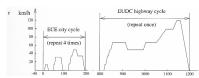
#### Outline

### Vehicle Propulsion Systems Lecture 5


Hybrid Powertrains
Part 2 Component Modeling

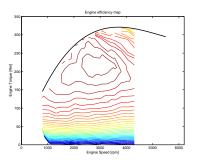
Lars Eriksson Associate Professor (Docent)

> Vehicular Systems Linköping University

November 5, 2010

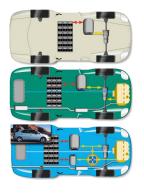
# Energy consumption for cycles

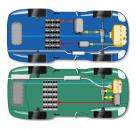



Numerical values for MVEG-95, ECE, EUDC

$$\begin{aligned} & \text{air drag} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{v}_i^3 \, h = & & & & & & & & \\ & \text{rolling resistance} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{v}_i \, h = & & & & & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = & & & & & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = & & & & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = & & & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = & & & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = & & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = & & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = & \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, \bar{v}_i \, h = \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, h = \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, h = \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}} \sum_{i \in Irac} \bar{a}_i \, h = \\ & \text{kinetic energy} = \frac{1}{\chi_{lot}}$$

 $\bar{E}_{\text{MVEG-95}} \approx A_f \, c_d \, 1.9 \cdot 10^4 + m_v \, c_r \, 8.4 \cdot 10^2 + m_v \, 10$   $kJ/100 \, km$ 

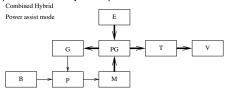

## **Engine Efficiency Maps**


Measured engine efficiency map – Used very often



-Willans line approximation.

#### Hybrid concepts






Electric Parallel Combined Series Parallel S/A

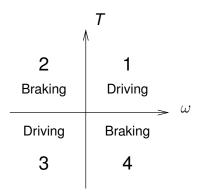
### Hybrid operating modes

Example: Combined hybrid in power assist mode.



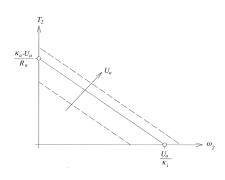
#### Outline

### Electric Motors - Classification


Electric motors are often classified into four groups (there are other classifications)

- ► DC-Machines
- Synchronous machines (sometimes including brushless DC-motor)
- Asynchronous machines
- Reluctance machines

There are also other devices:


Stepper motors (Digitally controlled Synchronous Machine), Ultrasonic motors.

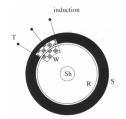
# The 4 Quadrants



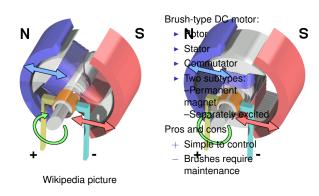
## DC-motor torque characteristics

Characteristics of a separately excited DC-motor




#### Synchronous AC machines

- ► AC machine
- ▶ Rotor follows the rotation of the magnetic field
- ▶ Has often permanent magnets in rotor -This is the same as the brushless DC motor.



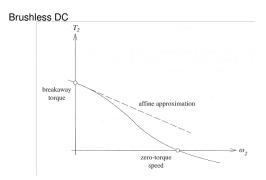

### Asynchronous AC machines - Induction motors

- Stator has a rotating magnetic fiels
- ▶ Rotor has a set of windings, squirrel cage -See separate animation.
- ▶ Electric field induces a current in the windings
- ► Torque production depends on slip.



#### **Brushed DC-Machine**




### **Brushless DC-Motor**

- Solves DC commutator and brushes problem
  - Replace electromagnet in rotor with permanent magnet.

    Rotate field in stator.
- DC-motor is misleading
  - ▶ DC source as input
  - ► Electronically controlled commutation system AC
- ► Linear relations between
  - current and torque
  - voltage and rpm



# **Torque Characteristics**

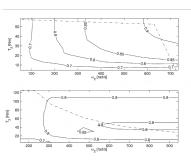


### **Torque Characteristics**

-Induction AC motor

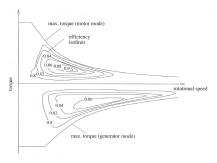


#### Reluctance machines


Reluctance = Magnetic resistance.

- Synchronous machine
- ► Rotating field
- ► Magnetic material in the rotor
- ▶ Rotor tries to minimize the reluctance




# First quadrant maps for $\eta_m$ – AC machines

#### PM Synchronous



Induction motor, Asynchronous AC

#### Two Quadrant Maps for $\eta_m$



Mirroring efficiency is not always sufficient.

# Electrical Machines in Hybrids

#### Machines encountered

- ► Separately excited DC
- Permanent magnet synchronous DC
- ► Induction motors
- (Switched reluctance machines)
   Considered to be interesting

#### AC motors (compared to DC motors)

Less expensive but more sophisticated control electronics, gives higher overall cost

overall cost. Higher power density, higher efficiency.

#### AC motors (permanent magnet vs induction motors)

Averaged values from Advisor database.

permanent magnet permanent per

### Motor - Modeling

Quasistatic (equations are general)

- Power relationships:
  -input power  $P_1(t)$ -delivered power  $P_2(t) = T_2(t) \omega_2(t)$
- ► Efficiency usage

$$P_1(t) = P_2(t)/\eta_m(\omega_2(t), T_2), \qquad P_2(t) > 0$$

$$P_1(t) = P_2(t) \cdot \eta_m(\omega_2(t), -T_2), \qquad P_2(t) < 0$$

- ▶ Description of the efficiency in look-up tables
- ▶ Willans line to capture low power performance

### Extending the Maps for $\eta_m$

- ▶ Traditional first quadrant drive is normally well documented —Supplier information for  $\eta_m(\cdots)$
- ▶ Electric motor drive

$$P_2(t) = \eta_m(\omega_2(t), T_2) \cdot P_1(t), \qquad P_2(t) > 0$$

► Electric generator load

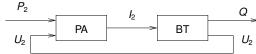
$$P_1(t) = \eta_g(\omega_2(t), T_2) \cdot P_2(t), \qquad P_2(t) < 0$$

- ▶ How to determine  $\eta_a$ ?
- ► Method 1: Mirror the efficiency map

$$\eta_m(\omega_2(t), -T_2) = \eta_g(\omega_2(t), T_2)$$

- ▶ Method 2: Calculate the power losses and mirror them
- ▶ Method 3: Willans approach

#### Motor - Modeling


- ► More advanced models
  - ▶ Use component knowledge: Inductance, resistance
  - Build physical models
- Dynamic models are developed in the book.

#### Outline

- ► Energy storage devices Energy density important
- ▶ Performance Power density important
- Durability

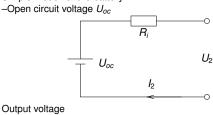
|                      | Energy | Power | cycles |
|----------------------|--------|-------|--------|
| Battery type         | Wh/kg  | W/kg  |        |
| Lead-acid            | 40     | 180   | 600    |
| Nickel-cadmium       | 50     | 120   | 1500   |
| Nickel-metal hydride | 70     | 200   | 1000   |
| Lithium-ion          | 130    | 430   | 1200   |

# Causality for Battery models in QSS.



- Models have two components
  - ► The first component is

Modeling in QSS Framework


$$I_2 = \frac{P_2}{U_2}$$

► The other, the relation between voltage and terminal current SOC

$$U_2 = f(SOC, I_2, \ldots)$$

#### Standard model

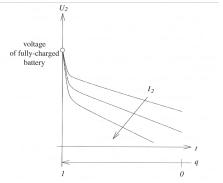
Simple model for the battery



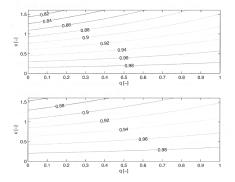
# Battery - Efficiency definition

- Efficiency definition is problematic
  - ► Not an energy converter
  - Energy storage
  - Peukert test
  - -Constant current during charge and discharge.

 $U_2 = U_{oc} - R_i I_2$ 


- -Constant power during charge and discharge.
- ► Efficiency will depend on the cycle.

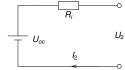
$$E_d = \int_0^{t_f} P_2(t) dt = / \text{Peukert test...} / = t_f (\textit{U}_{oc} - \textit{R}_i \cdot \textit{I}_2) \cdot \textit{I}_2$$


$$|E_c| = \int_0^{t_f} |P_2(t)| dt = / ext{Peukert test...} / = t_f (U_{oc} + R_i \cdot |I_2|) \cdot |I_2|$$

Can also define an instantaneous efficiency.

# Voltage and SOC




#### Efficiency definition - Instantaneous



#### Supercapacitors

- ► Supercapacitors and ultracapacitors
- High power density
  - -Used as short time scale energy buffer.
- -Load leveling to the battery.
- Very similar to battery in modeling

Exchange the battery for a capacitor in the circuit below.

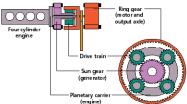


 Efficiency definitions Peukert and Ragone

#### Outline

**Power Links** Outline

- ► Electrical glue components
  - DC-DC convertersDC-AC converter
- Account for power losses


### Torque couplers

Outline

- ► Components that are included to:
  - ► Glue for mechanical systems acting on the same shaft
- - Gears in the coupling equation
     Sub models for friction losses
- ► Basic equations
  - -Angular velocities
  - -Torque (from a power balance, including losses)

# **Power Split Devices**

- Manage power splits between different components
- ► Important component for achieving flexibility
- ▶ Modeling approach: Speed relations with torque from power balance.



Can add more planetary gears