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Abstract

A fundamental part of a fault diagnosis system is the residual generator. Here
a new method, the minimal polynomial basis approach, for design of residual
generators for linear systems, is presented. The residual generation problem
is transformed into a problem of finding polynomial bases for null-spaces of
polynomial matrices. This is a standard problem in established linear systems
theory, which means that numerically efficient computational tools are generally
available. It is shown that the minimal polynomial basis approach can find all
possible residual generators, including those of minimal McMillan degree, and
the solution has a minimal parameterization. It is shown that some other well
known design methods, do not have these properties.

Keywords: fault detection, diagnosis, polynomial bases, residual generation,
perfect decoupling, disturbance decoupling
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1 Introduction

This report is a study of linear residual generation for linear systems with no
model uncertainties. A general linear residual generator can be written

r = Q(s)
(

y
u

)
(1)

where Q(s) is a linear, finite-dimensional, proper filter. A number of methods
for designing linear residual generators have been proposed in literature, see for
example (Patton and Kangethe, 1989; Wünnenberg, 1990; White and Speyer,
1987; Massoumnia, Verghese and Willsky, 1989; Nikoukhah, 1994; Chow and
Willsky, 1984; Nyberg and Nielsen, 1997; Liu and Si, 1997). All these methods
are methods to design the transfer matrix Q(s). Four natural questions that
have not been explicitly raised before are the following:

• Does the method find all possible residual generators?

• Does the method find residual generators of minimal order?

• Does the solution represent a minimal parameterization or is it over pa-
rameterized?

• Is the design freedom clearly parameterized?

The four main questions are shown to be naturally handled by formulating
the residual generation problem in the standard framework of polynomial ma-
trices. Also, a design focus is maintained in the sense that it is assured that a
numerically feasible design algorithm is generally available. The outcome of this
is a method, the Minimal Polynomial Basis Approach, which is presented in Sec-
tion 2. With this approach, the decoupling problem is transformed into finding
a minimal basis to a polynomial matrix. The motivation for this transforma-
tion to a purely polynomial problem is that there exists well established theory
(Kailath, 1980; Lancaster and Tismenetsky, 1985) regarding polynomial matri-
ces. In addition, the generally available Polynomial Toolbox (Henrion, Kraffer,
Kwakernaak, M.Sebek and Strijbos, 1997) for Matlab contains an extensive
set of tools for numerical handling of polynomial matrices. Some relations to
other design methods are explored in Section 4 where it is shown that issues
regarding minimality and completeness is not at all obvious for other methods.

2 The Minimal Polynomial Basis Approach

This chapter introduces the minimal polynomial basis approach to the design
of linear residual generators. The approach is based on intuitive concepts from
linear algebra such as bases and null-spaces for polynomial and rational spaces.
It does not adopt, as is common in the fault diagnosis community, an observer
view, e.g. like the Unknown Input Observer and Eigenstructure assignment of
observers methods of designing residual generators. This is because the primary
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issues of this chapter is to handle completeness of solution and minimality which
are more easily addressed in a polynomial basis framework. Also, the freedom
available to the design engineer is clear which is important when performing a
design.

2.1 Problem Formulation

The systems studied are on the form

y = G(s)u + H(s)d + L(s)f (2)

where y is measurements, u is known inputs to the system, d is unknown dis-
turbances including the non-monitored faults, and f is the rest of the faults.
The filter Q(s) is restricted to linear, finite-dimensional, and proper filters. The
filter Q(s) in (1) form a residual generator if and only if r(t) = 0 for all d(t) and
u(t) when f(t) = 0, i.e. the control signal and all disturbances are decoupled
from the residual. To be able to detect faults, it is also required that r(t) 6= 0
when f(t) 6= 0. Inserting (2) into (1) gives

r = Q(s)
[
G(s) H(s)

I 0

] [
u
d

]
+ Q(s)

[
L(s)

0

]
f

To make r(t) = 0 when f(t) = 0, i.e. for Q(s) to form a residual generator it
must hold that

Q(s)
[
G(s) H(s)

I 0

]
= 0

which is equivalent with Q(s) must belong to the left null-space of

M(s) =
[
G(s) H(s)

I 0

]
(3)

This rational null-space is denoted Nl(M(s)) and a corresponding basis for the
null-space is denoted NM (s) where the rows are the base vectors. This basis
is not unique, in fact it might consist of polynomial base vectors, i.e. rational
functions without a denominator. Such strictly polynomial bases will be of
particular interest during the remaining parts of this chapter. Definitions of
order and other properties of bases, minimal polynomial bases are included in
Appendix A.

In the design of residual generators, the two main objectives are then:

1. Find Q(s) such that Q(s)M(s) = 0

2. Find Q(s) such that Q(s)
[
L(s)

0

]
has desired properties to ensure good

fault detectability properties.
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where the residual generator Q(s) is of least order. These two problems can
be solved by first finding all Q(s) ∈ Nl(M(s)) and then choosing within this
set of residual generators those who have good fault detectability properties.
Note that breaking up the problem in two independent steps is only permitted
if all Q(s) is found in the first step. Thus, in the first step of the design of the
residual generator Q(s) we never need to consider f or L(s). The first step can
be achieved by finding a basis for the rational vector-space Nl(M(s)).

2.2 Polynomial Bases for Rational Vector-spaces

A basis for a rational vector space follows notions from basic linear algebra.
For rational vector spaces, such as Nl(M(s)), it is perhaps natural to consider
rational matrices to represent its basis. However, among all bases for a given
rational vector space, certain bases are entirely polynomial which is showed in
Theorem 1.

Theorem 1. A polynomial basis exists for any rational vector-space F.

Proof. Let the rows of the rational matrix F (s) be a rational basis for F. Then,
for any y(s) ∈ F there exists a rational x(s) such that

y(s) = x(s)F (s)

Perform a left MFD over polynomial matrices on F (s), i.e. find polynomial
matrices N(s) and D(s) such that F (s) = D−1(s)N(s) and D(s) is a full-rank
square matrix. Then it holds that

y(s) = x(s)D−1(s)D(s)F (s) = x(s)D−1(s)N(s) = x̃(s)N(s)

i.e. the polynomial matrix N(s) is a basis for the rational vector-space F.

However, some caution is needed when an expression for all polynomial vectors
in a rational vector-space is needed.

Example 2.1
Let the rows of the matrix F (s) be a basis for the rational vector-space F.

F (s) =


s 1 0
0 1 −s
1 0 2




It is clear that it is a basis since det(F (s)) 6= 0, i.e. the matrix has full rank
and therefore are the rows linearly independent. It is also clear that the vector

u(s) =
[
1 0 0

] ∈ F

However, there exists no polynomial x(s) such that u(s) = x(s)F (s), rational
x(s) is needed.
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However, if the basis is irreducible, i.e. full rank for all s, then according to
Theorem 10 all polynomial vectors has polynomial co-efficients x(s). This is
important to note when a basis for all polynomial vectors in a space is used.
Other properties of vector spaces used in this thesis is found in Appendix A.

The use of bases ensures a simple parameterization of all residual generators,
which was one of the four main issues presented in the beginning of this chapter.
Also, finding residual generators of the least order (number of states) was stated
as an important issue. This makes minimal bases of particularly interesting. In
(Forney, 1975; Kailath, 1980) such minimal bases are defined.

Definition 1 (Minimal Polynomial Basis). Let F be a k-dimensional ra-
tional vector space. A minimal basis for F is a k × n matrix V (s) such that the
rows of V (s) is a basis for F and has the least order of all polynomial bases for
F.

The next section will assume that the general problem of finding NM (s) is
solved and focus on how this basis can be used to form a residual generator for
fault diagnosis. The problem of finding NM (s) is then revisited in Section 3
where a computationally simple, efficient, and numerically stable method from
established theory on linear systems, is presented.

2.3 Forming the Residual Generator

From now on, the basis NM (s) will always be a minimal polynomial basis unless
otherwise stated. When a minimal polynomial basis NM (s) have been obtained,
the second and final step in the residual generator design is to shape fault-to-
residual responses as described next.

The minimal polynomial basis NM (s) is, by Theorem 9, irreducible and
then, according to Theorem 10, all decoupling polynomial matrices F (s), i.e.
all polynomial matrices F (s) such that F (s)M(s) = 0, can be parameterized as

F (s) = φ(s)NM (s) (4)

where φ(s) is a polynomial matrix of suitable dimensions. This parameterization
matrix φ(s) can e.g. be used to shape the fault-to-residual response or simply
to select one row in NM (s).

When a decoupling polynomial matrix has been selected for implementation
to form a residual generator it must be made realizable since a polynomial
matrix represents an improper transfer matrix and thus not realizable. If the
decoupling polynomial matrix is F (s), then a realizable rational transfer matrix
Q(s), i.e. the residual generator, can be formed as

Q(s) = D−1
F (s)F (s) (5)

where the rows in the invertible polynomial matrix DF (s) has greater or equal
degree than the corresponding row-degree in F (s) (Theorem 6.3-12 in (Kailath,
1980)). The degree constraint is the only constraint on DF (s). This means that
the dynamics, i.e. poles, of the residual generator Q(s) can be chosen freely.
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This also means that the minimal order of a realization of a decoupling filter is
determined by the row-degrees of NM (s). This clearly shows that the order of
polynomial bases, as defined in Definition 7, is a suitable measure to minimize
when searching for residual generators of the least order. This since the row-
degrees of the basis directly gives the minimum order of the resulting residual
generator. Now follows a theorem that motivates the parameterization (5) and
shows that it is a parameterization that parameterizes all residual generators.

Theorem 2. For a rational matrix Q(s) it holds that Q(s)M(s) = 0 if and
only if it there exists polynomial matrices φ(s) and DF (s) such that

Q(s) = D−1
F (s)φ(s)NM (s)

where NM (s) is an irreducible basis for the left null-space of M(s).

Proof.
if part:
Assume that polynomial matrices φ(s) and DF (s) exists such that
Q(s) = D−1

F (s)φ(s)NM (s). Then

Q(s)M(s) = D−1
F (s)φ(s)NM (s)M(s) = D−1

F (s)φ(s)0 = 0

only-if part:
Now assume Q(s)M(s) = 0. Any rational Q(s) can always, via an MFD over
polynomial matrices, be rewritten as

Q(s) = D−1
F (s)NQ(s)

where DF (s) and NQ(s) are polynomial matrices. Then it holds that

DF (s)Q(s)M(s) = NQ(s)M(s) = 0

i.e. NQ(s) is a polynomial matrix in Nl(M(s)). According to Theorem 10, there
exists a polynomial matrix φ(s) such that NQ(s) = φ(s)NM (s). Now it is clear
that

Q(s) = D−1
F (s)φ(s)NM (s)

which ends the proof.

Therefore, any residual generator Q(s) can be expressed with the polynomial
matrices φ(s) and DF (s). To limit the solution to e.g. a stable and proper
solution for implementation, impose the degree constraint on DF (s) and select
poles in the left half-plane.

2.4 Approach Summary

The main advantage in viewing the disturbance decoupling problem as finding
a polynomial basis for the left null-space of M(s) is that issues regarding min-
imality, and whether the method finds all decoupling residual generators are
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naturally handled. All derivations above is performed in the continuous case.
However, the continuous case can be transferred to the time-discrete case by
substituting z for s and improper for non-causal.

The Minimal Polynomial Basis approach can be summarized by the following
steps:

1. Find a minimal polynomial basis for Nl(M(s)) denoted NM (s).

2. Select parameterization matrix φ(s) and DF (s) to shape residual-to-fault
response and obtain a proper residual generator Q(s) as

Q(s) = D−1
F (s)φ(s)NM (s)

Fault response is evaluated by studying the transfer matrix

Grf (s) = Q(s)
[
L(s)

0

]

Note that all freedom available is condensed into the two matrices DF (s) and
φ(s) that can be chosen arbitrarily except for the degree constraint on DF (s)
and stability restrictions if an implementable Q(s) is sought. It is clear that the
matrix formed by D−1

F (s)φ(s) can be selected, e.g. as a LP-filter, to filter out
measurement noise. If the designer has any prior knowledge on frequency distri-
bution of the faults, DF (s) and φ(s) can be used to emphasize these frequency
ranges.

3 Methods to find Minimal Polynomial Basis to
Nl(M(s))

The problem of finding a minimal polynomial basis to the left null-space of
the rational matrix M(s) can be solved by transforming the rational problem
to a problem of finding a minimal polynomial basis to the left null-space of a
polynomial matrix. This transformation can be done in several different ways.
In this section two possibilities are demonstrated, one that is useful when the
system models are available in input-output form (transfer matrices) and one
that is useful when the model is available in state-space form. Also included
is a description on how to compute a basis for the null-space of a polynomial
matrix.

3.1 Frequency Domain Solution

If the system model is given as a transfer matrix, a way of transforming the
rational problem to a polynomial problem is to perform a right MFD over poly-
nomial matrices on M(s), i.e.

M(s) = M̃1(s)D̃−1(s) (6)
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One simple example is

M(s) = M̃1(s)d−1(s)

where d(s) is the least common multiple of all denominators. By finding a
polynomial basis for the left null-space of the polynomial matrix M̃1(s), a basis
is also found for the left null-space of M(s). Since D̃(s) (e.g. d(s)) is square
and of full normal rank, i.e. the left null-space of D̃(s) is empty, it is clear that
no solutions are missed during the transformation. Thus the problem of finding
a minimal polynomial basis to Nl(M(s)) has been transformed into finding a
minimal polynomial basis to Nl(M̃1(s)).

3.2 State-Space Solution

If the system model is available in state-space form, it is desired to address
the problem directly with the state-space matrices instead of transforming the
model into an MFD as above. It is here showed that the system matrix in state-
space form (Rosenbrock, 1970) can be used to find the left null-space of M(s).
The system matrix has been used before in the context of fault diagnosis, see
e.g. (Nikoukhah, 1994; Magni and Mouyon, 1994).

Assume that the system is described in state-space form,

ẋ(t) = Ax(t) + Buu(t) + Bdd(t) (7a)
y(t) = Cx(t) + Duu(t) + Ddd(t) (7b)

where x is the n-dimensional state. Denote the system matrix Ms(s),

Ms(s) =
[

C Dd

−(sI − A) Bd

]

Define the matrix P as

P =
[
I −Du

0 −Bu

]

Then the following theorem gives a direct method on how to find a minimal
polynomial basis to Nl(M(s)) via the system matrix.

Theorem 3. Let V (s) be minimal polynomial basis for Nl(Ms(s)) and let the
pair {A, [Bu Bd]} be controllable. Then W (s) obtained as W (s) = V (s)P , is a
minimal polynomial basis for Nl(M(s)).

Before this theorem can be proved, a lemma is needed. Define transforma-
tions

W (s) = V (s)P (8)

V (s) = W1(s)[I C(sI − A)−1] (9)

where W (s) = [W1(s) W2(s)] and W1(s) is the first n (number of states) columns
in W (s).
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Lemma 4. Let the matrices W (s) and V (s) be related by the transformations
(8) and (9), and assume that the pair {A, [Bu Bd]} is controllable. Then, W (s)
is polynomial, irreducible, and W (s) ∈ Nl(M(s)) if and only if V (s) is polyno-
mial, irreducible, and V (s) ∈ Nl(Ms(s)).

Proof.
if-part

In the if-part of the proof it is assumed that V (s) is polynomial, irreducible,
and V (s) ∈ Nl(Ms(s)).

First consider the following relation between the matrices M(s) and Ms(s):

PM(s)
(

u
d

)
=

[
C(sI − A)−1Bu C(sI − A)−1Bd + Dd

−Bu 0

](
u
d

)
=

=
[

C Dd

−(sI − A) Bd

] [
(sI − A)−1Bu (sI − A)−1Bd

0 I

] (
u
d

)
=

= Ms(s)
(

x
d

)

If V (s)Ms(s) = 0, then since the signals u(t) and d(t) can be chosen arbitrarily,
W (s)M(s) must also be 0, i.e. W (s) ∈ Nl(M(s)). It is also immediate that if
V (s) is polynomial, W (s) = V (s)P is also polynomial.

Left to prove is that W (s) is irreducible which is done by contradiction. It
is clear that the following relation must hold:

V (s)[P Ms(s)] = V (s)
[
I −Du C Dd

0 −Bu −(sI − A) Bd

]
= [W (s) 0] (10)

Considering the matrix [P Ms(s)], if the system is controllable, then the PBH
rank test in Theorem 7 implies that the lower part of this matrix has full rank
for all s. The irreducibility of the lower row together with the shape of the
first block-column of [P Ms(s)] gives that the whole matrix is irreducible. Now
assume that W (s) is not irreducible, i.e. there is a s0 such that W (s0) does
not have full row-rank. This means that there exists a row-vector γ 6= 0 such
that γV (s0)[P Ms(s0)] = γ[W (s0) 0] = 0. Since [P Ms(s0)] has full row-rank it
must hold that γV (s0) = 0 and V (s) cannot be irreducible. This contradiction
implies that W (s) must be irreducible, which concludes the if-part of the proof.

only-if-part

In the only-if part of the proof it is assumed that W (s) is polynomial, irreducible,
and W (s) ∈ Nl(M(s)).

From transformation (9)

V (s)Ms(s) = W1(s)[I C(sI − A)−1]
[

C −Dd

−(sI − A) −Bd

]
=

= [0 W1(s)
( − Dd − C(sI − A)−1Bd

)
] = 0
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The last equality is because W1(s)H(s) = 0. This shows that V (s) ∈ Nl(Ms(s)).
Now, from the discussion in the if-part of the proof, it is clear that (10)

holds with [P Ms(s)] irreducible. Then from Theorem 8 it is clear that V (s) is
polynomial.

To show that V (s) is irreducible, assume that V (s) is not irreducible, i.e.
there exists a s0 such that V (s0) does not have full row-rank. This means that
there exists a row-vector γ 6= 0 such that γV (s0) = 0. Once again using (10)
gives

γ[W (s0) 0] = γV (s0)[P Ms(s0)] = 0

i.e. and γW (s0) = 0 which is a contradiction to the assumption that W (s) was
irreducible. This contradiction implies that V (s) must be irreducible, which
concludes the only if part and also the proof.

Now, return to the proof of Theorem 3.

Proof. Assume that the dimension of Nl(Ms(s)) is p. Then V (s) will have p
rows. A W (s) obtained from (8) will also have p rows. Further Lemma 4
implies that W (s) have full row rank and W (s)M(s) = 0, i.e. W (s) is a basis
for a p-dimensional space in the left null-space of M(s). Left to show is that
it is a basis for the whole null-space, i.e. that the dimension of Nl(M(s)) also
is p. Now assume that W (s) is not a basis for Nl(M(s)). This would mean
that dim Nl(M(s)) > p. In that case, let W ′(s) be a basis for Nl(M(s)) with
p′ > p rows, and obtain V ′(s) in accordance with (9). Lemma 4 implies that
V ′(s) would have full row rank and also that V ′(s)Ms(s) = 0. Since V ′(s) has
p′ > p rows, this would imply that dim Nl(Ms(s)) > p, which is a contradiction.
Therefore W (s) must be an irreducible (from Lemma 4) basis for Nl(M(s)).

The matrix W (s) is now proven to be a polynomial, irreducible basis for
Nl(M(s)). According to Theorem 9, the only thing left to prove is that the
basis W (s) is row-reduced. Partition V (s) = [V1(s) V2(s)] according to the
partition of Ms(s). Let

V1(s) = S1(s)V1,hr + q1(s)
V2(s) = S2(s)V2,hr + q2(s)

The matrices Si(s) is diagonal matrices with diagonal elements skij where kij is
the row-degrees of Vi(s). The constant matrices Vi,hr is the high-order coefficient
matrix and qi(s) is the rest polynomial. Since V (s) ∈ Nl(Ms(s)), it holds that
V1(s)C = V2(s)(sI − a), i.e.

S1(s)V1,hrC + q1(s)C = S2(s)V2,hr(sI − A) + q2(s)(sI − A)
= sS2(s)V2,hr + q̃2(s)

By identifying the highest order terms on each side it is immediate that sS2(s) =
S1(s), i.e. each row in V2(s) has lower degree than the corresponding row in
V1(s)C. It also holds that the row degrees in V1(s)C has less or equal row
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degrees than V1(s) since C is a constant matrix. Thus, the row degrees in V2(s)
has less degree than the corresponding row in V1(s). Since V (s) is a minimal
polynomial basis, it is row reduced. That is the high-order coefficient matrix
for V (s) has full row rank. From this follows that V1,hr has full row rank.

From the definition of P it follows that

[W1(s) W2(s)] = [V1(s) (−V1(s)Du − V2(s)Bu)]

From the degree discussion above it follows that the high-order coefficient matrix
of W (s) looks like Whr = [V1,hr ?], which obviously has full row-rank, i.e. W (s)
is row reduced. Thus we have shown that W (s) is an irreducible basis and
column reduced, which implies that it is a minimal polynomial basis.

In conclusion, as in the previous section, the problem of finding a minimal
polynomial basis to Nl(M(s)) has been transformed into finding an minimal
polynomial basis to a polynomial matrix, in this case the system matrix Ms(s).

3.3 Finding the minimal polynomial basis

Now the final problem is to find a minimal polynomial basis to a polynomial
matrix. It is noteworthy that, by inspection of (3), it holds that the dimension
(number of rows) of NM (s) is less or equal to m (number of measurements) with
equality when there are no disturbances. It is also immediate that the number
of independent disturbances that can be decoupled is limited to m − 1.

In the general case, no explicit expressions for the basis and/or the order of
the basis is available. However, the next section will discuss the case with no
disturbances where general statements are easily available. After this special
case, standard algorithms to extract the sought basis in the general case is
presented.

No Disturbance Case

If there are no disturbances, i.e. H(s) = 0, the matrix M(s) gets a simpler
structure

Mnd(s) =
[
G(s)

I

]
(11)

A minimal polynomial basis for the left null-space of Mnd(s) is particularly
simple due to the special structure and a minimal basis is then given directly
by the following theorem.

Theorem 5. If G(s) is a proper transfer matrix and D̄G(s), N̄G(s) form an
irreducible left MFD over polynomial matrices, i.e. N̄G(s) and D̄G(s) are left
co-prime polynomial matrices and G(s) = D̄−1

G (s)N̄G(s). Then,

NM (s) = [D̄G(s) − N̄G(s)] (12)
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form a minimal basis for the left null-space of the matrix

M(s) =
[
G(s)

I

]

Proof. The proof can be found in (Kailath, 1980).

Here, the dimension of the null-space is m, i.e. the number of measurements,
and the order of the minimal base is given by the following theorem.

Theorem 6. The set of observability indices of a transfer function G(s) is equal
to the set of row degrees of D̄G(s) in any row-reduced irreducible left MFD
G(s) = D̄−1

G (s)N̄G(s).

Proof. A proof of the dual problem, controllability indices, can be found in
(Chen, 1984) (p. 284).

Thus, a minimal polynomial basis for matrix Mnd(s) is given by a left MFD of
G(s) and the order of the basis is the sum of the observability indices of G(s).
Remark: The result (12) implies that finding the left null-space of the ratio-
nal transfer matrix (3), in the general case with disturbances included, can be
reduced to finding the left null-space of the rational matrix

M̃2(s) = D̄G(s)H(s) (13)

Therefore, this is an alternative to the use of the matrix M̃1(s) in (6). This
view closely connects with the so called frequency domain methods, which are
further examined in Section 4.

Finding a Minimal Polynomial Basis to a General Polyno-
mial Matrix

For the general case, including disturbances, the only remaining problem is how
to find a minimal polynomial basis to a general polynomial matrix. This is a
well-known problem in literature on linear systems and a number of different
algorithms exist. In this chapter, two algorithms will be presented. The first is
based on the Hermite form (Kailath, 1980) and a second algorithm is based on
the polynomial echelon form (Kailath, 1980). Both methods are implemented
in the Polynomial Toolbox (Henrion et al., 1997) for Matlab.

The two algorithms have very different numerical properties. Although the
algorithm based on Hermite form is easy to understand, simulations have shown
it to be numerically unstable. It is included to gain some basic understanding
of the problem. However the algorithm based on polynomial echelon form is
both fast and numerically stable and should be the preferred choice.
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The Hermite Form Algorithm

Any polynomial matrix can be transformed into column Hermite form by ele-
mentary row operations. Assume M(s) is a p × q matrix. Then there exists a
p × p, unimodular matrix U(s) = [UT

1 (s) UT
2 (s)]T such that[

U1(s)
U2(s)

]
M(s) =

[
R(s)

0

]
where R(s) is a (p − r) × q matrix and r is the normal rank of M(s). The,
non-unique, matrix U(s) can be found e.g. as described in Theorem 6.3-2 in
(Kailath, 1980). The last r rows in U(s), i.e. U2(s), thus spans the left null-space
of M(s). The matrix U2(s) is irreducible because U(s) is unimodular. U2(s) is
however not necessary row-reduced, i.e. U2(s) is not necessarily a minimal basis.
However, U2(s) can be made row-reduced by elementary row operations. This
is best illustrated with an example that shows the main idea and also illustrates
how the minimality property is connected with the row-reduced property.

Example 3.2
Consider the polynomial matrix M(s) with rank r = 2

M(s) =




1 0 −s
0 s3 + 2s2 + s s3 + 2s2 + s
s s3 + 2s2 + s s3 + s2 + s
s2 0 −s3




The column Hermite form of M(s) is


1 0 0 0
0 1 0 0
−s −1 1 0
−s2 0 0 1


M(s) =



1 0 −s
0 s + 2s2 + s3 s + 2s2 + s3

0 0 0
0 0 0




Here, the last two rows of U(s) form a basis for the left null-space of H(s) and
is denoted F (s).

F (s) =
[ −s −1 1 0
−s2 0 0 1

]
The matrix F (s) is obviously irreducible, it is however not row-reduced because
the high-coefficient matrix Fhr

Fhr =
[−1 0 0 0
−1 0 0 0

]
is not of full rank. However, by multiplication from the left with a suitably
chosen unimodular matrix, F (s) can be made row-reduced. General algo-
rithms to find the unimodular matrix making F (s) row-reduced is available,
e.g. (Callier, 1985). In the example above,[−1 0

−s 1

]
F (s) =

[
s 1 −1 0
0 s −s 1

]
= Fmin(s)
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The matrix Fmin(s) is both irreducible and row-reduced, and accordingly to
Theorem 9, it is a minimal basis for the left null-space.

The Polynomial Echelon Form Algorithm

The polynomial echelon form method is described in (Kailath, 1980; Kung,
Kailath and Morf, 1977). Now follows a very brief description of the algorithm
to illustrate the algorithm usage and computational complexity.

Consider the polynomial equation

F (s)M(s) = 0 (14)

Assume that the polynomial basis F (s) is in the canonical polynomial echelon
form. This assumption is not restrictive since all full row rank polynomial
matrices can be transformed to polynomial echelon form by elementary row
operations, i.e. by multiplication from the left with a unimodular matrix. The
left hand side of (14) can be rewritten as

F (s)M(s) = (F0 + F1s + . . . Fνsν)M(s) = [F0 . . . Fν ]




M(s)
sM(s)

...
sνM(s)


 = F̃M(s)

which also defines M(s) and the coefficient matrix F̃ . The order ν is not
known a priori but is limited to ν ≤ (p − 1) degM(s) (Henrion et al., 1997),
where degM(s) denotes the maximum row (and column) degree of M(s). By
examining the rows of M(s), from top to bottom, the rows can be classified
as independent rows or dependent rows. Independent and dependent rows can
equally well be determined from the coefficient matrix M̃. (The matrix M̃ is
known as the Generalized Resultant matrix of M(s).)

Since F (s) is in polynomial echelon form, the rows of F̃ must define a set of
primary dependent rows in M(s). Of all sets of primary dependent rows, the
set defined by F̃ must be of minimal order, i.e. there is no other set of primary
dependent rows, containing the same number of rows and with lower degrees.

Each set of primary dependent rows spans a subspace of Nl(M(s)). There-
fore, since F (s) spans the whole left null-space of M(s), the set of primary
dependent rows defined by F̃ , must be of largest possible size.

With these statements in mind, we know that the matrix F̃ , and also F (s),
can be found by searching, from top to bottom, in M̃ for the largest upper-
most set of primary dependent rows. The search for primary dependent rows
in M̃ can be performed by using elimination methods or projection methods.
Projection methods are a better choice since they are more numerically stable
(Kung et al., 1977). See also Section 3.3 for further elaborations on this topic.

It has been assumed that the search for primary dependent rows is performed
in such a way that a canonical polynomial echelon form is obtained. In this way,
the minimal basis obtained will be unique. For most purposes, this uniqueness
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is not important, which makes it sufficient to perform the row search such that
a quasi-canonical polynomial echelon form is obtained.

When performing the search for primary dependent rows, it is important
to know when to stop. There are two possibilities. The first is that we know
the rank of M(s). Then the largest set of primary dependent rows will contain
p − rankM(s) rows. The other possibility is to use ν = (p − 1) degM(s) when
constructing the matrix M(s). Then the set of primary dependent rows of
minimal order must be contained in M(s). Now follows an example to illustrate
the calculation procedure.

Example 3.3
Consider the matrix

M(s) =




s4 + 2s3 − 5s − 4 2s3 + 2s2 − 2s − 8
−s4 + 7s3 + 7s2 + 14s + 6 −2s4 − 5s3 + s2 + 3s

−2s3 − s2 − 17s− 9 2s4 + 3s3 − s2 − s − 2
2s4 + 3s3 − s2 − 9s − 4 0

0 2s4 + 3s3 − s2 − 9s − 4




which has rank 2. We will try to use the polynomial echelon form algorithm
with ν = 2. Then the coefficient matrix M̃ becomes

M̃ =




−4 −8 −5 −2 0 2 2 2 1 0 0 0 0 0
6 0 14 3 7 1 7 −5 −1 −2 0 0 0 0

−9 −2 −17 −1 −1 −1 −2 3 0 2 0 0 0 0
−4 0 −9 0 −1 0 3 0 2 0 0 0 0 0

0 −4 0 −9 0 −1 0 3 0 2 0 0 0 0
0 0 −4 −8 −5 −2 0 2 2 2 1 0 0 0
0 0 6 0 14 3 7 1 7 −5 −1 −2 0 0
0 0 −9 −2 −17 −1 −1 −1 −2 3 0 2 0 0
0 0 −4 0 −9 0 −1 0 3 0 2 0 0 0
0 0 0 −4 0 −9 0 −1 0 3 0 2 0 0
0 0 0 0 −4 −8 −5 −2 0 2 2 2 1 0
0 0 0 0 6 0 14 3 7 1 7 −5 −1 −2
0 0 0 0 −9 −2 −17 −1 −1 −1 −2 3 0 2
0 0 0 0 −4 0 −9 0 −1 0 3 0 2 0
0 0 0 0 0 −4 0 −9 0 −1 0 3 0 2




By searching from the top to the bottom, we find that row 8, 9, 13, 14 and 15
are dependent. Of these, row 8, 9 and 15 is the largest set of primary dependent
row with least order. The number of rows in this set is 3 which corresponds to
the dimension of the null-space which means that we do not have to consider
any other dependent rows. These primary dependent rows are defined by

F̃ =


 0 1 2 −3 −1 1 1 1 0 0 0 0 0 0 0

−1 0 0 1 2 −2 0 0 1 0 0 0 0 0 0
−3 −5 −6 9 9 −10 −1 0 0 −1 1 1 0 0 1
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The corresponding polynomial matrix F (s) in polynomial echelon form is

F (s) =


 s s + 1 s + 2 −3 −1

−2s− 1 0 0 s + 1 2
s2 − 10s − 3 s2 − s − 5 −6 9 s2 − s + 9




which is also a minimal polynomial basis for the left null-space of M(s).

Numerical Considerations

The two algorithms presented in this section have very different numerical prop-
erties. Although the algorithm based on Hermite form is easy to understand,
no (to the authors knowledge) numerically stable algorithm exists. Simula-
tions have shown that the algorithm to make the basis row-reduced, proposed
in (Callier, 1985) and implemented in (Henrion et al., 1997), is numerically
unstable.

On the other hand, the algorithm based on polynomial echelon form is both
fast and numerically stable. The critical step in the algorithm is the search for
primary dependent rows in the matrix M̃. The search for dependent rows can
be performed by using a numerically stable projection algorithm described in
(Chen, 1984), p. 546. First transform M̃ to lower triangular form by multipli-
cation from the right with a matrix L. The matrix L is obtained by a series of
numerically stable Householder transformations ((Golub and van Loan, 1996),
Chapter 5). Now the matrix that defines the dependent rows, is easily obtained
by solving for A in the equation

AM̃L = 0

Since M̃L is lower triangular, A can be obtained by straightforward, numeri-
cally stable substitutions (Chen, 1984). This algorithm is implemented in the
Polynomial Toolbox, (Henrion et al., 1997) and from simulations the algorithm
was validated to be numerically stable.

4 Relation to Other Residual Generator Design
Methods

This section discusses the relation between the approach described in this chap-
ter and two other design methods for linear residual generation. Also the relation
to the concept of parity functions, although not a design method, is covered.
It is interesting to find that the questions of minimality and completeness of
solution is not at all obvious for other design methods for residual generation.

4.1 Parity Equations

Several interpretations of the terms parity equations (or parity relations) and
parity functions exist in the fault diagnosis literature. To clarify the meaning
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here, we use the terms polynomial parity equation and polynomial parity func-
tions, which are the type of parity equations/functions defined in (Chow and
Willsky, 1984).

The definition of polynomial parity functions becomes

Definition 2 (Polynomial Parity Function). A polynomial parity function
is a function h(u(t), y(t)) that can be written as

h(u(t), y(t)) = A(s)y(t) + B(s)u(t)

where A(s) and B(s) are polynomial vectors (or matrices if multidimensional
parity functions are considered) in s. The value of the function is zero if no
faults are present.

A polynomial parity equation is then a polynomial parity function set to zero,
i.e. h(u(t), y(t)) = 0.
Remark: Parity equations that are not polynomial are often mentioned in the lit-
erature: e.g. ARMA parity equations (Gertler, 1991), dynamic parity relations
(Gertler and Monajemy, 1995). In accordance with standard mathematical no-
tion, these should be called rational parity equations. A rational parity function
is then identical with a linear residual generator.

Parity equations/functions are not a design method; it is solely equations-
/functions with specific properties. Nevertheless there is a strong relationship
between the minimal polynomial approach and polynomial parity functions.
For any choice of φ(s) in (4), F (s) will be a parity function. Thus the minimal
polynomial basis approach to residual generator design is then a design method
for polynomial parity functions.

Another well known algorithm for finding parity relations is the Chow-
Willsky scheme (Gertler, 1991). It is shown by example in (Frisk, 1998) that in
a numerically demanding design situation, the basic Chow-Willsky approach en-
counters severe numerical problems whereas the minimal polynomial produces
a feasible solution which indicates numerical soundness of the method. Rela-
tions to the Chow-Willsky scheme are addressed in more detail in (Nyberg and
Frisk, 1999).

4.2 Frequency Domain Approaches

A number of design methods described in literature are called Frequency Domain
Methods where the residual generators are designed with the help of different
transfer matrix factorization techniques. Examples are (Frank and Ding, 1994)
for the general case with disturbances and (Ding and Frank, 1990; Viswanad-
ham, Taylor and Luce, 1987) in the non-disturbance case. The methods can be
summarized as methods where the residual generator is parameterized as

r = R(s)[D̃(s) − Ñ(s)]
(

y
u

)
= R(s)(D̃(s)y − Ñ(s)u) (15)
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where D̃(s) and Ñ(s) form a left co-prime factorization of G(s) over RH∞, i.e.
the space of stable real-rational transfer matrices. Note the close relationship
with (12) where the factorization is performed over polynomial matrices instead
of over RH∞.

Inserting (2) into (15) and, as before, assuming f = 0, gives

r = R(s)D̃(s)H(s)d

Therefore to achieve disturbance decoupling, the parameterization transfer ma-
trix R(s), must be belong to the left null-space of D̃(s)H(s), i.e.

R(s)D̃(s)H(s) = 0

Here, note the close connection with M̃2(s) in (13). This solution however
does not generally generate a minimum order residual generator. In (Ding and
Frank, 1990) and (Frank and Ding, 1994), the co-prime factorization is per-
formed via a minimal state-space realization of the complete system, including
the disturbances as in (7). This results in D̃(s) and Ñ(s) of order n that in the
general case is larger than the minimal order of decoupling filters. Thus, to find a
basis of lowest order that spans all residual generators Q(s) = R(s)[D̃(s) −Ñ(s)]
extra care is required since “excess” states need to be canceled. Note that the
polynomial basis approach on the other hand, has no need for cancelations and
is in this sense more elegant.

5 Conclusions

An algorithm for design of residual generators has been developed with focus
on two main issues, not explicitly addressed previously in connection with fault
diagnosis, completeness of solution, i.e. a method able to generate all residual
generators, and minimality, i.e. a method generating solutions where those
of minimal order is trivially extracted from the algorithm output. Other well
known design algorithms is explored regarding these properties and it is found
that completeness of solution and minimality is not obvious for these design
methods.

To be able to deal with these two issues, the residual generation problem
was, in Section 2, transformed into finding a minimal polynomial basis for a
rational null-space. The completeness of solution was handled in the polynomial
framework and proven in Theorem 2. Also, the use of minimal bases assures
that minimal-order residual generators are trivially extracted from the output
of the algorithm.

An important step in the algorithm is the transformation from a rational
problem into a polynomial problem, i.e. to find the left null-space of a polyno-
mial matrix instead of a rational matrix. The transformation was done in two
cases: when the system model was given in transfer function form and when the
system model was given in state-space form. In the former case, the transfor-
mation consists of an MFD and in the latter it was proven in Theorem 3 that a
polynomial matrix, the system matrix, can be used for this purpose.
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Further, the importance of a numerically stable design algorithm is handled
by utilizing established numerical theory and existing numerical tools.

In conclusion, a residual generator design algorithm has been developed
where all residual generators, including those of minimal order, can be sys-
tematically constructed with numerically efficient tools.
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A Useful Properties from Linear Systems The-

ory

This appendix is included to serve as a compilation of definitions, theorems, and
basic properties of linear systems, polynomial matrices, and polynomial bases
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used in this thesis. Books describing these matters in detail are e.g. (Kailath,
1980) for a control oriented view, and (Lancaster and Tismenetsky, 1985) for a
purely mathematical view.

A.1 Properties of Linear Systems

Theorem 7 (PBH Rank Test (Kailath, 1980) p. 136). A pair {A, B} will
be controllable if and only if the matrix

[sI − A B] has rank n for all s

A.2 Properties of Polynomial Matrices

To avoid unnecessary misunderstandings: a polynomial matrix, which in some
literature is called matrix polynomials (Lancaster and Tismenetsky, 1985), is
any matrix F (s) where the individual elements are scalar polynomials in s.
Here, the co-efficients in the polynomials will always be real.

Definition 3 (Normal Rank). The (normal) rank of a polynomial matrix
F (s) is the largest rank F (s) has for any s ∈ C.

Sometimes the word normal is omitted, when the text only says rank it is
always meant normal rank.

Definition 4 (Row-reduced Matrix). Consider a polynomial matrix F (s)
with row-degrees µi. It is always possible to write

F (s) = S(s)Dhc + L(s)

where

S(s) = diag{sµi , i = 1, . . . , m}
Dhc = the highest-row-degree coefficient matrix
L(s) = the remaining term with row-degrees strictly less than those of F(s)

A full row rank matrix F (s) is said to be row-reduced if its leading row-coefficient
matrix has full row rank.

Definition 5 (Irreducible and Unimodular Matrices). A polynomial ma-
trix F (s) is said to be irreducible if it has full rank for all finite s. If F (s) is
irreducible and square it is said to be unimodular. A unimodular matrix has a
unimodular inverse.

Theorem 8 (Polynomial Solutions to Polynomial Equations (Kailath, 1980)).
Let F (s) be a full row rank polynomial matrix, and let p(s) be a given polynomial
vector. Then the equation

q(s)F (s) = p(s)

will have a polynomial solution if and only if F (s) is irreducible.
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A.3 Properties of Polynomial Bases

Definition 6 (Degree of a Polynomial Vector). The degree of a polynomial
vector is the highest degree of all the entries of the vector. If the vector is a row-
vector, it is called row-degree.

Definition 7 (Order of a Polynomial Basis). Consider a polynomial basis
F (s) with row-degrees µi. Then the order of the basis is defined as

order(F (s)) =
∑

i

µi

Theorem 9 (Minimal Bases). Consider a full row (normal) rank polynomial
matrix F (s). Then the following statements are equivalent

• The rows of F (s) form a minimal basis for the rational vector space they
generate.

• F (s) is row-reduced and irreducible.

• F (s) has minimal order.

Theorem 10 (Irreducible Basis). If the rows of F (s) is an irreducible poly-
nomial basis for a space F, then all polynomial row vectors f(s) ∈ F can be
written f(s) = φ(s)F (s) where φ(s) is a polynomial row vector.

Proof. Since F (s) is a basis, all f(s) ∈ F can be written f(s)g(s) = φ(s)F (s).
For each root α of g(s) it holds that

f(α)g(α) = φ(α)F (α) = 0

Since F (s) is irreducible, it has full row rank for all s and in particular s = α.
This implies that φ(α) = 0, i.e. all roots of g(s) are also roots of φ(s). Thus
φ(s) can be factorized as φ(s) = g(s)φ̄(s) and

f(s)g(s) = g(s)φ̄(s)F (s)

This implies

f(s) = φ̄(s)F (s)
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