
Chapter VI. Singular Perturbation Problems 
and Index 1 Problems 

/ 

(Drawing by G. Di Marzo) 

Singular perturbation problems (SPP) form a special class of problems containing 
a parameter E. When this parameter is small, the corresponding differential equa­
tion is stiff; when E tends to zero, the differential equation becomes differential 
algebraic. This chapter investigates the numerical solution of such singular pertur­
bation problems. This allows us to understand many phenomena observed for very 
stiff problems. Much insight is obtained by studying the limit case E = 0 ("the 
reduced system" or "problem of index 1") which is usually much easier to analyze. 

We start by considering the limit case E = o. Two numerical approaches -
the E -embedding method and the state space form method - are investigated in 
Sect. Vr.l. We then analyze multistep methods in Sect. VI.2, Runge-Kutta meth­
ods in Sect. Vr.3, Rosenbrock methods in Sect. VI.4 and extrapolation methods in 
Sect. VI.S. Convergence is studied for singular perturbation problems and for semi­
explicit differential-algebraic systems of "index 1". 



VI.l Solving Index 1 Problems 

Singular perturbation problems (SPP) have several origins in applied mathematics. 
One comes from fluid dynamics and results in linear boundary value problems 
containing a small parameter e (the coefficient of viscosity) such that for e -+ 0 
the differential equation loses the highest derivative (see Exercise 1 below). Others 
originate in the study of nonlinear oscillations with large parameters (van der Pol 
1926, Dorodnicyn 1947) or in the study of chemical kinetics with slow and fast 
reactions (see e.g., Example (IV.1.4». 

Asymptotic Solution of van der Pol's Equation 

The classical paper of Dorodnicyn (1947) studied the van der Pol Equation (IV.1.S') 
with large J-t, i.e., with small e. The investigation becomes a little easier if we use 
Lienard's coordinates (see Exercise 1.16.8). In Eq. (IV.1.S'), written here as 

ez" + (z2 -l)z' + z = 0, (1.1) 

we insert the identity 

ezll +(z2_ 1)z'=! (ez'+(z; -z)) 
, " v 

:=y 
so that (1.1) becomes 

y' = -z =: f(y, z) 

ez'=y-C; -z) =:g(y,z). 
(1.2) 

Fig. 1.1 shows solutions of Eq. (1.2) with e = 0.03 in the (y, z) -plane. One ob­
serves rapid movements towards the manifold M defined by y = z3 /3 - z, close 
to which the solution becomes smooth. In order to approximate the solution for 
very small e, we set e = 0 in (1.2) and obtain the so-called reduced system 

y' =-z = f(y, z) 

o=y-c; -z) =g(y,z). 
(1.2') 
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Fig. 1.1. Solutions of SPP (1.2) Fig. 1.2. Reduced problem (1.2') 

While (1.2) has no analytic solution, (1.2') can easily be solved to give 

y'=-z=(z2-1)z' or (1.3) 

Equation (1.2') is called a differential algebraic equation (DAB), since it com­
bines a differential equation (first line) with an algebraic equation (second line). 
Such a problem only makes sense if the initial values are consistent, i.e., lie on the 
manifold M. The points of M with coordinates y = ±2/ 3, z = =f 1 are of special 
interest (Fig. 1.2): at these points the partial derivative 9 z = og / oz vanishes and 
the defining manifold is no longer "transversal" to the direction of the fast move­
ment. Here the solutions of (1.2') cease to exist, while the solutions of the full 
problem (1.2) for c ---+ 0 jump with "infinite" speed to the opposite manifold. For 
-1 < z < 1 the manifold M is unstable for the solution of (1.2) (here 9 z > 0), 
otherwise M is stable (g z < 0) . 

We demonstrate the power of the reduced equation by answering the question: 
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what is the period T of the limit cycle solution of van derPol's equation for c: -+ 0 ? 
Fig. 1.2 shows that the asymptotic value of T is just twice the time which z( x) of 
(1.3) needs to advance from z = - 2 to z = -1, Le., 

T = 3- 21n2. (1.4) 

This is the first term of Dorodnicyn' s asymptotic formula. We also see that z ( x ) 

reaches its largest values (Le., crosses the Poincare cut z' = 0, see Fig. 1.16.2) 
at z = ±2. We thus have the curious result that the limit cycle of van der Pol's 
equation (1.1) has the same asymptotic initial value z = 2 and z' = 0 for c: -+ 0 
and for c: -+ 00 (see Eq. (1.16.10)). 

The e -Embedding Method for Problems of Index 1 

We now want to study the behaviour of the numerical solution for c: -+ o. This 
will give us insight into many phenomena encountered for very stiff equations and 
also suggest advantageous numerical procedures for stiff and differential-algebraic 
equations. Let an arbitrary singular perturbation problem be given, 

y' = f(y, z) 
c:z' = g(y, z), 

(1.5a) 

(1.5b) 

where y and z are vectors; suppose that f and 9 are sufficiently often differ­
entiable vector functions of the same dimensions as y and z, respectively. The 
corresponding reduced equation is the DAB 

y' = f(y, z) 
0= g(y, z), 

(1.6a) 

(1.6b) 

whose initial values are consistent if 0 = g(yo, zo). A general assumption of the 
present chapter will be that the Jacobian 

gAy, z) is invertible (1.7) 

in a neighbourhood of the solution of (1.6). Equation (1.6b) then possesses a locally 
unique solution z = G(y) ("Implicit Function Theorem") which inserted into (1.6a) 
gives 

y' = f(y, G(y)), (1.8) 

the so-called "state space form", an ordinary differential system. Under the as­
sumption (1.7), Eq. (1.6) is said to be a differential-algebraic equation of index 1. 

An interesting approach for solving (1.6) is to apply some numerical method 
to the SPP (1.5) and to put c: = 0 in the resulting formulas. Let us illustrate this 
approach for Runge-Kutta methods. Applied to the system (1.5) we obtain 

s 

Yni = Yn + h L a ij f (Ynj , Znj) (1.9a) 
j=l 
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s 

EZni = EZn + h L aij 9 (Ynj , Znj) (l.9b) 
j=1 
s 

i=1 
s 

EZn+1 = EZn + h L bi 9 (Yni , Zni)' 
i=1 

(l.9c) 

(l.9d) 

We now suppose that the RK matrix (aij) is invertible and obtain from (l.9b) 

hg(Yni , Zni) = E LWij(Znj - zn)' 
j=1 

(1.10) 

where the wij are the elements of the inverse of (aij ). Inserting this into (1.9d) 
makes the definition of zn+1 independent of E. We thus put without more ado 
E = 0 and obtain 

s 

Y ni = Yn + h L aij f (Ynj, Znj) (1.11a) 
j=1 

0= g(Yni , Zni) (1.11b) 

(l.l1c) 
i=1 

Zn+1 = (1 -,t bi Wij ) zn + ,t bj w ij Znj' 
',J=1 ',J=1 

(1.11d) 

Here 
s 

1- L bjWij = R(oo) (1. 11 e) 
i,j=1 

(see Eq. (Iy'3.15)), where R(z) is the stability function of the method, 

State Space Form Method 

The numerical solution (Yn+1' zn+1) of the above approach will usually not lie on 
the manifold g(y, z) = O. However, this can easily be repaired by replacing (1.11 d) 
by the condition 

O=g(Yn+1,zn+1)' (1.12) 

Then, we do not only have Znj = G(Ynj ) (see (1.11b)), but also zn+1 = G(Yn+1)' 
In this case the method (1.11a-c), (1.12) is identical to the solution of the state 
space form (1.8) with the same Runge-Kutta method. This will be called the state 
space form method. The whole situation is summarized in the following diagram: 



376 VI. Singular Perturbation Problems and Index I Problems 

Spp (1.5) 

RK 1 
Sol. (1.9) 

er-O 
f--

e---+O 

----+ 

DAB (1.6) 

1 
c:-embedding method 

state space form method 

z=G(y) 
----+ ODE (1.8) 

RK 1 
Sol. (1.12) 

Of special importance here are stiffly accurate methods, i.e., methods which satisfy 

asi = bi for i = 1, ... ,s. (1.13) 

This means that Yn+1 = Yns ' zn+l = Zns and (1.12) is satisfied anyway. Hence for 
stiffly accurate methods the c: -embedding method and the state space form method 
are identical. For this reason, Griepentrog & Mfu"z (1986) denote such methods 
IRK(DAB). 

Both approaches have their own merits. Theoretical results for the c: -embed­
ding method yield insight into the method when applied to singular perturbation 
problems. Moreover, this approach can easily be extended to more general situa­
tions, where the algebraic relation is not explicitly separated from the differential 
equation (see below). The state space form method, on the other hand, has the 
advantage that it is not restricted to implicit methods. Applying an explicit Runge­
Kutta method or a multistep method to Eq. (1.8) is certainly a method of choice for 
semi-explicit index 1 equations. No new theory is necessary in this case. 

A Transistor Amplifier 

. .. auf eine merkwurdige Tatsache aufmerksam machen, das ist 
die auBerordentlich grosse Zahl beriihmter Mathematiker, die aus 
Konigsberg stammen ... : Kant 1724, Richelot 1808, Hesse 1811, 
Kirchhoff 1824, Carl Neumann 1832, Clebsch 1833, Hilbert 1862. 

(F. Klein, Entw. der Math., p. 159) 

Very often, differential-algebraic problems arising in practice are not at once in the 
semi-explicit form (1.6), but rather in the form M u' = c,o( u) where M is a constant 
singular matrix. 

As an example we compute the amplifier of Fig. 1.3, where U e (t) is the entry 
voltage, Ub = 6 the operating voltage, Ui(t) (i = 1,2,3,4,5) the voltages at the 
nodes 1, 2, 3, 4, 5, and U 5 (t) the output voltage. The current through a resistor 
satisfies I = U / R (Ohm 1827), the current through a capacitor I = C . dU / dt, 
where R and C are constants and U the voltage. The transistor acts as amplifier 
in that the current from node 4 to node 3 is 99 times larger than that from node 
2 to node 3 and depends on the voltage difference U3 - U2 in a nonlinear way. 
Kirchhoff's law (a Konigsberg discovery) says that the sum of currents entering a 
node vanishes. This law applied to the 5 nodes of Fig. 1.3 leads to the following 
equations: 
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Fig. 1.3. A transistor amplifier 

node 1: Ue(t) _ U1 +C (U'-U')=O 
Ro RO 121 

Ub ( 1 1 ) (' ') Ii: - U2 Ii: + Ii: + C1 U1 - U2 - 0.01 j(U2 - U3 ) = 0 
212 

node 2: 

node 3: f(U2 - U3 ) - U3 - C2U~ = 0 (1.14) 
R3 

Ub _ U4 +C (U' -U')-0.99j(U -U) =0 R R 354 23 
4 4 

node 4: 

U5 (' ') - Ii: + C3 U4 - U5 = O. 
5 

node 5: 

As constants we adopt the values reported (for a similar problem) by Rentrop, 
Roche & Steinebach (1989) 

j(U) = 10-6 (exp (0.~26) - 1) 

Ro = 1000, R1 = ... = R5 = 9000 

Ck =k·l0-6 , k=1,2,3, 

and the initial signal is chosen as 

Ue(t) = 0.4· sin(2001ft). 

Equations (1.14) are of the form Mu' = i.p(u) where 

(1.15) 
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is obviously a singular matrix of rank 3. The sum of the first two and of the last 
two equations leads directly to two algebraic equations. Introducing e.g., 

UI -U2 =Yl' U3 =Y2' U4 -U5 =Y3' Ul =ZI, U4 =z2' 

transforms equations (1.14) to the form (1.6). Consistent initial values must thus 
satisfy 'PI (u) + 'P2( u) = 0 and 'P4( u) + 'P5( u) = O. If we put U2 (0) = U3(0), we 
have f(U2 (0) - U3 (0)) = O. Since Ue(O) = 0, we then easily find consistent initial 
values, e.g., as 

Ul (O) = 0, 

Problems of the Form M u' = c.p( u) 

Numerical methods for problems of the form 

Mu' = 'P(u), (1.17) 

where M is a constant matrix, can be derived as follows: we assume that M 
is regular, apply an ODE method to u' = M- l 'P(u) and multiply the resulting 
formulas by M. For Runge-Kutta methods we obtain in this way 

s 

M(Uni - un) = h L aij'P(Unj) (U8a) 
j=1 

un+l = (l-.t biWij )un +.t biwij Unj , 
',J=1 ',J=1 

(1.18b) 

where again (W ij) is the inverse of (aij ). The second formula was obtained from 

s 

M(u n+l - un) = h L bi'P(Uni) (U8c) 
i=1 

in exactly ilie same way as above (see (1.10)). 
Formulas (1.18) also make sense formally when M is a singular matrix. In this 

case, problem (1.17) is mathematically equivalent to a semi-explicit system (1.6) 
and method (1.18) corresponds to meiliod (1.11). This can be seen as follows: we 
decompose the matrix M (e.g., by Gaussian elimination with total pivoting) as 

M = S (~ ~) T, (1.19) 

where Sand T are invertible matrices and the dimension of I represents the rank 
of M. Inserting iliis into (1.17), multiplying by S-I, and using the transformed 
variables 

(1.20) 
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gives 

(~) =S-l~(T-l(~)) =: (~~~:;D, (1.21) 

a problem oftype (1.6). An initial value U o is consistent if ~(uo) lies in the range 
of the matrix M. 

Similarly, if (1.19) is inserted into (US), and the variables 

TU . = (Ynj ) Tu = (Yn) (1.22) 
nJ Z.' n Z 

nJ n 

are introduced, Eq. (USb) (for Zn+l) and Eq. (USc) (for Yn+1 ) lead precisely 
to equations (1.11). This means that the diagram 

Problem (1.17) 

Meth.l (1.18) 

Trans! (1.20) 
--------*) Problem (1.6) 

Trans! (1.22) 
) 

Meth.l (1.11) (1.23) 

commutes. An important consequence of this commutativity is that all results for 
semi-explicit systems (1.6) and the c:-embedding method (1.11) (existence of a 
numerical solution, convergence, asymptotic expansions, ... ) also apply to implicit 
problems (1.17) with singular M and method (US). 

All codes, such as RADAU5, which have an option for implicit differential 
equations (1.17) can thus be applied directly. This has been done for problem 
(1.14) with initial values (1.16), integration interval 0 ::; x ::; 0.2, and Tol = 10-4 • 

The code computed the solution U 5 (t) displayed in Fig. 1.4 in 556 (accepted) steps. 
The comparison with the entry voltage Ue (t) shows that our amplifier is working. 
See also Hairer, Lubich & Roche (19S9), p. lOS-Ill for a more elaborate example. 

-2 
t 

.05 .10 .15 
-3 

Fig. 1.4. Computed solution of amplifier problem (1.14) 
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Convergence of Runge-Kutta Methods 

If the method is stiffly accurate, the numerical solutions (1.11) are equivalent to 
those of the ordinary equation (1.8). Therefore the convergence of the solutions is 
described by Theorems ll.3.4 and ll.3.6 as 

(1.24) 

where p is the classical order of the method (the second formula follows from a 
Lipschitz condition for G). For general methods, the estimate (1.24) remains valid 
for Yn , because (1.11a,b,c) are independent of zn and do not change if (1.11d) is 
replaced by (1.12). Thus we only have to prove a convergence result for Zn. An 
essential ingredient of the following theorem is the stage order q of the method, 
i.e., condition C( q) of Sect.II.7 or IY.5. 

Theorem 1.1. Suppose that the system (1.6) satisfies (1.7) in a neighbourhood of 
the exact solution (y( x), z( x)) and assume the initial values are consistent. Con­
sider a Runge-Kutta method of order p, stage order q and with invertible matrix 
A. Then the numerical solution of(1.11a-d) has global error 

(1.25) 

where 
a) r = p for stiffly accurate methods, 
b) r = min(p, q + 1) if the stability function satisfies -1 :::; R( (0) < 1, 
c) r=min(p-l,q) ifR(oo)=+l. 
d) If IR( (0) I > 1, the numerical solution diverges. 

Proof Part (a) has already been discussed. For the remaining cases we proceed as 
follows: we first observe that Condition C (q) and order pimply 

s 

z(xn + cih) = z(xn) + h L aijz'(xn + cjh) + O(h q+I ) 
j=I 

s 

z(xn+I ) = z(xn) + h L biz'(xn + cih) + O(hp+I ) . 
i=I 

(1.26a) 

(1.26b) 

Since A is invertible we can compute z' (x n + C j h) from (1.26a) and insert it into 
(1.26b). This gives 

z(xn+I) = gz(xn) + bT A -1 in + O(hP+I) + O(hq+I ) (1.27) 

where g= 1- bT A-Ill = R(oo) and in = (z(xn + CI h), ... , z(xn + csh))T. We 
then denote the global error by ~zn = zn - z( xn), and ~Zn = Zn - in. Sub­
tracting (1.27) from (1. 11 d) yields 

~zn+I = g~zn + bT A-I ~Zn + O(hP+I) + O(hq+I ). (1.28) 


