Vehicle Propulsion Systems Lecture 4

Hybrid Powertrains, Part 1 – Topologies and Operating Principles

> Lars Eriksson Associate Professor (Docent)

> > Vehicular Systems Linköping University

October 28, 2010

Outline

Repetition

Introduction to Hybrid-Electric Vehicles Potential

lectric Propulsion Systems Zero Emissions for Vehicles Basic Configurations

Series Hybrid

Parallel Hybric

Combined Hybrid

Implemented concepts

HEV Modeling and Causality

Energy consumption for cycles

The Vehicle Motion Equation

Newtons second law for a vehicle

$$m_{v}\frac{d}{dt}v(t) = F_{t}(t) - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$

► F_t - tractive force

- ► F_a aerodynamic drag force
- F_r rolling resistance force
- ► F_g gravitational force
- ► F_d disturbance force

Engine Efficiency Maps

Measured engine efficiency map - Used very often

-Willans line approximation.

Outline

Repetition

Introduction to Hybrid-Electric Vehicles Potential

Electric Propulsion Systems Zero Emissions for Vehicles Basic Configurations

Series Hybrid

Parallel Hybrid

Combined Hybrid

Implemented concepts

HEV Modeling and Causality

Numerical values for MVEG-95, ECE, EUDC

 $\begin{array}{ll} \mbox{air drag} = & \frac{1}{\chi_{lot}} \sum_{i \in trac} \bar{v}_i^3 \ h = & \{ 319, 82.9, 455 \} \\ \mbox{rolling resistance} = & \frac{1}{\chi_{lot}} \sum_{i \in trac} \bar{v}_i \ h = & \{ .856, 0.81, 0.88 \} \\ \mbox{kinetic energy} = & \frac{1}{\chi_{lot}} \sum_{i \in trac} \bar{a}_i \ \bar{v}_i \ h = & \{ .0.101, 0.126, 0.086 \} \\ \end{array}$

 $\bar{E}_{MVEG-95} \approx A_f c_d 1.9 \cdot 10^4 + m_v c_r 8.4 \cdot 10^2 + m_v 10$ kJ/100km

Model implemented in QSS

Conventional powertrain.

Efficient computations are important -For example if we want to do optimization and sensitivity studies.

Definition

What characterizes a Hybrid-Electric Vehicle

- Energy carrier is a fossil-fuel.
- Presence of an electrochemical or electrostatic energy storage system.

Potential for Energy Savings

Benefits of Hybrid-Electric Vehicles

- Downsize engine while maintaining maximum power requirement
- Recover energy during deceleration (recuperation)
- Optimize energy distribution between prime movers
- Eliminate idle fuel consumption by turning off the engine (stop-and-go)
- Eliminate the clutching losses by engaging the engine only when the speeds match

Possible improvements are counteracted by a 10-30% increase in weight.

Outline

Repetitio

Introduction to Hybrid-Electric Vehicles Potential

Electric Propulsion Systems Zero Emissions for Vehicles Basic Configurations

Series Hybrid

Parallel Hybrid

Combined Hybrid

Implemented concepts

HEV Modeling and Causality

Electric Vehicles

Sketch of the paths

Electric vehicle

Electric Vehicles - Niche

- Applications requiring zero-emissions.
 - Indoor vehicles, mines . . .
 - In-city distribution vehicles
 Zero emission vehicle requirements
- Other niched vehicles

Lightning

v

Tesla Roadster

Electric Vehicles

- Contain basic elements of HEV.
- Not "interesting", for optimization.
- -No in-depth coverage in the course.
- Interesting from the design point of view.
- Drawbacks compared to a conventional vehicle
 - Not autonomous
 - Refueling time
 - Low range/weight
- $\blacktriangleright \Rightarrow \text{Niche vehicles}$
- Plug-in EV:s are hot in media
- Development of plug-less vehicles –Inductive charging
- Range extenders (transition to series hybrid)

Are Electric Vehicles = Zero Emissions ?

Basic configurations

Basic classification of hybrids

- Series hybrid
- Parallel hybrid
- Series-parallel or combined hybrid

There are additional types that can not be classified into these three basic types

Complex hybrid (sometimes)

Zero Emissions - Is it the Limit?

Outline

Repetition

ntroduction to Hybrid-Electric Vehicles Potential

lectric Propulsion Systems Zero Emissions for Vehicles Basic Configurations

Series Hybrid

Parallel Hybrid

Series Hybrid

Combined Hybrid

Implemented concepts

HEV Modeling and Causality

Series Vehicle Configuration in ADVISOR

Gearbox

Ja

Ja

###

Series Hybrid – Topology

Series Hybrid – Modes and Power Flows The different modes for a series hybrid

Outline

Repetition

Introduction to Hybrid-Electric Vehicles Potential

Electric Propulsion Systems Zero Emissions for Vehicles Basic Configurations

Series Hybrid

Parallel Hybrid

Combined Hybrid

Implemented concept

HEV Modeling and Causality

Sketch of the topology

Parallel Hybrid – Topology

Parallel Hybrid – Modes and Power Flows The different modes for a parallel hybrid

Mild Parallel Hybrid - Topology

Sketch of the topology

Outline

Repetition

Introduction to Hybrid-Electric Vehicles Potential

Electric Propulsion Systems Zero Emissions for Vehicle Basic Configurations

Series Hybrid

Parallel Hybrid

Combined Hybrid

Implemented concepts

HEV Modeling and Causality

Combined Hybrid – Topology

Combined Hybrid Without Planetary Gear

Implemented concepts

- Passenger cars
 - Parallel hybrids
 - Combined hybrids
 - Very few series hybrids (range extenders to EV).
- Trucks and busses
 - Series hybrids
 - Parallel hybrids
 - Combined hybrids
- Diesel trains
 - Series configuration but no storage

Combined Hybrid – Topology

Sketch of the topology

Combined Hybrid with PGS – Modes and Power Flows The different modes for a combined hybrid

Conventional vehicle

Outline

Repetition

Introduction to Hybrid-Electric Vehicles Potential

Electric Propulsion Systems Zero Emissions for Vehicles

Basic Configurations

Series Hybrid

Parallel Hybrid

Combined Hybrid

Implemented concepts

HEV Modeling and Causality

L

Degree of Hybridization

- Degree of hybridization
- The ratio between electric motor power and engine power.Implemented hybrid concepts in cars
- Degree of hybridization varying between 15–55% True mild hybrid concepts
- Degree of hybridization varying 2-15%

Outline

Repetitior

Introduction to Hybrid-Electric Vehicles Potential

lectric Propulsion Systems Zero Emissions for Vehicles Basic Configurations

Series Hybrid

Parallel Hybric

Combined Hybrid

mplemented concepts

HEV Modeling and Causality

Causality – Parallel Hybrid

State Of Charge - SOC

- Charge condition for the battery.
- ▶ Full range SOC \in 0–100%.
- Used range SOC \in 50–70%.
- Generally difficult problem Models that include aging are not (yet) good enough.

Causality - Series Hybrid

Causality - Combined Hybrid with PGS

Summary of different hybrid concepts

Feature	Conv.	Mild	Full	Plug-in
Shut of engine at stop-lights and	(x)	Х	Х	Х
stop-go traffic				
Regenerative braking and operates		Х	Х	Х
above 42 V				
Electric motor to assist a conven-		Х	Х	Х
tional engine				
Can drive at times using only the			Х	Х
electric motor				
Recharges batteries using the wall				Х
plug with at least 32 km range on				
electricity				

Charge Sustaining Strategy

Charge Sustaining Strategies

- Basic control problem for a hybrid SOC after a driving mission is the same as it was in the beginning

 Advisor simulation
- Plug-in hybrids
- Not charge sustaining

(a) Charge sustaining, or H0, hybrid architecture

Plug in at home at night: use gasoline for longer trips (b) Plug-in hybrid with electric range capability.

'08 List of Hybrid Passenger Cars (Incomplete)

- Chevrolet Silverado Hybrid Truck, Chevrolet Tahoe Hybrid
- Daihatsu Highjet
- ► Ford Escape, Ford Mercury Mariner Hybrid
- GMC Sierra Hybrid Truck, GMC Yukon Hybrid
- Highlander Hybrid
- Honda Accord Hybrid, Honda Civic Hybrid, Honda Insight Hybrid
- Landrover Hybrid
- ► Lexus GS450h, Lexus RX 400h
- Nissan Altima
- Porsche Cayenne Hybrid
- Saturn VUE Greenline Hybrid
- Suzuki Twin
- Toyota Alphard Hybrid, Toyota Camry, Toyota Estima Hybrid, Toyota Prius
- Twike