
Design of a Complete FDI System

based on a Performance Index

with Application to an Automotive Engine

Mattias Nyberg
Vehicular Systems, ISY, Linköping University
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Abstract

Assuming residual generators are already available, there are still several choices
to be made when a complete FDI system is to be designed. This is a time-
consuming engineering work so for this purpose, a systematic procedure is
proposed. The procedure is phrased as an optimization problem. The goal is
to minimize a new probability based performance index, which is derived from
measurements on the real process. To increase the robustness of the FDI sys-
tem, a don’t care option is introduced in the residual structure. The procedure
is successfully applied to the problem of FDI design for the air intake system
of an SI-engine.

1 Introduction

Model based fault detection and isolation (FDI) has received much attention
during the last decade. The reasons are increased requirements in some key
areas, e.g. automotive diagnosis, and the increased availability of micropro-
cessors, which are needed for the realization of any model based FDI system.
Important performance issues are false alarm rate, fault detection delay, proba-
bility of missed detection of faults, and minimal fault sizes that can be detected.
All these properties need to be minimized and the major limiting factor is the
model accuracy. However to build accurate models requires a lot of work and
in most applications, there are practical limits of how good models that can
be obtained. It is therefore of high importance that, based on a model, that
may not be very good, at least the FDI system is optimal in the sense of the
properties listed above.
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Another important issue is to minimize the time-consuming engineering
work, that is frequently needed for the design of FDI systems. Even though
residual generators are already available, there are still several choices to be
made when a complete FDI system is to be designed. For instance, in the au-
tomotive engine example provided in this work, there are 215 different residual
structures to choose between. The search for a relevant engineering method to
handle this problem of designing a complete FDI system, that is also optimal,
is the key idea of this paper.

The design of the FDI system is set up as an optimization problem. The
goal is to minimize a probability based performance index, described in Section
2, aiming at measuring the performance of the whole system. The optimization
results in a selected set of residuals, threshold values, and a residual structure
including a don’t care option. The don’t care option increases the robustness
of the system and is discussed in Section 3.3. The procedure for solving the
optimization problem is provided in Section 4. In Section 5, the procedure is
applied to a real application, FDI of the air-intake system of an SI-engine.

2 Performance Indices

To design an optimal FDI system, some kind of performance index (PI) is
needed. Some PI’s for linear residual generators, have been proposed in the lit-
erature. Typically these are based on some relative gain from faults to residual.
Some examples are

π1 =
|Grf (q)|
Jthresh

π2 =
|Grf (0)|

σ2
θ

π3 =
‖ Grf (q) ‖
‖ Grd(q) ‖

π1 from (Gertler and Costin, 1994) is frequency dependent and normalized
with the threshold value. π2 from (Chow and Willsky, 1984) is a DC-gain
normalized with θ being the magnitude of the coefficients, and the variance
of the residual in the fault free case. π3 from (Frank, 1993) also takes signals
that need to be decoupled, into account. Such signals are disturbances in the
form of structured uncertainties and faults that need to be decoupled because
of isolation reasons.

The purpose of these PI’s is to optimize the residual generators. In for
example (Frank, 1993), π3 is used to maximize the sensitivity of a residual to
faults while minimizing the sensitivity from disturbances and non monitored
faults. However these PI’s are not aimed at guiding the design of the complete
FDI system. Also they are not generally applicable to non-linear systems.

Another problem with the previously proposed PI’s, more exactly π1 and
π2, is that residuals affected by unstructured model uncertainties are not always
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correctly evaluated. For π3, unstructured uncertainties are not taken in account
at all.
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Figure 1: Comparison of three PI’s for eight residuals.

To see how different PI’s performs when used to compare different residuals,
a test was carried out. Eight residuals, affected by model uncertainties, were
evaluated by three PI’s. Note that these PI’s are not the PI’s π1, π2, and
π3. Figure 1 shows the three PI’s, which are represented by black, gray, and
white bars respectively, when applied to the eight residuals. The data are
based on measurements from a real process in a test case when a constant fault
is present all the time. The residuals were affected by a significant amount
of unstructured model uncertainties. Two of the PI’s require that thresholds
are fixed. Therefore each threshold has been chosen as the maximum value
of the residual in the fault free case. The black bars are the amount of time
the residuals are above the thresholds. This is similar to the PI proposed in
Section 2.1. The gray bars are the residual mean over time divided by the
threshold, and thus equals π1 for constant faults. The white bars are the
residual mean over time divided by the standard deviation of the residual in
the fault free case. Except for the coefficient θ, this is similar to π2 for constant
faults. The grey and white bars have been normalized so that they equals the
black bar for residual number 1.

Now if the PI’s are to be used to compare residual performance, there is
a strong indication that residual 6 is better than residual 7, since each bar of
residual 6 is higher than the corresponding bar for residual 7. However for
most residuals it is not easy to conclude which ones that are the best. For
example if the white bars are considered, it is seen that residual 2 performs
slightly better than residual 7. However according to the black bars, residual 2
correctly detects the fault during only 17% of the time during this test, while
residual 7 detects the fault during 91% of the time. Therefore residual 7 should
be the better one in this case. A similar discrepancy between the different PI’s
is seen if residual 7 and 8 are compared. From this study, it can be concluded
that the PI’s represented by the gray and white bars and closely related to
the previously proposed π1 and π2, do not correctly evaluate the ability of the
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residuals to detect faults when unstructured model uncertainties are present.

2.1 A probability based PI

As an alternative to the previously proposed PI’s π1, π2, and π3, a probability
based PI is proposed. The idea is to study the probabilities of the following
naturally defined events:

“not detect a fault given that no fault has occured”
“detect fault j given that fault j has occured”
“detect a fault given that no fault has occured”
“not detect fault j given that fault j has occured”

The first and the third event are the complement of each other. The same is
true for the second and fourth event. Therefore without loss of generality, the
proposed PI is the probability of the third and fourth event. These probabilities
can be interpreted as the probability of false alarm and probability of missed
detection respectively. In other words, the PI is defined as the probability of
malfunction of the FDI system. The PI should be minimized for several differ-
ent fault situations. This requires special care, which is discussed in Section 4.
Note that in this work, only single faults are considered.

The proposed PI have the advantage that it can be used both in the context
of residuals and also in the context of a complete FDI system. Also it is not
restricted to linear systems and correctly evaluates the impact of unstructured
model uncertainties.

2.2 The PI for Residuals

In the context of residuals, the PI measures residual performance and can for
example be used to select the threshold level. Note that the PI measures per-
formance of the residual in combination with a threshold. Let Bi denote the
event that the i:th residual signals false alarm. Also in the case fault j is
present, let Aij denote the event that residual i does not respond in corre-
spondence with what it was designed to do. In other words, Aij is the event
missed detection if residual i is designed to respond to fault j, and the event
false alarm if residual i is designed to not respond to fault j. The actual PI is
in this case denoted P (Bi) and P (Aij) respectively. The goal is to minimize
these probabilities but in most applications, the probabilities are not known.
Therefore estimates, derived from measurements on the real process, must be
used. An example of how this can be done is provided in Section 4.

2.3 The PI for the Complete FDI System

To guide the design of what residuals to include in the complete FDI system,
a PI related to the total performance is needed. Thus for the complete FDI
system, let B̄ denote the event false alarm and let Āj denote the event missed
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detection of fault j. The corresponding probabilities, i.e. the PI, are denoted
P (B̄) and P (Āj) respectively. These events and probabilities are more thor-
oughly discussed in the following section.

3 The Residual Structure

The residual structure (also called coding set or incidence matrix) is the basis
for the design of an isolation scheme. It can be derived from the equations
describing the residuals. Often it is desirable that the residual structure is
strongly isolating. A strongly isolating structure protects small faults from
being incorrectly isolated in the case when some residuals are not exited enough
to reach the thresholds. Two examples of strongly isolating residual structures
are shown in Figure 2.

f1 f2 f3

r1 1 0 0
r2 0 1 0
r3 0 0 1

f1 f2 f3

r1 0 1 1
r2 1 0 1
r3 1 1 0

Figure 2: Two examples of residual structures.

3.1 Selecting Residual Structure

The residual structure can to some extent be determined already in the design of
the residual generators. In addition, selecting different sets of already designed
residual generators results in different residual structures. Thus a possible large
freedom exists in the design of the residual structure. However except from
isolation requirements, it is not obvious how this freedom should be utilized.
Following are two examples aiming at illustrating this problem.

Consider the residual structures in Figure 2. An advantage with the left
residual structure compared to the right, is that it can isolate multiple faults.
However it is less robust against disturbances in the fault free case. Suppose
disturbances are present, then to get a false alarm, it is in the left structure
sufficient that only one residual change from zero to nonzero. In the right
structure, it is necessary that two residuals change from zero to nonzero. In this
way the right residual structure provides robustness against false alarms. If also
the probability of missed detection is considered and without more knowledge,
it is however impossible to conclude what residual structure is the best.

To further illustrate the problem, consider the task of designing or selecting
residual generators to be included in the FDI system. It is important to know
what set of residuals that constitutes the optimal structure. For example, is
it an advantage to include an extra residual? For the moment, consider only
fault 1 in the right residual structure in Figure 2. Obviously at least one of
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r2 and r3 must be included. Also obvious is that many residuals increase
the robustness against false alarm and few residuals increase the robustness
against missed detection of faults. However without more knowledge, that is
about everything that can be concluded so even in this simple case there is no
straight answer to what residuals to be included to get the optimal residual
structure. To answer the question, it is first necessary to specify what is meant
by optimal residual structure; a PI is needed.

3.2 The PI for Selection of Residual Structure

A natural PI is the one defined in the previous section, i.e. the probability
of false alarm B̄ and the probability of missed detection Āj . The idea is best
illustrated by an example. Consider the right residual structure in Figure 2. In
the following it is assumed that fault detection and isolation is the same task,
i.e. the FDI system contains only isolation, and detection is an implication
of isolation. All residual related probabilities, associated with this residual
structure, are summarized in Table 3.2.

no fault f1 f2 f3

r1 P (B1) P (A11) P (A12) P (A13)
r2 P (B2) P (A21) P (A22) P (A23)
r3 P (B3) P (A31) P (A32) P (A33)

Table 1: All residual related probabilities associated with the right residual
structure in Figure 3.2.

Let B̄j denote the event that in the fault free case, the FDI system signals
that fault j has occured. This means that in the example, B̄1 = BC

1 ∩B2 ∩B3

etc. Note that the index i of Bi denotes residual number while the index j of
B̄j denotes fault number. The event of any false alarm is

B̄ = B̄1 ∪ B̄2 ∪ B̄3

If we assume that the residual structure is at least weakly isolating, then the
events B̄j are disjoint, which implies

P (B̄) = P (B̄1) + P (B̄2) + P (B̄3)

This relationship is used in the procedure in Section 4, in which the mini-
mization of P (B̄) is approached by trying to minimize all P (B̄j). The other
probabilities that are used as PI are the probabilities of missed detection of
fault j, that is

P (Āj) = P (A1j ∪A2j ∪A3j) j = 1 . . . 3

To summarize, the global goal is to minimize P (B̄) and all P (Āj). The op-
timization must be performed under the constraint, that the residual structure
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must be weakly isolating and possibly also strongly isolating. Details on how
this optimization can be performed are provided in Section 4.

3.3 Don’t Care in the Residual Structure

Don’t care, X, is an alternative to ones and zeros in the residual structure.
The meaning of an X, in the position for the i:th residual and the j:th fault, is
that the fault decision should not take any notice about the value of residual i
when deciding if fault j has occured. In most situations a residual is affected
differently by different faults. This is the underlying reason why there is a need
for don’t care, or X, in the residual structure. Explicit examples of such cases
are:

• Model uncertainty can force the residual threshold to be set high. This
can have the effect that faults with low fault-to-residual gain are missed
although faults with high gain are still detected. For detection / isolation
of a fault with low gain, it is not a good idea to require some specific
behavior of this residual, i.e. a one or zero in the residual structure.
Introducing don’t care solves this problem.

• Non linear physics in the process can make the fault-to-residual gain for
a specific fault, decrease or even get zero in some operating areas. This
makes the residual useless for detecting this fault but it can still be useful
for other faults. Again don’t care solves the problem.

An additional reason to use don’t care is that a residual structure can be
augmented so that each fault get its own residuals dedicated to only this fault.
In this way no residuals must be a compromise between detecting different
faults. Isolation properties are not affected by don’t care used in this way.
There are several applications for this technique. One is individual thresholds
for each fault. This is useful to maximize the robustness of the FDI system
and is used to some extent in the procedure described in Section 4.

Another application is residual shaping (filtering) (Frisk et al., 1997) which
is a technique to shape the frequency response, from fault to residual, of the
residual generator. Different shaping is probably needed for the different faults,
and the use of residual structure augmentation in combination with don’t care
makes this possible.

f1 f2 f3

r1 X 1 0
r2 X X 1
r3 1 0 X
r4 0 1 1

Figure 3: An example of a residual structure including don’t care.
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An example of a residual structure including don’t care is given in Figure 3.
For anything but small residual structures, it is difficult to see if a residual
structure containing X’s is strongly, weakly or not isolating. Therefore the
following Theorems are useful.

Theorem 1. A residual structure is strongly isolating if and only if there is a
one in each fault column and for all pairs of faults, it holds that the faults are
strongly isolated from each other when rows containing X’s, in any of the two
fault columns, are neglected.

Theorem 2. A residual structure is weakly isolating if and only if there is a
one in each fault column and for all pairs of faults, it holds that the faults have
distinct columns when rows containing X’s, in any of the two fault columns,
are neglected.

For example the residual structure in Figure 3 is only weakly isolating be-
cause fault 2 and 3 are not strongly isolated from each other.

When introducing X’s, different strategies are possible. One that makes
sense, and therefore used in the procedure described in the next section, is to
only allow ones to be replaced by X’s. In that case, for a residual sensitive
to p faults, at a maximum p − 1 X’s can be introduced, in 2p − 1 different
combinations.

Introduction of X’s will increase residual robustness and also the robustness
of the complete system if done properly. When and how these X’s should be
introduced, can because of model uncertainties, generally not be concluded by
studying the equations describing how the residuals are computed. Instead
measurements on the real process must be used. This is in analogy with the
strategy adopted in the present work, because X’s are introduced based on the
PI defined in the previous sections, and the PI is derived from measurements.

4 FDI Design based on the PI

Many methods for residual generation design exist, especially for linear systems.
By using these methods a number of residual generators can be designed. It
is not sure that all these residual generators perform satisfactory. Also the
number of residual generators that can be designed is generally larger than
what is needed to be able to detect and isolate the faults. In addition to using
specific design methods, many residual generators can be designed with an ad
hoc approach. Ad hoc design is often necessary for non-linear systems because
of the scarcity of design methods. All this results in a possibly large set of
residuals that are candidates to be included in the final FDI system. These
residuals are denoted base residuals.

When residual generators, generating base residuals, have been designed,
the remaining tasks of the FDI design are the selection between these residuals,
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selection of thresholds, and introduction of X’s in the residual structure. The
idea is to perform this design by optimizing the probability based PI described
in Section 2. The procedure for this optimization is described in the next
section.

To formally describe the optimization problem, let the base residuals be
denoted rk, k = 1, . . . , n and let pk denote the number of faults that base
residual rk is sensitive to. By introducing X’s in different combinations, each
base residual rk generates mk ≤ 2pk − 1 residual candidates rkl, l = 1, . . . , mk.

The global optimization problem can now be set up as shown in Table 2.
The first column represents all residual candidates rkl obtained from base resid-
uals denoted rk, k = 1, . . . , n. The optimization is with respect to the variables
in the other two columns. Each variable bkl in the second column determines
whether residual candidate rkl is included in the FDI system or not. These
variables take values yes or no. If bkl = yes, then also the threshold level Jkl

needs to be optimized.

residual included threshold
candidate level
r11 b11 J11

r12 b12 J12

...
...

...
r1m1 b1m1 J1m1

r21 b21 J21

...
...

...
r2m2 b2m2 J2m2

...
...

...
rnmn bnmn Jnmn

Table 2: The variables in the optimization problem.

The present optimization problem is nonlinear and contains both discrete
and continuous variables, and is therefore generally hard to solve. The approach
in the proposed procedure is to divide the global optimization problem into two
subproblems. First, residual performance is optimized by introducing X’s and
selecting optimal threshold values. Based on the result of this optimization,
the performance of the whole FDI system is optimized by selecting residuals to
be included.

4.1 The Procedure

The whole design procedure aims at solving the two subproblems described
above. It contains four steps. The first subproblem is solved in steps 1A, 1B,
and 1C, and the second in the single step 2. The flowchart of the procedure
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is shown in Figure 4. Following is a detailed description of each step in the
procedure.

1A. Compute probability 
estimates for each base 
residual and correlations.

1B. Introduce don’t care 
and determine best 
residual candidates.

1C. Find optimal thresholds 
for each residual candidate 
and compute probabilities for 
false alarm / missed 
detection.

2. Solve the optimization 
problem; minimize probability
bounds under the isolating 
constraints.

Input : process 
measurements, base 
residuals, fault 
characteristics, and fault 
sizes.

Output : selection of 
residuals, thresholds,
 residual structure

Figure 4: The flow chart of the residual evaluation design procedure. The
arrows represent flow of information.

Input

The inputs to the procedure are the already designed residual generators, gen-
erating base residuals, fault-free measurements on the real process, faults char-
acteristics, and fault sizes. If constant bias or gain (additive or multiplicative)
faults are chosen, the computations in step 1A are straightforward.

If measurements, in which the faults are present, are available, they can also
be used. In that case, faults characteristics and sizes are not needed explicitly
as an input.
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Step 1A

For the PI, probability estimates of Bi and Aij are needed. These will be
denoted P̂ (Bi) and P̂ (Aij) respectively. The estimates are of course dependent
on the threshold levels. Therefore estimates are computed for each threshold
level. Principally this is the same as estimating the probability density function.
The estimation can be performed by measuring on the real process for the
different fault cases and then calculating the amount of time that the residual
is less than the threshold compared to the total time. This estimate converges
asymptotically to the true probability, when measurement time is increased.
If fault free measurement data are used, the estimates can be computed by
introducing the faults in the measurements.
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Figure 5: Probability estimates for a residual as a function of the threshold
level.

An example of probability estimates can be seen in Figure 5. The example
corresponds to residual number 1 in the right residual structure in Figure 2.
As can be seen, P̂ (A11) is fundamentally different from P̂ (A12) and P̂ (A13).
This is because the residual structure has a zero for fault 1 and ones for fault 2
and 3. When perfect fault decoupling is achieved, P̂ (Aij) corresponding to
zeros in the residual structure, coincide with P̂ (Bi). This is not the case in the
figure.

For each threshold level, the plots show what the probability is that the
residual does not respond in accordance with the residual structure. For ex-
ample if the threshold Jthresh = 2, the probability that the residual would
respond to fault 1, even if it should not, is about 0.2. In the fault free case,
the probability that the residual would reach the threshold is also about 0.2.

The result of step 1A is that probabilities as function of thresholds, like
the ones plotted in Figure 5, are computed for each base residual. Also the
correlation coefficients between all base residuals are computed.
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Step 1B

Figure 5 shows that whatever threshold is chosen, the probability that resid-
ual 1 would respond the way it shouldn’t, never becomes less than about 0.2.
This is an example of when don’t care would increase the robustness of the
performance. If the one corresponding to fault 2 in the residual structure is
replaced with an X, the threshold can be chosen such that the probability that
residual 1 would respond the way it shouldn’t, becomes lower than 0.05, i.e.
Jthresh ≈ 3.5. By gradually replacing the limiting ones in this way, each base
residual can generate p different residual candidates, where p is the number of
ones in the base residual. This strategy generates less than the maximum num-
ber of residual candidates, which was discussed in Section 3.3. The motivation
is that it is desirable to have few residual candidates and the ones selected with
this strategy is probably the best ones in most cases.

The reason why the number of residual candidates should be kept low, is to
lower the computational load in step 2. Further actions to reduce the number
of residual candidates are that residual candidates for which the probability
that they respond the way they shouldn’t, is high for all threshold levels, are
neglected. Also by using the correlation coefficients computed in the previous
step, if two residual candidates are highly correlated, only the best one is kept.
The correlation coefficient is sensitive to time delays between the residuals so to
be sure all correlated residuals are detected, the correlation coefficient should
be calculated for several different time delays.

Step 1C

By using the probability estimates, computed in step 1A, optimal thresholds
are chosen for all residual candidates individually. The optimal threshold for
the i:th residual is defined as

Jthresh,i = arg min
Jthresh

(
max(P̂ (Bi), P̂ (Ai1), P̂ (Ai2), . . . )

)

where the maximization is taken over P̂ (Bi) and all P̂ (Aij) corresponding to
faults j for which there is not an X in the residual structure. If more than one
threshold minimizes the maximum probability estimate, the threshold Jthresh,i

can be chosen as the mean value of all minimizing thresholds.
When the thresholds are determined, all probabilities needed for the selec-

tion of residual candidates, can be computed from the probability estimates,
obtained in step 1A. This results in a set of probabilities like the ones in Ta-
ble 3.2.

Step 2

As described in Section 2.3, the goal is to minimize the probabilities P (B̄j) and
P (Āj). To calculate the true probabilities, the joint multi-dimensional density
function would be needed. Unfortunately this density function can generally
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not be derived from the input data provided to the procedure. However, it
is possible to calculate an upper bound of P (B̄j) and both lower and upper
bounds of P (Āj). For the example of the right residual structure in Figure 2,
the bound of P (B̄1) = P (BC

1 ∩B2 ∩B3) is

P (BC
1 ∩B2 ∩B3) ≤ min(P (BC

1 ), P (B2), P (B3))

and the bounds of P (Ā1) = P (A11 ∪A21 ∪A31) are

max(P (A11), P (A21), P (A31)) ≤ P (A11 ∪A21 ∪A31)
≤ 1− P (AC

11)P (AC
21)P (AC

31)

The second bound of P (Ā1) follows from the assumption that for example

P (AC
31 |AC

11 ∩AC
21) ≥ P (AC

31) (1)

and

P (AC
21 |AC

11) ≥ P (AC
21) (2)

These relations says that it is more probable that a residual responds in corre-
spondence with the residual structure if it is given that other residuals respond
in correspondence with the residual structure. From the relation (2) and the
definition of conditional probability, it follows that

P (AC
11 ∩AC

21) ≥ P (AC
11)P (AC

21)

which implies

P (A11 ∪A21) ≤ 1− P (AC
11)P (AC

21)

If also the relation (1) is used, the second bound of P (Ā1) will follow.
The idea is to minimize the bounds of P (B̄j) and P (Āj), but with estimated

probabilities instead of true probabilities. Minimizing the bounds actually gives
the same result as minimizing the true probabilities in some special cases. The
number of bounds for each residual structure is three times the number of
faults.

The optimization goal is to, under some isolation constraints, find the resid-
ual structure for which the bounds are minimized. All bounds are generally
not minimized by the same residual structure. This problem can be solved by
replacing the minimization with a constraint that for a residual structure, all
bounds must be “almost minimized”. Generally this does not give one residual
structure but a set of residual structures. Formally this set is

{Φ |Boundi(Φ)−min
φ

Boundi(φ) ≤ ε, i = 1 . . . 3nf}

where Φ and φ denotes residual structures, Boundi(Φ) the i:th bound for resid-
ual structure Φ, and nf the number of faults. The value of ε determines how
conservative the minimization is and the number of residual structures obtained
is dependent on this value. For a value ε = 0, true minimization is achieved
but this may result in that no residual structures are obtained.
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Output

The output from the procedure is one, or possibly several, complete FDI sys-
tems. Each consists of a set of selected residuals, one threshold for each residual,
and a residual structure including X’s.

4.2 Remarks

The optimization problem is divided into two subproblems. When the first
subproblem has been solved, then thresholds have been fixed. These thresholds
are also the ones that minimize the bounds in step 2. In spite of this, it is
not assured that these thresholds are globally optimal. The reason is that
minimizing the bounds may not necessarily result in that P (B̄j) and P (Āj)
are minimized.

Another reason for non-optimality is the way X’s are introduced. For in-
stance only ones are allowed to be replaced with X’s. Further, one may also
obtain a non-optimal result if only strongly isolating structures are consid-
ered. This constraint may however be relaxed if sufficient computer power is
available.

One potential problem with using the procedure is requirements of low
probabilities of false alarm and missed detection. If the estimations of the
probabilities Aij and Bi are performed as depicted in step 1A, then in most
realistic applications, the requirements are such that the probability estimates
P̂ (Bi) and P̂ (Aij) would be zero for a broad range of thresholds. This is not
a problem when choosing the thresholds in step 1C, but becomes a serious
problem in step 2 because many probabilities from step 1C will be zero. This
means that the probabilities provide no or little guidance in comparing different
residual structures.

To overcome this problem there are at least four possible solutions. One is
to use longer measurement sequences. However practical limitations can make
this difficult. Another is to select fault sizes that are smaller than are actually
required to be detected. Suppose the fault sizes are smaller by some factor, then
the thresholds obtained from the procedure can be raised with the same factor.
The third solution is to estimate the probabilities by using another technique,
that works with realistic fault sizes. The final solution is to keep the small fault
sizes used in the design, and take care of the false alarms / missed detections
by adding some passive robustness in the residual evaluation. For example the
time, for which the original FDI system signals alarm, can be summed up and
the alarm can be suppressed until the time-sum reaches a threshold.

The whole procedure is automatic, i.e. when input data are provided, all
steps can be performed without any human involvement. The procedure has
been implemented as a Matlab command.
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5 FDI of the Air-Intake System of an SI-Engine

In the field of automotive engines, environmentally based legislative regulations
such as OBDII (CARB, 1993) and EOBD specify hard requirements on the
performance of the FDI system. This makes the area a challenging application
for model based FDI. In (Nyberg and Nielsen, 1997), model based FDI is
applied to the FDI of the air-intake system of a spark-ignition engine. In this
section it is shown how the previously described procedure is applied to the
same problem.

The task is to diagnose three sensors: the throttle angle sensor α, the air
mass-flow sensor ṁ, and the manifold pressure sensor p. Also included among
the inputs to the residual generators is the engine speed n and the throttle
control signal u. The process model is non-linear and contains one state, which
is the manifold pressure. For a more detailed description of the system, and
the experimental setup, the reader is referred to (Nyberg and Nielsen, 1997).

5.1 Application of the Procedure

The system belongs to a class of non-linear systems for which there exists
no general design method for residual generation. However by using primarily
non-linear parity equations and non-linear observers in different configurations,
12 different residual generators were constructed. The computational form of
these 12 base residuals are

r1 = ms − ˆ̇m1(as, ps)
r2 = ms − ˆ̇m2(n, ps)
r3 = ps − p̂1(as, n, ps)
r4 = ms − ˆ̇m3(as, n, ṁs)
r5 = ps − p̂2(as, ṁs, n)
r6 = as − â1(u, as, ṁs, ps)
r7 = ms − ˆ̇m4(as, n, ps)
r8 = r2 − r1 = ˆ̇m1(as, ps)− ˆ̇m2(n, ps)
r9 = r4 − r2 = ˆ̇m2(n, ps)− ˆ̇m3(as, n, ṁs)

r10 = r4 − r1 = ˆ̇m1(as, ps)− ˆ̇m3(as, n, ṁs)
r11 = r3 − r5 = p̂2(as, ṁs, n)− p̂1(as, n, ps)
r12 = as − â2(ṁs, ps)

where ˆ̇mi, âi, and p̂i are different estimates of the output signals. The index s
indicates that the signal is obtained from a sensor. For more details on these
residuals, see (Nyberg and Nielsen, 1997). The residual structure of the 12 base
residuals can be derived from the equations and is shown in Figure 6. Also the
influence of a possible fault in the engine speed signal n is included.
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fα fṁ fp fn

r1 1 1 1 0
r2 0 1 1 1
r3 1 0 1 1
r4 1 1 0 1
r5 1 1 1 1
r6 1 1 1 0
r7 1 1 1 1
r8 1 0 1 1
r9 1 1 1 1
r10 1 1 1 1
r11 1 1 1 1
r12 1 1 1 0

Figure 6: The residual structure of the base residuals.

Input

To generate input data to the procedure, data were collected during a one
minute fault free test cycle, see (Nyberg and Nielsen, 1997). Constant bias
faults were chosen. The fault sizes were 4% for the α-fault, 5% for the ṁ-fault,
and 4% for the p-fault. These fault sizes were chosen as a result of some trial
and error to get suitable sized probability estimates in step 1A. Thus the input
to the procedure is 12 base residuals, one minute fault free measurements, the
choice of constant bias fault characteristics, and fault sizes 4%, 5% and 4%
respectively.

Step 1A

Probability estimates are computed for thresholds in the range 0 to 10. The
faults are introduced in the measurement data. For each fault, two probabilities
estimates are used, one for negative faults and one for positive faults. The
final estimate is then the mean. The probability estimates for all 12 base
residuals are shown in Figure 7. It can be seen that residual 1 and residual 7
have very similar probability curves. This is also true for residual 3 and 8,
and 5 and 11. This similarity is confirmed when the correlation coefficient is
calculated: C(r1, r7) = 0.99, C(r3, r8) = 0.94, and C(r5, r11) = 0.99. Note that
even though these residuals may seem to be identical, they are not.

Step 1B

To limit the computational load in step 2, residual 1 and residual 11, are
because of similarity, not included in the set of residual candidates. As can be
seen in Figure 7, the use of X’s will for most residuals, increase the robustness.
X’s are introduced and residuals for which the lowest probability that they will
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Figure 7: Probability estimates for each residual as a function of the threshold:
no fault (solid), α-fault (solid), ṁ-fault (dashed), and p-fault (dash-dotted).
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signal false alarm or miss a fault, is higher than 0.2, are omitted. After this,
there are 15 residual candidates left.

r no α-fault ṁ-fault p-fault Jthresh

fault
2 .0240 0 .0241 1 .0208 1 .0251 2.250
2 .0240 0 .0241 1 .0208 X 2.250
3 .0732 1 0.0 0 .0724 1 .0548 1.500
3 0 1 0.0 0 0 X 2.250
4 .0584 1 .0058 1 .0484 0 .0593 3.000
4 .0053 1 .0072 X 0 .0051 3.875
5 .0102 1 .0144 X X 5.875
7 .0198 1 0.0 1 .0171 X 2.500
7 0 1 0.0 X X 3.375
8 .0854 1 0.0 0 .0841 1 .1182 1.500
8 0 1 0.0 0 0 X 2.250
9 .0405 1 .0160 X 1 .0414 1.625
9 .0204 1 .0206 X X 1.875
10 .1428 1 .1438 1 .0568 X 1.750
10 .1153 X 1 .0816 X 1.875

Table 3: All 15 residual candidates, with probabilities of false alarm and missed
detection. The rightmost column is the threshold.

Step 1C

Thresholds are calculated for all 15 residual candidates. All 15 residual candi-
dates are shown in Table 3. For each row, the first column contains the number
of the base residual. The second column is the estimated probability of false
alarm P̂ (Bi). Columns three to five correspond to the different faults α, ṁ,
and p, and contain the residual structure together with estimated probabilities
of false alarm or missed detection P̂ (Aij). The last column is the threshold.
When a position in the residual structure contains an X, there is of course no
probability associated with it.

Step 2

There are 215 possible residual structures. Of these only 6144 are strongly
isolating which is concluded with the help of Theorem 1. These numbers are
sufficiently low for performing a complete search. The result is that for to-
tally 7 residual structures, all 9 bounds are almost minimized, i.e. ε = 0.005.
These have 4, 4, 5, 4, 5, 5, and 6 residuals respectively. Four of these residual
structures are shown in Figure 8.
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fα fṁ fp

r2 0 1 1
r3 1 0 1
r4 1 1 0
r8 1 0 X

fα fṁ fp

r2 0 1 1
r3 1 0 1
r4 1 1 0
r7 1 X X

fα fṁ fp

r2 0 1 1
r3 1 0 1
r4 1 1 0
r7 1 X X
r8 1 0 X

fα fṁ fp

r2 0 1 1
r3 1 0 1
r3 1 0 X
r4 1 1 0

Figure 8: Four of seven residual structures obtained from the procedure.

5.2 Confirmation of the Design

For the final selection in a real application, a residual structure with 4 residuals
should be the best choice. This is to minimize the FDI system complexity and
computational load.

To confirm the design, the upper left residual structure in Figure 8 is chosen.
In Figure 9, each column contains plots for the case of no fault, α-, ṁ-, and
p-fault respectively. The upper four rows are plots for residuals r2, r3, r4, and
r8 respectively. The last row contains the fault decision. It is clear that the
procedure successfully manage to generate an FDI system, that can detect and
isolate these faults. However it can be seen that there are two false alarms. Both
are p-fault false alarms. Also for the cases with faults, there are some missed
detections. Thus the performance is not perfect but as said in Section 4.2, the
reason is the small fault sizes used to make it possible to apply the procedure.
However, compared to the study in (Nyberg and Nielsen, 1997), the faults are
less than half the size and the performance is still fairly good.

6 Conclusions

Assuming residual generators are already available, there are still several choices
to be made when a complete FDI system is to be designed. The key issue has
been to find a systematic procedure to support this time-consuming engineering
work. To the author’s knowledge, this is the first attempt, even though there
should be several other possibilities. For this purpose, a new probability based
PI is proposed. This PI is applicable to measuring both residual performance
and also complete FDI system performance. To increase the robustness of the
FDI system, a don’t care option X in the residual structure is introduced.

The procedure is phrased as an optimization problem consisting of selecting
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Figure 9: Confirmation of the FDI system for the cases no fault α-, ṁ-, and
p-fault respectively.
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the set of residuals to be included, introducing X’s in the residual structure,
and selecting thresholds. The procedure is successfully applied to the problem
of FDI design for the air-intake system of an SI-engine. The resulting FDI
system is able to detect and isolate faults of less than half the size, compared
to the former system (Nyberg and Nielsen, 1997), for which considerably more
time was spent on engineering and tuning.
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