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Abstract. Consistency relations are often used to design residual generators
based on non-linear process models. A main difficulty is that they generally
include time differentiated versions of known or measured signals which are
difficult to estimate in a noisy environment, especially higher order derivatives.
The main results of this paper show how to lower, or if possible avoid, the need
to estimate derivatives of known signals in order to compute the residual. This
is achieved by rewriting the problem into an integrability problem using state-
space realization theory. An attractive feature of the approach is that general
differential algebraic system descriptions can be handled in the same way as for
example ordinary differential equations and also that stability of the residual
generator is always guaranteed.

1. Introduction

Residual generation for fault diagnosis based on non-linear dynamical models has
in the control community mainly been performed in two ways, either via non-linear
state observation or via non-linear consistency relations. Both approaches have
their own set of advantages and disadvantages. For state observation techniques,
stable estimation has been studied for many years. However, to facilitate not only
fault detection but also fault isolation using structured residuals, decoupling of fault
signals in the residual is needed. Results for such unknown input decoupling non-
linear observers are not as widespread as in the linear case. A notable contribution
is [PI00; PI01] which gives a rather general non-linear extension of the geometric
approach for linear system proposed in [Mas86; MVW89] for control-affine non-
linear systems.

If instead of observers, non-linear consistency relations is used for designing resid-
ual generators to fit in a structured residuals framework, the decoupling problem is
transformed into an elimination problem. For classes of non-linear model descrip-
tions this elimination problem is generally solvable. For example when the system
is described by polynomial differential algebraic equations, constructive elimination
theory using Gröbner bases [CLO96] can be used to derive consistency relations with
desired decoupling properties. The systems considered need not be on control-affine
form but can be of any form and also include algebraic constraints. Consistency
relations has proven beneficial in the linear case, but when generalizing to the non-
linear problem some additional difficulties arise. A main difficulty with consistency
relations is that for the case of dynamic systems, the consistency relation generally
include time differentiated versions of known signals and these are not normally
known. One way to still use the consistency relation to generate a residual is to
resolve to approximations and estimate the time derivatives. This can be done by
simple schemes as derivation of low-pass filtered signals or more elaborate schemes
using for example spline interpolation techniques. For linear systems, this prob-
lem is easily circumvented and no approximations of time derivatives are needed.
Adding residual generator dynamics of high enough order and finding a state-space
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realization using linear realization theory makes it possible to compute a residual
without any approximations. This report aims at extending this linear approach
also for non-linear systems. This is done by transforming the problem into an
integrability problem.

Section 2 give a more formal description of the approach objective and describe
the class of residual generators considered. In Section 3, a small example is used
to illustrate the basic principle behind the proposed solution which in Section 4 is
formalized and theoretical properties are given for first order consistency relations.
Finally a simulation example is included in Section 5 where also some aspects of
the solution is compared to the solution derived in [PI01].

2. Problem Formulation

Let y(t) and u(t) denote the measurements and controller outputs, i.e. the signals
that are considered known. A consistency relation is then a relation

c(y(t), u(t)) = 0 (1)

that holds in the fault free case. Therefore, testing if c(y, u) = 0 is a test on consis-
tency between measured data and the equations/assumptions used when deriving
c(y, u). The task of the diagnosis system designer is then to find a suitable set of
such relations where different subsets of relations are invalidated by different sub-
sets of faults. In this way, fault isolation can be achieved. This is often referred to
as structured residuals [Ger91]. A fault is detectable in (1) if the relation does not
hold in case of a fault.

Throughout this report u<δ> is used to denote the variable u and all its time
derivatives up to order δ, i.e. u<δ> = {u, u̇, . . . , u(δ)}. Also, for notational con-
venience all known signals will be denoted u. Let c(u<α1>

1 , . . . , u<αm>
m ) = 0 be a

consistency relation. If c(u<α>) was linear we could add any stable linear residual
generator dynamics of high enough order (at least as large as the highest input
derivative):

r(n) + anr(n−1) + · · · + a1r = c(u<α>).
This expression can then easily be transformed, using linear realization theory, into
a state-space form where no derivatives need to be estimated to be able to compute
the residual. For example, if u+ u̇+ ü = 0 is a consistency relation. Adding second
order residual generator dynamics and writing the residual generator on operator
form gives

r(t) =
p2 + p + 1

p2 + a2p + a1
u(t)

It is clear that this can easily be written on explicit state-space form and the
residual r can be computed without the need to estimate any derivatives. This is
the approach that in the following sections will be mimicked for also the non-linear
case. Unfortunately, but hardly surprising, is that the realization step that was
immediate in the linear case is not direct in the non-linear case.

A generalization of the above approach for the non-linear case would be to find
residual generator dynamics g and a transformation Ψ such that

g(r<n>) = Ψ(c(u<α>), u<α>)

can be realized on state-space form with no differentiated inputs. The functions g
and Ψ must quite naturally satisfy the constraints that r = 0 is a stable locus of
the differential equation

g(r<n>) = 0
and that Ψ(0, u<α>) = 0 for all u. This means that the residual generator is
stable and that if c(u) is a consistency relation so is Ψ(c(u<α>), u<α>). Note
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that if there exists u such that Ψ(c, u<α>) = 0 for c 6= 0, the transformation of
the original consistency relation may reduce the detectability performance of the
residual compared to the detectability of the original consistency relation.

To be able to proceed, the problem is not solved in its full generality and two
restrictions are imposed on g and Ψ:

(1) It is assumed that the residual generator dynamics is on the form

r(n) + g(r<n−1>)

i.e. that the highest order derivative enters linearly. This seems like a
minor restriction since the order of residual generator dynamics always can
be increased and linear dynamics can be appended.

(2) The transformation Ψ is assumed to be on the form

Ψ(c(u), u<α>) = α(u<α>)c(u<α>)

where α(u<α>) 6= 0. Here it is clear that the requirement Ψ(0, u<α>) = 0
is trivially fulfilled. This is the more restrictive restriction of the two. See
[FÅ03] for a more thorough discussion on this topic.

This means that the following class of residual generators is considered in this report

r(n) + g(r<n−1>) = α(u<α>)c(u<α>) (2)

The function α is called an integrating factor. Why α is called an integrating factor
will be made clear in the following sections along with a motivation for this residual
generator structure.

The problem can now be stated as follows: Find stable residual generator dy-
namics g and an integrating factor α such that there exists state variables such that
(2) can be written on explicit state-space form

ż = f(z, u)

r = h(z, u)

If this is not possible, try to find a solution where input derivatives are lowered as
much as possible. This report only provide a first step in the solution of the above
problem where input derivatives are lowered at most one step. This means that
only first order consistency relations are fully covered by the results in this report.
Discussions on how to proceed for higher order relations are discussed further in
[FÅ03].

2.1. Fault response. It is interesting to see what the internal form, or the fault
response, of a residual on the form (2) looks like and also to analyze the influence
of the integrating factor on the fault response. To explore this and derive an
expression for the fault response, let c(u<α>, f<γ>) (for short here written c(u, f))
be the consistency relation including also the faults to be detected. Here it is,
without loss of generality, assumed that f = 0 corresponds to the fault-free case.
Since it is a consistency relation it holds that c(u, f) = 0 for all u(t) and f(t) that
are consistent with the original model equations. The following expression can then
easily be derived

0 = c(u, f) = c(u, 0) − (c(u, 0) − c(u, f)) = c(u, 0) − cf (u, f)

where cf (u, f) = 0 if f = 0. A fault fi is detectable in the consistency relation
c(u, 0) = 0 if and only if

∂

∂fi
cf (u, f) 6= 0

The fault response in the residual can then be written as the solution to the differ-
ential equation

r(n) + g(r<n−1>) = α(u)cf (u, f) (3)
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which means that fault fi will be detectable only if
∂

∂fi
{α(u)cf (u, f)} = α(u)

∂

∂fi
cf (u, f) 6= 0

This condition will also be a sufficient condition for detectability if the residual
generator dynamics is such that r = 0 is not a stable locus of

r(n) + g(r<n−1>) = α(u)cf (u, f) 6= 0

Thus, detectability can be lost when α is 0 (or small), but in any other case the
detectability of the residual (2) is the same as in the original consistency relation.

3. Introductory Example

In this section, a design procedure is outlined and also the residual generator
structure (2) is motivated. For this, consider the small first order non-linear con-
sistency relation

c(u) = u1u̇2 + Au̇1u2 − θ2u3 (4)
Assume linear first order residual generator dynamics, for example

ṙ + a1r = u1u̇2 + Au̇1u2 − θ2u3

With A = 1 it is straightforward to verify that with the state variable z = r−u1u2

we get an explicit state-space realization of the residual generator as:

ż = −a1z − a1u1u2 − θ2u3

r = z + u1u2

Here, no estimates of derivatives are needed to compute the residual r. The reason
this worked was that

d

dt
(u1u2) = u1u̇2 + u̇1u2 (5)

That is, with a suitable change of variables we obtained a linear problem. Now,
consider a case where A 6= 1, then there exists no state variable like above such
that all input derivatives disappear. This is because

u1u̇2 + Au̇1u2

is not a total derivative for A 6= 1, i.e. there exists no function like u1u2 in (5) for
this case. A solution in this case is to introduce an integrating factor. Multiply
the consistency relation with for example α(u1, u2) = uA−1

1 and we obtain a new
consistency relation (the price is possible loss of detectability when u1 = 0)

c′(u1, u2, u3) = α(u)c(u) = uA
1 u̇2 + AuA−1

1 u̇1u2 − uA−1
1 θ2u3

and here the nice property (5) of the A = 1 case is retrieved since

c′(u1, u2, u3) =
d

dt
(uA

1 u2) − uA−1
1 θ2u3

Then ṙ + a1r = c′(u1, u2, u3) can be realized by the state variable z = r − uA
1 u2

which give a realization

ż = −a1z − a1u
A
1 u2 − uA−1

1 θ2u3

r = z + uA
1 u2

(6)

For this to be useful, a constructive procedure to compute the integrating factor
and the state variable is needed. A procedure for this will now be outlined for
this example and then in Section 4, the approach is formalized for general first
order consistency relations. It is also proven that the success of the procedure is
a necessary and sufficient condition for the existence of residual generators on the
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form (2) that can be transformed into a state-space description with no derivated
inputs.

Now, continue with the example. The problem when A 6= 1 is that

u1u̇2 + Au̇1u2

is not a total derivative. This is equivalent to that

F = [Au2 u1]

is not an exact differential, i.e. the partial differential equation dλ = F has no
solution. But, if instead of requiring dλ = F we settle for the less restrictive
dλ ∈ span F , or equivalently, the existence of an integrating factor α such that the
partial differential equation

dλ = αF (7)

has a solution. Multiply the above equation from the right with F⊥ and we get the
equivalent partial differential equation

dλF⊥ = 0 (8)

This is a special type of equation that is discussed in Section A.1 for which necessary
and sufficient solvability conditions exists and also a constructive procedure of how
to compute λ. In this example we get

dλ(u1, u2)
[

u1

−Au2

]
= 0

According to Theorem A.1, this has a solution if and only if the vector field
[u1(t) − Au2]T is involutive. The involutive property is immediate since the vec-
tor field is non-singular and of dimension 1. A solution is given by λ = uA

1 u2. Note
that the solution is not unique and that there exists infinitely many solutions. In
fact it is easy to verify that if λ is a solution, so is γ(λ) where γ(·) is an arbitrary
function. See [FÅ03] how this fact can be used to make implementation of the
residual generator easier.

The corresponding integrating factor can then be computed using (7) as

α =
∂λ
∂u1

Au2

(
=

∂λ
∂u2

u1

)
=

AuA−1
1 u2

Au2
= uA−1

1

Once again, given F it is completely (almost true) automatic to compute λ and α
and is easily implemented in a computer algebraic tool. Now that α and λ have
been computed, the residual generator description becomes (on form (2)):

ṙ + a1r = α(u1, u2)c(u) = −a1x1 + λ̇(u1, u2) − θ2α(u1, u2)u3

Again, with the state variable z = r − λ(u1, u2) we get the state-space realization

ż = −a1z − a1λ(u1, u2) − θ2α(u1, u2)u3

r = z + λ(u1, u2)

with α = uA−1
1 and λ = uA

1 u2 which is identical to (6).
Note that when A is not an integer the residual is a complex quantity if y1 < 0.

This is because the integrating factor is not a mapping from R → R but rather from
R → C. Although this situation is not desirable, it is a problem that often can be
avoided by choosing a suitable solution to PDE (8). In this case it is straightforward
to verify that instead of using λ = uA

1 u2, the solution λ = |u1|Au2 also satisfies
(8) and does not produce complex solutions in case u1 < 0. The corresponding
integrating factor becomes α = |u1|A−1sgn u1. Systematic procedures to avoid
complex solutions has not yet been explored.
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4. General First Order Consistency Relations

Next, a result will be presented that formalizes the procedure from last section
for first order consistency relations. The objective is to, given a consistency relation
c(u) = 0, find an integrating factor α and residual generator dynamics g(r) such
that

ṙ + g(r) = α(u)c(u, u̇) (9)
can be written on state space form. Some remarks are also given along with a
complete and constructive design procedure.

Theorem 4.1. Let c(u̇, u) be a consistency relation of order 1. There exists, in a
neighborhood of a point u0, an integrating factor α(u) and a change of coordinates
such that (9) is transformed into a state-space realization with no input derivatives
if and only if c(u̇, u) can be written on the form

c(u̇, u) =
n∑

i=1

hi(u)u̇i + v(u) (10)

where the functions hi satisfy the condition

hi

(
∂hk

∂uj
− ∂hj

∂uk

)
+ hj

(
∂hi

∂uk
− ∂hk

∂ui

)
+ hk

(
∂hj

∂ui
− ∂hi

∂uj

)
= 0 (11)

for all i, j, k and h 6= 0 in a neighborhood of u0.

Proof. See [FÅ03] for a complete proof. ¥

Remark 4.1. From the proof it is interesting to see that the residual generator
dynamics g can be chosen arbitrarily as long as it has order greater or equal than
1. Therefore, the residual generator dynamics can always be chosen linearly which
makes it easy to guarantee stability. This is a highly attractive feature of the
approach.

Remark 4.2. In the design procedure, the integrating factor is computed indi-
rectly, by first solving the partial differential equation (8) for λ and then using
(7) for computing the integrating α. The advantage of solving for λ instead of α
directly can be illustrated in the small example from Section 3. It can be shown
that the partial differential equation when solving for α directly is the equation

(1 − A)α(u1, u2) − Au2
∂α(u1, u2)

∂u2
+ u1

∂α(u1, u2)
∂u1

= 0

which has solutions
α(u1, u2) = uA−1

1 γ(uA
1 u2)

where γ is any function. Note that this equation is not on the special form discussed
in Theorem A.1 which in general makes solving for α more difficult than solving
for λ.

Remark 4.3. Theorem 4.1 only provide local solutions. To provide global condi-
tions, additional completeness conditions of involved distributions. These require-
ments are directly given by Theorem 2 in [DR95].

4.1. Summary of design procedure. The design procedure is summarized in
the following steps

(1) Assure that the consistency relation is on the form

c(u, u̇) =
n∑

i=1

hi(u)u̇i + v(u), (12)

and denote ∆ = span {h1, . . . , hr}.
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(2) Compute the annihilator of ∆, i.e. Ω = ∆⊥.
(3) Solve the partial differential equation dλ(u)Ω(u) = 0 for λ(u). A computer

algebraic tool can, in benign cases, be used to automatically compute the
solutions by solving a set of ordinary differential equations, see for example
the proof of Frobenius theorem in [Isi95] for details and a constructuve
algorithm.

(4) Compute the coefficients α(u) by solving the linear equation

dλ(u) = α(u)h(u)

The new consistency relation can now be formed as

c′(u, u̇) = α(u)c(u, u̇) (13)

which directly can be rewritten as

c′(u, u̇) =
d

dt
λ(u) + α(u)v(u) (14)

This is on a linear form which makes it direct to transform

ṙ + βr = c′(u, u̇)

into an explicit state-space form using the state variable z = r − λ:

ż = −βz − βλ(u) + α(u)v(u)

r = z + λ(u)

5. Simulation Example

In this section, simulation of a point-mass model of a satellite is used to illustrate
the procedure and some of its properties. Also, a comparison of some aspects of
the solution obtained with the geometric approach to non-linear fault detection
[PI00; PI01] is included.

The model is taken from [PI01] and can be stated as

ẋ1(t) = x2(t)

ẋ2(t) = x1(t)x2
4(t) − θ1

1
x2

1(t)
+ θ2u1(t) + d(t)

ẋ3(t) = x4(t)

ẋ4(t) = −2
x2(t)x4(t)

x1(t)
+ θ2

u2(t)
x1(t)

+ θ2
f(t)
x1(t)

y1(t) = x1(t)

y2(t) = x3(t)

y3(t) = x4(t)

where (x1, x3) are the polar coordinates of the satellite (radius,angle) and x2, x4

are the tangential respectively the radial velocity of the satellite. There are two
actuator signals, u1 and u2 which are the radial and tangential thrusters. There
is a fault f acting on u2 and detecting this fault is the objective. A matter which
makes this difficult is the unknown disturbance d which must be decoupled in the
residual.

For this, a consistency relation is derived that is sensitive to the fault f where
the disturbance d is decoupled. Since the model after trivial manipulations can be
stated on polynomial form, a consistency relation can be automatically computed
using Gröbner basis techniques. The resulting consistency relation including the
fault signal is

y1ẏ3 + 2ẏ1y3 − θ2u2 − θ2f = 0 (15)
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See [Fri01] for more details. With 3 measurements and 1 disturbance to decouple,
one might suspect at least one more consistency relation. One such relation, also
found by the Gröbner basis machinery, is ẏ2 − y3 = 0 but this one is not sensitive
to the fault. Therefore, only the first relation is explored further. This means that
the consistency relation used for detecting the fault is

y1ẏ3 + 2ẏ1y3 − θ2u2 = 0 (16)

and the internal form is given by (3) with cf (u, f) = θ2f . It is immediate that the
highest order derivatives ẏ1 and ẏ3 enters affinely and the conditions of Theorem 4.1
is fulfilled. Equation (16) can easily be identified as (4) with A = 2 and obvious
renaming of the signals. Thus, following the example in Section 3 we know that an
integrating factor is given by α = y1 and that the residual generator on form (2) is
given by

1
a1

ṙ + r = y2
1 ẏ3 + 2y1ẏ1y3 − θ2y1u2, a1 > 0

A first order realization of the above residual generator is given by

ż = −a1z − a1y
2
1y3 − θ2y1u2

r = a1(z + y2
1y3)

(17)

The residual generator dynamics has the form 1
a1

ṙ + r instead of ṙ + a1r to achieve
unit DC-gain of the residual generator. Note that the residual is always real in
this case even if the A parameter is non-integer. This is because the radius of
the satellite position is always positive. In the simulations1 both thrusters are set
to full reverse (ui = −1) at t = 20. The disturbance is a white and Gaussian
random process. Figure 1 show the satellite position in a fault free simulation.
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Figure 1. Satellite position in a fault free simulation.

The corresponding disturbance realization and residual is shown in Figure 2. It is
clear that the residual is 0 after influence from the unknown initial conditions has
vanished, i.e. the influence of the disturbance d is completely decoupled. The rate
of decay of the influence from unknown initial conditions is completely controlled
by the residual generator dynamics. In this simulation the poles of the residual
generator dynamics is placed at s = −1 by setting a1 = 1.

The solid line in Figure 3-a show the residual in case of a 10% decrease of
tangential thruster power starting at t = 30, i.e. f = −0.1u2 when t ≥ 30 and
f = 0 otherwise. The fault is clearly visible in the residual and can be detected

1In the simulations the parameter values θ1 = 2 and θ2 = 10−2 are used.
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(a) Disturbance.
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(b) Fault-free residual

Figure 2. The disturbance d and the residual r in fault free simulation.

by thresholding of the residual. Next, we verify that the fault response obeys
expression (3). Also in Figure 3-a, the signal α(u)cf (u) is plotted as a dashed line.
According to (3), the residual should be a low-pass filtered version of this signal,
i.e.

r =
a1

p + a1
(α(u)cf (u)) =

a1

p + a1
(θ2y1f) (18)

and when looking at the plots this seems reasonable. A more detailed computation
show that (18) holds exactly.
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(a) The solid line is the residual and
the dashed is the signal α(u)cf (u, f).
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(b) The solid line is the fault estima-

tion f̂ and the dashed line is the true
fault f .

Figure 3. The residual and a fault estimate in the case of a 10%
fault in the tangential thruster.

5.1. Estimating the Fault Size. Consider the case when the fault is constant or
slowly varying. Then we can use expression (18) to estimate the fault size. Below
two ways of estimating the fault size is explored where one is a standard observer
based technique and one is based on direct computation of the fault size.
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Forming an observer to estimate the fault size using expression (18) can be done
in many ways. A direct way is for example given by

˙̂r = −a1r̂ + a1θ2y1f̂ + K1(r − r̂)
˙̂
f = K2(r − r̂)

Figure 3-b show the output of this observer where the solid line is the observer
estimate of the fault and the dashed the true fault. It is seen that the estimate
converges nicely to the true fault. Note that this is not a general result, no guar-
antees of identifiability/observability of f in (18) can be proven. However, in this
particular example this simple approach to estimating the fault works.

A second approach is to directly compute the fault. Consider again the internal
form of the residual generator

ṙ + a1r = a1θ2y1f

Now also consider a signal w which can be computed on-line according to

ẇ + a1w = a1θ2y1

Using this signal, we can produce a simple fault estimate by

f̂ =

{
r
w if w 6= 0
0 otherwise

(19)

To analyze the properties of this fault estimator let e = wf − r. We then have

ė = ẇf − ṙ + wḟ = −a1wf + a1θ2y1f + a1r − a1θ2y1f + wḟ =

= −a1(wf − r) + wḟ = −a1e + wḟ

Now, assume again that f is constant or slowly varying which means that ḟ ≈ 0.
Neglecting the influence from ḟ we get e = 0 is a global and stable locus which
means that

wf → r when t → ∞
From this it is natural to compute a fault estimate according to (19). Figure 4 shows
the result of this fault estimation scheme. Note that the success of an approach

25 30 35 40 45
−0.02

0

0.02

0.04

0.06

0.08

0.1

t [sec]

Figure 4. The solid line is the fault estimate and the dashed is
the actual fault.

like above relies on:
(1) linear residual generator dynamics.
(2) affine fault influence with no time differentiated signals in the coefficient.



LOWERING ORDERS OF DERIVATIVES IN NON-LINEAR CONSISTENCY . . . 11

Further investigations are needed to evaluate if and how the scheme can be gener-
alized, noise properties of the estimate etc.

5.2. Comparison with solution by De Persis et.al. This section consist of
a brief comparison with the design just presented and the solution presented in
[PI01] where a residual generator is designed for the same problem. Also some
more general remarks of differences and similarities are included.

First, a brief outline of the main ideas of the solution proposed in [PI01]. The
goal is to find a change of coordinates Ψ(x) and an output transformation Φ(y)
such that the original model is transformed into the following form

ż1 = f1(z1, z2) + g1(z1, z2)u + l1(z1, z2)f

ż2 = f2(z1, z2, z3) + g2(z1, z2, z3)u + l2(z1, z2, z3)f + p2(z1, z2, z3)d

ż3 = f3(z1, z2, z3) + g3(z1, z2, z3)u + l3(z1, z2, z3)f + p3(z1, z2, z3)d

ỹ1 = h1(z1)
ỹ2 = z2

Then, using the first dynamic equation and the measurements we get the “quotient”
system:

ż1 = f1(z1, ỹ2) + g1(z1, ỹ2)u + l1(z1, ỹ2)f

ỹ1 = h1(z1)

which can be used for diagnosis since the disturbance has been eliminated from
the equations. The residual generator can for example be an observer for the
quotient system which, under some rather technical assumptions, is observable.
The necessary transformations is found using differential geometric tools such as
computing the smallest unobservability distribution containing the disturbance. For
the satellite example explored in this section, the quotient system is

ż11 =
z12

ỹ2
2

ż12 = θ2ỹ2u2 + θ2ỹ2f

ỹ1 =
(

z11

z12

) (20)

where the output transformation ỹ = Φ(y) and the state transformation is given by

ỹ1 =
(

y2

y2
1y3

)
, ỹ2 = y1, z1 =

[
x3

x2
1x4

]
, z2 = x1, z3 = x2

In this case it can be seen that not the whole quotient system z1 is needed in the
observer design, only z12. A residual generator can then be formed as

˙̂z12 = θ2ỹ2u2 + K(ỹ12 − ẑ12)
r = ỹ12 − ẑ12

Using the original outputs rather than the transformed outputs and letting z = −ẑ12

we get

ż = −θ2y1u2 − K(y2
1y3 + z)

r = z + y2
1y3

which is identical to (17) modulo the a1 scaling factor that was introduced in (17)
to achieve unit DC gain. In the consistency relation based design it was stated that
with a non-integer A, a complex residual generator was obtained. Careful analysis
of the observer based design here shows that exactly the same difficulty appears
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[PI01]. But in this example, due to physical reasons (the radius can never be less
than 0) this will never happen.

A closer look at the quotient system (20) reveals that it describes two consistency
relations. The first equation, if substituting the sensor values, simplifies to

ẏ2 =
y2
1y3

y2
1

= y3

which is one of the consistency relation found in the beginning of this section. More
interesting is the second equation in the quotient system which resolves to

d

dt

(
y2
1y3

)
= θ2y1u2 + θ2y1f

which is not the consistency relation (15), but rather the transformed consistency
relation α(u)c(u, f). Furthermore, the state variable z12 is nothing but the function
λ, a solution to the partial differential equation (8). This simple way of using the
quotient system to derive consistency relations was of course only possible here
because the measurement equation (20) was invertible which is not possible in a
general case. However, this rises questions about possible connections between
transformed consistency relations α(u)c(u) = 0 and the quotient system.

The above comparison indicates that there may exist some links between the
consistency relation approach presented here and the observer based approach from
[PI00; PI01]. Since only first order consistency relations are fully explored here,
further research is needed before a more fundamental comparison can be made.
Now, to conclude the comparison a few general remarks, inspired by the simulation
study, on differences and similarities between the approaches and also some open
questions for further research.

The original plant model in [PI01] is assumed to be control-affine with respect to
control inputs, faults, and disturbances. Furthermore it is assumed that no signals
to be decoupled appear in the measurement equation of the model. The latter
is only a problem when the signal affects both the measurement equation and the
dynamic equations. Decoupling of a signal that only affects a measurement equation
is easily achieved by temporarily removing the measurement from the model. For
consistency relations, no such restrictions are needed and any model descriptions
including differential algebraic descriptions are handled in the same way.

It is desirable that the residual generator does not depend on the accuracy of
more model equations than necessary. However, the order of the quotient system
is in general the number of states in the original model minus the dimension of the
minimal unobservability distribution containing the disturbance. In general this
does not render a minimal order residual generator and this is a property shared
with its linear counterpart [Mas86; MVW89] which is also not able to produce
minimal order residual generators. On the other hand, consistency relations are
well suited to find local relationships in the model of considerably lower order than
the complete model. For linear systems this is illustrated in for example [FN01].

In addition to the problem with unknown time differentiated signals addressed
here, the complexity of the relation tend to grow in size very quickly with model
size and the number of signals to decouple. Further research on how the complexity
of residual generators grow with increasing model size is an open question and also
if this is less of a problem in non-linear observer based approaches or if they also
share this trait.

The existence conditions in Theorem 4.1 is straightforward to verify. The corre-
sponding conditions for the observer approach are on the other hand rather tech-
nical. This is especially true for the conditions that ensures strong observability of
the quotient system. Since the residual generator studied here does not constitute
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an observer, no observability conditions have to be fulfilled. Also, since the linear
residual generator dynamics always can be chosen, stability is easily ensured. Note
that this is only proven for first order consistency relations. For higher order con-
sistency relations the residual generator dynamics may not arbitrary and it may
very well be so that the requirements on the dynamics for higher order consistency
relations are difficult to satisfy when at the same time requiring the dynamics to
be stable. This is also a topic for further research.

Perhaps the most important question is to determine if and how restrictive the
proposed approach is compared to the observer based approach? Perhaps there
exists, possibly for a class of non-linear systems, a similar equivalence result between
consistency based and observer based residual generators as in the linear case? This
is of course impossible to say before the consistency based approach outlined here
is generalized to consistency relations of any order.

6. Concluding Remarks

How to use non-linear consistency relations to compute a residual for fault de-
tection and isolation has been considered. A major problem concerning this is that
for dynamic systems the consistency relation generally includes time differentiated
versions of known variables and these are generally not known. For linear systems,
this is easily circumvented using linear realization theory and a residual can be
computed where no derivatives are needed. The aim of this report is to extend
the linear approach also for non-linear systems. The restrictions for when this is
possible will of course not always be fulfilled, therefore the procedure should in such
a case lower the derivatives as much as possible. Also, a main objective has been
to rely only on operations for which constructive algorithms exist and for which
strong support in computer algebraic tools exists.

This is done by considering a class of residual generators (2), where the original
consistency relation can be multiplied by a suitable function α(u) called integrating
factor and arbitrary residual generator dynamics are introduced. Here, only the
problem of lowering the input derivatives one step is solved and Theorem 4.1 gives
necessary and sufficient conditions for when there exists an integrating factor and
residual generator dynamics such that the orders of input derivatives are lowered
one step. Also, the sufficiency part of the proof provide a constructive algorithm
how to compute a solution. It is noteworthy that in the solution, any residual
generator dynamics is possible. This further means that the residual generator
dynamics always can be chosen linearly which greatly simplifies stability analysis
and the choice of design freedom.

The restriction of the class of residual generators was to be able to derive a
useful and general solution. One can consider more general transformations of the
consistency relation than just multiplication of an arbitrary integrating factor. The
results here at least give a necessary conditions for a general transformation, i.e.
the consistency relation must be transformed such that the highest order input
derivatives appear affinely.

In the design procedure, the integrating factor α is computed indirectly via the
solution of a partial differential equation from whose solution α can be computed.
The advantage of this approach is that instead of solving for α directly using a
general partial differential equation, a special type of system of first order partial
differential equations is solved. For this class of PDE:s, necessary and sufficient
solvability conditions exist together with a constructive procedure to compute so-
lutions.

The approach is illustrated on a 4:th order non-linear model where a residual
generator is designed based on a first order consistency relation for the model. In the
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report, a general expression of the fault response in the residual generator is derived.
This fault response is validated and it is also shown how the fault response can be
used to estimate the fault size. A small comparison is also included where the design
is compared to the geometric approach to fault detection. Possible advantages and
disadvantages with respective method it discussed. The comparison also show that,
at least in this example, there exists interesting connections between the approaches
which are interesting to explore in further research.

Appendix A. Notation and Results Used

A.1. Frobenius theorem. Below follows a brief description of a useful result when
solving a particular type of partial differential equation. Readers not familiar with
basic differential geometric concepts such as distributions are referred to for example
[Isi95].

Theorem A.1 (Frobenius). A nonsingular distribution is completely integrable if
and only if it is involutive.

Proof. See e.g. [Isi95]. ¥

That a non-singular distribution ∆(x) of dimension d is completely integrable is
in [Isi95] stated to be equivalent to the existence of n− d independent solutions to
the partial differential equation

∂λ

∂x
F (x) = 0 (21)

This type of differential equation is shown to be useful when computing state trans-
formations and integrating factors in the main part of this report. Therefore, now
follows a brief review of the constructive procedure how to compute the solution to
this partial differential equation. This presentation follows [Isi95] closely.

Let the distribution in question be denoted ∆(x). Since it is non-singular and of
dimension d we know that it is (locally) spanned by d smooth vector-fields, i.e.

∆(x) = span {f1(x), . . . , fd(x)}
Let fd+1(x), . . . , fn(x) be a complementary set of vector fields such that

span {f1(x), . . . , fn(x)} = R
n

Let Φf
t (x) denote what is called the flow of the vector field f(x). The flow is the

function x(t) = Φf
t (x0) that solves the ordinary differential equation

ẋ = f(x)

with initial condition x(0) = x0. Compute the flows for all vector fields
f1(x), . . . , fn(x) and define the mapping:

Ψ(z1, . . . , zn;x0) = Φf1
z1

◦ Φf2
z2

◦ · · · ◦ Φfn
zn

(x0)

Then it can be proven that the inverse of Ψ(z) exists and is smooth, let

φ(x) = {φi(x)}i=1,n = Ψ−1(x)

Furthermore, it can also be proven that φn−d+1(x), . . . , φn(x) are n − d indepen-
dent solutions to the differential equation (21). This means that for solving (21) we
need to extend the distribution with n−d vector fields, solve n ordinary differential
equations, and compute the (proven existing) inverse of Ψ(z). The necessary oper-
ations to solve (21) can be easily automated in a symbolic computer algebraic tool.
The automated solution of the PDE is of course limited by the ability of the tool to
solve ordinary differential equations and some inverses. However, these problems
are significantly simpler than solving general PDE:s.
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