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W2M – Energy Paths Energy System Overview

Primary sources

Different options for on-
board energy storage

Powertrain energy conver-
sion during driving

Cut at the wheel!

Driving mission has a mini-
mum energy requirement.
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Energy Consumption of a Driving Mission

I Remember the partitioning
–Cut at the wheels.

I How large force is required at the wheels for driving the
vehicle on a mission?

Repetition – Work, power and Newton’s law

Translational system – Force, work and power:

W =

∫
F dx , P =

d

dt
W = F v

Rotating system – Torque (T = F r), work and power:

W =

∫
T dθ, P = T ω

Newton’s second law:

Translational Rotational

m dv
dt = Fdriv − Fload J dω

dt = Tdriv − Tload

The Vehicle Motion Equation
Newton’s second law for a vehicle

mv
d

dt
v(t) = Ft(t)− (Fa(t) + Fr (t) + Fg (t) + Fd(t))

Ft

Fr

Fa

Fd

α

mv · g

Fg

I Ft – tractive force

I Fa – aerodynamic drag force

I Fr – rolling resistance force

I Fg – gravitational force

I Fd – disturbance force



Aerodynamic Drag Force – Loss

Aerodynamic drag force depends on:
Frontal area Af , drag coefficient cd , air density ρa and vehicle
velocity v(t)

Fa(t) =
1

2
· ρa · Af · cd · v(t)2

Approximate contributions to Fa

I 65% car body.

I 20% wheel housings.

I 10% exterior mirrors, eave gutters, window housings,
antennas, etc.

I 5% engine ventilation.

Rolling Resistance Losses
Rolling resistance depends on:
load and tire/road conditions

Fr (v , pt , surface, . . .) = cr (v , pt , . . .) ·mv · g · cos(α), v > 0

The velocity has small influence at low speeds.
Increases for high speeds where resonance phenomena start.

Assumption in book: cr – constant

Fr = cr ·mv · g

Gravitational Force

I Gravitational load force
–Not a loss, storage of potential energy

Ft

Fr

Fa

Fd

α

mv · g

Fg

I Up- and down-hill driving produces forces.

Fg = mv g sin(α)

I Flat road assumed α = 0 if nothing else is stated (In the
book).

Inertial forces – Reducing the Tractive Force

Te

ωe

Ft

Gearbox
Wheel

Je

Engine Jw

γ

ωw

rw

Tt

Te − Je
d
dtωe = Tgb Tgb · γ − Jw

d
dtωw = Tt

Variable substitution: Tw = γ Te , ωw γ = ωe , v = ωw rw

Tractive force:
Ft = 1

rw

[
(Te − Je

d
dt

v(t)
rw
γ) · γ − Jw

d
dt

v(t)
rw

]
= γ

rw
Te −

(
γ2

r2w
Je + 1

r2w
Jw
)

d
dt v(t)

The Vehicle Motion Equation:[
mv + γ2

r2w
Je + 1

r2w
Jw
]

d
dt v(t) = γ

rw
Te − (Fa(t) + Fr (t) + Fg (t) + Fd(t))

Vehicle Operating Modes

The Vehicle Motion Equation:

mv
d

dt
v(t) = Ft(t)− (Fa(t) + Fr (t) + Fg (t) + Fd(t))

I Ft > 0 traction

I Ft < 0 braking

I Ft = 0 coasting

d

dt
v(t) = − 1

2 mv
ρa Af cd v2(t)− g cr = α2 v2(t)− β2

Coasting solution for v > 0

v(t) =
β

α
tan

(
arctan

(
α

β
v(0)

)
− αβ t

)

How to check a profile for traction?
The Vehicle Motion Equation:

mv
d

dt
v(t) = Ft(t)− (Fa(t) + Fr (t) + Fg (t) + Fd(t)) (1)

I Traction conditions:
Ft > 0 traction, Ft < 0 braking, Ft = 0 coasting

I Method 1: Compare the profile with the coasting solution
over a time step

vcoast(ti+1) =
β

α
tan

(
arctan

(
α

β
v(ti )

)
− αβ (ti+1 − ti )

)
I Method 2: Solve (1) for Ft

Ft(t) = mv
d

dt
v(t) + (Fa(t) + Fr (t) + Fg (t) + Fd(t))

Numerically differentiate the profile v(t) to get d
dt v(t).

Compare with Traction condition.

Driving profiles

Velocity profile, American FTP-75 (1.5*FUDS).

Driving profiles in general

I First used for pollutant control now also for fuel cons.

I Important that all use the same cycle when comparing.

I Different cycles have different energy demands.

Driving profiles – Another example

Velocity profile, European MVEG-95 (ECE*4, EUDC)

No coasting in this driving profile.



Mechanical Energy Demand of a Cycle

Only the demand from the cycle

I The mean tractive force during a cycle

F̄trac =
1

xtot

∫ xtot

0
F (x)dx =

1

xtot

∫
t∈trac

F (t)v(t)dt

where xtot =
∫ tmax

0 v(t)dt.

I Note t ∈ trac in definition.

I Only traction.

I Idling not a demand from the cycle.

Evaluating the integral

Discretized velocity profile used to evaluate

F̄trac =
1

xtot

∫
t∈trac

F (t)v(t)dt

here vi = v(ti ), t = i · h, i = 1, . . . , n.
Approximating the quantites

v̄i (t) ≈ vi + vi−1
2

, t ∈ [ti−1, ti )

āi (t) ≈ vi − vi−1
h

, t ∈ [ti−1, ti )

Traction approximation

F̄trac ≈
1

xtot

∑
i∈trac

F̄trac,i vi h

Evaluating the integral

Tractive force from The Vehicle Motion Equation

Ftrac =
1

2
ρa Af cd v2(t) + mv g cr + mv a(t)

F̄trac = F̄trac,a + F̄trac,r + F̄trac,m

Resulting in these sums

F̄trac,a =
1

xtot

1

2
ρa Af cd

∑
i∈trac

v̄3
i h

F̄trac,r =
1

xtot
mv g cr

∑
i∈trac

v̄i h

F̄trac,m =
1

xtot
mv

∑
i∈trac

āi v̄i h

Values for cycles

Numerical values for MVEG-95, ECE, EUDC

X̄trac,a =
1

xtot

∑
i∈trac

v̄3
i h = {319, 82.9, 455}

X̄trac,r =
1

xtot

∑
i∈trac

v̄i h = {.856, 0.81, 0.88}

X̄trac,m =
1

xtot

∑
i∈trac

āi v̄i h = {0.101, 0.126, 0.086}

ĒMVEG-95 ≈ Af cd 1.9 · 104 + mv cr 8.4 · 102 + mv 10 kJ/100km

Tasks in Hand-in assignment

Approximate car data

ĒMVEG-95 ≈ Af cd 1.9 · 104 + mv cr 8.4 · 102 + mv 10 kJ/100km

SUV full-size compact light-weight PAC-Car II

Af · cd 1.2 m2 0.7 m2 0.6 m2 0.4 m2 .25 · .07 m2

cr 0.017 0.017 0.017 0.017 0.0008
mv 2000 kg 1500 kg 1000 kg 750 kg 39 kg

P̄MVEG-95 11.3 kW 7.1 kW 5.0 kW 3.2 kW
P̄max 155 kW 115 kW 77 kW 57 kW

Average and maximum power requirement for the cycle.

The Vehicle Motion Equation
Newton’s second law for a vehicle

mv
d

dt
v(t) = Ft(t)− (Fa(t) + Fr (t) + Fg (t) + Fd(t))

Ft

Fr

Fa

Fd

α

mv · g

Fg

I Ft – tractive force

I Fa – aerodynamic drag force

I Fr – rolling resistance force

I Fg – gravitational force

I Fd – disturbance force

Energy consumption for cycles

Numerical values for MVEG-95, ECE, EUDC

X̄trac,a =
1

xtot

∑
i∈trac

v̄3
i h = {319, 82.9, 455}

X̄trac,r =
1

xtot

∑
i∈trac

v̄i h = {.856, 0.81, 0.88}

X̄trac,m =
1

xtot

∑
i∈trac

āi v̄i h = {0.101, 0.126, 0.086}

ĒMVEG-95 ≈ Af cd 1.9 · 104 + mv cr 8.4 · 102 + mv 10 kJ/100km
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Performance and driveability

I Important factors for customers

I Not easy to define and quantify
I For passenger cars:

I Top speed
I Maximum grade for which a fully loaded car reaches top speed
I Acceleration time from standstill to a reference speed (100

km/h or 60 miles/h are often used)

Top Speed Performance

I Starting point the vehicle motion equation.

mv
d

dt
v(t) = Ft −

1

2
ρa Af cd v2(t)−mv g cr −mv g sin(α)

I At top speed
d

dt
v(t) = 0

and the air drag is the dominating loss.

I power requirement (Ft = Pmax
v ):

Pmax =
1

2
ρa Af cd v3

Doubling the power increases top speed with 26%.

Uphill Driving

I Starting point the vehicle motion equation.

mv
d

dt
v(t) = Ft −

1

2
ρa Af cd v2(t)−mv g cr −mv g sin(α)

I Assume that the dominating effect is the inclination
(Ft = Pmax

v ), gives power requirement:

Pmax = v mv g sin(α)

I Improved numerical results require a more careful analysis
concerning the gearbox and gear ratio selection.

Acceleration Performance

I Starting point:
Study the build up of kinetic energy

E0 =
1

2
mv v2

0

I Assume that all engine power will build up kinetic energy
(neglecting the resistance forces)
Average power: P̄ = E0/t0

I Ad hoc relation, P̄ = 1
2Pmax

Assumption about an ICE with approximately constant torque
(also including some non accounted losses)

Pmax =
mv v2

t0

Acceleration Performance – Validation

Published data and Pmax = mv v2

t0

Energy demand again – Recuperation

Recover the vehicle’s kinetic energy during driving

Perfect recuperation

I Mean required force
F̄ = F̄a + F̄r

I Sum over all points

F̄a =
1

xtot

1

2
ρa Af cd

N∑
i=1

v̄3
i h

F̄r =
1

xtot
mv g cr

N∑
i=1

v̄i h

Perfect recuperation – Numerical values for cycles

Numerical values for MVEG-95, ECE, EUDC

X̄a =
1

xtot

∑
i

v̄3
i h = {363, 100, 515}

X̄r =
1

xtot

∑
i

v̄i h = {1, 1, 1}

ĒMVEG-95 ≈ Af cd 2.2 · 104 + mv cr 9.81 · 102 kJ/100km



Perfect and no recuperation

Mean force represented as liter Diesel / 100 km.

Sensitivity Analysis

I Cycle energy reqirement (no recuperation)

ĒMVEG-95 ≈ Af cd 1.9·104+mv cr 8.4·102+mv 10 kJ/100km

I Sensitivity analysis

Sp = lim
δp→0

[
ĒMVEG-95(p + δp)− ĒMVEG-95(p)

]
/ĒMVEG-95(p)

δp/p

Sp = lim
δp→0

[
ĒMVEG-95(p + δp)− ĒMVEG-95(p)

]
δp

p

ĒMVEG-95(p)

I Vehicle parameters:
I Af cd
I cr
I mv

Sensitivity Analysis

Vehicle mass is the most important parameter.

Vehicle mass and fuel consumption

Realistic Recuperation Devices Vehicle Mass and Cycle-Avearged Efficiency
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Methods and tools

Average operating point method.

One task among in the Hand-in assignments.



Two Approaches for Powertrain Simulation

I Dynamic simulation (forward simulation)

Driver Engine Transm. WheelCycle Vehicle

–“Normal” system modeling direction
–Requires driver model

I Quasistatic simulation (inverse simulation)

Transm. EngineWheelCycle Vehicle

–”Reverse” system modeling direction
–Follows driving cycle exactly

I Model causality

Quasistatic approach

I Backward simulation

I Driving cycle ⇒ Losses ⇒ Driving force ⇒ Wheel torque ⇒
Engine (powertrain) torque ⇒ . . .⇒ Fuel consumtion.

I Available tools are limited with respect to the powertrain
components that they can handle, considering Modelica opens
up new possibilities.

I See also: Efficient Drive Cycle Simulation, Anders Fröberg
and Lars Nielsen (2008) . . .

Dynamic approach

I Drivers input u propagates to the vehicle and the cycle

I Drivers input ⇒ . . .⇒ Driving force ⇒ Losses ⇒ Vehicle
velocity ⇒ Feedback to driver model

I Available tools (= Standard simulation) can deal with
arbitrary powertrain complexity.

Optimization problems

I Structure optimization

I Parametric optimization

I Control system optimization

Software tools

Different tools for studying energy consumption in vehicle
propulsion systems

Quasi static Dynamic

QSS (ETH) X
Advisor, AVL X (X)
PSAT X
CAPSim (VSim) X

Inhouse tools (X) (X)

PSAT

Argonne national laboratory

Advisor Advisor

Information from AVL:

I The U.S. Department of Energy’s National Renewable Energy
Laboratory (NREL) first developed ADVISOR in 1994.

I Between 1998 and 2003 it was downloaded by more than
7,000 individuals, corporations, and universities world-wide.

I In early 2003 NREL initiated the commercialisation of
ADVISOR through a public solicitation.

I AVL responded and was awarded the exclusive rights to
license and distribute ADVISOR world-wide.
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