Traps and Pitfalls in Simulation

Kjell Gustafsson

Ericsson Mobile Communications AB, 5-223 70 LUND, Sweden,
Email: kgn@ldecs.ericsson.se

4 bsiract

Numerical integration of ordinary differential equations is a central part of any software

environment for modeling and simulation of continuos-time systems. We give a short intreduction to
numerical solution of ordinary differential equations, and describe some common problems when using
this type of software in practice. The accuracy and efficiency of the simulation can often be improved by
choosing an appropriate numerical integration method and setiing its parameters correctly. Expressing
the mathematical model on a form that suites the integration method is also important. We discuss these

isgues using simple and illustrative examples.

1. Introduction

Simulation is a powerful alternative to practical
experiments. The properties of many physical sys-
terns and/or phenomena can he assessed by com-
bining mathematical models with a numerical sim-
ulation program. Ordinary differential equations
(ODE) are basic building blocks in such models.
Some programs, e.g. SYSTEM-BUILD {10},

SIMULINK {12], PSpice [13], etc, provide complete
environments for both the modeling as well as the
actual simulation, while others, e.g. DASSL [1],
RADAUS {8], LSODE [9], STRIDE [2], specialize
on the numerical solution of the ODE.

~ Many users regard the numerical integration
of the ODE as a black box routine. Given a set of
ODEs

U= f{t,y), te€lto ts], ylta)=w e RY, {1)
the user expects the sofiware to find an accurate
solution y{t) almost independently of the charac-
ter of the function f. The QODE could be nenlin-
ear, include discontinuities or stochastic variables,
and the integration should still be performed accu-
rately and efficlently. Modern iniegration methods
perform very well, but they do not yet arrive at
this generality. In particular:

o The integration routine approximates the dif-
ferential equation with a difference equation,
This difference equation cannot retain all the
properties of the ODE, and, consequently,
there is no guarantee on the global accuracy
of the generated solution.

b

¢ There are many different types of integration
methods, and which one to use depends on the
properties of the ODE. Choosing an inappro-
priate method may lead to inefficient simula-
tion, or, possibly, erroneous results.

e The integration method relies on the solution
y(t} being smooth (f is assumed to be many
times differentiable, ie. f € CP). An ODE
that includes discontinuities or stochastic vari-
ables therefore needs special aftention.

When a simulation delivers results with poor
quality, or maybe no results at all, the user can
often improve the situation by e.g. rephrasing the
ODE, choosing a different integration method or
tuning its parameters. This, however, requires an
educated user.

In this paper we will give a brief introduec-
tion to numerical integration of ordinary differen-
tial equations (for more complete presentations we
refer to standard textbooks such as 3, 5, 7, 8]).
The aim is to demonstrate what means a user has
to affect the efficiency and accuracy of the simu-
lation. Some classes of ODE’s are diffcult to solve
namerically. We will, using a few simple problems,
demonstrate how the situation can be improved by
formulating the ODE in ar appropriate way and/or
by running the integration method correctly.

2. Selecting Integration Method

An integration method compuies a solution to the
initial value problem (1) by approximating it with

Figure 1. Hepeated cvaluation of the differ-
ence equation (2) produces solution points that
approximates the true solution of the differentinl
equation (1),

Yntl | Yn | Uk, K <1
explicit onestep .
explicit multistep . .
implicit onestep . .
implicit multistep | e . .

Table 1. Different types of integration meth-
ods usc different information when forming gn
snd Fu.

the difference equation

n=01,2... 2)
In this equation §, is formed as a combination
of past solution points and f, is formed as a
combination of function values f(¢,y) evaluated at
the solution points or in their neighborhood. Using
(2) we compute yg, y1, ¥2, - - . 88 approximations to
y(to), ¥{t1), y(¢2), . . ., cf. Figure 1. The stepsize A,
between consecutive solution points is defined as
in+1 = tn -+ hn.

The discretization (2) can be defined in many
different ways. The aim is, of course, that (2)
should mimic (1) as closely as possible. Whether
this is achieved or not depends on how §, and fo
are constructed, as well as on the properties of the
underlying ODE.

One way to categorize Integration methods is
to consider what information is used when forming
Gn and f,, ¢f. Table 1. An integration method is a
onestep method if 4, and/or f, do not depend on
solution points prior to y,. If any v, k < n isin-
volved in the calculation, the method is said to be
mullistep. Complicated onestep methods normally
involve iterated evaluations of f when forming f,.
Such methods are known as Runge-Kutta meth-
ods. An ezplicit method does not include yp 1y in
the definition of §, and/or f,, and the new so-
lution point can be calculated explicitly. An wm-
plicit method includes ¥y, 4 in the construction of
¥ and/or fn, and a nenlinear eguation has to be
golved in order to get the nexi soluilon point.

The order of an integration method relates
to how the solution to the difference equation {2)
approaches the solution of the differential equation
{1) as the stepsize h,, tends to zero. If the solution
is smooth, then y(f.1} can be expressed in terms

V4l = gn, -+ hnfn;

(o]

RKF(1)2
4

gme

Figure 2. At the same accuracy requirement
the second order method RKF(1)2 nceds many
more intcgration steps {each step is marked with
& ring) to traverse the simulation interval com-
pared to the fifth order method DOPRI{4})5.
Each step is, however, computationally less ex-
pensive,

of y(t,) using a Taylor expansion, i.e.

he 4%
Wtnsr) = 9lta) o L (1) 4 5 S) 4 (3
The discretization (2) is constructed to match as
many of the terms in the Taylor expansion as
pessible. An order p method matches all the p first
terms, and, assuming that ¥ = y{tx), & < =, the
discretization error e, behaves as

(4)

€ntl = Yn41 — y(tnﬂ) = O(hpﬂ)

Why Have Methods of Different Order?

It may seem beneficial to have integration methods
with as high order as possible. The higher the or-
der, the larger we could c¢hoose the stepsize and still
obtain a numerical solution with sufficient accu-
racy. Each individual integration step is, however,
computationally more expensive in a high order
method, and therefore high order does not neces-
sarily lead to less computation for a given accuracy.
Which order that is the most efficient depends on
the ODE, on the type of integration metheod, as
well as on the required accuracy. It is, normally,
most efficient to use high order methods for high
accuracy and low order methods for low accuracy.

As ap example, consider the van der Pol oscil-
lator {7, pp. 107, 236]

Y1 = v, y(0) =2 (5)
. a
vz =0 (L-9i) v2 — 1, y2(0) = 0

with ¢ = 1. This problem was simulated us-

ing three different explicit Runge-Kutta methods
(RKF(1)2 [7, pp. 174-175], DOPRI(4)§ [7, p. 171},
and DOPRI(TI8 {7, p. 183]) of orders 2, 5, and §,

| tol {1072 [107* | 107°] 10-® |
RKF(1)2 3.0] 200 182.8] —
DOPRI(4)5 | 1.0| 1.9| 42| 10.0
DOPRI(7T)8 | 13| 1.9| 3.2 52
Table 2. The total work {measured s num-

ber of evaluations of the function f) needed to
integrate the van der Pol problem (5) st differ-
ent accuracy requirements using different explicit
Runge-Kutta methods. The figures are normal-
ized with respect te the work nceded for DO-
PRI(4)5 at tol = 10~2,

respectively. Figure 2 depicts how the low order
method needs many more integration steps (each
step is marked with a ring} to traverse the inter-
val compared to a method of higher order. Table
2 summerizes the amount of work (measured as
evaluations of the function f} needed to perform
the integration at different error tolerances, The
figures are normalized with respect to the work
required for DOPRI(4)5 at fol = 1072 The re-
quired work grows as the accuracy requirement is
tightened. The growth is fastest for the low order
method, and slowest for the high order method. It
is evident that, compared to a low order method, 2
high order method is much more efficient when ask-
ing for a very accurate solution. For low accuracies,
however, it does not pay off to use a complicated
high order method. In practice it is advantageous
to have methods of different orders available.

Why Have Different Types of Methods?

Two methods with the same order may behave
very differently on the same problem. The reason s
that specific discretizations perform hetter on some
classes of problems than other. No discretization is
able to handle all types of problems equally well.
Consequently, many different integration methods
have been suggested over the years, each one with
its own advantages and disadvantages. As with
method order, it is important te have a spectrum
of different methods available.

To exemplify how important the choice of
method type may be, we will consider the Robert-
son problem (4, Problem D2]

g1 = ~0.04yy + 0.01y275 n{0) =1
Yz = 400y ~ 100233 — 3000y %(0) =0 (5)
g3 = 307 ws{0) = 0

which originates from chemical reaction kinelics.
After a fast initial transient, two of the states sei-
tle at @ more or less constant value, while the
third states Increases almost linearly, cf. Figure
3. The problem was simulated with both an ex-
plicit Runge-Kutta method {DOPRI(4)5) and an

Lot

HW-SDIRK{3)4 — 25 steps
4 . -

[} T

Thoo e e SRR : R

solution

@)

=y
2
2
[~]
“
e
time
¥Figure 3. The Robertson problem {6} contains

modes with very different tirne constants. The
implicit integration method is able to handle
such problems much more efficiently than the
explicit method.

implicit Runge-Kutta method (HW-SDIRK(3)4 [8,
p. 107}). The implicit method has one step lower
order, buf still executes the simulation with far
less integration steps than the explicit method (25
steps and 675 steps, respectively). The explicit
method uses so many steps that the rings indicat-
ing the individual steps form a thick line in the
fower plot of Figure 3.

The Robertson problem contains modes with
very different time constants. This is often re-
ferred to as a stiff problem. The fast mode set-
tles quickly during the initial transient, and then
the slow modes govern the solution. The implicit
method exploit this by increasing its stepsize dra-
matically after the initial transient. The explicit
method would become unstable if the stepsize was
increased this much, and it is therefore forced to re-
strict the stepsize to a small value during the whole
simulation. The implicit method needs to solve a
nonlinear equation in order to obtain y,..:. Bach
integration step is therefore more expensive com-
pared to the explicit method. The number of inte-
gration steps are, however, reduced substantially,
and the implicit method leads to much less total
work than the explicit method.

Preserving the Properties of the ODE

One way of viewing the discretization is as a ratio-
nal approximation of the exponential operator. It
is not possible to get a good fit everywhere in the
complex plane, and somewhere the approximation
errors will be large. The stepsize acts as a scaling
factor, and the accuracy of the approximation can
be improved by reducing it. There will, however,
always be a discrepancy, and this discrepancy may
create a aumerical solutlon with different proper-
ties than the solution of the ODE.

Explicit Buler
2 ;

time

Figure 4. The discretizations resuliing from
using explicit and Implcit Euler fail to preserve
the stability of the underlying ODE, The explicit
method shows an oscillation (1) with grow-
ing ampltude, while the oscillation created by
the impliclt method decnys. The true solution
{dashed line) has constant amplitude.

Explicit Buler

Im hA

Implicit Buler
im hA

A

The gray sress depict the areas
where the explicit and implicit Euler discretiza-
tions of ¥ = Ay arc stable.

Figure 5.

Consider the linear oscillator

=", (]
-1 0 0

Figure 4 depicts y; resulting from simulating this
problern with the explicit and implicit Buler meth-
ods, respectively (cf. {7, pp. 32, 158]). The inte-
gration stepsize was constant and equal to 0.02.
‘This makes the error in each step very small; the
problem is that they accumulate. As a result, ex-
plicit Buler portrays the system as being unstable
{slowly growing oscillation amplitude), while im-
plicit Euler creates a slowly decaying oscillation,
indicating a stable system.

The two Euler methods discretize the problem
v = Ay as

] y, y(0) =

Y1 = (I + hA)y,
Yngy = (I - h}}«)—iyn

{explictt Euler)

(8)

{imnplicit Buler)
ie. e" is approximated with 7 + h4 and {I-
hA)™1, respectively. The difference equations in
(8) are stable when Ak, A € eig{A4) is within the
gray area depicted in Figure 5. It is evident that
1t is casy to consiruct a stable ODE equation that

=

Re kA

Figure 6. Level curves for the trapezoidal dis-
cretization (9) of the linear equation § = Ay.
The discretization equals zero at AN = —2. The
circles around this point represents the values
0.1,0.2,...,1.0.

explicit Euler will portray as unstable, or an un-
stable ODE that implicit Euler portrays as stable.
Reducing the stepsize will make the problem less
proncunced, but cannot remove it.

It is of course possible to construct integration
methods that have the same stability region as
the original linear ODE. One such example is the
trapezoidal rule. It discretizes § = Ay as

24 h)
I 9 hAyn'

(9)
This method preserves the stability of the linear
problem, but instead misrepresents other proper-
ties. A very large negative A-value corresponds to
a fast stable mode. The trapezoidal rule will rep-
resent such a mode as a slowly decaying oscillat-
ing mode. This is evident when studying the leve!
curves

|2+ A
12 = hA

I:Ti 730-130'21"‘1}'6’ (10)

which are plotted in Figure 6. When following the
negative real axis from the origin towards —oo, 7
first decays from 1 to 0 (kA = —2). It then increases
again, and approaches 1 as Ad — —o0.

The botfom line is that a rational function
cannot accurately approximate the exponential
function ™ everywhere in the complex plane. An
integration method will correctly represent some
properties of the underlying ODE, while misrepre-
senting others. A simulation program needs to im-
plement a spectrum of different integration meth-
ods, and the user should experiment to see which
method works best for his class of problems.

What Integration Method to Choose?

There is no “best” method! Different integration
methods perform well on different classes of prob-
lems. A simulation should be repeated with differ-
ent types of methods to check that the result is

indeed correct and not an artifact due to a bad
combination of integration method and ODE.
{n general,

» Use high order methods when asking for high
accuracy, and low order methods for low ac-
curacy.

o Use implicit methods when simulating prob-
lems with both fast and slow dynamics (stiff
problems). This is especially important when
trying to resolve what happens in steady state
after fast transients have died out.

e Use onestep methods if the problem includes
many discontinuities. These methods are, com-
pared to multistep methods, less expensive to
restart, and will therefore be more efficient
when the simulation has to pass many discon-
tinuities.

e Use low order explicit onestep methods when
simulating combined discrete-time (sampled)
and continuous-time systems. The sampling
leads to frequent restarts making a muitistep
method ineflicient. Often the sampling inter-
val of the discrete-time system prevents the
use of stepsize that would make an high order
method or implicit method efficient.

3. Solution Accuracy

The accuracy of the numerical solution can be al-
fected by varying the stepsize h,. A larpe siepsize
results in large errors, while a small stepsize leads
to small errors. It is difficult for the user to re-
late a given stepsize to a specific accuracy and the
choice is normally left to the error control algo-
rithm within the integration method {6]. The user
specifies an error tolerance tol, which the integra-
tion method tries to fulfill by varying the stepsize
in relation to the behavior of the produced solu-
tion.

When having specified a value on {0l one may
believe that the integration method will keep the
global error of the numerical solution bhelow this
limit. What the software actually does is some-
thing very different. Suppose that the integration
starts with correct initial values. The first solution
point w1 will deviate slightly from the true solu-
tion y(t1), cf. Figure 7. The new sclution point lies
on a different solution trajectory yi(t), which may
behave differently than y(¢). Each integration step
leads to local truncations errors e, perturbing the
nurnerical solution from y(t}. The local truncation
errors propagate through the differential equation
‘and accumulate to form a global error 1, — w(tn).

The global error is the fundamental measure of
the quality of the numerical sclution. This quantity
is not computable (it requires that the true solution

y{ta}
o i

b2 ts

Figure T. The error propagation in a nurmeri-

cal integration method.

is known), and in general, it is even difficult to
estimate {15]. Most integration methods resort to
estimating the local truncation error and keeping
the norm |l8,.]] of this estimate below fol, in the
hope that this will lead to a numerical solution
with acceptable global error.

Some integration methods considers the es-
timate |{&n]l/hnsr. This labter quantity is called
error-per-unit-step (EPUS), while the former is
cailed error-per-step (EPS). The heuristic motive
to use EPUS is to get the same “accumulated
global error” for a fixed integration time regard-
less of the number of steps used. Most integration
methods will use EPS, because when controlling
EPUS the simulation sometimes have a tendency
to get stuck at discontinuities. Very few simulation
programs will tell you what they actually have im-
plemented.

The Choice of Error Norm

There a many ways to measure the size of the
vector error estimate €. Por robustness, a mixed
absolute-relative “norm” is often used. A common
choice is

(11)

where 7; is a (possibly smoothed) absoluie value
of y, and n; is a scaling factor for that component
of y. The idea with this type of norm is to relate
the error in each solution component te the value
of that specific component. In that way errors
in different components will be equally important
independently of the magnitude of the solution.
The factor #; prevents division by zero in the norm.
The parameter »; is important. It tells when
the w«th solution component should be regarded
as small. A too small value will force ridiculously
small integration steps when the solution passes
zero, while a too large value removes the “relative”
properties of the norm. Unfortunately, very few
commercial simulation packages allow the user o
affect n. Often it is set tc¢ an {undocumented)
predefined value, being equal for all components.

19 15 20

time
Figure 8. The accuracy of the numerical so-

lution of 12 in (13) is destroyed due to & poor
choice of error norm. When y; is large it shad-
ows the error contribution from y2, end w is
not taken into account when choosing stepsize,
The full/dashed/dash-dotted curves correspond
toy; =0, 1 = 10%, and 1y = 10%, respectively.

Some implementations use the norm

28

=y s

This is a poor choice of relative norm. If one solu-
tion component grows large, it completely blocks
the influence from errors in smaller components.
Consider the problem

(12)

=0,
—¥3 -+ sint,

vi(0) =7
¥2(0) =0

Y1 13
Y2 (13)
The two components are completely uncoupied,
but by setting the initial value 8 for ; the accuracy
in yz can be completely destroyed. Figure 8 depicts
yz resulting from solving (13) with a filth order
Runge-Kutta method at tol = 1073 The numerical
solution for y; is completely wrong when 8 > 10°.
One example, where this problem may be very
difficult to diagnose, is when simulating a system
with a component that increases steadily, e.g. the
angle of a rotating motor, the position of a moving
object, etc. The accuracy of the simulation slowly
deteriorates as the solution value grows.

Tolerance Proportionality

Most error control schemes concentzate on keeping
an estimate of the local truncation error bounded.
One would hope that such a scheme leads to a
global error that decreases when the error tolerance
tol is decreased (so-called tolerance proportional-
ity), but this is not always true. It requires special
attention in the implementation of the integration
reutine to obtain this property, and far from all
commercial implementations have managed.

Even a code that delivers tolerance propor-
tionality will not have a perfectly linear relation
between the global error and the choice of tol To
demonstrate this we return to the van der Pol os-
cillator [8). This time & is set to § to create a prob-
lem with faster solution variations. Figure 9 depicts
the solution of the problem as well as the stepsize

<

solution

slepsize

tima

Figure 8. The upper plot shows the selution
to the van der Pol oscillator {8) for o = 5. The
lower plot depicts the stepsize sequence needed to
obtzin the solution when fol = 107 {full curve)
and tol = 1078 {dashecd curve). A stricter value
on tolrequires smalier stepsizes. The dash-dotted

curve corresponds to tol = 16™%, but with =
restriction that the stepsize must be kept below
G035,

sequences needed to obtain a solution at different
accuracies. When the solution varies quickly the in-
tegration routine uses small steps, and at the flat
parts the stepsize is large. Reducing folscales down
the stepsize over the whole simulation interval.
The van der Pol problem was simulated using
two different Runge-Kutta methods (DOPRI{4)5
and DOPRI(7)8) of orders 5 and 8, respectively.
Figure 10 shows how the global error (measured
as deviation from the true solution at the end
point ¢ = 14) relates to the choice of {0l The
global error decreases with decreasing tol The
decrease is, however, not monotonic. Sometimes
small changes in tol cause large variations in the
global error. In this case DOPRI{4)5 (the line
with crosses) happens to have an almost one to
one correspondence between global error and ol
DOPRI(7)8 {the curve with rings), on the other
hand, happens to preduce a solution with a globat
error that is much smaller than tol In general,
there is {at best) only a proportionality between
the global error and tol, not an abselute relation.

Stepsize Restrictions

Most infegration methods allow the user to spec-
ify restrictions, hmin and hpae, on the stepsize.
Specifying a mirimum and maximum stepsize may
be helpful in problems that contain discontinuities.
We will return fo this issue in Section 4. The two
most common reason to specify a maximum step-

size are
+ the user wants a more accurate solution and
tries to obtain that by restricting the stepsize,

and

e the solution points are to sparsely spaced to

tol

Figure 10. The global error at the end point
as function of fol when sirnulating the van der
Pel oacillater (5) with o = 5. Two different
methods, DOPRI(4)5 {crosses) and DOPRI{7)8
{rings), were used. The global error decreases,
however not monotorically, with decreasing tol.
The curve with stars corresponds to DOPRI{4)5,
but with the restriction that the stepsize must
be kept belew 0.05. This results in much extra
computstion without substantial gain in accu.
racy (cf. the region where 1ol < 107%}. In the re-
gion fof > 1074, the stepaize restriction do lead
to an accuracy gain. The reason is that Amaz
reduces the stepsize everywhere for these valucs
of tol, of. Figure 10. The computational cost is,
however, high, cf. Figure 11.

produce nice plots and more solutions points
are forced hy specifying a maximum stepsize.

Neither of these strategies can be recommended.
In order to improve the accuracy the stepsize has
to be reduced everywhere. Specifying a maximum
stepsize will only reduce the stepsize in certain
areas {cf. the dash-dotted curve in Figure 9), The
price is a lot of exira computation without much
gain in accuracy. This is well demonstrated by the
results in Figures 18 and 11. Reduce ol instead of
specifying hm,a; when aiming for higher accuracy.

Modern integration methods are consiructed
with embedded interpolators. This means that
orce a new soiution point y, ;1 has been obtained,
one can fairly cheaply obtain an interpolated value
for any point between t, and ¢,,.,;. The accuracy of
the interpolation is similar to the one of yn1q. Hthe
simulation produces too few points for nice plots
the extra points should be obtained through the
interpolation and not by restricting the stepsize.
Restricting the stepsize is computationally much
more expensive,

All restrictions of the stepsize inferfere with
the error control within the integration method.
This may destroy the proportionality between fol
and the global error (cf. the curve with stars in
Figure 10), making assessmenis of she quality of
the produced numerical solution more difficult.

10 : :

107 :
5o E
&
éw"

wrl

" . N :

o 500 1000 1500 2000 2500 3600
work

Figure 11. The global erver ms function of

total work (number of evaluations of f) when
simulating the van der Pol osciliator (o = B)
from ¢ = 0tot = 14. DOPRI{7)8 (the curve with
rings) achicves high accuracy with less work then
DOPRI{4)5 (the curve with crosses), For high
accuracies DOPRI(7)8 results in less work than
DOPRI(4)5. Restricting the meximum stepsize
to 0.05 forces DOPRI{4)5 to work harder for a
specific securacy (the curve with sters).

Error Control

The tolerance parameters in an integration method
should be regarded as tuning knobs. Reducing tol
will normaliy result in a more accurate solution.
The relation is not monotonic, and a specific value
on ol does not result in a specific global error. The
simulation should therefore be redone at different
error tolerances to check that the observed solution
properties do not depend on an unfortunate choice
of error control,

In general,

s Scale the problem such that solution compo-
nents are about I in size, or set » in {11) com-
ponentwise. This makes the simulation less
sensitive to a poor choice of error norm.

s Improve accuracy by decreasing fol instead of
restricting the maximum stepsize Rypae.

s Use a method with embedded interpolator
if you want oulput peints closer than the
integration steps.

¢ Do not count on tolerance proportionality. In
a professional implementation the global error
is related to fol, but reducing tel a factor of
{say} 10 does not necessarily result in a similar
reduction in global error.

4. ODE’s with Discontinuities

The construction of the discretization (2) is based
on a Taylor expansion and assumes that the true
soiution is smooth. If the function f is not suffi-
ciently differentiable (an order p method assumes

integration step forced at ¢ = 1

Figure 12. Two simulsations of the ODE {14}
using DOPRI(4)5. The integration steps are
marked with rings. The upper plot depicts n
simulation where the integration method was
foreed to take n step exactly when the input sig-
nal u{t) changes from 1 to ~1. The lower plot
demonstrates whet happens when the integra-
tion method is not informed about the disconti-
nuity. A lot of unnecessary integration steps are
wasted trying to pass £ = 1, cf, Figure 13,

slepsize

step number

Figure 13. The stepsize sequence uscd in the
simulstion depicted in the lower plot of Figure
12. Steps that had to be rejected due to too
large an crror, sre marked with & cross. Many
integration steps are speni trying to pass the
discontinuity at £ = 1. The region marked with
the dashed line corresponds to the integration
steps taken between t = 0.8 and t = 1.2. Some 35
steps were spent on & time intzrval that normally
would require 4 to 5 steps (ef, the upper plot in

Figure 12},

f to be at least p times differentiable), this un-
deriying assurnption is no longer true. One should,
consequently, not expect an integration method fo
handle an ODE with discontinuities in an accurate
and efficient way.

To demonstrate the problem with efficiency,
we will consider the following ODE

y=—ytu, t€i0, 2], y0)=0
1, 0<t <1 14
u{t)z - ()
~1, t>1

Figure 12 shows the result of two simulations of
(14) using DOPRI(4}5. In the first simulation {the
vpper plot) the integration routine was informed

about the step in w at ¢ = 1. The integration

-1 -0.5 [} 0.5 1 1.5 2 2.5 3
time

Figure 14. A simulation of the impulse re-
sponse of 8 linear system (15). When the durs-
tion € of the impulse becomes short, the integra-
tion method misses the event and produces an
erronecous solution.

proceeded up till ¢ = 1, the value of u was changed,
and the integration continued. By “restarting” the
integration at ¢ = 1, thus avoiding to take a step
over the discontinuity in u, the method is able to
simulate the problem efficiently.

The lower plot in Figure 12 depicts what hap-
pens when the integration method tries to take a
step over the discontinuity. Many steps are rejected
due to too large an error. The stepsize is reduced
four orders of magnitude, and is eventually small
enough that the discontinuity can be passed with
acceptable integration error, More than two thirds
of the total computation is spent trying to pass
t =1, ¢f. Figure 13, I the integration method had
used EPUS for error control the situation would
have been even worse.

Sore simulation programs recommend the
user to specify a minimum stepsize A, This will
prevent the integration method to reduce the step-
size too much when irying to pass a discontinu-
ity. The efficiency of the integration is improved,
but to the price of switching off error control when
passing the discontinuity. This may lead to an er-
roneous solution.

Specifying a minimum stepsize is, normally,
the wrong way to handie discontinuities. Often the
locations of the discontinuities are known in ad-
vance (e.g. input signals in the form of steps or
square waves, combinations of continuous-time and
sampled systems, etc.), and the integration method
can be forced to restart at these points, thus al-
most completely avoiding the problem. A well im-
plemented simulation environment scans the de-
scription of the ODFE and handies the problem au-
tomatically.

Another problem with discontinuous ODEs
are “missed events.” The integration method eval-
vates the funciion f ab discrete poinis, and if an
event has short duration, the integration method

Figure 15. The friction force on s lineacly
moving object as function of the velecity §. The
friction force includes & static component that
causes o discontinuity at ¥ = 0.

forced step ¥

The integration proccecds step by
step. The discontinuity in the friction force Fy is
handled by looking for solutions of the indicator
function § = 0. An integration step is forced
exactly st the poini where g = 0. Depending on
where the indicator function is evaluated, some
discontinuities mey be missed.

Figure 16,

may step over it without neticing it. As an example
consider

15
66@):{1/5, 6<E<e (15)
0, otherwise

Figure 14 depicts two simulations at different val-
ves of e. The upper plot is the result of having
€ = 107%, and correctly portrays an approxima-
tion of the impuise response of the system. In the
lower plot, £ was reduced to 107°. The integration
routine does not evaluate f in the short interval
where §,(t} is nonzero, and the resuit is an erro-
neous simulation result.

An ineflicient solution to the problem of missed
events is to specifly a small value on Amar. This
prevents the integration method from taking large
steps and missing the event. A much betier solu-
tion to the problem is, as before, to inform the in-
tegration routine about the location of the discon-
tinuities. This will prevent the integration method
from missing the event, and will also lead to an effi-
cient integration when trying to pass the locations
where §.{t) changes value. Many simulation pro-
grams aliow for both continucus-time and discrete-
time (sampled) models. By putting the genera-
tion of discontinuous signals inside a discrete-time
model, the program can automatically schedule the
time points where the integration routine should be
restarted.

There are ODEs with discontinuities that
depend on the value of the produced solution,
which hence will occur at locations that cannot
be predicted beforehand, e.g. a mechanical sys-
tem with friction and/or backlash, electronic cir-
cuitry including switching components. This type
of problems are very difficult to simulate accurately
and efficiently. Too many simulation programs ap-
proach them by having the user specify hyin and
Amaz, and then hope for the best. An advanced in-
tegration method instead uses indicator functions
in combination with a root solver [14]. We will de-
scribe the technique using a simple example.

Consider the QDE

r"-"'"—:F—'F'
wmy i (16)

Fy = cysign(y) + oz

It describes the linear movements of a body, with
mass m, affected by an external force F and a fric-
tion force Fy. The friction force depends on the ve-
locity ¥ as depicted in Figure 15. When the move-
ment changes direction there ig a discontinuity in
the friction force. Simulating this QDE directly
would lead to the same type of problems as de-
picted in Figures 12 and 13.

A Dbetter way is to separate the description of
Fy into two models, one valid for positive y and
one valid for negative y. Neither of these models
are discontinuous, and they are only used one at a
time. A special indicator function, telling when to
switch model, is also constructed. In cur case it is
simply .

The integration will proceed using one of the
models for Fy. After each integration step the
method checks whether there has been a sign
change in the indicator function. If so, 2 root finder
is called to find the exact location where the indi-
cator function equals zero, l.e. for which tis ¢ = 0.
The integration method provides an embedded in-
terpolation function so the indicator function can,
relatively cheaply, be evaluated anywhere between
tn and f,;. Once the location of the discontinu-
ity has been found, a step is taken up to this time
point, the model for ¥y is changed, and the inte-
gration proceeds. The simulation program handles
these steps automatically. The technique, however,
puts a larger modeling burden on the user. Figure
16 exemplifies how the integration may proceed,
and also indicates that some events may be missed
depending on where the indicator function happens
to be evaluated.

How to Handle Discontinuities

Simulating an ODE that includes discontinuities
is a difficult task. All integration methods are
constructed assuming a smooth solution, and are
more or less unable to handle a discontinucus ODE

accurately and efficiently. The situation can be
improved by expressing the ODE on a form that
the integration method can exploit. Specifically,

e Force integration steps at known disconti-
nuities, either by using a simulation pro-
gram that is able to handle a combination of
continuous-time and discrete-time models or
by manually dividing the simulation interval
into subintervals.

Use an integration method that includes a
root solver and which can handle indicator
functions. Write your models to support this
functionality.

Remember that the integration method as-
sumes f € CP, and discontinuous derivatives
(e.g. 2 triangle wave as input signal) may be
as harmfui as discontinuous signal.

Use hpar and Bygie as 2 last resort to make
the integration method handle discontinuities.
The result is often poor accuracy or inefficient
simulation, compared to the approaches de-
scribed above.

Multistep methods are expensive to restart
and are therefore inefficient for ODEs with
many discontinuities.

5. INoise

Stochastic differential equations (the function f
includes stochastic elements) are very difficult to
solve numerically [11]. The combination of solution
points and function values that are used to form ¥,
and f, almost always fail to correctly represent
the contribution from the stochastic variable over
the infegration step. To obtain reasonable result
requires both special numerical software and a very
educated user.

Often the stochastic component in f serves
only to investigate how the system reacts to a
noiselike input signal, e.g. how does measurement
noise in a sensor affect the attitude conirol in an
airplane. This type of simulations are easier than
the general stochastic differential equation case,
but still requires special care.

To exemplify, we will describe an erroncous
approach, that, unfortunately, is not uncommon
even in commercial programs. Suppose that we
want to investigate how the system ¢ = —y + u
reacts to a “white nolse” input signal w. The input
signal is generated by substituting v with 2 random
number every time the function f = —y 4+ u is
evaluated by the integration method. The random
number is drawn from a normal distribution with
zero mean and unit variance. Figure 17 depicts the
resulting ¥ when performing the simulation using
DOPRI{4}5 at two different error tolerances.

tol = 1032
0.5
Cir
a0k \ " YR

lution

0.1

tol =
215

i}
BOSF-

olution
=]

50,05 -

lime

Figure 17. The plot depicts the result of two
erroneons simulations of & lnear first order sys-
tern g = ~y -+ u with “white nolse” input u. The
noise signal is represented with a random num.
ber cach time the function §f = —y + u is evalu-
ated. The simulation result depends strongly on
the choice of error tolerance fol and the choice of
integration method.

noise signal

-2t

15 20 25 a0
time

1M

Figure 18. Onc way to approximate a contin-
nous-time “white” noise signal is to use a piece-
wise constant signel, where each step has random
amplitude. By choosing the sampling time suffi-
ciently short, this signal will have an almeost flat
spectrum within the frequency region of intereat,
The variance of the signal is set by choosing the
variance of the random numbers that decides the
amplitude of the steps.

The result is very different for the two simu-
lations. Both are wrong! DOPRI(4)5 samples the
function f at a few places when forming f. This will
effectively form an average of the random u val-
ues, creating an input signal that is far from white.
Depending on the stepsize the integration method
uses, there will be different number of samples of u
per unié time. This changes the effective variance
of the signal u. When asking for a more accurate
solution, DOPRI(4}5 is forced to take shorter inte-
gration steps, which results in a completely differ-
ent result. Changing integration method (different
way to form ¥, and fn) also changes the result
drastically.

To obtain reproducible and accurate results in
this type of simulations, the “white noise” signal u
has to be approximated with & signal that the inte-
gration method is able to handle. One way is to use
& piecewise constant signal {cf. Figure 18) with ran-
dom amplitude steps. The spectrum of this signal

can be made almost flat over the frequency region
of interest by choosing the sampling period suffi-
ciently short. It is important to use an integration
method that restarts at each new step of the input
signal. The sampling period is normally short and
a low order explicit onestep method gives the most
efficient simulation.

6. Final Remarks

Solving ordinary differential equations is probably
one of the most complicated numerical tasks that
people expect to solve with a “black box” code.
There has been dramatical improvement in hoth
integration methods and simulation environments
during the last decades, but the user still needs
to be aware of potential problems. By formulating
the simulation problem in an inappropriate way,
choosing an integration method poorly suited for
the problem class, or seiting the method parame-
ters unwisely, the user may end vp with an inef-
ficient simulation and/or an erroneous result. Nu-
merical simulation is a powerful tool, but requires
an educated user.

From the comments above it may seemn as if
successful numerical simulation is an impossible
task for general ODEs. On the contrary! Many
of today’s commercial tools will perform perfectly
on large classes of problems. Sometimes, however,
they will fail, We have tried to describe some com-
mon reasons for such failures, and also suggested
what the user may do to improve the situation. Of-
ten the changes needed are within the capability of
the simulation environment that one uses. It just
takes some thinking to formulate the problem on
the right form, or some reading in the manual to
find out how to change the appropriate parameters.

Finally,

» Never trust numerical simulation blindly. Does
the result agree with what can be expected?
Repeat the simulation with different integra-
tion methods and different error tolerances to
check that you get gualitatively similar re-
sults.

¢ Be careful in the modeling of the system that
is to be simulated. Try to express the model
on a form that suites the integration method,
e.g. scale the problem, try to express discon-
tinuities se that the integration methed can
handle them.

* The research field in numerical integration
has seen skrong progress the last two decades.
Many commercial simulation packages, how-
ever, still choose to use almost historical inte-
gration methods. Push vendors to implement
and use state of the arb algorithms.

o
i

7. References

{1] K. E. BrenaN, S. L. CAMPBELL, and L. R. PE1-
zoLD. Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations. North.
Holland, 1989,

[2] K. Burrage, J. C. BuTcEER, and F. H. Care-
MaN. “An implemeatation of singly-implicit
Runge-Kutta methods.” BIT (Nordisk Tidskrift
f3r Informationsbehandling), 20, pp. 326-340,
1980.

[3] J. C. Buzcrer. The Numerical Analysis of
Ordinary Differential Equations. John Wiley &
Sons, 1987.

{4 W. H. EvrigaT, T. E. Hurl, and B. LinDpBERG.
“Cormparing numerical methods for stiff systems
of ODE:w.” BIT {Nordisk Tidskrift for Informa-
tionsbehandling), 15, pp. 10-48, 1975,

[5] C. W. GEAR. Numerical Initial Value Problems
in Ordinary Differential Equations. Prentice-Hall,
Englewood Cliffs, New Jersey, 1971,

[6}] K. GusTarssor. Control of Error and Conver-
gence in ODE Solvers. PhD thesis, Department of
Automatic Conirol, Lund Institute of Technology,
1992,

[7] E. Hamenr, S. P. NorserT, and G. WANKER.
Solving Ordinary Differential Equations I~ Nons-
tiff Problems, volume 8 of Springer Series in Com-
putational Mathematics. Springer-Verlag, 1987.

[8] BE. Hamer and Q. WANNER. Solving Ordinary
Differential Equations IT — Stiff and Differential-
Algebraic Problems, volume 14 of Springer Series
in Computational Mathematics. Springer-Verlag,
1981,

[9] A. C. Hinpmarsa. “ODEPACK, a systematized
collection of ODE solvers.” In SterLEMAN, Ed.,
Scientific Computing, pp. 55-64. North-Holland,
Amsterdam, 1983,

(10] InrecraTen SysTeMs, INc., Santa Clara, Cali-

fornia. SYSTEM-BUILD User’s Guide, 1985,

[11} P. E. K1orpEN and E. PLATEN, The Numeri-

cal Solution of Stochastic Differential Equations.
Springer, 1992,

[12] TRE MATEWoORKS Inc., Cochituate Place, 24

Prime Park Way, Natick, MA 01760, USA.
SIMULINK ~ A Program for Simulating Dynamic
Systems, 1992,)

{13] MicroSiMm Core, Campbell, Californiz. PSpice

User’s Manual, 1987.

{14] L. F. SEAMPINE and 1. G. R. W_ Brankin. “Re-

Liable solution of special event location problems
for odes.” ACM Transactions on Mathematical
Software, 17:1, pp. 11-25, March 1991.

18] R. D. SkgEL. “Thirteen ways to estimate global

error.” Numerische Mathematik, 48, pp. 1-20,
1986.

