
I.7 A General Existence Theorem

M. Cauchy annonce, que, pour se conformer au voeu du Conseil,
il ne s’attachera plus à donner, comme il a fait jusqu’à présent, des
démonstrations parfaitement rigoureuses.

(Conseil d’instruction de l’Ecole polytechnique, 24 nov. 1825)

You have all professional deformation of your minds; convergence
does not matter here ... (P. Henrici 1985)

We now enter a new era for our subject, more theoretical than the preceding one. It
was inaugurated by the work of Cauchy, who was not as fascinated by long numer-
ical calculations as was, say, Euler, but merely a fanatic for perfect mathematical
rigor and exactness. He criticized in the work of his predecessors the use of infinite
series and other infinite processes without taking much account of error estimates
or convergence results. He therefore established around 1820 a convergence the-
orem for the polygon method of Euler and, some 15 years later, for the power
series method of Newton (see Section I.8). Beyond the estimation of errors, these
results also allow the statement of general existence theorems for the solutions of
arbitrary differential equations (“d’une équation différentielle quelconque”), whose
solutions were only known before in a very few cases. A second important conse-
quence is to provide results about the uniqueness of the solution, which allow one
to conclude that the computed solution (numerically or analytically) is the only one
with the same initial value and that there are no others. Only then we are allowed
to speak of the solution of the problem.

His very first proof has recently been discovered on fragmentary notes (Cauchy
1824), which were never published in Cauchy’s lifetime (did his notes not satisfy
the Minister of education?: “ . . . mais que le second professeur, M. Cauchy, n’a
présenté que des feuilles qui n’ont pu satisfaire la commission, et qu’il a été jusqu’à
présent impossible de l’amener à se rendre au voeu du Conseil et à exécuter la
décision du Ministre”).

Convergence of Euler’s Method

Let us now, with bared head and trembling knees, follow the ideas of this historical
proof. We formulate it in a way which generalizes directly to higher dimensional
systems.

Starting with the one-dimensional differential equation

y′ = f(x, y), y(x0) = y0, y(X) =? (7.1)

we make use of the method explained by Euler (1768) in the last section of his “In-
stitutiones Calculi Integralis I” (Caput VII, p. 424), i.e., we consider a subdivision
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of the interval of integration

x0, x1, . . . , xn−1, xn = X (7.2)

and replace in each subinterval the solution by the first term of its Taylor series

y1 − y0 = (x1 −x0)f(x0, y0)

y2 − y1 = (x2 −x1)f(x1, y1)

. . .

yn − yn−1 = (xn −xn−1)f(xn−1, yn−1).

(7.3)

For the subdivision above we also use the notation

h = (h0, h1, . . . , hn−1)

where hi =xi+1 −xi . If we connect y0 and y1, y1 and y2, . . . etc by straight lines
we obtain the Euler polygon

yh(x) = yi + (x−xi)f(xi, yi) for xi ≤ x ≤ xi+1. (7.3a)

Lemma 7.1. Assume that |f | is bounded by A on

D =
{

(x, y) | x0 ≤ x ≤ X, |y− y0| ≤ b
}
.

If X −x0 ≤ b/A then the numerical solution (xi, yi) given by (7.3), remains in D
for every subdivision (7.2) and we have

|yh(x)− y0| ≤ A · |x−x0|, (7.4)∣∣∣yh(x)−
(
y0 + (x−x0)f(x0, y0)

)∣∣∣≤ ε · |x−x0| (7.5)

if |f(x, y)− f(x0, y0)| ≤ ε on D.

Proof. Both inequalities are obtained by adding up the lines of (7.3) and using the
triangle inequality. Formula (7.4) then shows immediately that for A(x−x0) ≤ b
the polygon remains in D .

Our next problem is to obtain an estimate for the change of yh(x) , when the
initial value y0 is changed: let z0 be another initial value and compute

z1 − z0 = (x1 −x0)f(x0, z0). (7.6)

We need an estimate for |z1 − y1| . Subtracting (7.6) from the first line of (7.3) we
obtain

z1 − y1 = z0 − y0 + (x1 −x0)
(
f(x0, z0)− f(x0, y0)

)
.

This shows that we need an estimate for f(x0, z0)− f(x0, y0) . If we suppose

|f(x, z)− f(x, y)| ≤ L|z− y| (7.7)
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we obtain
|z1 − y1| ≤

(
1 + (x1 −x0)L

)|z0 − y0|. (7.8)

Lemma 7.2. For a fixed subdivision h let yh(x) and zh(x) be the Euler polygons
corresponding to the initial values y0 and z0 , respectively. If∣∣∣∂f

∂y
(x, y)

∣∣∣≤ L (7.9)

in a convex region which contains (x, yh(x)) and (x, zh(x)) for all x0 ≤ x ≤ X ,
then

|zh(x)− yh(x)| ≤ eL(x−x0)|z0 − y0|. (7.10)

Proof. (7.9) implies (7.7), (7.7) implies (7.8), (7.8) implies

|z1 − y1| ≤ eL(x1−x0)|z0 − y0|.
If we repeat the same argument for z2 − y2 , z3 − y3 , and so on, we finally obtain
(7.10).

Remark. Condition (7.7) is called a “Lipschitz condition”. It was Lipschitz (1876)
who rediscovered the theory (footnote in the paper of Lipschitz: “L’auteur ne
connaı̂t pas évidemment les travaux de Cauchy . . .”) and advocated the use of (7.7)
instead of the more stringent hypothesis (7.9). Lipschitz’s proof is also explained
in the classical work of Picard (1891-96), Vol. II, Chap. XI, Sec. I.

If the subdivision (7.2) is refined more and more, so that

|h| := max
i=0,...,n−1

hi → 0,

we expect that the Euler polygons converge to a solution of (7.1). Indeed, we have

Theorem 7.3. Let f(x, y) be continuous, and |f | be bounded by A and satisfy the
Lipschitz condition (7.7) on

D =
{

(x, y) | x0 ≤ x ≤ X, |y− y0| ≤ b
}
.

If X −x0 ≤ b/A , then we have:

a) For |h| → 0 the Euler polygons yh(x) converge uniformly to a continuous
function ϕ(x) .

b) ϕ(x) is continuously differentiable and solution of (7.1) on x0 ≤ x ≤ X .

c) There exists no other solution of (7.1) on x0 ≤ x ≤ X .

Proof. a) Take an ε > 0 . Since f is uniformly continuous on the compact set D ,
there exists a δ > 0 such that

|u1 −u2| ≤ δ and |v1 − v2| ≤ A · δ
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imply
|f(u1, v1)− f(u2, v2)| ≤ ε. (7.11)

Suppose now that the subdivision (7.2) satisfies

|xi+1 −xi| ≤ δ, i.e., |h| ≤ δ. (7.12)

We first study the effect of adding new mesh-points. In a first step, we consider a
subdivision h(1) , which is obtained by adding new points only to the first subin-
terval (see Fig. 7.1). It follows from (7.5) (applied to this first subinterval) that for
the new refined solution yh(1)(x1) we have the estimate |yh(1)(x1)− yh(x1)| ≤
ε|x1 −x0| . Since the subdivisions h and h(1) are identical on x1 ≤ x ≤ X we
can apply Lemma 7.2 to obtain

|yh(1)(x)− yh(x)| ≤ eL(x−x1)(x1 −x0)ε for x1 ≤ x ≤ X.

We next add further points to the subinterval (x1, x2) and denote the new subdi-
vision by h(2) . In the same way as above this leads to |yh(2)(x2)− yh(1)(x2)| ≤
ε|x2 −x1| and

|yh(2)(x)− yh(1)(x)| ≤ eL(x−x2)(x2 −x1)ε for x2 ≤ x ≤ X.

The entire situation is sketched in Fig. 7.1. If we denote by ĥ the final refinement,
we obtain for xi < x ≤ xi+1

|y
ĥ
(x)− yh(x)| (7.13)

≤ ε
(
eL(x−x1)(x1 −x0) + . . .+ eL(x−xi)(xi −xi−1)

)
+ ε(x−xi)

≤ ε

∫ x

x0

eL(x−s) ds =
ε

L

(
eL(x−x0) − 1

)
.

If we now have two different subdivisions h and h̃ , which both satisfy (7.12), we
introduce a third subdivision ĥ which is a refinement of both subdivisions (just as
is usually done in proving the existence of Riemann’s integral), and apply (7.13)
twice. We then obtain from (7.13) by the triangle inequality

|yh(x)− y
h̃
(x)| ≤ 2

ε

L

(
eL(x−x0) − 1

)
.

For ε > 0 small enough, this becomes arbitrarily small and shows the uniform
convergence of the Euler polygons to a continuous function ϕ(x) .

b) Let

ε(δ) := sup
{∣∣f(u1, v1)−f(u2, v2)

∣∣ ; |u1−u2|≤ δ, |v1−v2|≤Aδ, (ui, vi)∈D
}

be the modulus of continuity. If x belongs to the subdivision h then we obtain
from (7.5) (replace (x0, y0) by (x, yh(x)) and x by x + δ )

|yh(x + δ)− yh(x)− δf
(
x, yh(x)

)| ≤ ε(δ)δ. (7.14)
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Fig. 7.1. Lady Windermere’s Fan (O. Wilde 1892)

Taking the limit |h| → 0 we get

|ϕ(x + δ)−ϕ(x)− δf
(
x, ϕ(x)

)| ≤ ε(δ)δ. (7.15)

Since ε(δ) → 0 for δ → 0 , this proves the differentiability of ϕ(x) and ϕ′(x) =
f(x, ϕ(x)) .

c) Let ψ(x) be a second solution of (7.1) and suppose that the subdivision h

satisfies (7.12). We then denote by y
(i)
h (x) the Euler polygon to the initial value

(xi, ψ(xi)) (it is defined for xi ≤ x ≤ X ). It follows from

ψ(x) = ψ(xi) +
∫ x

xi

f
(
s, ψ(s)

)
ds

and (7.11) that

|ψ(x)− y
(i)
h (x)| ≤ ε|x−xi| for xi ≤ x ≤ xi+1.

Using Lemma 7.2 we deduce in the same way as in part a) that

|ψ(x)− yh(x)| ≤ ε

L

(
eL(x−x0) − 1

)
. (7.16)

Taking the limits |h|→ 0 and ε→ 0 we obtain |ψ(x)−ϕ(x)|≤0 , proving unique-
ness.

Theorem 7.3 is a local existence - and uniqueness - result. However, if we
interpret the endpoint of the solution as a new initial value, we can apply Theorem
7.3 again and continue the solution. Repeating this procedure we obtain

Theorem 7.4. Assume U to be an open set in R2 and let f and ∂f/∂y be con-
tinuous on U . Then, for every (x0, y0)∈U , there exists a unique solution of (7.1),
which can be continued up to the boundary of U (in both directions).
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Proof. Clearly, Theorem 7.3 can be rewritten to give a local existence - and unique-
ness - result for an interval (X, x0) to the left of x0 . The rest follows from the
fact that every point in U has a neighbourhood which satisfies the assumptions of
Theorem 7.3.

It is interesting to mention that formula (7.13) for |ĥ| → 0 gives the following
error estimate

|y(x)− yh(x)| ≤ ε

L

(
eL(x−x0) − 1

)
(7.17)

for the Euler polygon (|h| ≤ δ) . Here y(x) stands for the exact solution of (7.1).
The next theorem refines the above estimates for the case that f(x, y) is also dif-
ferentiable with respect to x .

Theorem 7.5. Suppose that in a neighbourhood of the solution

|f | ≤ A,
∣∣∣∂f

∂y

∣∣∣≤ L,
∣∣∣∂f

∂x

∣∣∣≤ M.

We then have the following error estimate for the Euler polygons:∣∣y(x)− yh(x)
∣∣≤ M +AL

L

(
eL(x−x0) − 1

)
· |h|, (7.18)

provided that |h| is sufficiently small.

Proof. For |u1 −u2| ≤ |h| and |v1 − v2| ≤ A|h| we obtain, due to the differentia-
bility of f , the estimate

|f(u1, v1)− f(u2, v2)| ≤ (M +AL)|h|
instead of (7.11). When we insert this amount for ε into (7.16), we obtain the
stated result.

The estimate (7.18) shows that the global error of Euler’s method is propor-
tional to the maximal step size |h| . Thus, for an accuracy of, say, three decimal
digits, we would need about a thousand steps; a precision of six digits will normally
require a million steps etc. We see thus that the present method is not recommended
for computations of high precision. In fact, the main subject of Chapter II will be
to find methods which converge faster.
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Existence Theorem of Peano

Si a est un complexe d’ordre n , et b un nombre réel, alors on peut
déterminer b′ et f , où b′ est une quantité plus grande que b , et
f est un signe de fonction qui à chaque nombre de l’intervalle de
b à b′ fait correspondre un complexe (en d’autres mots, ft est un
complexe fonction de la variable réelle t , définie pour toutes les
valeurs de l’intervalle (b, b′) ); la valeur de ft pour t = b est a ; et
dans tout l’intervalle (b, b′) cette fonction ft satisfait à l’équation
différentielle donnée. (Original version of Peano’s Theorem)

The Lipschitz condition (7.7) is a crucial tool in the proof of (7.10) and finally
of the Convergence Theorem. If we completely abandon condition (7.7) and only
require that f(x, y) be continuous, the convergence of the Euler polygons is no
longer guaranteed.

An example, plotted in Fig. 7.2, is given by the equation

y′ = 4
(
sign (y)

√
|y|+ max

(
0, x− |y|

x

)
· cos

(π log x

log 2

))
(7.19)

with y(0) = 0 . It has been constructed such that

f(h, 0) = 4(−1)ih for h = 2−i,

f(x, y) = 4 sign(y) ·
√
|y| for |y| ≥ x2.

h=1/2

h=1/4

h=1/8

h=1/16

h=1/32

h=1/64

Fig. 7.2. Solution curves and Euler polygons for equation (7.19)
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There is an infinity of solutions for this initial value, some of which are plotted
in Fig. 7.2. The Euler polygons converge for h = 2−i and even i to the maximal
solution y = 4x2 , and for odd i to y = −4x2 . For other sequences of h all inter-
mediate solutions can be obtained as well.

Theorem 7.6 (Peano 1890). Let f(x, y) be continuous and |f | be bounded by A
on

D =
{

(x, y) | x0 ≤ x ≤ X, |y− y0| ≤ b
}
.

If X−x0 ≤ b/A , then there is a subsequence of the sequence of the Euler polygons
which converges to a solution of the differential equation.

The original proof of Peano is, in its crucial part on the convergence result, very
brief and not clear to unexperienced readers such as us. Arzelà (1895), who took
up the subject again, explains his ideas in more detail and emphasizes the need for
an equicontinuity of the sequence. The proof usually given nowadays (for what has
become the theorem of Arzelà-Ascoli), was only introduced later (see e.g. Perron
(1918), Hahn (1921), p. 303) and is sketched as follows:

Proof. Let
v1(x), v2(x), v3(x), . . . (7.20)

be a sequence of Euler polygons for decreasing step sizes. It follows from (7.4)
that for fixed x this sequence is bounded. We choose a sequence of numbers
r1, r2, r3, . . . dense in the interval (x0, X) . There is now a subsequence of (7.20)
which converges for x = r1 (Bolzano-Weierstrass), say

v
(1)
1 (x), v(1)

2 (x), v(1)
3 (x), . . . (7.21)

We next select a subsequence of (7.21) which converges for x = r2

v
(2)
1 (x), v(2)

2 (x), v(2)
3 (x), . . . (7.22)

and so on. Then take the “diagonal” sequence

v
(1)
1 (x), v(2)

2 (x), v(3)
3 (x), . . . (7.23)

which, apart from a finite number of terms, is a subsequence of each of these se-
quences, and thus converges for all ri . Finally, with the estimate

|v(n)
n (x)− v(n)

n (rj)| ≤ A|x− rj|
(see (7.4)), which expresses the equicontinuity of the sequence, we obtain

|v(n)
n (x)− v(m)

m (x)|
≤ |v(n)

n (x)− v(n)
n (rj)|+ |v(n)

n (rj)− v(m)
m (rj)|+ |v(m)

m (rj)− v(m)
m (x)|

≤ 2A|x− rj|+ |v(n)
n (rj)− v(m)

m (rj)|.
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For fixed ε > 0 we then choose a finite subset R of {r1, r2, . . .} satisfying

min{|x− rj| ; rj ∈ R, x0 ≤ x ≤ X} ≤ ε/A

and secondly we choose N such that

|v(n)
n (rj)− v(m)

m (rj)| ≤ ε for n, m ≥ N and rj ∈ R.

This shows the uniform convergence of (7.23). In the same way as in part b) of the
proof of Theorem 7.3 it follows that the limit function is a solution of (7.1). One
only has to add an O(|h|) -term in (7.14), if x is not a subdivision point.

Exercises

1. Apply Euler’s method with constant step size xi+1 −xi = 1/n to the differ-
ential equation y′ = ky , y(0) = 1 and obtain a classical approximation for the
solution y(1) = ek . Give an estimate of the error.

2. Apply Euler’s method with constant step size to

a) y′ = y2 , y(0) = 1 , y(1/2) =?
b) y′ = x2 + y2 , y(0) = 0 , y(1/2) =?
Make rigorous error estimates using Theorem 7.4 and compare these estimates
with the actual errors. The main difficulty is to find a suitable region in which
the estimates of Theorem 7.4 hold, without making the constants A, L, M
too large and, at the same time, ensuring that the solution curves remain inside
this region (see also I.8, Exercise 3).

3. Prove the result: if the differential equation y′ = f(x, y) , y(x0) = y0 with f
continuous, possesses a unique solution, then the Euler polygons converge to
this solution.

4. “There is an elementary proof of Peano’s existence theorem” (Walter 1971).
Suppose that A is a bound for |f | . Then the sequence

yi+1 = yi +h ·max{f(x, y)|xi ≤ x ≤ xi+1, yi − 3Ah ≤ y ≤ yi +Ah}
converges for all continuous f to a (the maximal) solution. Try to prove this.
Unfortunately, this proof does not extend to systems of equations, unless they
are “quasimonotone” (see Section I.10, Exercise 3).



I.8 Existence Theory using Iteration Methods
and Taylor Series

A second approach to existence theory is possible with the help of an iterative re-
finement of approximate solutions. The first appearances of the idea are very old.
For instance many examples of this type can be found in the work of Lagrange,
above all in his astronomical calculations. Let us consider here the following illus-
trative example of a Riccati equation

y′ = x2 + y + 0.1y2, y(0) = 0. (8.1)

Because of the quadratic term, there is no elementary solution. A very natural idea
is therefore to neglect this term, which is in fact very small at the beginning, and to
solve for the moment

y′
1 = x2 + y1, y1(0) = 0. (8.2)

This gives, with formula (3.3), a first approximation

y1(x) = 2ex − (x2 + 2x + 2). (8.3)

With the help of this solution, we now know more about the initially neglected term
0.1y2 ; it will be close to 0.1y2

1 . So the idea lies at hand to reintroduce this solution
into (8.1) and solve now the differential equation

y′
2 = x2 + y2 + 0.1 · (y1(x)

)2
, y2(0) = 0. (8.4)

We can use formula (3.3) again and obtain after some calculations

y2(x) = y1(x) +
2
5
e2x − 2

15
ex(x3 + 3x2 + 6x− 54)

− 1
10

(x4 + 8x3 + 32x2 + 72x + 76).

This is already much closer to the correct solution, as can be seen from the follow-
ing comparison of the errors e1 = y(x)− y1(x) and e2 = y(x)− y2(x) :

x = 0.2 e1 = 0.228× 10−07 e2 = 0.233× 10−12

x = 0.4 e1 = 0.327× 10−05 e2 = 0.566× 10−09

x = 0.8 e1 = 0.534× 10−03 e2 = 0.165× 10−05.
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It looks promising to continue this process, but the computations soon become very
tedious.

Picard-Lindelöf Iteration

The general formulation of the method is the following: we try, if possible, to split
up the function f(x, y) of the differential equation

y′ = f(x, y) = f1(x, y) + f2(x, y), y(x0) = y0 (8.5)

so that any differential equation of the form y′ = f1(x, y) + g(x) can be solved
analytically and so that f2(x, y) is small. Then we start with a first approximation
y0(x) and compute successively y1(x), y2(x), . . . by solving

y′
i+1 = f1(x, yi+1) + f2

(
x, yi(x)

)
, yi+1(x0) = y0. (8.6)

The most primitive form of this process is obtained by choosing f1 = 0, f2 = f ,
in which case (8.6) is immediately integrated and becomes

yi+1(x) = y0 +
∫ x

x0

f
(
s, yi(s)

)
ds. (8.7)

This is called the Picard-Lindelöf iteration method. It appeared several times in
the literature, e.g., in Liouville (1838), Cauchy, Peano (1888), Lindelöf (1894),
Bendixson (1893). Picard (1890) considered it merely as a by-product of a simi-
lar idea for partial differential equations and analyzed it thoroughly in his famous
treatise Picard (1891-96), Vol. II, Chap. XI, Sect. III.

The fast convergence of the method, for |x−x0| small, is readily seen: if we
subtract formula (8.7) from the same with i replaced by i− 1 , we have

yi+1(x)− yi(x) =
∫ x

x0

(
f
(
s, yi(s)

)− f
(
s, yi−1(s)

))
ds. (8.8)

We now apply the Lipschitz condition (7.7) and the triangle inequality to obtain

|yi+1(x)− yi(x)| ≤ L

∫ x

x0

|yi(s)− yi−1(s)| ds. (8.9)

When we assume y0(x) ≡ y0 , the triangle inequality applied to (8.7) with i = 0
yields the estimate

|y1(x)− y0(x)| ≤ A|x−x0|
where A is a bound for |f | as in Section I.7. We next insert this into the right hand
side of (8.9) repeatedly to obtain finally the estimate (Lindelöf 1894)

|yi(x)− yi−1(x)| ≤ ALi−1 |x−x0|i
i!

. (8.10)
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The right-hand side is a term of the Taylor series for eL|x−x0| , which converges
for all x ; we therefore conclude that |yi+k − yi| becomes arbitrarily small when
i is large. The error is bounded by the remainder of the above exponential series.
So the sequence yi(x) converges uniformly to the solution y(x) . For example, if
L|x−x0| ≤ 1/10 and the constant A is moderate, 10 iterations would provide a
numerical solution with about 17 correct digits.

The main practical drawback of the method is the need for repeated computa-
tion of integrals, which is usually not very convenient, if at all analytically possible,
and soon becomes very tedious. However, its fast convergence and new machine
architectures (parallelism) coupled with numerical evaluations of the integrals have
made the approach interesting for large problems (see Nevanlinna 1989).

Taylor Series

Après avoir montré l’insuffisance des méthodes d’intégration fon-
dées sur le développement en séries, il me reste à dire en peu de
mots ce qu’on peut leur substituer. (Cauchy)

A third existence proof can be based on a study of the convergence of the Taylor
series of the solutions. This was mentioned in a footnote of Liouville (1836, p.
255), and brought to perfection by Cauchy (1839-42).

We have already seen the recursive computation of the Taylor coefficients in
the work of Newton (see Section I.2). Euler (1768) then formulated the general
procedure for the higher derivatives of the solution of

y′ = f(x, y), y(x0) = y0 (8.11)

which, by successive differentiation, are obtained as

y′′ = fx + fyy′ = fx + fyf

y′′′ = fxx + 2fxyf + fyyf
2 + fy(fx + fyf)

(8.12)

etc. Then the solution is

y(x0 +h) = y(x0) + y′(x0)h + y′′(x0)
h2

2!
+ . . . . (8.13)

The formulas (8.12) for higher derivatives soon become very complicated. Euler
therefore proposed to use only a few terms of this series with h sufficiently small
and to repeat the computations from the point x1 = x0 +h (“analytic continua-
tion”).

We shall now outline the main ideas of Cauchy’s convergence proof for the
series (8.13). We suppose that f(x, y) is analytic in the neighbourhood of the
initial value x0, y0 , which for simplicity of notation we assume located at the origin
x0 = y0 = 0 :

f(x, y) =
∑
i,j≥0

aijx
iyj , (8.14)
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where the aij are multiples of the partial derivatives occurring in (8.12). If the se-
ries (8.14) is assumed to converge for |x| ≤ r , |y| ≤ r , then the Cauchy inequalities
from classical complex analysis give

|aij | ≤
M

ri+j
, where M = max

|x|≤r,|y|≤r
|f(x, y)|. (8.15)

The idea is now the following: since all signs in (8.12) are positive, we obtain the
worst possible result if we replace in (8.14) all aij by the largest possible values
(8.15) (“method of majorants”):

f(x, y) →
∑

i,j≥0

M
xiyj

ri+j
=

M

(1−x/r)(1− y/r)
.

However, the majorizing differential equation

y′ =
M

(1−x/r)(1− y/r)
, y(0) = 0

is readily integrated by separation of variables (see Section I.3) and has the solution

y = r

(
1−
√

1 + 2M log
(
1− x

r

) )
. (8.16)

This solution has a power series expansion which converges for all x such that
|2M log(1−x/r)| < 1 . Therefore, the series (8.13) also converges at least for all
|h| < r

(
1− exp(−1/2M)

)
.

Recursive Computation of Taylor Coefficients

. . . dieses Verfahren praktisch nicht in Frage kommen kann.
(Runge & König 1924)

The exact opposite is true, if we use the right approach . . .
(R.E. Moore 1979)

The “right approach” is, in fact, an extension of Newton’s approach and has been
rediscovered several times (e.g,. Steffensen 1956) and implemented into computer
programs by Gibbons (1960) and Moore (1966). For a more extensive bibliography
see the references in Wanner (1969), p. 10-20.

The idea is the following: let

Yi =
1
i!

y(i)(x0), Fi =
1
i!

(
f
(
x, y(x)

))(i)∣∣
x=x0

(8.17)

be the Taylor coefficients of y(x) and of f
(
x, y(x)

)
, so that (8.13) becomes

y(x0 +h) =
∞∑

i=0

hiYi.
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Then, from (8.11),

Yi+1 =
1

i + 1
Fi. (8.18)

Now suppose that f(x, y) is the composition of a sequence of algebraic operations
and elementary functions. This leads to a sequence of items,

x, y, p, q, r, . . . , and finally f. (8.19)

For each of these items we find formulas for generating the i th Taylor coefficient
from the preceding ones as follows:

a) r = p± q :

Ri = Pi ±Qi, i = 0, 1, . . . (8.20a)

b) r = pq : the Cauchy product yields

Ri =
i∑

j=0

PjQi−j , i = 0, 1, . . . (8.20b)

c) r = p/q : write p = rq , use formula b) and solve for Ri :

Ri =
1

Q0

(
Pi −

i−1∑
j=0

RjQi−j

)
, i = 0, 1, . . . (8.20c)

There also exist formulas for many elementary functions (in fact, because these
functions are themselves solutions of rational differential equations).

d) r = exp(p) : use r′ = p′ · r and apply (8.20b). This gives for i = 1, 2, ...

R0 = exp(P0), Ri =
1
i

i−1∑
j=0

(i− j)RjPi−j . (8.20d)

e) r = log(p) : use p = exp(r) and rearrange formula d). This gives

R0 = log(P0), Ri =
1
P0

(
Pi −

1
i

i−1∑
j=1

(i− j)PjRi−j

)
. (8.20e)

f) r = pc, c �= 1 constant. Use pr′ = crp′ and apply (8.20b):

R0 = P c
0 , Ri =

1
iP0

(i−1∑
j=0

(
ci− (c + 1)j

)
RjPi−j

)
. (8.20f)
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g) r = cos(p) , s = sin(p) : as in d) we have

R0 = cos P0, Ri = −1
i

i−1∑
j=0

(i− j)SjPi−j ,

S0 = sin P0, Si =
1
i

i−1∑
j=0

(i− j)RjPi−j .

(8.20g)

The alternating use of (8.20) and (8.18) then allows us to compute the Taylor
coefficients for (8.17) to any wanted order in a very economical way. It is not dif-
ficult to write subroutines for the above formulas, which have to be called in the
same order as the differential equation (8.11) is composed of elementary opera-
tions. There also exist computer programs which “compile” Fortran statements for
f(x, y) into this list of subroutine calls. One has been written by T. Szymanski and
J.H. Gray (see Knapp & Wanner 1969).

Example. The differential equation y′ = x2 + y2 leads to the recursion

Y0 = y(0), Yi+1 =
1

i + 1

(
Pi +

i∑
j=0

YjYi−j

)
, i = 0, 1, . . .

where Pi = 1 for i = 2 and Pi = 0 for i �= 2 are the coefficients for x2 . One can
imagine how much easier this is than formulas (8.12).

An important property of this approach is that it can be executed in interval
analysis and thus allows us to obtain reliable error bounds by the use of Lagrange’s
error formula for Taylor series. We refer to the books by R.E. Moore (1966) and
(1979) for more details.

Exercises

1. Obtain from (8.10) the estimate

|yi(x)− y0| ≤
A

L

(
eL(x−x0) − 1

)
and explain the similarity of this result with (7.16).

2. Apply the method of Picard to the problem y′ = Ky , y(0) = 1 .

3. Compute three Picard iterations for the problem y′ = x2 + y2 , y(0) = 0 ,
y(1/2) =? and make a rigorous error estimate. Compare the result with the
correct solution y(1/2) = 0.041791146154681863220768806849179 .
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4. Compute with an iteration method the solution of

y′ =
√

x +
√

y, y(0) = 0

and observe that the method can work well for equations which pose serious
problems with other methods. An even greater difference occurs for the equa-
tions

y′ =
√

x+ y2, y(0) = 0 and y′ =
1√
x

+ y2, y(0) = 0.

5. Define f(x, y) by

f(x, y) =

⎧⎪⎪⎨⎪⎪⎩
0 for x ≤ 0
2x for x > 0, y < 0

2x− 4y

x
for 0 ≤ y ≤ x2

−2x for x > 0, x2 < y.

a) Show that f(x, y) is continuous, but not Lipschitz.

b) Show that for the problem y′ = f(x, y) , y(0) = 0 the Picard iteration
method does not converge.

c) Show that there is a unique solution and that the Euler polygons converge.

6. Use the method of Picard iteration to prove: if f(x, y) is continuous and satis-
fies a Lipschitz condition (7.7) on the infinite strip D = {(x, y) ; x0 ≤x≤X} ,
then the initial value problem y′ = f(x, y) , y(x0) = y0 possesses a unique
solution on x0 ≤ x ≤ X .

Compare this global result with Theorem 7.3.

7. Define a function y(x) (the “inverse error function”) by the relation

x =
2√
π

∫ y

0

e−t2dt

and show that it satisfies the differential equation

y′ =
√

π

2
ey2

, y(0) = 0.

Obtain recursion formulas for its Taylor coefficients.



I.9 Existence Theory for Systems of Equations

The first treatment of an existence theory for simultaneous systems of differential
equations was undertaken in the last existing pages (p. 123-136) of Cauchy (1824).
We write the equations as

y′
1 = f1(x, y1, . . . , yn),

. . .

y′
n = fn(x, y1, . . . , yn),

y1(x0) = y10,

. . .

yn(x0) = yn0,

y1(X) = ?

. . .

yn(X) = ?

(9.1)

and ask for the existence of the n solutions y1(x), . . . , yn(x) . It is again natural to
consider, in analogy to (7.3), the method of Euler

yk,i+1 = yki + (xi+1 −xi) · fk(xi, y1i, . . . , yni) (9.2)

(for k =1, . . . , n and i=0, 1, 2, . . .). Here yki is intended to approximate yk(xi) ,
where x0 < x1 < x2 . . . is a subdivision of the interval of integration as in (7.2).

We now try to carry over everything we have done in Section I.7 to the new
situation. Although we have no problem in extending (7.4) to the estimate

|yki − yk0| ≤ Ak|xi −x0| if |fk(x, y1, . . . , yn)| ≤ Ak, (9.3)

things become a little more complicated for (7.7): we have to estimate

fk(x, z1, . . . , zn)− fk(x, y1, . . . , yn) =
∂fk

∂y1

· (z1 − y1) + . . .+
∂fk

∂yn

· (zn − yn),

(9.4)
where the derivatives ∂fk/∂yi are taken at suitable intermediate points. Here
Cauchy uses the inequality now called the “Cauchy-Schwarz inequality” (“Enfin,
il résulte de la formule (13) de la 11e leçon du calcul différentiel . . .”) to obtain

|fk(x,z1, . . . , zn)− fk(x, y1, . . . , yn)| (9.5)

≤
√(∂fk

∂y1

)2

+ . . .+
(∂fk

∂yn

)2

·
√

(z1 − y1)2 + . . .+ (zn − yn)2.

At this stage, we begin to feel that further development is advisable only after the
introduction of vector notation.



52 I. Classical Mathematical Theory

Vector Notation

This was promoted in our subject by the papers of Peano, (1888) and (1890), who
was influenced, as he says, by the famous “Ausdehnungslehre” of Grassmann and
the work of Hamilton, Cayley, and Sylvester. We introduce the vectors (Peano
called them “complexes”)

y = (y1, . . . , yn)T , yi = (y1i, . . . , yni)
T , z = (z1, . . . , zn)T etc,

and hope that the reader will not confuse the components yi of a vector y with
vectors with indices. We consider the “vector function”

f(x, y) =
(
f1(x, y), . . . , fn(x, y)

)T
,

so that equations (9.1) become

y′ = f(x, y), y(x0) = y0, y(X) =?, (9.1’)

Euler’s method (9.2) is

yi+1 = yi + (xi+1 −xi)f(xi, yi), i = 0, 1, 2, . . . (9.2’)

and the Euler polygon is given by

yh(x) = yi + (x−xi)f(xi, yi) for xi ≤ x ≤ xi+1.

There is no longer any difference in notation with the one-dimensional cases (7.1),
(7.3) and (7.3a).

In view of estimate (9.5), we introduce for a vector y =(y1, . . . , yn)T the norm
(originally “modulus”)

‖y‖ =
√

y2
1 + . . .+ y2

n (9.6)

which satisfies all the usual properties of a norm, for example the triangle inequality

‖y + z‖ ≤ ‖y‖+ ‖z‖,
∥∥∥ n∑

i=1

yi

∥∥∥≤ n∑
i=1

‖yi‖. (9.7)

The Euclidean norm (9.6) is not the only one possible, we also use (“on pourrait
aussi définir par mx la plus grande des valeurs absolues des élements de x ; alors
les propriétes des modules sont presqu’évidentes.”, Peano)

‖y‖ = max(|y1|, . . . , |yn|), (9.6’)

‖y‖ = |y1|+ . . .+ |yn|. (9.6”)

We are now able to formulate estimate (9.3) as follows, in perfect analogy with
(7.4): if for some norm ‖f(x, y)‖≤A on D = {(x, y) | x0 ≤x≤X, ‖y−y0‖≤ b}
and if X −x0 ≤ b/A then the numerical solution (xi, yi) , given by (9.2’), remains
in D and we have

‖yh(x)− y0‖ ≤ A · |x−x0|. (9.8)

The analogue of estimate (7.5) can be obtained similarly.
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In order to prove the implication “(7.9) ⇒ (7.7)” for vector-valued functions it
is convenient to work with norms of matrices.

Subordinate Matrix Norms

The relation (9.4) shows that the difference f(x, z)− f(x, y) can be written as the
product of a matrix with the vector z− y . It is therefore of interest to estimate
‖Qv‖ and to find the best possible estimate of the form ‖Qv‖ ≤ β‖v‖ .

Definition 9.1. Let Q be a matrix (n columns, m rows) and ‖ . . .‖ be one of the
norms defined in (9.6), (9.6’) or (9.6”). The subordinate matrix norm of Q is then
defined by

‖Q‖ = sup
v �=0

‖Qv‖
‖v‖ = sup

‖u‖=1

‖Qu‖. (9.9)

By definition, ‖Q‖ is the smallest number such that

‖Qv‖ ≤ ‖Q‖ · ‖v‖ for all v (9.10)

holds. The following theorem gives explicit formulas for the computation of (9.9).

Theorem 9.2. The norm of a matrix Q is given by the following formulas: for the
Euclidean norm (9.6),

‖Q‖ =
√

largest eigenvalue of QT Q ; (9.11)

for the max-norm (9.6’),

‖Q‖ = max
k=1,...,m

( n∑
i=1

|qki|
)
; (9.11’)

for the norm (9.6”),

‖Q‖ = max
i=1,...,n

( m∑
k=1

|qki|
)
. (9.11”)

Proof. Formula (9.11) can be seen from ‖Qv‖2 = vT QT Qv with the help of an
orthogonal transformation of QT Q to diagonal form.

Formula (9.11’) is obtained as follows (we denote (9.6’) by ‖ . . .‖∞ ):

‖Qv‖∞ = max
k=1,...,m

∣∣∣ n∑
i=1

qkivi

∣∣∣≤ ( max
k=1,...,m

n∑
i=1

|qki|
)
· ‖v‖∞ (9.12)

shows that ‖Q‖≤maxk

∑
i |qki| . The equality in (9.11’) is then seen by choosing

a vector of the form v = (±1,±1, . . . ,±1)T for which equality holds in (9.12).
The formula (9.11”) is proved along the same lines.
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All these formulas remain valid for complex matrices. QT has only to be
replaced by Q∗ (transposed and complex conjugate). See e.g., Wilkinson (1965),
p. 55-61, Bakhvalov (1976), Chap. VI, Par. 3. With these preparations it is possible
to formulate the desired estimate.

Theorem 9.3. If f(x, y) is differentiable with respect to y in an open convex
region U and if ∥∥∥∂f

∂y
(x, y)

∥∥∥≤ L for (x, y) ∈ U (9.13)

then

‖f(x, z)− f(x, y)‖≤ L ‖z− y‖ for (x, y), (x, z)∈ U. (9.14)

(Obviously, the matrix norm in (9.13) is subordinate to the norm used in (9.14).)

Proof. This is the “mean value theorem” and its proof can be found in every text-
book on calculus. In the case where ∂f/∂y is continuous, the following simple
proof is possible. We consider ϕ(t) = f

(
x, y + t(z − y)

)
and integrate its deriva-

tive (componentwise) from 0 to 1

f(x, z)− f(x, y) = ϕ(1)−ϕ(0) =
∫ 1

0

ϕ′(t) dt

=
∫ 1

0

∂f

∂y

(
x, y + t(z − y)

) · (z− y) dt.

(9.15)

Taking the norm of (9.15), using∥∥∥∫ 1

0

g(t) dt
∥∥∥≤ ∫ 1

0

‖g(t)‖ dt, (9.16)

and applying (9.10) and (9.13) yields the estimate (9.14). The relation (9.16) is
proved by applying the triangle inequality (9.7) to the finite Riemann sums which
define the two integrals.

We thus have obtained the analogue of (7.7). All that remains to do is, Da
capo al fine, to read Sections I.7 and I.8 again: Lemma 7.2, Theorems 7.3, 7.4, 7.5,
and 7.6 together with their proofs and the estimates (7.10), (7.13), (7.15), (7.16),
(7.17), and (7.18) carry over to the more general case with the only changes that
some absolute values are to be replaced by norms.

The Picard-Lindelöf iteration also carries over to systems of equations when
in (8.7) we interpret yi+1(x), y0 and f(s, yi(s)) as vectors, integrated componen-
twise. The convergence result with the estimate (8.10) also remains the same; for
its proof we have to use, between (8.8) and (8.9), the inequality (9.16).
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The Taylor series method, its convergence proof, and the recursive generation
of the Taylor coefficients also generalize in a straightforward manner to systems of
equations.

Exercises

1. Solve the system
y′
1 = −y2,

y′
2 = +y1,

y1(0) = 1

y2(0) = 0

by the methods of Euler and Picard, establish rigorous error estimates for all
three norms mentioned. Verify the results using the correct solution y1(x) =
cos x , y2(x) = sin x .

2. Consider the differential equations

y′
1 = −100y1 + y2,

y′
2 = y1 − 100y2,

y1(0) = 1,

y2(0) = 0,

y1(1) = ?

y2(1) = ?

a) Compute the exact solution y(x) by the method explained in Section I.6.

b) Compute the error bound for ‖z(x)− y(x)‖ , where z(x) = 0 , obtained
from (7.10).

c) Apply the method of Euler to this equation with h = 1/10 .

d) Apply Picard’s iteration method.

3. Compute the Taylor series solution of the system with constant coefficients
y′ = Ay , y(0) = y0 . Prove that this series converges for all x . Apply this
series to the equation of Exercise 1.

Result.

y(x) =
∞∑

i=0

xi

i!
Aiy0 =: eAxy0.


