
x CxA

ρ−1
x Bd,x . . . Dd

 (7.49)

If the i:th row in the last block of this matrix is dependent then the i:th row of
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the last block in the following matrix is also dependent:

[R H ] =


C Dd

CA CBd Dd

...
...

. . .
CAρ+nz CAρ+nz−1Bd . . . Dd

 (7.50)

Proof: First realize that CxAixBd,x = CAiBd for all i ≥ 0. Then the fact
that the i:th row in the last block of the matrix (7.49) is dependent, means that
there is a vector t̄ = [t1 . . . tρ+1], where tρ+1 = [tρ+1,1, . . . tρ+1,i−1, 1, 0, . . .0],
such that

t1Cx + t2CxAx + · · ·+ tρ+1CxA
ρ
x = 0

t1Dd + t2CBd + · · ·+ tρ+1CA
ρ−1Bd = 0

... (7.51)
tρDd + tρ+1CBd = 0

tρ+1Dd = 0

Study the equations containing Dd. All terms in these equations, except tiDd,
have a Bd multiplied from the right. This means that the rows of Bd must span
all tiD, i = 1, . . . ρ+ 1. Therefore there exists a matrix DB so that

tiDd = tiDBBd

for i = 1, . . . ρ+ 1. Equations (7.51) can now be rewritten as

t1Cx + t2CxAx + · · ·+ tρ+1CxA
ρ
x = 0

t1DBBd + t2CBd + · · ·+ tρ+1CA
ρ−1Bd = 0

... (7.52)
tρDBBd + tρ+1CBd = 0

tρ+1DBBd = 0

Let the rows of a matrix Nx be a basis for the left null-space of Bd,x and define
N = [Nx 0] and M = [0 I]. Then an equivalent description of Equations (7.52)
is that there exists fi:s and gi:s so that

t1C + t2CA+ · · ·+ tρ+1CA
ρ + g0M = 0

t1DB + t2C + · · ·+ tρ+1CA
ρ−1 + f1N + g1M = 0

... (7.53)
tρDB + tρ+1C + fρN + gρM = 0
tρ+1DB + fρ+1N + gρ+1M = 0
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By multiplying the first equation with A from the right, different number of
times, we can obtain the equations:

t1CA
nz + t2CA

nz+1 + · · ·+ tρ+1CA
ρ+nz + g0MAnz = 0

... (7.54)
t1CA+ t2CA

2 + · · ·+ tρ+1CA
ρ+1 + g0MA = 0

Next, note that

MAi = [0 I]
[
Ax A12

0 Az

]i
= [0 Aiz] = AzM

By using this expression and putting together the equations (7.53) and (7.54),
we arrive at

t1CA
nz + t2CA

nz+1 + · · ·+ tρ+1CA
ρ+nz + g0A

nz
z M = 0

...
t1CA+ t2CA

2 + · · ·+ tρ+1CA
ρ+1 + g0AzM = 0

t1C + t2CA+ · · ·+ tρ+1CA
ρ + g0M = 0

t1DB + t2C + · · ·+ tρ+1CA
ρ−1 + f1N + g1M = 0

... (7.55)
tρDB + tρ+1C + fρN + gρM = 0
tρ+1DB + fρ+1N + gρ+1M = 0

Now denote these equations with Φ−nz , . . . ,Φρ+1, from top to bottom. Also
define all Φi, i > ρ+ 1, as a notation for the equation

0 = 0

Let the coefficients anz−1 . . . a0 be the coefficients in the characteristic poly-
nomial. Then according to Cayley-Hamilton theorem,

Anzz = anz−1A
nz−1 + · · ·+ a1A

1 + a0I

A new set of equations can be obtained as

[
1 −anz−1 . . . −a0

]Φ−nz
...

Φ0


...

[
1 −anz−1 . . . −a0

]  Φρ+1

...
Φρ+1+nz


(7.56)



Section 7.5. Connection Between the Minimal Polynomial Basis . . . 221

Introduce the notation

t′i = [1 − anz−1 . . . − a0]

 ti
...

ti+nz



f ′i = [1 − anz−1 . . . − a0]

 fi
...

fi+nz

 g′i = [1 − anz−1 · · · − a0]

 gi
...

gi+nz


and let ti = 0 and fi = 0 for i < 1 and i > ρ + 1. Further let gi = g0A

−i
z for

i ≤ 0 and gi = 0 for i > ρ + 1. Note these definitions imply that t′ρ+1 = tρ+1,
f ′ρ+1 = fρ+1, and g′ρ+1 = gρ+1.

Now the equations (7.56) can be written as

t′−nz+1C + t′−nz+2CA+ · · ·+ tρ+1CA
ρ+nz + g′−nzM = 0

t′−nz+1DB + t′−nz+2C + · · ·+ tρ+1CA
ρ+nz−1 + f ′−nz+1N + g′−nz+1M = 0

...

t′1DB + t′2C + · · ·+ tρ+1CA
ρ−1 + f ′1N + g′1M = 0

...
t′ρDB + tρ+1C + f ′ρN + g′ρM = 0

tρ+1DB + fρ+1N + gρ+1M = 0
(7.57)

Note that

g′−nz = [1 −anz−1 . . . −a0]


g−nz
g−nz+1

...
g0

 = [1 −anz−1 . . . −a0]


g0A

nz
z

g0A
nz−1
z
...
g0

 =

= g0(Anzz − anz−1A
nz−1
z · · · − a0I) = 0

Finally multiply all but the first of the equations (7.57) with Bd from the
right. This will result in the equations

t′−nz+1C + t′−nz+2CA+ · · ·+ tρ+1CA
ρ+nz = 0

t′−nz+1D + t′−nz+2CB + · · ·+ tρ+1CA
ρ+nz−1B = 0

...
t′ρD + tρ+1CB = 0

tρ+1D = 0
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Note that the vector tρ+1 is the same here as in (7.51). This result is equivalent
to that the i:th row of the last block of the matrix (7.50) is dependent, which
ends the proof.

Now return to the proof of Theorem 7.12:
Proof: Introduce the notation [R H ]ρ=n, meaning that the matrix [R H ] is
defined by using ρ = n. Lemma 7.7 says that if the i:th row in some block of
[Rx H ]ρ=nx is dependent, then the i:th row in some block of [R H ]ρ=n is also
dependent. This means that a set of primary dependent rows of [R H ]ρ=n, of
largest possible size, consists of the same number of rows as a set of primary
dependent rows of [Rx H ]ρ=n, of largest possible size.

Assume now that W defines a set of primary dependent rows of [R H ]ρ=n,
of largest possible size. The matrix [R H ] can also be written [Rx Rz H ].
This means that the row indices, defining the set of primary dependent rows
in [Rx Rz H ], also define a set of primary dependent rows in [Rx H ]. It is
important to note that there is no guarantee that this set is the uppermost.

Now Lemma 7.6 implies that we also have found a set of primary depen-
dent rows of (7.45), of largest possible size. Note that neither this set is the
uppermost. Then by using the same reasoning as in the proof of Theorem 7.11,
we can conclude that F (s) = W [Ψm(s) − QΨku(s)] is a polynomial basis for
the left null-space of M(s). However, this time we used a set of not uppermost
primary dependent rows, which according to Theorem 7.8 means that the basis
will not be irreducible.

7.5.2 Numerical Properties of the Chow-Willsky Scheme

We have now shown that algebraically, the Chow-Willsky scheme version IV,
is equivalent to the minimal polynomial basis approach. However, from a nu-
merical perspective, the Chow-Willsky scheme is not as good as the minimal
polynomial basis approach. The reason is that, for anything but small ρ, the
matrix [Rx H ] will have high powers of A. It is likely that this results in that
[Rx H ] becomes ill-conditioned. Thus to find the left null-space of [Rx H ] can
imply severe numerical problems. The minimal polynomial basis approach does
not have these problems of high power of A or any other term. This differ-
ence is highlighted in (Frisk, 1998), where both the Chow-Willsky scheme and
the minimal polynomial basis approach are applied to the problem of designing
polynomial parity functions for a turbo-jet aircraft-engine. The Chow-Willsky
scheme fails because of numerical problems, while the minimal polynomial basis
approach, manage to generate a basis for all parity functions.

7.6 Design Example

This model, taken from (Maciejowski, 1989), represents a linearized model of
vertical-plane dynamics of an aircraft. The inputs and outputs of the model are
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Inputs Outputs
u1: spoiler angle [tenth of a degree] y1: relative altitude [m]
u2: forward acceleration [ms−2] y2: forward speed [ms−1]
u3: elevator angle [degrees] y3: Pitch angle [degrees]

The model has state-space matrices:

A =


0 0 1.132 0 −1
0 −0.0538 −0.1712 0 0.0705
0 0 0 1 0
0 0.0485 0 −0.8556 −1.013
0 −0.2909 0 1.0532 −0.6859

 B =


0 0 0

−0.12 1 0
0 0 0

4.419 0 −1.665
1.575 0 −0.0732


C = [I3 0] D = 03×3

Suppose the faults of interest are three sensor-faults (denoted f1, f2, and f3),
and two actuator-faults (denoted f4 and f5). Also, assume that the faults are
modeled with additive fault models. In addition, there is an additive disturbance
d acting on the third actuator, i.e. the elevator angle actuator.

The total model, including faults and the disturbance, then becomes:y1y2
y3

 = G(s)

u1

u2

u3

 +

f4f5
d

 +

f1f2
f3


where G(s) = C(sI −A)−1B +D.

7.6.1 Decoupling of the Disturbance in the Elevator Angle
Actuator

The first design example is intended to illustrate the design procedure and also
illustrate how available design freedom can be utilized. The goal is to design a
residual generator Q1(s) that decouples the disturbance d in the elevator angle
actuator. Then, matrix H(s) from (7.1) corresponds to all signals that are to
be decoupled, i.e. considered disturbances. In this case, H(s) becomes the
third column in G(s). Matrix L(s) corresponds to the faults and therefore L(s)
becomes [I3 g1(s) g2(s)], where gi(s) denotes the i:th column of G(s). Further,
the matrix Bd in (7.2) becomes equal to the third column of B. Note also that
the realization {A,B,C,D} is controllable, i.e. the state x is controllable from
u.

Minimal Polynomial Basis Solution

Since the model is given in state-space form and {A, [B Bd]} is controllable,
Theorem 7.3 is used to extract NM (s). According to formula (7.9), the di-
mension of the null-space NL(M(s)) is 2, i.e. there exists exactly two linearly
independent parity functions that decouples d.
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Calculations using the Polynomial Toolbox (Henrion et al., 1997) give the
basis

NM (s) =[
0.0705s s+ 0.0538 0.091394 0.12 −1 0

22.7459s2 + 14.5884s −6.6653 s2 − 0.93678s− 16.5141 31.4058 0 0

]
(7.58)

The command used is xab2 and this gives the basis in canonical polynomial
echelon form, i.e. the basis (7.58) is actually unique. The row-degrees of the
basis is 1 and 2, i.e. it is a basis of order 3. From this it is clear that the filter of
least degree, which decouples d, is a first order filter corresponding to the first
row in the basis. To select the first row then corresponds to setting φ in (7.10)
to φ = [1 0].

Chow-Willsky Solution

We use the Chow-Willsky Scheme version III, i.e. the left null-space of [R H ]
(= [Rx H ] in this case) is calculated using the row-search procedure. From
Section 7.3 and 7.4.3, we know that a good choice of ρ is ρ = n. The row-search
procedure is implemented in the command rwsearch in the Polynomial Toolbox
(Henrion et al., 1997). Using this command together with the expression for
FCW (s), given in (7.33), results in

FCW (s) =

=



0.0705s s + 0.0538 0.0914
0.0705s2 − 0.00379s s2 − 0.00289 0.0914s − 0.00492

22.7s2 + 14.6s −6.67 s2 − 0.937s − 16.5
0.0705s3 − 2.08s2 − 1.33s s3 + 0.609 0.0807s + 1.51
22.7s3 + 35.9s2 + 14.1s −5.89 s3 − 17.4s − 14.9

0.0705s4 − 2.08s3 − 3.17s2 − 1.22s s4 + 0.505 1.59s + 1.28
22.7s4 + 35.9s3 + 410s2 + 254s −116 s4 − 31.2s − 287

0.0705s5 − 2.08s4 − 3.17s3 − 37.3s2 − 23.2s s5 + 10.5 2.76s + 26.1
22.7s5 + 35.9s4 + 410s3 + 963s2 + 463s −201 s5 − 316s − 504

0.12 −1 0
0.12s − 0.00646 −s + 0.0538 0

31.4 0 0
0.12s2 − 0.00646s − 2.87 −s2 + 0.0538s − 0.00289 0

31.4s + 30.2 −6.67 0
0.12s3 − 0.00646s2 − 2.87s − 2.61 −s3 + 0.0538s2 − 0.00289s + 0.609 0

31.4s2 + 30.2s + 547 −6.67s − 5.89 0
0.12s4 − 0.00646s3 − 2.87s2 − 2.61s − 49.8 −s4 + 0.0538s3 − 0.00289s2 + 0.609s + 0.505 0

31.4s3 + 30.2s2 + 547s + 992 −6.67s2 − 5.89s − 116 0


The command rwsearch gives its answer in canonical echelon form which means
that the result is unique.

2The command xab (in version 1.6) is actually not perfectly suited for this case since it
uses an unnecessarily large ν.
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Now compare FCW (s) with NM (s) in (7.58). We see that the first and third
row of FCW (s) equals the rows of the basis NM (s), but this is no coincidence.
Theorem 7.11 tells us that the uppermost and largest set of primary dependent
rows in [Rx H ] gives a minimal polynomial basis for NL(M(s)). This was also
the idea of the version IV of the Chow-Willsky scheme. Theorem 7.11 together
with the uniqueness (because of canonical echelon form) of both NM (s) and
FCW (s), implies that the first and third row of FCW (s) must equal NM (s).

Forming the Residual Generator

Now we want to use the parity function obtained from the first row of NM (s)
(or equivalently FCW (s)) to construct a residual generator. From Section 7.2.1
we know that the minimality property of the basis implies that this parity
function is of minimal order. A residual generator can be formed by using the
expression (7.5). Since the parity function is of order 1, the scalar polynomial
c(s) must have a degree ≥ 1. Let c(s) be c(s) = 1 + s which results in the
following filter (residual generator)

Q1(s) =
1

1 + s

[
0.0705s s+ 0.0538 0.091394 0.12 −1 0

]
(7.59)

Now we know that this residual generator is of minimal order. Also, because
of the choice c(s) = 1 + s, it is able to detect faults with energy in frequency
ranges up to 1 rad/s.
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Figure 7.2: Singular value of the transfer function from u and d to r.

Figure 7.2 shows the singular value (maximum gain in any direction) for

Grud(s) = Q1(s)
[
G(s) H(s)
I 0

]
This plot should theoretically be exactly 0, but because of finite word length in
Matlab it doesn’t become exactly 0. The plot shows that the control signals
and the decoupled fault has no significant influence on the residual. Figure 7.3



226 Chapter 7. Linear Residual Generation

shows how the monitored faults influence the residual which clearly shows that
fault influence is significantly larger than influence from the decoupled fault and
control signals plotted in Figure 7.2. The leftmost plot in Figure 7.3 also shows
that DC-gain from fault f1 to the residual is 0. Therefore, fault f1 is difficult
to detect since the effect in the residual of a constant fault f1 disappears. This
effect is more studied in the next chapter.
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Figure 7.3: Magnitude bode plots for the monitored faults to the residual.

7.7 Conclusions

The topic of this chapter has been design of linear residual generators, which is a
special case of the prediction principle. First the relation between linear residual
generators and polynomial parity functions was cleared out, and it is concluded
that the linear decoupling problem is equivalent to designing polynomial parity
functions.

A new method, the minimal polynomial basis approach has been developed.
The focus has been on four issues, namely that the method (1) is able to generate
all possible residual generators, (2) explicitly gives the solutions with minimal
McMillan degree, (3) results in a minimal parameterization of the solutions, i.e.
all residual generators, and (4) has good numerical properties.

In the minimal polynomial basis approach, the residual generator design
problem is formulated with standard notions from linear algebra and linear
systems theory such as polynomial bases for rational vector spaces, and it is
shown that the design problem can be seen as the problem of finding polynomial
matrices in the left null-space of a rational matrixM(s). Within this framework,
the completeness of solution, i.e. issue (1) above, and minimality, i.e. issues (2)
and (3), are naturally handled by the concept of minimal polynomial bases.

Finding a minimal polynomial basis for a null-space is a well-known prob-
lem and there exists computationally simple, efficient, and numerically stable
algorithms, to generate the bases. That is, issue (4) is satisfied. In addition,
generally available implementations of these algorithms exists.

The order of linear residual generators is investigated and it is concluded that
to generate a basis, for all polynomial parity functions or residual generators, it
is sufficient to consider orders up to the system order. This result is new since



Section 7.7. Conclusions 227

previous related results only deal with the existence of residual generators and
also only for some restricted cases.

The question of minimality and completeness of solution is not obvious for
other design methods. The well known Chow-Willsky scheme is investigated
and it is concluded that in its original version, none of the four issues above
are satisfied. However, a modification of the Chow-Willsky scheme is presented
and this new version is algebraically equivalent to the minimal polynomial basis
approach. This means that the first three, of the issues above, are satisfied.
However, it is concluded that numerically, this modified version of the Chow-
Willsky scheme is still not as good as the minimal polynomial basis approach.
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Appendix

7.A Proof of Lemma 7.1

Lemma 7.1 Let M(s) be the system matrix of any realization (not necessarily
controllable from

[
uT dT

]T ), i.e.

Ms(s) =
[

C Dd

−(sI −A) Bd

]
Then it holds that

DimNL(M(s)) = DimNL(Ms(s))

Proof: Consider the realization[
ẋ
ż

]
=

[
Ax A12

0 Az

] [
x
z

]
+

[
Bu,x
Bu,z

]
u+[

Bd,x
0

]
d+

[
Bf,x
Bf,z

]
f (7.60a)

y = [CxCz]
[
x
z

]
+Duu+Ddd+Dff (7.60b)

where it is assumed that x is controllable from d. Note that this is not the same
type of realization as (7.12). Then form the matrix Mxd(s) as

Mxd(s) =
[

Cx Dd

−sI +Ax Bd,x

]
Let nx be the number of controllable states, i.e. the dimension of x in (7.60).

We will first show that

DimNL(M(s)) = DimNL(Mxd(s)) (7.61)

The dimension of the null-space NL(Mxd(s)) is m + nx − RankMxd(s). The
dimension of the null-space NL(M(s)) is m+ku−RankM(s). Further, it holds
that RankM(s) = RankH(s) + ku. All this means that to show (7.61), it is
sufficient to show that

RankMxd(s) = RankH(s) + nx (7.62)

By using the generalized Bezout identity, it is easy to derive (see (Kailath,
1980), Section 6.4.2) that the following matrices have the same Smith form:[

−sI +Ac Bd,c
Cc Dd

]
S∼

[
Inx 0
0 CcΨ(s) +DdDH(s)

]
(7.63)

where {Ac, Bd,c, Cc} is a controller-form realization of
{Ax, Bd,x, Cx} and {Ψ(s), DH(s)} is a specific right MFD of (sI−Ax)−1Bd,x =
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(sI − Ac)−1Bd,c (see (Kailath, 1980) for a definition of Ψ(s) and DH(s)). By
defining NH(s) = CcΨ(s) +DdDH(s), we see that

H(s) = CcΨ(s)D−1
H (s) +Dd = (CcΨ(s) +DdDH(s))D−1

H (s) = NH(s)D−1
H (s)

That is, {NH(s), DH(s)} is a right MFD for H(s). Further, since Mxd(s) repre-
sents a controllable realization, it has the same Smith form as the controller-form
realization, which together with (7.63) means that

Mxd(s) =
[
−sI +Ax Bd,x

Cx Dd

]
S∼

[
Inx 0
0 NH(s)

]
This further means that

RankMxd(s) = RankNH(s) + nx = RankH(s) + nx

and thus, (7.62) and (7.61) have been shown.
Let T represent the similarity transformation relating the realization in

Ms(s) with the realization (7.60). Then we have that

RankMs(s) = Rank
[
T−1 0
0 Im

]
Ms(s)

[
T 0
0 Iku

]
=

= Rank

−sI +Ax A12 Bd,x
0 −sI +Az 0
Cx Cz Dd

 = RankMxd(s) + nz (7.64)

where nz is the dimension of the state z in (7.60). The last equality holds since
the submatrix  A12

−sI +Az
Cz


has rank nz and all columns are independent of the other parts of the matrix.
The relation (7.64) implies that

DimNL(Mxd(s)) = nx +m− RankMxd(s) =
= nx + nz +m− RankMs(s) = DimNL(Ms(s))

This result together with (7.61) shows the lemma.

7.B Linear Systems Theory

This appendix is included to serve as a compilation of definitions, theorems, and
basic properties of linear systems, polynomial matrices, and polynomial bases
used in this thesis. Sources describing these matters in detail are e.g. (Forney,
1975; Kailath, 1980; Chen, 1984) for control oriented views, and (Lancaster and
Tismenetsky, 1985) for a purely mathematical view.
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Definition 7.4 (Dependent Row) Consider a matrix A. A dependent row,
in order top-to-bottom, is a row that is a linear combination of previous rows
(i.e. the rows above).

Definition 7.5 (Primary Dependent Rows) Let A be a matrix organized
in equally sized blocks Ai as follows:

A =


A0

A1

...
Aν


Further let each dependent row be associated with a row index αi telling the
placement within its block. Then a set of dependent rows are primary dependent
rows if

αi 6= αj , i 6= j

Example 7.6

Consider

A =


1 0 1
0 1 1
1 1 2
0 0 1
2 2 4
0 2 2


The dependent rows are row 3, 5, and 6. Of these, row 3 and 6 are primary
dependent. Row 5 is not primary dependent since it has the same block location
as row 3 which is also dependent.

Theorem 7.13 (PBH Rank Test (Kailath, 1980) p. 136) A pair {A,B}
will be controllable if and only if the matrix

[sI −A B] has rank n for all s

7.B.1 Properties of Polynomial Matrices

To avoid unnecessary misunderstandings: a polynomial matrix, which in some
literature is called matrix polynomials (Lancaster and Tismenetsky, 1985), is
any matrix F (s) where the individual elements are scalar polynomials in s.
Here, the coefficients in the polynomials will always be real.

Definition 7.6 (Normal Rank) The (normal) rank of a polynomial matrix
F (s) is the largest rank F (s) has for any s ∈ C.
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Sometimes the word normal is omitted, when the text only says rank it is always
meant normal rank.

Definition 7.7 (Row-reduced Matrix) Consider a polynomial p× q matrix
F (s) with row-degrees µi. It is always possible to write

F (s) = S(s)Dhr + L(s)

where

S(s) = diag{sµi , i = 1, . . . , p}
Dhr = the highest-row-degree coefficient matrix
L(s) = the remaining term with row-degrees strictly less than those of F(s)

A full row rank matrix F (s) is said to be row-reduced if its highest-row-degree
coefficient matrix Dhr has full row rank.

Definition 7.8 (Irreducible and Unimodular Matrices) A polynomial ma-
trix F (s) is said to be irreducible if it has full rank for all finite s. If F (s) is
irreducible and square it is said to be unimodular. A unimodular matrix has a
unimodular inverse.

7.B.2 Properties of Polynomial Bases

Definition 7.9 (Degree of a Polynomial Vector) The degree of a polyno-
mial vector is the highest degree of all the entries of the vector. If the vector is
a row-vector, it is called row-degree.

The order of a polynomial basis is defined in (Kailath, 1980) as

Definition 7.10 (Order of a polynomial basis) Let the
rows of F (s) form a basis for a vector space F . Let µi be the row-degrees of
F (s). The order of F (s) is defined as

∑
µi.

A minimal polynomial basis for F is then any basis that minimizes this order.

Theorem 7.14 (Minimal Polynomial Bases (Kailath, 1980)) Consider a
full row (normal) rank polynomial matrix F (s). Then the following statements
are equivalent

• The rows of F (s) form a minimal basis for the rational vector space they
generate.

• F (s) is row-reduced and irreducible.

• F (s) has minimal order.

Theorem 7.2 (Irreducible Basis) If the rows of N(s) is an irreducible poly-
nomial basis for a space F , then all polynomial row vectors f(s) ∈ F can be
written f(s) = φ(s)N(s) where φ(s) is a polynomial row vector.
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Proof: SinceN(s) is a basis, all f(s) ∈ F can be written f(s)g(s) = φ(s)N(s).
For each root α of g(s) it holds that

f(α)g(α) = φ(α)N(α) = 0

Since N(s) is irreducible, it has full row rank for all s and in particular s = α.
This implies that φ(α) = 0, i.e. all roots of g(s) are also roots of φ(s). Thus
φ(s) can be factorized as φ(s) = g(s)φ̄(s) and

f(s)g(s) = g(s)φ̄(s)N(s)

This implies

f(s) = φ̄(s)N(s)

To illustrate the concept of rational vector-spaces and polynomial bases, the
following example has been included.

Example 7.7

Let the rows of the matrix F (s) be a basis for the rational vector-space F .

F (s) =

s 0 1
1 1 0
0 −s 2


It is clear that F (s) is a basis since det(F (s)) = s 6= 0, i.e. the matrix has full
rank and therefore, the rows are linearly independent. Any polynomial vector
of dimension 3 will of course belong to F . Consider for example the vector

b1(s) =
[
s 0 0

]
∈ F

This vector can be written as a linear combination of the columns as follows:

b1(s) =
[
2 −s −1

] s 0 1
1 1 0
0 −s 2

 = x(s)F (s)

Here, x(s) happens to be a polynomial vector. However, in general rational
vectors are needed. Consider for example the vector

b2(s) =
[
1 0 0

]
=

[
2
s −1 − 1

s

] s 0 1
1 1 0
0 −s 2

 = x(s)F (s)

In this case, x(s) is rational and there exists no polynomial x(s) such that
b2(s) = x(s)F (s).
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If the polynomial basis is irreducible, then according to Theorem 7.2, only
polynomial x(s):s are needed. An irreducible basis for the same vector-space F
is for example

F ′(s) =

1 0 s
0 1 s
0 0 1


Now b2(s) can be written

b2(s) =
[
1 0 0

]
=

[
1 0 −s

] 1 0 s
0 1 s
0 0 1

 = x(s)F (s)
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Chapter 8

Criterions for Fault
Detectability in Linear
Systems

The topic of this chapter is fault detectability, or more exactly, if it is possible
to construct a residual generator that is sensitive to a certain fault modeled
as a signal. As in the previous chapter, only linear systems will be consid-
ered. Detectability of faults that are modeled as constant signals are explicitly
investigated. Such detectability is usually called strong fault detectability,

Criterions for both fault detectability and strong fault detectability are de-
rived. A few of these are already known results, but most of the criterions,
especially those for strong fault detectability, are new.

We will see that the analyses becomes quite simple. This is due to the notion
of bases developed in the previous chapter. For simplicity reasons, we assume
that only one fault affects the system, i.e. f is scalar.

In Section 8.1, we will study how the general definitions of fault detectability
from Chapter 2, are specialized when only linear systems are considered. Then
the criterions for fault detectability and strong fault detectability are derived in
Sections 8.2 and 8.3 respectively. Finally Sections 8.4 and 8.5 contain discussions
and examples.

8.1 Fault Detectability and

Strong Fault Detectability

Recall the definition of uniform partial detectability in a diagnosis system, i.e.
Definition 2.23. Uniform partial detectability was defined via uniform partial
isolability, i.e. Definition 2.19. Combining these two definitions we get:

A fault mode F is uniformly and partially detectable in a diagnosis
system δ if for all initial conditions, for all inputs, and for all modeled

235
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disturbances, it holds that

∃θ ∈ ΘF .F ∈ S ∧NF /∈ S

and

∃θ ∈ ΘNF .NF ∈ S

Now assume that we have a diagnosis system based on a single hypothesis test
(in this case a residual generator) and that the fault mode F is modeled by a
fault signal f(t). For F to be detectable in this diagnosis system, the above
requirements imply that

∀u(t), d(t), ∃f(t) 6= 0 . S = S1 = {F, . . . } and NF /∈ S
∀u(t), d(t) . f(t) = 0 → S = S0 = {NF, . . . }

Note that ∃f(t) 6= 0 in the above expression means that there exists a fault
signal modeled by f(t) belonging to a specific fault mode (and not that there
exists a signal belonging to some arbitrary fault mode). By assuming ideal
condition, these requirements can be formulated as

∀u(t), d(t), ∃f(t) 6= 0 . r(t) 6= 0
∀u(t), d(t) . f(t) = 0 → r(t) = 0

For linear system, we can phrase this in terms of transfer functions which leads
to the following definition of fault detectability in a residual generator:

Definition 8.1 (Fault Detectability in a Residual Generator ) A fault f
is detectable in a residual generator if the transfer function from the fault to the
residual is nonzero, i.e. Grf(σ) 6= 0, and the transfer functions from the known
input u and the disturbance d to the residual are zero, i.e. Gru(σ) = 0 and
Grd(σ) = 0.

As in the previous chapter, the operator σ represents the differentiation operator
p (or s) in the continuous case and the time-shift operator q (or z) in the discrete
case.

Next consider uniform complete fault detectability, i.e. Definition 2.23 and
2.16. It is clear that using a linear residual generator, uniform complete fault
detectability can only be achieved if Grf (σ) = C 6= 0. This is a very strong
requirement and we will instead focus on uniform complete fault detectability
of constant faults, i.e. f(t) ≡ c. Then for a diagnosis system based on a single
residual generator, we have the following requirements:

∀u(t), d(t), ∀f(t) ≡ c 6= 0. r(t) 6= 0
∀u(t), d(t) . f(t) ≡ 0 → r(t) = 0

For linear system, we can phrase this in terms of transfer functions which leads
to the following definition of strong fault detectability in a residual generator:
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Definition 8.2 (Strong Fault Detectability in a Residual Generator )
A fault f is strongly detectable in a residual generator if the transfer function
from the fault to the residual Grf (σ) has a nonzero DC-gain, e.g. Grf (0) 6= 0
in the continuous case, and the transfer functions from the known input u and
the disturbance d to the residual are zero, i.e. Gru(σ) = 0 and Grd(σ) = 0.

Faults that are detectable but not strongly detectable will be called weakly
detectable faults.

The importance of strong detectability is illustrated the following exam-
ple.

Example 8.1

Consider a DC-servo which can be modeled as

y1 =
1

s(1 + s)
u+ f1 (8.1)

y2 =
1

1 + s
u+ f2 (8.2)

(8.3)

where y1 is the output from an angle sensor and y2 is the output from a tachome-
ter (i.e. an angular velocity sensor). There are two possible sensor faults mod-
eled by the fault signals f1 and f2.

Consider two residual generators:

r1 =
s(s+ 1)y1 − u

(s+ 4)2
=
s(s+ 1)f1
(s+ 4)2

r2 =
16(s+ 1)y2 − u

(s+ 4)2
=

16(s+ 1)f2
(s+ 4)2

The residual r1 will only be sensitive to f1 and r2 will only be sensitive to f2. It
is obvious that Gr1f1(0) = 0, which means that the fault f1 is weakly detectable
in the residual generator generating r1.

Their response to two step faults are plotted in Figure 8.1. The two residuals
r1(t) and r2(t) has fundamentally different behavior since r1(t) only reflects
changes on the fault signal and r2(t) has approximately the same shape as the
fault signal. In a real case, where noise and model uncertainties are present, it
is significantly more difficult to use r1(t) than r2(t).

In accordance with Definition 2.23 and 2.22, we can also define fault de-
tectability and strong fault detectability as properties of the system.

Definition 8.3 (Fault Detectability ) A fault f is detectable in a system if
there exists a residual generator such that the transfer function from the fault
to the residual is nonzero, i.e. Grf (σ) 6= 0, and the transfer functions from the
known input u and the disturbance d to the residual are zero, i.e. Gru(σ) = 0
and Grd(σ) = 0.
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Figure 8.1: A weakly detectable fault (upper plot) and a strongly detectable
fault (lower plot). The fault signal is the dashed line and the residual is the
solid line.

Definition 8.4 (Strong Fault Detectability ) A fault f is strongly detectable
in a system if there exists an asymptotically stable residual generator such that
the transfer function from the fault to the residual Grf (σ) has a nonzero DC-
gain, e.g. Grf (0) 6= 0 in the continuous case, and the transfer functions from
the known input u and the disturbance d to the residual are zero, i.e. Gru(σ) = 0
and Grd(σ) = 0.

By excluding diagnosis systems in which the fault is not detectable, from the
definition of diagnosis systems, fault detectability as a system property is also
referred to as the existence of a diagnosis system, see for example (Mironovskii,
1980) and (Frank and Ding, 1994b).

The above two definitions of fault detectability and strong fault detectability
as system properties, will from now on be our primary interest. The question
is:

Given a model of the system, is a particular fault f strongly de-
tectable, only weakly detectable, or not detectable at all?

As in the previous chapter, we assume that the model is given either in the
transfer function form

y = G(σ)u +H(σ)d + L(σ)f (8.4)
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or in the state-space form

σx(t) = Ax(t) + Buu(t) +Bdd(t) +Bff(t) (8.5a)
y(t) = Cx(t) +Duu(t) +Ddd(t) +Dff(t) (8.5b)

In particular cases, it can be quite simple to show that a fault is for example
only weakly detectable. This is illustrated in the following example.

Example 8.2

Consider the same system as in Example 8.1. There we saw that the fault f1 was
only weakly detectable in the residual generator generating r1. The question
now is if the fault f1 is strongly detectable (using Definition 8.4). That is, does
there exist any residual generator in which fault f1 becomes strongly detectable.

According to the expression (7.5), a general linear residual generator can be
written as

r =
A1(s)y1 +A2(s)y2 +B(s)u

c(s)

Since f2 must be decoupled, it is considered to be a disturbance, and the term
A2(s) must therefore be 0. Thus a general expression for a residual generator is

r =
A1(s)y1 +B(s)u

c(s)

In the fault free case, the residual is zero, and therefore it must hold that

A1(s)y1 +B(s)u = 0 (8.6)

If the expression for y1 in the fault-free DC-servo model (8.1), i.e. f = 0, is
substituted into Equation (8.6), we get

A1(s)
1

s(1 + s)
u+B(s)u = 0

This equation must hold for all u which implies that the following equation must
be satisfied:

A1(s) = s(1 + s)B(s)

This in turn means that the polynomial A1(s) must contain the factor s. The
transfer function from the fault f1 to the residual becomes

Grf1 =
A(s)
c(s)

If the residual generator is asymptotically stable, i.e. the polynomial c(s) has
all its poles in the left half plane, the transfer function Grf1 will have a zero in
the origin. Thus for the angle sensor fault, modeled as in (8.1), it is impossible
to find a residual in which the fault becomes strongly detectable.
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It is clear that in some cases, like the one in the example, we are forced to use a
residual generator in which the fault is weakly detectable. Even though a fully
satisfactory solution can not be obtained unless we reconstruct the system,
weakly detectable faults can more easily be detected by filtering the residual
with a filter that acts approximately like an integrator. This was demonstrated
in for example (Frisk, Nyberg and Nielsen, 1997).

In Example 8.2, we manage to quite simply prove that f1 is not strongly
detectable. However, in general cases, this can be much more difficult. Therefore
it would be useful to have criterions for both fault detectability and strong
fault detectability. Such criterions are developed in the next two sections. For
simplicity reasons, we will, as we did in Chapter 7, only discuss the continuous
case. However, the corresponding results for the discrete case can be derived
in a similar manner. Throughout this chapter, we will assume that the fault
signal f(t) is a scalar signal. This makes most sense since we are interesting
in checking detectability with respect to one particular fault. We will use the
notation ImA(s) to denote the column image (also called the column range) of
a matrix A(s).

8.2 Detectability Criteria

In this section, a four general detectability criterions are presented. The two first
criterions assume that the system is given on the transfer function form (8.4) and
the next two criterions assume that the system is given on the transfer function
form (8.5). Also included is a necessary criterion based on the dimensions of
the system.

8.2.1 The Intuitive Approach

The first criterion assumes that the system is given on the transfer function
form (8.4). The reasoning follows intuitively from the the basic results of Sec-
tion 7.2.1.

Theorem 8.1 A fault f is detectable in a system if and only if

Im
[
L(s)

0

]
* Im

[
G(s) H(s)
I 0

]
(8.7)

Proof: The criterion of the theorem is equivalent to that there exists a
rational Q(s) such that

Q(s)
[
G(s) H(s)
I 0

]
= 0 (8.8)

and

Q(s)
[
L(s
0

]
6= 0 (8.9)
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If there exists a Q(s) that fulfills (8.8) and (8.9), then r = Q(s)[yT uT ]T is a
residual for which Gru(s) = Grd(s) = 0 and Grf (s) 6= 0. This means that fault
f is detectable.

If r = Q(s)[yT uT ]T is a residual in which fault f is detectable, i.e. Guf (s) =
Guf (s) = 0 and Grf (s) 6≡ 0, then (8.8) and (8.9) will be fulfilled.

The easiest way to check condition (8.7) is probably by studying the rank
as follows: a fault is detectable if and only if

Rank
[
G(s) H(s) L(s)
I 0 0

]
> Rank

[
G(s) H(s)
I 0

]
It is obvious that this rank-condition is equivalent to (8.7). The normal rank

of a polynomial matrix can be calculated quite easily by using the formula

RankA(s) = max
s

RankA(s) (8.10)

obtained from the definition of normal rank (see Appendix 7.B). Note that the
rank on the left-hand side of (8.10) refers to the normal rank of a polynomial
matrix while the rank on the right-hand side refers to the rank of a constant
matrix. We can substitute different random numbers for s and thus obtaining a
set of constant matrices. The normal rank is then the maximum rank of these
constant matrices. This procedure is implemented in the polynomial toolbox
(Henrion et al., 1997).

A second alternative to check condition (8.7) is to calculate a basis for
NL(M), i.e. the left null-space of M(s). As in the previous chapter we let
the rows of a matrix NM (s) form a basis for NL(M). Then we have that a fault
is detectable if and only if

NM (s)
[
L(s)

0

]
6= 0 (8.11)

However, to calculate a basis for the null-space requires more involved algorithms
than a rank test, as was seen in Section 7.2.3.

8.2.2 The “Frequency Domain” Approach

Here we will present a somewhat simpler, but closely related, alternative to
Theorem 8.1. Again we assume that the system is given on the transfer function
form (8.4).

Theorem 8.2 A fault f is detectable in a system if and only if

ImL(s) * ImH(s) (8.12)

Proof: We will first show that it holds that

Im
[
L(s)

0

]
⊆ Im

[
G(s) H(s)
I 0

]
(8.13)
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if and only if

ImL(s) ⊆ ImH(s)

If (8.13) holds, then there exists a rational matrix [XT
1 (s) XT

2 (s)]T such that
0 = IX1(s) and L(s) = G(s)X1(s) + H(s)X2(s) = H(s)X2(s), which means
that ImL(s) ⊆ ImH(s). This proofs the only-if part and the if-part is easier.

This means that we have shown the equivalence between the condition (8.7)
in Theorem 8.1 and (8.12), which ends the proof.

This criterion was given in (Ding and Frank, 1990) and as seen, it is much
simpler than Theorem 8.1, since it does not include G(s). Also here, the check
can be performed by doing a rank test or to calculate a basis for the null space.
Particularly simple is the rank test which becomes:

Rank [H(s) L(s)] > RankL(s) (8.14)

8.2.3 Using the System Matrix

The criterion presented here is based on the results from Section 7.2.2, about
the minimal polynomial basis approach using the state-space representation. It
is assumed that the system is given on the state-space form (8.5).

Theorem 8.3 A fault f is detectable in a system if and only if

Im
[
Bf
Df

]
* Im

[
A− sI Bd
C Dd

]
(8.15)

Proof: We will first show that it holds that

Im
[
Df

Bf

]
⊆ Im

[
C Dd

A− sI Bd

]
(8.16)

if and only if

Im
[
L(s)

0

]
⊆ Im

[
G(s) H(s)
I 0

]
(8.17)

Let the row vectors of V (s) be a basis for NL(Ms(s)) and form W (s) =
V (s)P , where P is, as before, defined as

P =
[
Im −Du

0 −Bu

]
According to Theorem 7.4, the rows of W (s) are a basis for NL(M(s)).

Now consider the relation

W (s)
[
L(s)

0

]
=V (s)P

[
L(s)

0

]
= V (s)

[
L(s)

0

]
= V (s)

[
C(sI −A)−1Bf +Df

0

]
=

=[V1(s) V1(s)C(sI −A)−1]
[
Df

Bf

]
= V (s)

[
Df

Bf

]
(8.18)
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The last equality follows from the fact that V (s)Ms(s) = 0. The relation (8.18)
implies that

W (s)
[
L(s)

0

]
= 0⇐⇒ V (s)

[
Df

Bf

]
= 0

Since W (s) and V (s) are bases for NL(M(s)) and NL(Ms(s)) respectively, this
statement is equivalent to that (8.16) holds if and only if (8.17) holds. This is
further equivalent to the condition (8.15) in the theorem.

Similar conditions for fault detectability were noted in for example (Magni and
Mouyon, 1994). Note that, in contrast to design of polynomial parity functions
using the minimal polynomial basis approach, we do not need to care about
controllability from u and d when checking detectability.

8.2.4 Using the Chow-Willsky Scheme

The criterions given here are based on the results from the study of the Chow-
Willsky scheme, performed in Sections 7.4 and 7.5. Again we assume that the
system is given on the state-space form (8.5).

Theorem 8.4 A fault f is detectable in a system if and only if

ImPρ=n * Im [R H ]ρ=n (8.19)

Proof: We will first show that it holds that

ImPρ=n ⊆ Im [R H ]ρ=n (8.20)

if and only if

Im
[
L(s)

0

]
⊆ Im

[
G(s) H(s)
I 0

]
(8.21)

Let the rows of a matrix W define the largest and uppermost set of primary de-
pendent rows in [RH ]ρ=n. Then according to Theorem 7.11, F (s) = W [Ψm(s) −
QΨku(s)] becomes a polynomial basis for NL{M(s)}.

Define X(s) as follows:

X(s) =
∞∑
i=1

s−iAi−1Bf

Then by using the same reasoning as in the formulas (7.39), (7.40), and (7.41),
we can conclude that

Ψm(s)L(s) = RX(s) + PΨ1(s)

Now assume that (8.20) holds. This implies the following:

F (s)
[
L(s)

0

]
= W [Ψm(s) −QΨku(s)]

[
L(s)

0

]
= WΨm(s)L(s) =

= W (RX(s) + PΨ1(s)) = 0 (8.22)
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The last equality holds sinceW [RH ] = 0 which, according to (8.20), also implies
that WP = 0. Since F (s) is a polynomial basis for NL{M(s)}, equation (8.22)
is equivalent to (8.11) which is further equivalent to (8.21), and thus the only-if
part of the proof have been shown.

For the if part, assume that w1 is an arbitrary row-vector such that w1[R H ] =
0. Pick other wi:s such that W = [wT1 wT2 . . . ]T defines a set of primary depen-
dent rows in [R H ]. This implies that W [R H ] = 0 and according to The-
orem 7.12, F (s) = W [Ψm(s) − QΨku(s)] becomes a polynomial basis (not
necessarily irreducible) for NL{M(s)}. Assume that (8.21) holds. Then we
know that

0 = F (s)
[
L(s)

0

]
= W [Ψm(s) −QΨku(s)]

[
L(s)

0

]
= WΨm(s)L(s) =

= W (RX(s) + PΨ1(s)) = WPΨ1(s) (8.23)

This implies that WP = 0 and thus w1P = 0 which proves the if part.
This means that we have shown the equivalence between the condition (8.7)

in Theorem 8.1 and (8.19), which ends the proof.

Note that also in this case, we do not need to care about controllability from
u and d when checking detectability. This is in contrast to design of parity
functions using the Chow-Willsky scheme, for which we showed in Section 7.4.3
that in order to find all parity functions, we have to care about controllability
from u and d.

8.2.5 Necessary Condition Based on Dimensions

The following criterion is trivial and stated in several works, e.g. (Gertler, 1998),
but nevertheless very useful since it uses only the dimensions of the system.

Theorem 8.5 Assume that H(s) has full column rank. Then a fault f is de-
tectable in the system only if

m > kd (8.24)

where m is the number of outputs and kd is the number of linearly independent
disturbances.

Proof: Theorem 8.2 and expression (8.14) implies that if a fault is detectable,
then it must hold that

m ≥ Rank [H(s) L(s)] > RankH(s) = kd

which gives the condition (8.24). An alternative proof is to use the formula (7.9)
which imply that the condition (8.24) must hold.

In other words, the condition (8.24) is a necessary condition for fault detectabil-
ity. For most systems this simply means that there must be more outputs than
disturbances if we are going to be able to detect any fault modeled by the signal
f(t).
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8.3 Strong Detectability Criteria

It is well know that faults often become weakly detectable when the system con-
tains an integration. For instance, this was the case in Example 8.2. However,
faults can be weakly detectable also if the system do not contain an integration.
This is demonstrated in the following example.

Example 8.3

Consider a system described by the following transfer functions:

G(s) =
[ 2
s+1
1
s+1

]
H(s) =

[ 1
s+2
1
s+2

]
L(s) =

[s+1
s+3
1
s+3

]
Note that no part of the system contains an integration. An MFD of the matrix
M(s) is

M(s) =
[
G(s) H(s)
I 0

]
=

 2 1
1 1

s+ 1 0

[
(s+ 1)−1 0

0 (s+ 2)−1

]
= N(s)D−1(s)

An irreducible basis for the left null-space of N(s) is F (s) = [s+1 −s−1 −1]T .
Using the corresponding parity function in a residual generator means that the
transfer function from the fault to the residual becomes

Grf (s) = c−1(s)F (s)
[
L(s)

0

]
To check strong fault detectability, we evaluate Grf (0):(

c−1(s)[s+ 1 − s− 1 − 1]
[
L(s)

0

] )
|s=0 = c−1(0)

( (s+ 1)2

s+ 3
− s+ 1
s+ 3

)
|s=0 =

= c−1(0)
(1
3
− 1

3
)

= 0

Thus, the fault is not strongly detectable in the residual generator. Later in
this section we will see that since F (s) is an irreducible basis, it actually holds
that there exists no residual generators in which the fault is strongly detectable.
The fault is therefore not strongly detectable in the sense of Definition 8.4.

Thus, no poles in the origin, is not a sufficient condition for strong detectability.
It is neither a necessary condition which is shown in the following example:

Example 8.4

Consider the following system:

y1 =
1
s
u+ f1

y2 =
1

s(s+ 1)
u+ f2
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Consider next the residual generator

r =
(s+ 1)y2 − y1

s+ 2

The transfer functions from the faults to the residual become

Grf1(s) =
−1
s+ 2

Grf2(s) =
s+ 1
s+ 2

which shows that both faults are strongly detectable in spite of that the system
has a pole in the origin.

The previous two examples show that the problem of checking strong fault
detectability is more involved than only checking the existence of poles in the
origin. Below we will investigate how the four criterions given in Section 8.2,
can be modified to become general criterions for strong fault detectability.

We first note that when checking strong detectability, it is not possible to
use conditions similar to (8.7), (8.12), or (8.15), without computing a basis for
the null-space. We saw in Section 8.2 that checking strong fault detectability
can be associated with calculating a basis NL{M(s)}. Similarly, we will see in
this section that checking strong fault detectability is associated with evaluating
the expression NL{M(s)}|s=0. The reason why (8.7), (8.12), or (8.15), can not
be used is that in general

NL{M(s)}|s=0 6= NL{M(0)}

This will be illustrated in Example 8.5, included in the next section below.

8.3.1 The Intuitive Approach

The criterion corresponding to Theorem 8.1 becomes:

Theorem 8.6 A fault f is strongly detectable in a system if and only if

(
NM (s)

[
L(s)

0

] )
|s=0 6= 0 (8.25)

where the rows of NM (s) is an irreducible polynomial basis for NL{M(s)}.

Proof: From Section 7.1 and 7.2.1, we recall that all residual generators r
can be parameterized as

r = c−1(s)φ(s)NM (s)
[
y
u

]
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where c(s) is a scalar polynomial with its roots in the left half-plane and φ(s)
is a polynomial vector. The fact that a fault is not strongly detectable can be
expressed as

∀c(s), φ(s) .
(
c−1(s)φ(s)NM (s)

[
L(s)

0

] )
|s=0 = 0

Since we know that c(0) 6= 0, this is equivalent to

∀φ(s) .
(
φ(s)NM (s)

[
L(s)

0

] )
|s=0 = 0

which is further equivalent to

(
NM (s)

[
L(s)

0

] )
|s=0 = 0

The negation of this condition is then equivalent to the condition (8.25) in the
theorem.

Note that when using this Theorem 8.6, it is important to first evaluate the
vector

NM (s)
[
L(s)

0

]
i.e. carry out all multiplications and cancelations, and afterwards substitute s
with 0.

As was said above, when checking strong fault detectability, it is important
that we calculate the left null-space of M(s) and not M(0). The following
example illustrates this.

Example 8.5

Consider a system described by the following transfer functions:

G(s) =
[ 1
s+1
s
s+2

]
H(s) =

[ 1
s+1
s
s+2

]
L(s) =

[s+1
s+3
1
s+3

]
Then a right MFD of the matrix M(s) is

M(s) =
[
G(s) H(s)
I 0

]
=

 1 s
1 s

s+ 1 0

[
s+ 1 0

0 s+ 2

]−1

A minimal polynomial basis for the left null-space of M(s) is [1 −1 0]. By using
Theorem 8.6, the check for strong fault detectability becomes

[1 − 1 0]
[
L(s)

0

]
|s=0 = − s

s+ 3
|s=0 = 0



248 Chapter 8. Criterions for Fault Detectability in Linear Systems

and the fault is therefore not strongly detectable.

Now we will show that it is not sufficient to consider the left null-space of
M(0). A minimal polynomial basis for NL(M(0)) is[

1 −1 0
0 1 −1

]
The check for strong fault detectability would be[

1 −1 0
0 1 −1

] [
L(s)

0

]
|s=0 =

[
− s
s+3
1
s+3

]
|s=0 =

[
0
1
3

]
6= 0

which wrongly indicates that the fault is strongly detectable. This means that

NM (0)
[
L(0)

0

]
6= 0

is not a condition for strong fault detectability.

8.3.2 The “Frequency Domain” Approach

We have concluded that a basis for the null-space must be calculated to check
strong fault detectability. However, even if we do so, the “frequency domain”
approach, from Section 8.2.2, will not work. This is shown by the following
example:

Example 8.6

Consider a system described by the following transfer functions:

G(s) =
[

1
s
1
s

]
H(s) =

[
1
s
1

]
L(s) =

[
0
1

]
Then an MFD of the matrix M(s) is

M(s) =
[
G(s) H(s)
I 0

]
=

1 1
1 s
s 0

[
s−1 0
0 s−1

]
= N(s)D−1(s)

An irreducible basis for the left null-space of N(s) is [s2 − s − s + 1]T . By
using Theorem 8.6, the check for strong fault detectability becomes

[s2 − s − s+ 1]
[
L(s)

0

]
|s=0 = −s |s=0 = 0

and the fault is therefore not strongly detectable.

Now the question is if we can use a condition for strong fault detectabil-
ity based on (8.12), if we actually calculate a basis for the null-space, i.e.
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NL{H(s)}L(s)|s=0 6= 0. Therefore, we calculate a basis for the null-space
NL(H(s)), which becomes [s − 1]. Then we have that

NL{H(s)}L(s)|s=0 = [s − 1]
[

0
−1

]
|s=0 = 1 6= 0

which wrongly indicates that the fault is strongly detectable. This means that
NL{H(s)}L(s)|s=0 6= 0 is not a condition for strong detectability.

8.3.3 Using the System Matrix

The criterion for strong fault detectability, corresponding to Theorem 8.3, be-
comes as follows:

Theorem 8.7 A fault f is strongly detectable in a system if and only if

NMs(0)
[
Df

Bf

]
6= 0

where the rows of NMs(s) is a basis for the left null-space of the matrix

Ms(s) =
[

C Dd

−sI +A Bd

]
To prove this theorem, we first need two lemmas.

Lemma 8.1 Let A(s) be a rational matrix and assume A(0) exists. Let B(s)
be a rational matrix.

a) If B(0) exists, then(
A(s)B(s)

)
|s=0 = A(0)

(
B(s)

)
|s=0

b) If A(s) is square, A(0) has full rank, and
(
A(s)B(s)

)
|s=0 exists, then also

B(0) exists.

Proof: To prove (a), write A(s) and B(s) as follows:

A(s) =A(0) + sA1(s)
B(s) =B(0) + sB1(s)

Since both A(s) and B(s) exists, the last terms must go to zero as s goes to
zero. Now study the relation

A(s)B(s) = A(0)B(0) + sA1(s)B(0) + sB1(s)A(0) + s2A1(s)B1(s)

All terms, except A(0)B(0), on the right hand side will become zero as s → 0
which proves the (a)-part of the lemma.
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To prove (b), we will use an indirect proof. Assume B(0) does not exist.
This means that some column bi(0) in B(0) does not exist which further implies

‖bi(s)‖ −→ ∞ as s −→ 0

Let σ(A(s)) denote the smallest singular value of A(s). Since A(0) has full rank,
there exists a constant C such that σ(A(s)) ≥ C > 0 for small s. This implies
that for small s it holds that

0 < C‖bi(s)‖ ≤ σ(A(s))‖bi(s)‖ ≤ ‖A(s)bi(s)‖

Now let s→ 0 which implies that ‖A(s)bi(s)‖ → ∞. The matrix
(
A(s)B(s)

)
|s=0

can therefore not exist.

Lemma 8.2 A fault f is strongly detectable in a system if and only if(
NM (s)

[
L(s)

0

] )
|s=0 6= 0 (8.26)

where the rows of NM (s) is a polynomial basis for NL{M(s)} and NM (0) has
full row-rank.

Proof: The basis NM (s) can be written

NM (s) = R(s)N irr
M (s)

where R(s) is a greatest common divisor with full rank and N irr
M (s) is an irre-

ducible basis. Since NM (0) has full row-rank, R(0) must have full rank.
Now study

I =
(
R(s)R−1(s)

)
|s=0 = R(0)

(
R−1(s)

)
|s=0 = R(0)R−1(0)

where we have used Lemma 8.1 in the second equality. This means that R−1(0)
must exist and have full rank.

The condition (8.25) for strong fault detectability can be written as

0 =
(
N irr
M (s)

[
L(s)

0

] )
|s=0 =

(
R−1(s)NM (s)

[
L(s)

0

] )
|s=0 =

= R−1(0)
(
NM (s)

[
L(s)

0

] )
|s=0

where the last equality follows from Lemma 8.1. Since R−1(0) has full rank,
this condition is equivalent to(

NM (s)
[
L(s)

0

] )
|s=0 = 0

The negation of this condition is then equivalent to (8.26), which proves the
lemma.
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Now return to the proof of Theorem 8.7:
Proof: Let the row vectors of V (s) be a minimal polynomial basis for
NL(Ms(s)) and form W (s) = V (s)P , where P is, as before,

P =
[
Im −Du

0 −Bu

]
According to Theorem 7.4, the rows of W (s) form a polynomial basis for
NL(M(s)). Now note that

[W (s) 0] =V (s)[P Ms(s)] =
[
I −Du C Dd

0 −Bu A− sI Bd

]
=

=V (s)

I −Du Cx Cz Dd

0 −Bu,x Ax − sI A12 Bd,x
0 0 0 Az − sI 0


In the last equality, we have used the assumption of a realization on the form (7.12).
The controllability of the state x from u and d implies, via the PBH test, that
the middle block of rows in the matrix [P Ms(s)], has full row-rank. Also, Az
has full row-rank because of the assumption that the state z is asymptotically
stable. Therefore, the matrix [P Ms(s)] has full row-rank for s = 0. Since V (s)
is irreducible, it has also full row-rank for s = 0. This implies that W (0) has
full row-rank.

Now consider the relation

W (s)
[
L(s)

0

]
=V (s)P

[
L(s)

0

]
= V (s)

[
L(s)

0

]
= V (s)

[
C(sI −A)−1Bf +Df

0

]
=

=[V1(s) V1(s)C(sI −A)−1]
[
Df

Bf

]
= V (s)

[
Df

Bf

]
(8.27)

The last equality follows from the fact that V (s)Ms(s) = 0. The relation (8.27)
implies that (

W (s)
[
L(s)

0

] )
|s=0 = 0⇐⇒

(
V (s)

[
Df

Bf

] )
|s=0 = 0

This equality together with the fact that W (0) has full row-rank, implies that
we can apply Lemma 8.2, which proves the theorem.

8.3.4 Using the Chow-Willsky Scheme

The criterion for strong fault detectability, corresponding to Theorem 8.4, be-
comes as follows:

Theorem 8.8 A fault is strongly detectable if and only if

(NRHPµ)ρ=n 6= 0 (8.28)

where NRH is a basis for the left null space of [RH ] and µ = [1 0 . . .0]T .
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To prove this theorem we first need the following lemma.

Lemma 8.3 Assume the rows of the matrix W define the largest and uppermost
set of primary dependent rows in [R H ]ρ=n. Then F (s) = W [Ψm(s) −QΨku(s)]
is a polynomial basis for N (M(s)) and F (0) = W [Ψm(0) − QΨku(0)] has full
row rank.

Proof: From Theorem 7.12, it is clear that F (s) is a polynomial basis. To
prove that F (0) has full row rank, we first partition the matrix W as

W =
[
W11 0
W21 W22

]
where W11 has m columns and the first row of W22 is not zero. Let k denote
the number of rows in W11. Then we note that the first k rows of F (s) can be
written as [W11 −W11Du] and has full row-rank for all s, i.e. the first k rows
of F (0) has full row rank. This means that if F (0) has not full row rank, there
must exist a row-vector φ = [φ1 . . . φp 1 0 . . . 0] where p ≥ k and φF (0) = 0.
This further implies that

φW [Ψm(0) −QΨku(0) R H ] =

= φW


I −Du C Dd

0 −CBu CA CBd Dd

...
...

...
...

. . .
0 −CAn−1Bu CAn CAn−1Bd . . . CBd Dd

 = 0

Since the first block column contains the identity matrix I, it must hold that

φ

[
0 0
0 W22

]
[Ψm(0) −QΨku(0) R H ] =

= φ′W22

 −CBu CA CBd Dd

...
...

...
. . .

−CAn−1Bu CAn CAn−1Bd . . . CBd Dd

 = 0 (8.29)

Next it can be realized that −CBu CA CBd Dd

...
...

...
. . .

−CAn−1Bu CAn CAn−1Bd . . . CBd Dd

 =

=

 C Dd

...
...

. . .
CAn−1 CAn−2 . . . CBd Dd

[
−Bu A Bd 0

0 0 Inkd

]
=

=

 C Dd

...
...

. . .
CAn−1 CAn−2 . . . CBd Dd


−Bu,x Ax A12 Bd,x 0

0 0 Az 0 0
0 0 0 0 Inkd
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Since the pair {Ax, [Bu,x Bd,x]} is controllable, it follows, via the PBH-test,
that the uppermost block of rows in the rightmost matrix, has full row-rank.
Further, the fact that z is asymptotically stable implies that Az has full rank,
and therefore, the whole rightmost matrix has full row-rank. This means that
(8.29) implies that

φ′W22

 C Dd

...
...

. . .
CAn−1 CAn−2 . . . CBd Dd

 = φ′W22[R′ H ′] = 0

This means that

φ′W22[R′ H ′] =

= [φk+1 . . . φp 1]

wk+1,m+1 . . . wk+1,µ1 0 . . . 0
...

wp+1,m+1 . . . wp+1,µp 0 . . . 0

 [R′ H ′] =

= [w̄m+1 . . . w̄µp−1 wp+1,µp 0 . . . 0][R′ H ′] = w̄[R′ H ′]

The row vector w̄ defines a dependent row of [R′ H ′] or equivalently of [R H ].
By comparing w̄ and the row vector [wp+1,1 . . . wp+1,µp 0 . . . 0], it can be
concluded that the dependent row defined by w̄ is actually above the dependent
row defined by the row vector [wp+1,1 . . . wp+1,µp 0 . . . 0] in W . This means
that W can not define the uppermost set of primary dependent rows of [R H ].
This contradiction means that F (0) = W [Ψm(0) −QΨku(0)] must have full row
rank.

Now return to the proof of Theorem 8.8:
Proof: We will start with the only-if part of the proof and an indirect proof
is used. Therefore assume that

(NRHPµ)ρ=n = 0 (8.30)

Let the rows of a matrix W define the largest and uppermost set of primary de-
pendent rows in [R H ]ρ=n. Then according to Lemma 8.3, F (s) = W [Ψm(s) −
QΨku(s)] becomes a polynomial basis forNL{M(s)} and F (0) has full row rank.

Define X(s) as follows:

X(s) =
∞∑
i=1

s−iAi−1Bf

Then by using the same reasoning as in the formulas (7.39), (7.40), and (7.41),
we can conclude that

Ψm(s)L(s) = RX(s) + PΨ1(s)
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Now assume that (8.30) holds. This implies the following:

(
F (s)

[
L(s)

0

] )
|s=0 =

(
W [Ψm(s) −QΨku(s)]

[
L(s)

0

] )
s=0

=

=
(
WΨm(s)L(s)

)
s=0

=
(
W (RX(s) + PΨ1(s))

)
s=0

=∗

=∗ WPΨ1(0) = WPµ = 0 (8.31)

The equality marked =∗ holds since W [R H ] = 0 and the last equality holds
because of (8.30). Since F (s) is a polynomial basis for NL{M(s)} and F (0) has
full row rank, Lemma 8.2 implies that the fault is not strongly detectable. Thus
the only-if part of the proof has been shown.

Also for the if part, an indirect proof will be used. Therefore we assume that
the fault is not strongly detectable and want to prove that (8.30) holds. Assume
that w1 is an arbitrary row-vector in NRH which means that w1[R H ] = 0. Pick
other wi:s so that W = [wT1 w

T
2 . . . ]

T defines a set of primary dependent rows
in [R H ]. This implies that W [R H ] = 0 and according to Theorem 7.12,
F (s) = W [Ψm(s) − QΨku(s)] becomes a polynomial basis (not necessarily
irreducible) for NL{M(s)}. Then we know that for some polynomial matrix
φ(s), it holds that F (s) = φ(s)NM (s), where NM (s) is a minimal polynomial
basis for NL(M(s)). Theorem 8.6 together with the assumption that the fault
is not strongly detectable implies that(
F (s)

[
L(s)

0

] )
s=0

=
(
φ(s)NM (s)

[
L(s)

0

])
s=0

=∗ φ(0)
(
NM (s)

[
L(s)

0

] )
s=0

= 0

where the equality marked =∗ holds because of Lemma 8.1. Also we have that

(
F (s)

[
L(s)

0

] )
s=0

=
(
W [Ψm(s) −QΨku(s)]

[
L(s)

0

] )
s=0

=
(
WΨm(s)L(s)

)
s=0

=

=
(
W (RX(s) + PΨ1(s))

)
s=0

= WPΨ1(0) =

=WPµ = 0

This implies that w1Pµ = 0 which proves the if part.

Note that only constant matrices are involved in Theorem 8.8 which implies
that the condition (8.28) can also be written

ImPµ 6⊆ Im [R H ]

8.4 Discussions and Comparisons

In the previous two section, we have given a number of different criterions
for fault detectability and strong fault detectability. When faced with a real
problem, we want to know what criterion that is the most suitable.

If the system model is given on transfer function form and we want to check
fault detectability, then the easiest approach is probably the “frequency domain
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approach”, i.e. the criterion given by Theorem 8.2. The reason is that, compared
to the “intuitive approach”, we do not need to care about the transfer function
G(s). To use this criterion, the rank test described in Section 8.2.1, is probably
the preferred method.

If the system model is given on state-space form and we want to check
fault detectability, it is probably the criterion based on the system matrix, i.e.
Theorem 8.3, that is the best choice. The reason for this is that in Section 7.5.2,
we noted that the Chow-Willsky scheme is more numerically sensitive than the
minimal polynomial basis approach. However note that the criterion based
on the Chow-Willsky scheme, i.e. Theorem 8.4, uses only constant matrices,
in contrast to the criterion based on the system matrix. This might in some
cases be an advantage since we do not need special algorithms that can handle
polynomial matrices. No matter what the preferred criterion is, in both cases,
the actual test is probably most easily performed by the rank test.

If the system model is given on transfer function form and we want to check
strong fault detectability, there is only one alternative. Since the “frequency
domain approach” doesn’t work we have to use the “intuitive approach”, i.e.
Theorem 8.6.

Finally, if the system model is given on state-space form and we want to
check strong fault detectability, the criterion based on the system matrix, i.e.
Theorem 8.7, is probably the best choice. The reason is again the numerical
considerations from Section 7.5.2. However an advantage with the criterion
based on the Chow-Willsky scheme, i.e. Theorem 8.8, is that only constant
matrices are needed and also that the rank test is possible to perform. That is,
we do not need to calculate a null-space.

All the criterions for models given on state-space form, have been formulated
without the need to care about controllability from u and d. This is in contrast
to the design of polynomial parity functions for which we saw in Chapter 7 that
for both the minimal polynomial basis approach and the Chow-Willsky scheme,
controllability from u and d was important to be able to find all parity functions.

If we want to, it is however possible to check fault detectability and strong
fault detectability using a minimal state-space representation in which the state
is controllable from u and d. This means that we are neglecting the states that
are controllable from only the fault. For example for the Chow-Willsky scheme,
the criterion for fault detectability becomes

Theorem 8.9 A fault f is detectable in a system if and only if

ImPρ=nx * Im [Rx H ]ρ=nx

and the criterion for strong fault detectability becomes

Theorem 8.10 A fault f is strongly detectable in a system if and only if

Im (Pµ−RzA−1
z Bf,z)ρ=nx * Im [Rx H ]ρ=nx

The proofs of both these theorems can be found in (Nyberg, 1997).
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8.5 Examples

In an inverted pendulum example in (Chen and Patton, 1994), an observer based
residual generator was used. It was shown that no residual generator with this
specific structure could strongly detect a fault in sensor 1. It was posed as an
open question if any residual generator, in which this fault is strongly detectable,
exists and in that case how to find it. In the following example, this problem is
re-investigated by means of the theorems from this section.

Example 8.7

The system description, from (Chen and Patton, 1994), represents a continuous
model of an inverted pendulum. It has one input and three outputs:

A =


0 0 1 0
0 0 0 1
0 −1.93 −1.99 0.009
0 36.9 6.26 −0.174

 D = 03×1

B = [0 0 − 0.3205 − 1.009]T C =

 1 0 0 0
0 1 0 0
0 0 1 0


The faults considered are sensor faults. There are no disturbances and also,
there are no states controllable only from faults.

To check both fault detectability and strong fault detectability, we set up
the matrix Ms(s) and calculate a basis NMs(s) for the left null-space of Ms(s).
Then we calculate

NMs(s)
[
Df

Bf

]
=

=

s 0 −1 1 0 0 0
0 −0.009s+ 1.93 s+ 1.99 0 −0.009 1 0
0 s2 + 0.174s− 36.9 −6.26 0 s+ 0.174 0 1




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0


=

=

s 0 −1
0 −0.009s+ 1.93 s+ 1.99
0 s2 + 0.174s− 36.9 −6.26

 6= 0 (8.32)

Now using Theorem 8.3, we can conclude that all three sensor faults are de-
tectable. To check strong detectability, we substitute s with 0. Then the first
column in (8.32) becomes zero and the other non-zero. By using Theorem 8.7 we
then conclude that the second and third sensor faults are strongly detectable,
i.e. for each of these faults, a residual generator can be found for which the
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fault is strongly detectable. Also concluded is that the first sensor fault is only
weakly detectable. Thus, the answer to the open question, posed in (Chen and
Patton, 1994), is that it is not possible to construct a residual generator in which
the fault in sensor 1 is strongly detectable.

Example 8.8

Consider again the design example given in Section 7.6. In Figure 7.3 it is seen
that the transfer function from f1 to the residual r has zero DC-gain. This can
be validated by using Theorem 8.1 and the basis NM (s) from (7.58):

(
NM (s)

[
L(s)

0

])
|s=0 =

[
0 0.0538 0.091394 0.12 −1 0
0 −6.6653 −16.5141 31.4058 0 0

]

1
0
0
0
0
0

 = 0

Thus, the fault in sensor 1 is not strongly detectable.

8.6 Conclusions

In this chapter, criterions for fault detectability and strong fault detectability,
seen as system properties, have been derived. A few of these were known earlier
but most of them are new. In particular, to the authors knowledge, general
condition for strong fault detectability has not been presented elsewhere.

Criterions for models given both on transfer function form and state-space
form are considered. All the proofs, for the different criterions, become quite
simple thanks to the notion of bases for linear residual generators, introduced
in the previous chapter.

For the case of strong fault detectability, it is shown that the existence of
integrations in the system, can not be used, neither as a necessary nor sufficient
condition.
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false alarm, 37, 147
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traditional, 2, 71
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system, 22

fault state, 15, 24
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