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Abstract

The problem addressed is how to control vehicle speed ovigea distance on
a given time such that fuel consumption is minimized. Ariabjtexpressions for
the necessary optimality conditions are derived. Theseessns are essential
for the understanding of the decisive parameters affedtiaboptimal driving and
the analytical optimality conditions make it possible t@ $®w each parameter
affects the optimal solution. Optimal solutions for an afengine torque model
are compared to solutions for a piece-wise affine model, tisdhown that small
non-linearities have significant effect on the optimal corgtrategy. The solutions
for the non linear engine model has a smoother characteddmtequires longer
prediction horizons.

Assuming a continuously variable transmission, optimalrgatio control is
presented, and it is shown how the maximum fueling functsoessential for the
solution. Itis also shown that the gear ratio never is cheseh that engine speed
exceeds the speed of maximum engine power. Those resulisesrextended to
include a discrete stepped transmission, and it is denaiadthow gear shifting
losses affect optimal gear shifting positions.

The theory presented is a good base to formalize the intuifduel efficient
driving. To show this, optimal solutions are presented muations of some
constructed test road profiles, where the typical behavianmptimal solution is
pointed out, and also which parameters that are decisivihédiuel minimization
problem. This is then used to design a simple low-complezitinputationally
efficient rule-based look ahead cruise controller, anddeimonstrated that simple
parametrized quantitative rules have potential for sigaift fuel savings.
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1 Introduction

Fuel cost is a large part of the operating cost of heavy truélence there has been
an increasing interest in predictive cruise controllerat timinimizes fuel consump-
tion [18, 6, 10]. Some early work in finding fuel optimal spgedfiles for automobiles
is reported in [15, 7]. Other related work regarding paseeugrs in urban traffic has
shown on a large potential to use speed control to minimizé dansumption [13].
Similar methods as discussed in this paper has earlier bshan rail vehicles [12].

The scenario studied here concerns heavy trucks used fgrHanlage and the
goal is to control vehicle speed over a given distance on engiime such that fuel
consumption is minimized. It is assumed that road topograftead of the vehicle
is known and the resulting problem will be referred to as lablead cruise control.
In a practical case road topograghy can be extracted usingxtomple a navigation
system with 3D maps or collected data. The differences bmtwptimal solutions for
a linear engine torque model and a non linear engine torquiehiminvestigated. The
non linear model is here modeled as a piece wise affine, PWistifan. Optimal gear
shifting is also studied, both with a simplified transmissinodel with continuously
variable gear ratio, and for a discrete step transmission.

Based on the modeling, the optimality conditions for the famimization problem
become analytical expressions. From these expressioreffdw of each parameter
can be studied which is important to gain knowledge of whetoiis that affect fuel
consumption. For example, the optimal control derived hueme be used as an aid
when analyzing and validating the behavior of numericaticsiers as described in [4]
and [5]. The results are also the basis for formalizing anitive optimal driving
behavior which can be used for design of simple rule basettaters. In this paper
the effect of other traffic is not explicitly considered. Hewer, one way to handle such
situations is to consider other traffic as an extra condtmirvehicle speed. In [16] a
method is presented that optimizes vehicle speed when agipirgy a slower vehicle.

The paper is organized as follows. The fuel minimizationlgbem is formulated
in Section 2. Under the assumption of an affine engine torqueetrand a fixed gear
ratio, necessary conditions for optimal fueling is deriwvedection 3. In Section 4
a piece-wise affine, PWA, model is used to capture the nomiities in the engine
characteristics. Assuming a continuously variable tréssion, optimal gear ratio is
derived in Section 5 and the results are then extended tadach discrete stepped
transmission. The optimality conditions for the differembdeling choices are used to
find optimal solutions for a few illustrative constructedadoprofiles, and simulation
results are presented in Section 6. It is also demonstrat8ddtion 8 that the derived
expressions can be used to design a low-complexity conipoédly efficient rule-
based look ahead cruise controller.



2 Problem formulation

The problem to be solved is to minimize fuel consumption avgiven distance;
with specified travel tim&;. With notation according to Table 1 this is written as

St ONgyji

min JO 21'rr|rrdS (1)
s.t. fosf lds=T 2)
The vehicle is modeled as in [3], and [9], and can be written as
o1
V=3 (Fprop— Fair — Froll — Fslope— Fo) 3

where the variables and parameters are selected accododirapte 1, and the forces
and inertias are set according to Table 2. Losses in diftgvarts of the driveline

are easily modeled as lumped losses by modifying the cosfii€iof engine friction

losses and vehicle resistance forces. Measured engingetfmgm a real engine is
given in Figure 1. It is there seen that an affine model of emginque is a good first
approximation, but for a detailed analysis the non linezgishould be included.

3 Optimal fueling -Affine engine characteristics

It will first be assumed that engine torque can be approxidhasean affine function.
With inspiration from the measured data in Figure 1, the rhddegicted in Figure 2

Variables and| Description
parameters
a Road slopérad]
) Engine fuelingkg/stroké
n Transmission efficiency
e Engine speefrad/s|
P Air density [kg/n]
e Crank shaft anglgad]
A Front aregnv]
Ce» Cenns Cec | ENgine torque coefficients
Cq Air drag coefficient
Cr1, Cr2, Gr3 | Rolling resistance coefficients
=N Brake force
g Gravitational acceleration
i Gear ratio
Je Engine inertigkgnj
Jy Lumped drivline inertigkgmn
m Vehicle masskg]
Neyl Number of cylinders
N Revolutions per stroke
r Wheel radiugm|
s Traveled distancém|

Table 1: Variables and parameters for the truck model.



Quantity Equation Description
J(i(t)) M+ Jei2 r]r2 Vehicle Inertia
Fair (V(1)) ‘ chdsz Air resistance
Forop(8(t), we(t),i(t)) | T (f5(3)+ fw(we) + Cec) | Propulsive force
Fron (v(t)) M(Cr1 4 CraV+ CraV?) Rolling resistance
Fsiopda(s(t))) mgsina(s) Force due to road slope
Table 2: Vehicle forces and inertias.
1
09 i
0.8 B
0.7+ B
0.6 q
2 05 B
B 04 4
031 q
0.2 4
0.1r B
0O 5‘0 l(‘JO 15‘;0 2(‘)0 250

& [mg/stroke]

Figure 1: Measured engine torque. Each line representsa givgine speed.
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Figure 2: Affine approximation of engine torque. A maximuralfng function is also
plotted as function of engine speed.

is constructed. Note that engine torque in Table Reis: f5(8) + fo,(We) + Cec. Using
we = ¥, the affine approximation of engine torque gives faép in Table 2 is written
as , .
i iv
Fprop= Tn(Ce55+ Cew? + Cec) 4)

In Figure 2 the maximum fueling function for a real enginel@ied. That function
will here firstly be approximated as an affine function of eregspeed, but later a more
exact quadratic function will be used. Again using=  this can be written as

.V
Cs=0— (Cmcon|F + Cecon) <0 ®)

and it is assumed that> 0.
Since road slope is a function of position it is convenienthange independent

variable from time to positions,
d 1d
ds” vt (©)

Let the statex of the system be vehicle speeand traveled timd, i.e. x= [v,T]T.
Neglecting engine inertia the system dynamics becomes

dv 1/ . oV .
ds = \—/(c5|6+cw| F+Ce'
+Cc+ GV + GV + Cg sina(s)) = fy 7
dT 1
rraivie fr (8)

where the model coefficients can be derived from those givdabel 1.



The fuel minimization problem will be solved with optimalmtool theory which is
thoroughly described in the classic textbook [1], and tleddtion will here be followed.
The function to be minimized, (1), with constraints (5),,(), are used to construct
the following Hamiltonian

H = 8i + Ay fy + At fr + MsCs (9)

Wherezr;;yr'r are included in the multipliers. When the constr&igis inactiveps = 0,

and when the constraint is actiyg > 0. The dynamics of the adjoint state variables
are® — _HT ie
0s MRS

% - %(cai6+cei+cc—c\/zv2+cusina)

A i

+V_Z+U<ScwconF (10)
dA
d—ST =0 (11)

As in [11] the optimal fueling control is found by minimizirid) with respect to the
control variabled. Since the Hamiltonian is linear ib the optimal control sequence
will consist of sections of maximum fueling, minimum fuedior sections Wher%g =
0. The latter sections are called singular arcs. Diffeedimty the Hamiltonian gives

%—I(l-i- v

)+ s (12)

For sections of singular arcs wheZg < 0, i.e.ys =0, it is seen in (12) that, = —é.
It must also hold thaL (44) = 0 which gives

E()‘V%) _ NG MG
ds' v T dsv vV
MCs i2v Acs

= (G —ow— 2c,V7) + 7 =0 (13)

V3
Putting (12) equal to zero, solving far, and inserting into (13) gives the following
dependency betweerandAt

i2

2
%
(cw? +cy+200v)+AT =0 (14)

cs
SinceArt is constant, (11), the system must be in stationarity dusingular arcs, i.e.
v is constant, and since (14) aid = —%, Ay must be constant. The constat is
determined by that the constraint on total travel time (Zyi§lled. Given initial and

end conditions on the statgsand T, the complete problem to solve thus consists of
Equations (2), (5), (7), (8), (10)-(12), (14).

3.1 Solution characteristics

As mentioned above, the optimal control sequence condistsrimum fueling, zero
fueling and, singular arcs where fuelidds chosen such that vehicle speed is station-
ary. Obviously, due to the nature of the vehicle resistancees, the global optimal
solution will be stationary, i.e. constant speed, whenéusrpossible, i.e. whenever



the road gradient is small enough. Road gradient is coresiidamall if maximum fu-
eling is enough to keep constant speed in an uphill slopefaretd fueling does not
resultin accelerationin a down hill slope, [2]. Such smabegh gradients will here be
defined. Consider the model (7) and let fuelthg 0. It is seen that for all inclination
angles

3 . VA .
b € {6g: cwle + Cel 4 Cc + GV + V2 + Gy Sindlg > 0} (15)

the vehicle will accelerate even though the engine does ruatyze any work. The
limit for the setdq is found by setting equality in (15) resulting in

Col?¥ + Cel + Co + GV + CaV?
—Ca
+ &l —mGq — MgV — maav? — 3pCeAV
mg

Og = arcsin

CewNi?V

= arcsin—"

(16)

that of course is a negative angte; < 0, for realistic vehicle parameters. For uphill
slopes the vehicle will accelerate when using maximum figadj,ax for angles

3 . SV L
ay € {8y : C5idmax+ Cwle + Cel 4 Cc+ GV + CV? + Cq Sindy > 0} (17)

and the limit for the set is

Cai Omaxt Cel 2Y -+ Cel + Cc+ GV + GoV?
—Ca
_ 5 _
B Smax+ 223 4 =l — mgy — MGV — MGaV? — 3pCaAV?
mg

oy = arcsin

= arcsin

(18)

that is a positive anglex, > 0.
Using Equations (16) and (18) the following definition camieede

Definition Small gradients are all gradients with inclinatian such
that

Og <a <0y (29)

Other gradients are referred to as steep gradients.

To conclude, there are three possible control settingsgimal fueling, i.e. max-
imum fueling, fuel cut-off, and to control fueling such thaghicle speed is constant.

The adjoint variable\, responds to future changes in inclinatienand for steep
slopes maximum or minimum fueling respectively is not eroteggkeep), stationary.
As seen in (12)‘3,—'2'3| depends o\, and henceé\, is important for the control switch
points. An optimal solution will thus consists of constaneling for flat road and
small gradients, but in and in a neighborhood of steep uplufies it will be optimal
to use maximum fueling, and, in and in a neighborhood of stleeymhill slopes it will
be optimal to cut off the fuel injection. The importance oé #djoint variable\, will
be stressed later and in Section 6.5 it will be used for a dson on the sensitivity of
the optimal solution.

10
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Figure 3: Engine torque as a piece-wise affine function olirige Maximum fueling
is plotted as function of engine speed.

4 PWA engine characteristics

To better approximate the engine characteristics the erignque will now be modeled

as a piece-wise affine function of fuelidgsee Figure 3 for a hypothetic example. Let
fueling be divided inN regions, see Figure 4 for a schematic depiction. When the
engine is operated in regiarthe propulsive forc&prop in Table 2 is written

Fprop= I:] (Zl(kél |(6,i+1)6maxi + k67n6+ Keee + k) (20)

When operating in fueling region the vehicle dynamics can be written in the

form (7) with obvious changes to the parameters, e.@cslet c5 , = k“" . Differenti-
ating the Hamiltonian with respect to fueling now gives

dH )\V 5n
B =i(l+

Considering only the operating region where the enginerieatly operating, optimal
control can be derived as in Section 3, i.e. fueling can badnimit of the region or
fueling can be such that vehicle speed is constant. Eachenggjion can be associated
with a constant speed solution as in Equation (14), i.e. dhdisn to

N i2

o (Cw +cy+20V) +AT =0 (22)
n

)+ s (21)

For each engine operating regionlimit angles can be defined as in Equation (19) by
modifying Equations (16) and (18) giving

Ogn <0 < Oyn (23)

11
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Figure 4: piece-wise affine approximation of engine chanastics.

4.1 Concave engine map

Now consider a concave torque characteristic, ¢g.> C5j1. From (21) it is seen
that when
1 A 1

AP S (24)
Csit1 Vv Cai

it will hold that g—g <0 and#’il > 0. Since bothy andA, are continuous functions
the optimal control sequence will consist of a period whergifig is on the border

of fueling regioni andi + 1. This means that there is never an immediate change
from constant speed to maximum or minimum fueling, but thietim will consist

of a “smoother” change to the upper or lower limit of fueling/ith cs; > c5;1 the
corresponding stationary solution given by (22) wilhhe- v ;1. This means that some
downhill slopes will have constant speed solutions wittheigspeed than for flat road
and some uphill slopes will have constant speed solutioasishlower than for flat
road.

4.2 Non concave engine map

For the approximation in Figure 3 the requiremegt> c5; is not fulfilled for all

i, i.e. the approximation is not concave. For such a casedurdasoning needs to
be done in order to find the optimal control. An example fusliie characteristic
is depicted in Figure 4. Let the torque characteristic hdopexs; in the respective
region. Consider a case where cruising at constant speeat atdd implicates = 1,
i.e. a fueling value in region 1. When a steep uphill slopepjsraached there is some

distance where for exampleﬁ—lhv—\f&i >0 fori =24 and 1+ AV—\C,?" <0fori=13.
For such a position, if considering only region 1 and 2 fugkvould be chosen at the

12
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Figure 5: piece-wise affine approximation of engine charéstics. Maximum fueling
is plotted as function of engine speed.

border between those regions. Considering only region 34damntbuld in the same
way give a fueling in the border between those regions. Tisenence two candidate
values of fueling to use. To decide which one that is optimmahpproximation to the
torque characteristics that reduces the number of fuebggpns can be used. Such
an approximation is marked as a dashed line in Figure 4. Bwhiy the fueling-
torque characteristics is transformed into a concave fomend the choice of fueling
is uniquely decided by considering (24). Similar reasordag be made for downhill
slopes.

4.3 Non linear engine speed characteristics

To further improve the approximation of the engine changsties, non-linearities in
engine speed dimension could also be considered. One wagassider engine torque
as a piece-wise affine function of both speed and fueling.

Let engine speed be divided M regions and let fueling be divided M regions.
When the engine is operated in region,n) the propulsive forcé o in Table 2 is
written

i n-1
Fprop = a (Zl(kes,i — Ksi1)Omaxi + ks nd+

r\ .4

m-—1

Z (kwm - kaiJrl)wemaxj + kwem(*)e‘f' k) (25)
=1

See Figure 5 for an hypothetic engine model witk= 8N = 6.
Differentiating the Hamiltonian with respect to fuelingvgs the same result as
in (21).

13



Considering only the operating region where the enginelieatly operating, op-
timal control can be derived as in Section 3, i.e. fueling banin the limit of the
region or fueling can be such that vehicle speed is condiatt engine region can be
associated with a constant speed solution as in Equatigni(@4the solution to

V2 i2
—(Com— +Cy+2CV) + A1 =0 (26)
CB,n r
For each engine operating regipn n], limit angles can be defined as in Equation (19)
by modifying Equations (16) and (18) giving

Odmn < O < Oymm (27)

Modeling engine torque as a piece-wise affine function ofiregpeed gives a
Hamiltonian that is not differentiable with respecttoThis means thak, will have a
discontinuity in the switch point between different engapeed regions. How this can
be treated is described in Chapter 3.6 in [1]. However, actiog for the non-linearities
in the speed dimension does not affect the principal behafithe optimal control
given by (21) in the sense that the optimal fueling also is ttase is in the border
of fueling regions or such that vehicle speed is constantwever, both the vehicle
dynamics (7) and the adjoint dynamics (10) is affected byetigine characteristics in
the speed dimension, which means that the optimal contrittisywoints depends on
it. Since the optimal fueling behavior in principal is nofeated by the modeling in
the speed dimension the remaining of this paper only corsidenlinearities in the
fueling dimension.

A non-concave engine torque can require some care in fintimglobal optimal
solution. One such case is treated in [8]. That case is wheedéhired average speed
corresponds to an inefficient engine operating point. Thean be optimal to switch
between two other cruising speeds resulting in correctageespeed. This can be
studied using Equation (26). For a givan it can be the case that no region has a
feasible constant speed solution corresponding to deaweghge speed. In such a case
the optimal solution consists of switching between différeruising speeds.

Other ways than (25) to make a PWA approximation of the engiap can be more
close to the real characteristics. For example one can usagular mesh or a bilinear
function of engine speed and fueling. However, such appratibns would still keep
the problem in input affine form and the principal resultcdised so far would not be
changed.

5 Optimal gear ratio control

Not only fueling control but also gear choice affects thd famsumption considerably.
Although there are high-power applications for which contiusly variable transmis-
sions are used [14, 17], the most common transmission fafttaacks are the discrete
step transmission. As a first attempt to study fuel optimal ghifting, gear ratio is
assumed to be continuously variable and fulfilling<Omin <i < imax. Later, those
results will be used to derive solutions for a stepped trasson.

5.1 Optimal gear ratio - affine maximum fueling

Again study the model with affine engine characteristic$r@hn Section 3. Maximum
fueling will here be modeled as an affine function of engineespby usingwe =

14



iTV in (5). Although this is a too simple model to resemble the snead function in
Figure 2 the results are illustrative and a base for the mocarate quadratic model
that will be used in Section 5.2.

The gear ratio can be varied between a lower and upper lirait,if has to fulfill
the following constraints

Cmax = i—imax<0 (28)

Cimin = imn—1<0 (29)

When choosing gear ratio the engine speed must also be ki imits, i.e.

iv
Cumin = Wmin— T <0 (30)
iv
Comax = T Wmax< 0 (31)

The constraints (28)-(31) are adjoined to the Hamiltoniéh vespective Lagrange
multipliers timax Mimin, Keomin, @NdHgmax:

H = &i + Avfy + At fr + PsCs + HimaxCimax+ HiminCimin + MeominCeomix
+ MomaCwmax  (32)

Differentiating the Hamiltonian (32) with respectitgives

dH AVC Av. A \Y; v
— =0(1+ K 5)+20w v|+Ce7v_UGchonF'f‘Mmax_Mmin_aninF

di v T
v
+Uoomax; (33)

During sections of constant speed, i.e. for flat road andIggnadients, fueling is not
in the limit, i.e. ys = 0. Then Equation (12) gives{L)‘V% = 0. Also assume that gear
ratio and engine speed is within allowed limits, i.e. thgezgivey = 0. The condition
dd—'?' = 0 then gives the optimal gear ratio
iopt = —%ZLV (34)

For typical engine characteristics, see Figureele, < 0 or ¢, < 0 andce is small.
Both situations result in thag: given by (34) is smaller thaimin, and hence, consid-
ering limits oni the resulting optimal solution igpt = imin. This minimizes engine
speed and hence engine friction.

Assuming that engine speed limits and gear ratio limits ateeached, i.6,min =
Heomax = Mimin = Mimax = 0, optimal gear ratio during sections of maximum fueling is
found by combining Equations (5), (12), and, (33), usf§g= 4 =0, which gives

dH AVG A
o = ST ey
2 AVC .
1 (CazonV(1+ \;5)+ch\,)|:0 (35)

The optimal gear ratio given by Equation (35) is

Ceon(1+ )\V%) + Ce)\—\)'

(36)

lopt = — Mo

%(Cooconv(l'f‘ v ) + Cw)\v)

15



Recall that 1+ }“’TCB < 0 during sections where maximum fueling is used. It will be

shown later in simulations thatﬂ“% gets a large magnitude in steep uphill slopes
resulting in high gear ratios. Before and after the slopevadear is used as given
by (34). For the model considereghC5 is about 7 timese, giving high gear ratios in
steep uphill slopes. However, large magnitudes g, limits the gear ratio to a lower
gear ratio.

5.2 Optimal gear ratio - quadratic maximum fueling

To make a better approximation of maximum fueling than (&)ftillowing quadratic
model is used _ _
iv iv
Co=0—(ao+ar~ +a()?) <0 (37)
Another choice could be to make a piece-wise affine modelthaut the Hamiltonian
will not be differentiable with respect to vehicle speed.
The optimal gear ratio is now given from

dH _ )\VCg;
Fie O(1+ v

Av. A iv. v
)+ ZCooTvl + Cevv — HUs(ar+ 23—27); + Mimax— Mimin
\' \"
- U(uminF + meaxF =0 (38)

When using maximum fueling and assuming that gear ratiadims$ well as engine
speed limits are not reached, optimal gear ratio is founddmytining Equations (12),
(37), and (38), which gives

A MG A
)+20m—v)|+a0(1+ Y0) 4 e
r \" \"

=koi®+kii +ko=0 (39)

)\VCB
\

V2 A Cs v
3a,— (1 i+ (2a1-(1
2r2( + V) +< 1r( +

Now the optimal gear ratio is

.k ki \? ko

Typically, only the solution with the plus sign before theiace root gives physically
feasible solutions.

Plots of optimal gear solutions.In Figure 6 the solution to Equation (39) is plotted
as a function of the decisive varic’:\blei—lx"—vcf5 and vehicle speed The lowest possi-
ble gear ratio for the vehicle studied is 3.42. Recall thatrdusections of constant

speed 1 )‘VV% = 0. Consider the case where cruising speed is 85 km/h and tidee

is approaching a steep uphill slope. During acceleratidorbehe slope speed will
increase and the term—l-lx"—vcfS will decrease, i.e. the operating point will move down-
wards to the right in Figure 6. One conclusion that can be dram this figure is
that it will never be optimal to change gear during the agegien phase before a steep
uphill slope. When the vehicle starts to climb the hill spagitidecrease, shifting the
operating point to the left, and the operating point enteesrégion for a possible gear
change.

Another thing to notice in Figure 6 is that for large magnésdf 1+ )‘V% the opti-
mal gear ratio is approximately a function of vehicle sperdesthe gear ratio contours

16
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Figure 6: Contour plot of the optimal gear ratipgiven by Equation (39). The oper-
ating point for stationary vehicle speed at 85 km/h is matied cross. The contours
are drawn at gear ratio levels corresponding to a discrepetsinsmission. The dashed
lines are the optimal gear shifting points for a discretp stansmission.

are almost vertical. As will be shown later in simulationatthegion is reached when
maximum fueling has been used for a longer period of time faerelatively long or
steep uphill slopes.

For any given vehicle speed it is equivalent to see enginedspgas control vari-
able instead of gear ratiousingwe = ¥. Using this substitution in Equation (39)
optimal engine speed can be calculated and a contour pldteoht¢hieved result is
plotted in Figure 7. It can be seen in the area to the left ofihtéed line in Figure 7

that optimal engine speed very well can be described as ¢idaraf the decisive vari-
able 1+ AV% since the lines are almost horizontal. To the right of théedbline the
solution is restricted by the minimum allowed gear rationpare with Figure 6. As
will be shown later in simulations the magnitude of the dieeigxpression ¥ AV%
depends highly on the length and inclination of uphill skop& longer or steeper slope
results in larger magnitude ofﬂx"—vcﬁ, which means that optimal engine speed is a
function of length and steepness of the slope.

Further analysis and implications of optimality. If the quadratic maximum fuel-
ing function is linearized it can be compared with the reBu({B86). The linearization
of the quadratic model in the poin is

Cs = 8— (80— a0 + (a1 + 2a200)w) < 0 (41)

Considering (36) and assuming tha&f"TC6 has a large magnitudi: can be approx-

imated as
Ccon

2
T CaoconV

(42)

iopt = -

17
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Figure 7: Contour plot of optimal engine speed.

Again using engine speed as an equivalent control instegdasfratio, using the sub-
stitution we = ¥, an optimal engine speed can be calculated for every vesieed.
Rewriting (42) to optimal engine speed gives

Ccon ap— 3203% 43)

(00 = — = —
. 2Cqxcon 2(a1 + 2ax0)
There is one engine spee® = w* wherew* = —Zﬁf%zﬁa‘;’:;). For wg < w* it holds

thatwopt > w* and forwg > w* it holds thatwept < w*. Hence it is never beneficial to
operate at a higher engine speed th#in Rewriting (43) the optimal engine speed is
found by solving the following equation

3ap00h  + 281 Wopt + 80 = 0 (44)

Using we = % this expression is quite similar to (39). It will now be shothiat when
’AV% >> 1, optimal engine speed goes to the same engine speed asmdrdreum
torque to the wheels are delivered. The torque deliveretibghgine to the wheels is
e
T = — =N Te = —=11(Co(80 + 81006 + 20 + Cede + Cec) (45)

This equation is differentiated with respectde to find the engine speed that gives
maximum torque to the wheels. This is also the engine speedenthe engine pro-
duces maximum power.

dTy r
ﬁ = 7” (Cop(@0 + 281 We + 380WE) + 2CepyWe + Cec) = 0 (46)
Consider Equation (39), notice that wh@%f—ﬁ >> 1, the optimal engine speed goes
to the solution of Equation (46). Also, sinf&s| >> |Cew| , |Ced/, this solution is close
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Figure 8: Maximum engine torque and maximum wheel torqueal#ut 1800 rpm
the engine delivers maximum torque to the wheels.

to the solution of Equation (44). For the engine consideretthe quadratic maximum
fueling function, maximum engine torque and maximum wheejie (maximum en-
gine power) are plotted in Figure 8. The conclusion from thithat the character of
the maximum fueling function is decisive for the optimal geloice.

5.3 Discrete step transmission

Since discrete step transmissions are the most commordytresesmission for heavy
trucks it is interesting to see how the optimal solution vado if the gear ratio belongs
to a set of discrete numbaers {i1,i2,...,in}. For this case Equation (33) can no longer
be used directly to find the optimal gear ratio.

As a first attempt to model the gear shift process it will baias=d that a gear shift
is carried out instantaneously but possibly with a discurity in vehicle speed. For
vehicles with mechanical solutions such as for example clusth transmissions there
is no disruption in torque during a gear shift, and hencefgésible to model the gear
shifting without any speed loss. Using the more common mianarasmissions there
is a disruption in torque, and such gear shifts will, excapteep downhills, result in
a decrease in speed. Suppose that a gear shift occurs abpesits for a set of gear
shifting positionss € {s1,...,Sv—1}, and let the speed just before the shiftlig_),
let the speed just after the shift bgs ), and let the decrease in speed during the shift
bevs. The shift is then modeled as

V(s-) —V(sit) = Vs (47)

One way to handle the discontinuity in this problem is to edesboth fueling and
gear choice as control variables. The optimal control i theeind by searching for
the control that minimizes the Hamiltonian at every positisee the discussion on the
maximum principle in [11]. Another approach that will be d$eere is described in [1].
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Then only fueling is considered as a control variable thdbisd fromdH /ou = 0.
This leads to a formulation with switching between différepstem dynamics func-
tions when switching gear. The optimal control problem fotation with disconti-
nuities in the system equations and in the state variabdedescribed in Chapter 3.7
in [1] is used here. The gear shifting function

¢=v(s-)-V(s:+)—Vs=0 (48)
is adjoined to the performance criteria with multipkerLet
o="3¢ (49)

and the Hamiltonian be the combination of the Hamiltoniarsfch interval
HO — O 47T (50)

For N — 1 shifts the performance criteria is

s [ L AT aTIX
I= 5 9iTel 4 / L0 AT£0 - AT gs (51)
J; i; S—ﬁ( ds)
Itis shown in [1] that necessary conditions for optimalgy i
dA AHO\ "
ds “ox | S-1t+<s<§-— (52)
09
NM(s-) = 53
(s—) X5 ) (53)
0Q
AT = — 54
(s+) oD (54)
HO(s—)—HIH(s+) = 0 (55)

For the case (48)y(s—) = Av(s+) =3, i.e. the adjoint variablg, is continuous over
a gear shift.

SinceAy is continuous and gear ratio should be chosen such that theltdaian
is minimized at each position, a change in gear can only ogben the Hamiltonian
evaluated for two nearby gears equal each otherH.@;,v(s—)) = H(ii11,v(s+)).
For zero speed loss at shifting points, Me= 0, the resulting gear shifting points are
marked with dashed lines in Figure 6. The optimal solutiothwai stepped transmis-
sion will of course be quite similar to the continuously @lie ratio solution in the
sense that the gear ratio is chosen such that the engineispmedverage close to the
continuous case. See Figure 9 for a depiction of typical ghéting points when the
speed loss of a gear shift is set to 0.1 m/s.

5.4 Optimal gear ratio for PWA engine characteristics

For non-linear engine characteristics it is interestingttady gear choice also when
fueling is not in the limit. For a PWA model as (25) each engagion can be analyzed
separately as in Section 5.1. During constant speed se@#xrh regiofm,n} has an
optimal gear ratio as in (34)

. Cemn I
= 56
lopt Com 2V (56)
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Figure 9: To the left, the Hamiltonian evaluated for a fixetloraf A, /v and for the
two highest gears. To the right, a zoom in of the left plot. @h@ws indicates where
downshift and upshift occurs when the speed loss of a gefaishet to 0.1 m/s

In most cases the optimal gear ratio for each region is suattlile engine speed is in
the border of the regions. This means that there are somatopepoints that have
to be considered and the optimal gear ratio is chosen sucletiggne efficiency is
maximized. Again, if searching for optimal gear ratio dgrimon stationary sections
the engine torque has to be modeled such that the Hamiltémidifferentiable with
respect to speed.

6 Simulations

The results from previous sections will now be demonstratesimulations of some
constructed road profiles. Both affine and piece wise affiginermodels will be used,
but all simulations will use the quadratic maximum fuelimgétion (37). Also results
from both continuous variable transmission as well as discstepped transmission
will be presented. The road profiles will consist of flat roaddwed by an uphill
slope or a downhill slope of constant gradient, and then 8atiragain. For such
road segments the slopewill have a discontinuity when changing from flat road to
slope. If there is such a discontinuity at a given positigrit is according to theory
possible that the Hamiltonian and/or the adjoint variabl@ge a discontinuity at that
position. For simulation it is important to decide whethenot the adjoint variables
have discontinuities, and it will here be shown that thatds the case. A general
condition that decides at which positispsuch an event occurs can be formulated as
in [1] as a so called interior boundary condition

N(x(s1),81) =0 (57)
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In Chapter 3.5 in [1] the influence dth andA from such an eventis derived to be

r oN

AN(sim) = Al(si+)+m s (58)
H(si—) = H(S1+)—HTZ—: (59)

wherertare constant multipliers. Since road slope is a functiorosftpn the condition
that decides when a discontinuitydnoccurs can be formulated as

N(s)=s1—s=0 (60)

For the condition (60) it is seen from (58) that there is na@dliginuity in the adjoint
variablesh since the condition is independent of the states.

6.1 Optimal solutions for uphill and downhill slopes

Optimal solutions of example simulations are seen in Figu®@, 11 and, 12. All
simulations are of a 40 ton truck witty chosen such that cruising speed at flat road is
85 km/h. In Figure 10 the engine model is piece-wise affinaiglifg dimension and
affine in speed dimension, see Figure 3. Assuming a contslywariable transmission
both fueling and gear ratio is optimized. As expected fromtia 5.2 and especially
Equations (39) and (46), for long steep slopes the gear itthosen such that the
engine speed is close to 1800 rpm, the point of engine maxipower. Also as
mentioned in Section 5.2 in connection to Figure 6, starih@5 km/h before the
slope there is no change in gear ratio during the acceleratiase before the slope.
Notice also that the acceleration from about position 30@ 2400 m is done using
fueling in the border between the two upper fueling regidreen, between about 2400
m to 5200 m maximum fueling is used, and from 5200 m to 6900 rirfgés again in
the border between the two upper fueling regions.

In Figure 11 a simulation of the PWA engine model is done in @ B0slope of
—6% slope. The vehicle cruises at constant speed from stathaat 800 m where
the fueling is lowered to the border between fueling regiand 3. During that part
it begins to decelerate and at about 2400 m the fuel injedti@yain lowered to the
border between region 1 and 2. It is worth noting that theifujection is never cut off
totally as it would have been done for an affine engine torqodeh

6.2 Affine and piece-wise affine modeling

In Figure 12 three simulations are presented. The soliding simulation of the
affine engine torque model with no gear optimization. Thehdddine is with the

PWA engine torque model with no gear optimization. The dbtiee is also with

the PWA model but now with gear optimization. As expecteddfisme model only

uses two modes of fueling, i.e. such that constant speedpisteeabout 2300 m,
and then maximum fueling is used until 5300 m where speedps d@nstant again.
The simulation with the PWA model start accelerating eadied uses only maximum
fueling from about 3900 m to about 4200 m. The gradual chandaeling for the

PWA model gives a smoother control but also requires aboind@nger prediction
horizon than the affine model. When also gear ratio is optichthe PWA model never
uses maximum fueling.
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Uphill slope of 0.03 radians
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Figure 12: Three simulations in a 1000 m 3 percent uphillasl&olid line is an affine
engine torque model. Dashed line is PWA engine torque mddetted line is PWA
engine torque model with gear optimization.

6.3 Continuously variable gear ratio optimization

To study optimal choice of gear ratio three simulations & #ifine engine torque
model is presented in Figure 13. The optimal engine speeashdiy Equation (39) for
the three simulations are there shown as functions of velsjgted and the decisive
variable 1+ }“’Tcﬁ One simulation, the “inner arc”, is of a 1000 m 3 % uphill stopn
that simulation the optimal gear ratio just about reacheddivest feasible gear ratio.
The other simulations is of a 600 m 6 % uphill slope and a 1500% @phill slope.
In the latter simulation the vehicle is able to keep a coristpred of about 30 km/h
at some part of the slope. As mentioned earlier the magnifider- A"—VCB gets larger
the longer and steeper the slope is. Hence, optimal engéezldp a function of length
and steepness of the slope.

In Figure 14 the same simulation as in Figure 10 with the PWAleted engine
is depicted. Only the part in the upper fueling region is shoiote that the optimal
engine speed, being around the line 1780 rpm, is higher trahé affine engine, Fig-
ure 13, where it was around 1650 rpm, and closer to maximurimempgwer, Figure 8
where the maximum is around 1800 rpm.

The result from Figures 6 and 7 could be used to define geamghpoints that
is dependent on speed and for example length and slope sf Hillthe vehicle is
approaching a long and or steep slope the magnitude—cﬁ‘%ié will get larger leading
to a higher optimal engine speed during the slope. Lookingeasimulations in for
example Figure 13 it is seen that during the uphill slope,rétardation phase, the
optimal engine speed has small variations with a mean vaperntling on the speed at
the start of the slope. Hence, an approximative gear shifirategy could be designed
based on the speed when starting to climb a hill.
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Figure 15: Simulations with an affine engine and steppedsimégsion in a 6% 600
m uphill slope. The engine speed is on average close to th@éoons ratio solution

in Figure 13. Dashed line corresponds to a simulation witlogpeed loss during the
gear shifts, and solid line corresponds to a simulation @ithm/s speed loss during
the gear shifts. Note that without gear shift losses an egega shift occurs near the
top of the hill.

6.4 Discrete stepped transmission

Last, two simulations of a stepped transmission is predeee Figure 15 for example
simulations in a 6% 600 m uphill slope. The dashed lines iffithee corresponds to a
simulation without a speed loss during the gear shifts, hedsolid lines corresponds
to a 0.1 m/s speed loss during shifts. This is a typical vdliteis assumed that the
engine is incapable to propel the vehicle for about 0.5 sdnttie shift. Note that the
simulation without gear shifting losses performs an exearghift near the top of the
hill. Note also that the engine speed is on average closetodhtinuous ratio solution
in Figure 13.

6.5 Interpretation of the Lagrange variables

Looking at the Hamiltonian (9), it is seen that it is proportal to amount of fuel used
per distance, i.e. [kg/m]. This means that the Lagrangealséei, is proportional
to amount of fuel divided by velocity, i.e. [kg/(m/s)]. Sma, is decisive for the
optimal control it is interesting to interpret the value bf in [1] it is shown that for
the augmented performance critedia= f;f (8 +AT(f — %))ds the variation in the
performance criteridJ due to a variation in initial condition®(s) is

S

T = AT (50)3%(50) + / "9 suds (61)

S ou
whereu is the control vectofd i]T. Hence AT (so) is the gradient of with respect to
initial conditions while holdingu(s) constant. Of course the positigs can be taken
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anywhere which means thatat every position is a measure of how much the total cost
would be affected by a changeirat that position. The variablg, thus is a measure of
how much fuel consumption would change if the speedvaried. Sinc@, is negative
araise in vehicle speed by 1 m/s at positsgmill result in a decreased total cost given
by the value ofA,(s). A decrease of speed by 1 m/s would increase the total cost by
the same amount.

Now, looking at the simulations above in for example Figurésand 11, it is seen
that for an uphill slope a change in speed in the beginning®s&tope has the highest
influence on the total consumption. In the same way the spdhld and of a down hill
slope is most critical to the total fuel consumption.

The influence from a change in vehicle speed on the total 2¢&))0v(s), can
be written as

Av(%o)

V(<o)
Remember that the teriy,/v is decisive for both optimal fueling and for optimal gear
ratio. Rewriting (61) the first part is (62). Singdv is a measure of change in kinetic
energy\y/vis a measure of how the total cost is affected to a change etikianergy.
Looking at Figure 13 it is seen that the point most sensitiva thange in kinetic
energy does not coincide with the point most sensitive toangh in vehicle speed.
Instead of the beginning of the slope now a point somewhetfeeimiddle of the slope
is most critical, i.e. the lowest point of the respective. artowever, as mentioned

earlier, the decisive factor A‘(,CB has small variations during the slope which means

that the sensitivity to a change in kinetic energy is apprately constant during the
slope.

V(S0)OV(S0) (62)

6.6 Speed limits

Speed limits is a state variable inequality constraint. i@ak control with such con-
straints are treated in Section 3.11 in [1]. An upper spe®etd Is derived by the fol-
lowing constraint

C/=V—Vnax<0 (63)

In [1] the method to handle the type of constraint as (63) ardifferentiate until the
control variable appears explicitly. For the model (7) thisans that the derivative
C, = diSC\, is adjoined to the Hamiltonian (9) with the multipligy resulting in

At the entry point of a constrained arc the adjoint varidhlés discontinuous but con-
tinuous at the exit point. However, instead of solving théropl control problem as
before the constrained solution can intuitively be fourahfrthe unconstrained solu-
tion. Consider the cases presented so far. If there had lreepper speed constraint
present the solution after the position of leaving the aairséd arc would follow the
unconstrained solution. For example, after a steep dowslbjppe where the uncon-
strained solution exceeds the speed limit at the end of theskthe constrained so-
lution could be found in the same way as before, by settingsffeed at the end of
the slope to the maximum allowed speed. The valug,dé then given by the fact that
bothA, andv should reach their respective stationary values at the pasiton. Since
Ay has a discontinuity at the entry point of the constrainedfaece is no easy way to
decide the value ofy at that point. However, among all solutions that fulfills tree-
essary conditions for optimality, (10)-(13), the most fa#ficient solution is to start
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to decelerate before the slope at a position such that thergpeed limit is reached
exactly at the end of the slope. This is of course then theisolthat minimizes brake
usage, and hence minimizes the total fuel consumption.

For uphill slopes the reasoning can be done in the same wdyteat maximum
allowed speed is reached exactly at the beginning of theesifofhe unconstrained
solution exceeds the speed limit at that position. An examjphulation with an affine
engine torque model is plotted in Figure 16 where the maxirallowed speed was 90
km/h. If Figure 16 is compared to an unconstrained simufatibthe same slope in
Figure 13 it is seen that in the constrained simulation thieva gear ratio in the slope
is higher resulting in about 100 rpm higher engine speedithtiie unconstrained case.

6.7 Discussion

The optimal strategies presented above is a compromisebatmnning the engine at
efficient operating points and minimizing air and roll réaisce. For the affine engine
model (4) the optimal fueling strategy has the characterasfgbbang control. This

strategy minimizes vehicle speed variations and hencenairrall resistance losses.
When using the non linear model (20) the engine efficiencyadeses in the upper fu-
eling region. Hence the optimal solution in for example Fegli2 starts to accelerate
earlier than when using an affine model. Using this strateglyicle losses for the driv-

ing mission is increased but the distance of maximum fueliitere engine efficiency

is low, is shortened. Looking in the same figure it is also ¢hah by optimizing gear

ratio, the upper fueling region is avoided, though the higjear ratio gives increased
engine friction.

7 Sensitivity analysis

For an implementation in a vehicle it is interesting to se& hacertainties in param-
eters will affect the optimal strategy and thereby the thtal consumption. Using a
given fueling strategy and gear choice, an error in a paranestimation will result in
a different speed profile than predicted. To see how muchauetiange will affect the
total cost the discussion in Section 6.5 can be used. As or@tdij\, is a measure of
how much the total fuel consumption is affected by a changelmcle speed. Thus, to
estimate how a parameter change influences the total fustiogption it is sufficient to
study how a parameter change affects vehicle speed. Thigsgnef a function f (x)
to x at the poinixp is computed asdf /0x)|x,/(Xo/ f (X0)). In Table 3 the sensitivity of
the vehicle dynamics, i.e. the right hand side of Equatignt¢the model coefficients,
is presented. Road slope has the highest significance omwttdeuel consumption.
The second highest influence has and the third highest influence hesandc,;.
Note that if the drive line inertiag andJy are neglected in the total vehicle inertia,
see Table 2G5 = (incgs)/ (M), 2 = (0.5pCgA+mMG3),/m, cc = (iNCec+MG1)/m, and
Cq = 0. This means for example that a fault in vehicle mass or faegjtte characteristic
has equal importance. However, a fault in road slope has tst significant influence
on the total cost.

One parameter known to be difficult to measure is vehicle raagstherefor it is
of special interest to study. To see how a fault in vehicle sraffects the optimal
solution two simulations has been performed with masseod$ &and 44 tons, see
Figure 17. It is there seen that if the vehicle mass is untierated, the vehicle will
start to accelerate too late and shift to lower gear too ldielwvcan lead to a necessary
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Uphill slope of 0.06 radians
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Coefficient| Sensitivity,a = —0.03 | Sensitivity,a =0 | Sensitivity,a = 0.03
0 = 0 mg/stroke 0 =113 mg/stroke| &= 220 mg/stroke
Cs 0.00 323 -1.48
Co -0.12 -49 0.11
Ce 0.079 32 -0.076
Cc -0.42 -171 0.40
Cy 0.00 0.00 0.00
Cv2 -0.33 -135 0.32
Ca 1.78 0.00 1.72
a 1.78 0.00 1.72

Table 3: Senstivity of vehicle dynamics to model coefficierithe sensitivity is calcu-
lated for a 40 ton truck cruising at 85 km/h

Uphill slope of 0.06 radians
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extra gear shift which of course gives an increase in fuesaomption. In a downhill
slope it is of course also worse to underestimate the masstthaverestimate since
an underestimate leads to a later deceleration beforedpe,shhich in turn leads to a
higher speed in the slope. In presence of speed limits thisléo unnecessary braking
and an increase of total fuel consumption.

8 Rule based predictive cruise control

There are several ways to use the presented optimality @onslin attempts towards
an on-line controller. Looking at the vehicle dynamics ie time domain, vehicle
speed can be solved analytically, as in [2], on constantagréat both constant fueling
and maximum fueling. Given the equations for vehicle speeftiae constraint on total
travel time, the problem of finding optimal controls is théfiading optimal control
switching points, by solving a system of nonlinear equati@).

Another approach to utilize the analytical solutions toxtkhicle motion will here
be used as part of an on-line predictive cruise controlleme @dvantage is that the
assumption that the road grade is piece-wise constant cdropped.

To demonstrate the possibility to significantly save fuéhgshe second approach,
a simple rule based predictive cruise controller has beg@teimented. For simplicity
the controller is based on the results using an affine engimge¢ model as in Section 3.
It would be possible to make further improvements using arotlar based on non-
linear engine characteristics and optimize gear choicexveder, the purpose here is
only to demonstrate the magnitude of the savings that cambe dsing the presented
material. In [6] the possible savings of gear choice is pre=k

8.1 Optimization criterion

The idea for an on-line controller is to locate upcoming gthals, compare differ-
ent fueling strategies with respect to a criterion over ajoten horizon, use the best
strategy over a sampling distance, and then re-evaluateriteeion at the next sam-
pling point. Closed loop control is achieved by recalcuigtptimal controls at every
sample point.

An idea for criterion could be to use the Hamiltonian (9). ©skort horizons it
might however not be a good idea to try to control the averpgedto a given value.
For example, if the road mostly consists of downhill slopesrdy the prediction hori-
zon it is often better for the total driving mission to haveighter speed than average,
and the opposite for sections of mostly uphill slopes. Infaex by (9) the criterion for
a prediction horizon frons = 0 tos= S, could be chosen as

.S S
J:/ 6ids+)\T/ frds (65)
JO JO

The first term is proportional to the fuel consumed while ivthe distanc&, and the
second term accounts for the travel time. The time penaltis obtained by solving
Equation (14) using a desired stationary speeg¢ on flat roads and small gradients.
For this criterion to be useful it has to be modified to accdanthe speed at the end
of horizon. As known from Section 3 the optimal solution dstssof constant speed,
maximum fueling, and fuel cut off. Using (65) will result instrategy that uses fuel
cut off at the end of the prediction horizon.
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Handling residual cost at end of horizon.One way to deal with this could be to
constrain the solution to a given speed, ev§Sp) = Vret, at the end of the horizon.
However, this is not a good idea if for example the end of hmris in a slope. The
way chosen here to deal with the problem of finite horizon ifo#iews: Assume flat
road afterS,, let Syer be the position where the reference spege is reached after
Sy when using either maximum fueling or fuel cut off dependingfthe speed a$,
is less than or greater thap . By defining a functio\ as

"Svref ) "Syref
A:/ 6|ds+)\T/ frds (66)
S S
the criterion (65) can be chosen as
S
J—/ 6|ds+)\T/ frds+A 67)

The functionA then follows from the solution to the vehicles longitudidgham-
ics. When using fuel cut off on flat road the vehicle dynamigsiii the time domain

becomes )

. . i
V= Cel + Cot (Co + GV + CV? (68)
Using maximum fueling modeled &,ax = Ccon+ chon%V+ cwzCon;—ivz results in

2 02 i3
) . . i i i
V = CgiCeon + Cel + Cc + (C{)chon? + cw? + o)V + (C6Cw2(;0nr—2 + c\/z)v2 (69)

Both Equation (68) and (69) are in the form
V=Co+Cv+CoV? (70)

This differential equation can be solved by separatingaldes as

1

mdv: dt, co+Ccrv+ V2 £0 (71)

Integrating both sides give

dt 72
/Co+Clv+02V2 / (72)

This equation has two different solutions depending on tedfcients. When acceler-
ating the coefficients are such that the solution to (72) is

1 2CoV+Cp— /—4CCo+ €2
—t+k (73)

In
\/ —4CoCo+C3 | 2Cv+C1+ /—4CoCo+C3

The solution to this equation is

—(cp — /€2 — 4coCy) — (C1+ 1 /€2 — Acyey)eV G~ 4coca(tK)
v(t) = - - (74)

2c,eV/ 402 (k) 4 ¢,
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andk is chosen such that initial conditions are satisfied. Whexeléeating the coeffi-
cients are such that the solution to (72) is

20Vt & ) —t1k (75)

2
——— arctan| ———
\/4coCy — €2 4cocy — €2

and also heré is determined by initial conditions. The vehicle speed giby this
equation is

1 4cocy — €2
V) = 5, | /4000~ chtan| 4k | e (76)

Now, from (73) or (75) the time required fato reachves can be calculated. Given
time, distance can be calculated by integrating speed. iBt@nde traveleds= [ vdt,
during acceleration t@., is given from the integral of (74) which is

/' —(C1— /3 — 4coCz) — (C1+ 1 /€F — Acocp)eV A4ttt it

2c eV -4 (t+K) | ¢,

\/C4 — 4cocz — 1 In‘2cz(e cf—dcoca(ktt) 4 1)
_ t— (77)

2c C2

and the distance traveled during decelerationde is given from the integral of (76)
which is

- [ /4coCr — 2 4coCy — C2
/ Ly T [

an

2c 2 2c;
o In cos(iﬂc"zcch (t+k)) ’
-t 78
2c C2 ( )

Now A, (66), can be calculated as follows. Given distance theifitsgral is easily
calculated for the different cases of fuel cut off and maximiweling. The second
integral is simply traveled time as given by Equations (#8) &5).

8.2  On-line algorithm

Given the results above, an on-line cruise controller cafobreulated. For simplicity,
as in [6] the standard cruise controller will be used as aotu&Vhen constant speed
is desiredy = vier is commanded, when maximum fueling is desired, a higherdspee
than the vehicles present speed will be commanded, and, fubkcut off is desired, a
lower speed than the present speed is commanded. Sincatidast cruise controller
is of a PID-controller type this strategy will not always de@ the desired fueling but
as will be shown in simulations it will be close to desired &ébr.

For a realistic case speed, limits has to be imposed suchWat v < Vimax The
algorithm is as follows:

33



1. Check if there are steep slopes within the horizon. If setdv,es to the cruise
controller.

2. If a steep slope is detected, perform two simulations efvihicle. First sim-
ulation: If the first steep slope is an uphill(downhill) seogtart using maxi-
mum(minimum) fueling and simulate until eith@gs or Vinax{Vmin) is reached.
Second simulation: Command constant speed on one sampthemdse max-
imum(minimum) fueling.

3. If Vmax(Vimin) is reached beforee; is reached after the slope, commang to
the cruise controller.

4. Compare the two solutions by the performance index (6 Jos€ control ac-
cording to the simulation with lowest value of the perforro@amdex.

This algorithm is implemented in a simulation environmesteloped by Erik Hell-
strom [4].

Results from the simulations are shown in Figures 18 - 20.r& tree above rule-
based look-ahead cruise controller, LC, is compared toralata PID-type cruise con-
troller, CC. The allowed speed range is 8 < 90 km/h and the reference speed is
85 km/h. The standard cruise controller will not apply thekas until the upper speed
limit is reached. The prediction horizon for the look-aheadtroller was set to 1000
m and the sample distance to 50 m. It is seen that the algowitimks as expected from
Section 3. In Figure 18 the algorithm starts to accelerategusaximum fueling about
300 m before the slope. The higher speed compared to theasthodiise controller
also results in a shorter period on a lower gear. Due to higherage speed for the
look ahead cruise controller the fuel consumption is slightgher compared to the
standard cruise controller. However, the trip time is digantly lower. A down hill
slope is presented in Figure 19. The look ahead algorithnoisithe fuel injection
and starts to decelerate about 200 m before the slope. Thikgén a shorter period
of braking and significant fuel savings but a small increageip time. For a real road
consisting of both uphill slopes and downbhill slopes, ibipected that the difference in
total travel time between the look ahead cruise controterthe standard cruise con-
troller is moderate. In Figure 20 it is seen that even thohghriavel time is almost the
same for the two controllers the fuel saving is significamtf® look ahead controller.
It can also be mentioned that the magnitude of the savingsisiping even though
not quite as high as those reported in [4] using a more sapaist numerical optimal
controller.

9 Conclusions

Analytical expressions for optimality of the fuel optimalise control problem have
been derived. These expressions are essential for thestadeing of the decisive pa-
rameters affecting fuel optimal driving, and the analytagatimality conditions makes

it possible to see how each parameter affects the optimatignl It has been shown
that the expression-t AV% is decisive for both optimal fueling and optimal gear se-
lection. For example, it is seen in Equation (12) that thragtween engine torque
to vehicle mass, given by the parameatgrdirectly affects the optimal control switch
points, which also the adjoint variablg and vehicle speeddoes. The adjoint vari-
ableA, reacts to future changes in road slope and from that the @a@witch points
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given by (12) also depends on road inclination. This typenaysis lead to the idea

of using phase plots with-& A"—Vcﬁ andv on the axes, and this type of plot has been used
extensively, see Figures 6, 7, 13, 14, and 16. It has also $femmn that, accounting
for small non-linearities in the engine torque model, faglis gradually increased or
decreased to the fueling limit, giving a smoother contraintfachieved for an affine
model, see for example Figure 11. This gradual change irr@ogiso means that a
longer prediction horizon is needed.

The maximum fueling function has strong influence on optigedr choice. It
is shown for a continuously variable transmission that iéser optimal to operate
above the engine speed of maximum engine power. Furthetypical cases, see
Figure 13, during the acceleration phase before an upbilesit is never optimal to
shift gear, but it can be optimal to stay at a higher gear fatia short distance after the
slope. From the results in Figure 13 it is seen that for optsoktions engine speed is
approximately constant during the slope, and is deterntiyettie vehicle speed at the
beginning of the slope. The optimal vehicle speed at thenmigg of the slope mostly
depends on the length and inclination of the slope and hepiieal gear shifting is
approximatively a function of slope length and inclinatioAnother point to notice
is that for non-linear fuel-torque characteristics, inartb avoid inefficient engine
operating points, it can be beneficial to shift gear instdatsimg maximum fueling.

Optimal solutions for a discrete stepped transmission sec¢o the continuous
gear ratio solutions in the sense that engine speed for thedges are close. However,
it is shown in simulations that modeling of gear shiftingdes are important for gear
shifting positions.

The theory presented is a good base to formalize the intuitiduel efficient driv-
ing and one example where the analytical optimality expo@sscan be used is in de-
sign of a simple low-complexity computationally efficiente-based controller. Such a
controller has been shown to be able to save a large part pbggible savings achieved
with more computationally demanding controllers basedumerical optimization.
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20x50m.8=0.2 — 0, 80 <v<90,auto
qg=reqg/sim = 6.29/101.93 s. Afuel = 1.14 % Q=[16.410.12.0]
Atime = -2.47 %

2 P
o o
T T

Altitude [m]

&
T

o

1
0 500 1000 1500 2000

© ® ©
o & o
T

Velocity [km/h]
~
ol

70
65
i i i i
0 500 1000 1500 2000
r 1 I -
1 I
0.8 i iy
— 1 I
_L 0.6 oo Iy
5 h
3 04 Iy
h
0.2 Iy
h
0 1 ! - 1
0 500 1000 1500

12
LC gear
—_ — — —CCgear 1
L 5
£
512 — T 06 &
T — e | T
8 =" ! Cfueluse [* ©
11 L ! = = =CCfuel use|2
1 1 1 1 0
0 500 1000 1500 2000
Position [m]

Figure 18: Rule based algorithm in a 6 % 300 m upphill slopede@otes Look-ahead
cruise controller and CC denotes the standard cruise diantro
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14x50m.5=0.2 —_ 0 80<v<90
q=reqg/sim = 6.69/104.45 s. Afuel = -11.10 % Q=[16.410.120]
Atime = 0.56 %
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Figure 19: Rule based algorithm in a -6 % 300 m downhill sldp&.denotes Look-
ahead cruise controller and CC denotes the standard canseber.
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20x50m.5=0.2 Afuel = -2.19 % 80 < v <90,auto
qg=req/sim = 279.65/5092.42 s. ) Q=[16.410.12.0]
Atime = 0.18 %
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Figure 20: Simulation of the rule based algorithm on the Migj E4 between the
cities Sodertalje and Norrkoping in Sweden. LC denotesk-ahead cruise controller
and CC denotes the standard cruise controller.

38



References

[1] Arthur E. Bryson and Yu-Chi Ho Applied optimal contral Taylor and Francis,
1975.

[2] A. Froberg, E. Hellstrom, and L Nielsen. Explicit fugbtimal speed profiles for
heavy trucks on a set of topographic road profilS&\E Technical Paper Series,
2006-01-10712006.

[3] Anders Froberg and Lars Nielsen. Optimal fuel and gesiorcontrol for heavy
trucks with piece wise affine engine characteristics. HRAC symposium on
advances in automotive control, Monterey Coast, Calitgra007.

[4] Erik Hellstrom. Look-ahead control of heavy trucks utilizing road topodrgp
Licentiate thesis, LIU-TEK-LIC-2007:28, Linkdping Instte of Technology,
Linkoping, 2007.

[5] Erik Hellstrom, JanAslund, and Lars Nielsen. Design of a well-behaved algo-
rithm for on-board look-ahead contrdFAC World Congress, Kore&2008.

[6] Erik Hellstrom, Maria Ivarsson, Jahslund, and Lars Nielsen. Look-ahead con-
trol for heavy trucks to minimize trip time and fuel consutopt Fifth IFAC
Symposium on Advances in Automotive Control, Monterey, CSA, 2007.

[7]1 J.N. Hooker. Optimal driving for single-vehicle fuel@momy. Transportation
Research part 222(3), May 1988.

[8] Maria lvarsson, JaAslund, and Lars Nielsen. Optimal speed on small gradients
- consequences of a non-linear fuel M&RAC World Congress, Kore@2008.

[9] U. Kiencke and L. NielserAutomotive Control Systems, 2nd &gringer-Verlag,
2005.

[10] F. Lattemann, K. Neiss, S. Terwen, and T. Connolly. Treglgctive cruise control
-a system to reduce fuel consumption of heavy duty truSi¢sE Technical paper
series (2004-01-2616), 2004.

[11] George LeitmannThe calculus of variations and optimal contréllenum press,
1981.

[12] Rongfang Liu and lakov M. Golovitcher. Energy -efficieperation of rail vehi-
cles. Transporation research Part,/87(10):917-932, 2003.

[13] C. Manzie, H. Watson, and S. Halgamuge. Fuel economydrgments for urban
driving: Hybrid vs. intelligent vehiclesTransportation Research Part, €15):1—
16, 2007.

[14] S. M. Savaresi, F. L. Taroni, F. Previdi, and S. Bitta@bntrol system design on
a power-split cvt for high-power agricultural tractot&EE/ASME Transactions
on mechatronic9(3):569-579, 2004.

[15] A.B. Schwarzkoopfand R. B. Leipnik. Control of highweaghicles for minimum
fuel consumption over varying terrainTransportation ResearghL1:279-286,
1977.

39



[16] A. Sciaretta and L. Guzzella. Fuel-optimal control ehdezvous maneuvers for
passenger cargutomatisierungstechnik3(6):244—-250, 2005.

[17] P. Setlur, J. R. Wagner, D. M. Dawson, and B. Samuels. liNear control of a
continuously variable transmission (cviEEE Transactions on control systems

technology11(1):101-108, 2003.

[18] S. Terwen, M. Back, and V Krebs. Predictive powertradmicol for heavy duty
trucks. First IFAC Symposium on Advances in Automotive Con2004.

40



