Vehicle Propulsion Systems Lecture 8

Supervisory Control Algorithms

Lars Eriksson Associate Professor (Docent)

Vehicular Systems Linköping University

November 18, 2010

Outline

Repetition

Deterministic Dynamic Programming - Basic algorithm

$$J(x_0) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$
$$x_{k+1} = f_k(x_k, u_k)$$

Algorithm idea:

Start at the end and proceed backward in time to evaluate the optimal cost-to-go and the corresponding control signal.

Examples of Short Term Storage Systems

Outline

Supervisory Control Algorithms

Deterministic Dynamic Programming - Basic Algorithm

Pneumatic Hybrid Engine System

Parallel Hybrid - Modes and Power Flows

Control algorithms

Determining the power split ratio u

 $P_j(t)$ $u_j(t) = \frac{P_{m+1}(t)}{P_{m+1}(t) + P_l(t)}$ (4.110)

- ► Clutch engagement disengagement B_c ∈ {0, 1}
- ► Engine engagement disengagement B_e ∈ {0, 1}

Classification I of Supervisory Control Algorithms

- Non-causal controllers
 - Detailed knowledge about future driving conditions.
 - Position, speed, altitude, traffic situation.
 - Uses:
 - Regulatory drive cycles, public transportation, long haul operation, GPS based route planning.
- Causal controllers
 - No knowledge about the future...
 - Use information about the current state.
 - Uses:
 - "The normal controller", on-line, in vehicles without planning

Some Comments About the Problem

- Difficult problem
- Unsolved problem for causal controllers.
- Rich body of engineering reports and research papers on the subject
 - -This can clearly be seen when reading chapter 7!

Strategies for the Parallel Hybrid

Power split u, Clutch B_c , Engine B_e

	Mode	и	Be	Bc
1	ICE	0	1	1
2a	ZEV	1	0	0
2b	ZEV	1	0	1
3	Power assist	[0,1]	1	1
4	Recharge	< 0	1	1
5a	Regenerative braking	1	0	0
5a	Regenerative braking	1	0	1

All practical control strategies have engine shut off when the torque at the wheels are negative or zero; standstill, coasting and braking.

Classification II of Vehicle Controllers

- Heuristic controllers
 - -State of the art in most prototypes and mass-production.
 - Optimal controllers
 - -Inherently non-causal
 - Sub-optimal controllers -Often causal

Outline

Heuristic Control Approaches

Heuristic Control Approaches

Operation usually depends on a few vehicle operation

- Rule based: Nested if-then-else clauses
 - if $v < v_{low}$ then use electric motor (u=1). else...
- Fuzzy logic based
- Classification of the operating condition into fuzzy sets. Rules for control output in each mode. Defuzzyfication gives the control output.

Heuristic Control Approaches

Parallel hybrid vehicle (electric assist)

 Determine control output as function of some selected state variables:

vehicle speed, engine speed, state of charge, power demand, motor speed, temperature, vehicle acceleration, torque demand.

Heuristic Control Approaches - Concluding Remarks

Proper tuning can give good fuel consumption reduction

Performance will vary with cycle and driving condition

Outline

Optimal Control Strategies

Consider a driving mission

Easy to conceive

-Not robust.

Relatively easy to implement

and charge sustainability Result will depend on the thresholds

 Variables. Control signal – u(t), System state – x(t), State of charge q(t) (is a state).

First Solution to the Problem

Minimize the fuel consumption

$$J=\int_0^{t_f} \dot{m}_f(t,u(t))dt$$

Including constraints

Including battery penalty according to

$$\phi(q(t_f)) = w(q(0) - q(t_f)) = w \int_0^{t_f} \dot{q}(t) dt$$

enables us to rewrite

min
$$J(u) = \int_{t_a}^{t_b} L(t, u(t)) + w \dot{q}(t) dt$$

Formulating the Optimal Control Problem

- -What is the optimal behaviour? Defines Performance index J.
 - Minimize the fuel consumption

$$J=\int_0^{t_f}\dot{m}_f(t,u(t))dt$$

Balance between fuel consumption and emissions

$$J = \int_0^{t_f} \left[\dot{m}_f(t, u(t)) + \alpha_{CO} \dot{m}_{CO}(x(t), u(t)) + \alpha_{NO} \dot{m}_{NO}(x(t), u(t)) + \alpha_{HC} \dot{m}_{HC}(x(t), u(t)) \right] dt$$

Include driveability criterion

$$J = \int_0^{t_f} \dot{m}_f(t, u(t)) + \beta \left(\frac{d}{dt}a(t)\right)^2 dt$$

Including constraints

Hard or soft constraints

$$\min J(u) = \int_{t_a}^{t_b} L(t, u(t)) dt$$

s.t. q(0) = q(t_f)

min
$$J(u) = \phi(q(t_f)) + \int_{t_a}^{t_b} L(t, u(t)) dt$$

How

use

$$\phi(q(t_f)) = \alpha \left(q(t_f) - q(0)\right)^2$$

penalizes high deviations more than small, independent of sign

 $\phi(q(t_f)) = w(q(0) - q(t_f))$ penalizes battery usage, favoring energy storage for future

One more feature from the last one

Constraints That are Also Included

- State equation $\dot{x} = f(x)$ is also included From Lecture 6
- Consider hybrid with only one state SoC

$$\min J(u) = \phi(q(t_b), t_b) + \int_{t_a}^{t_b} L(t, u(t)) dt$$

$$s.t. \frac{d}{dt}q = f(t, q(t), u(t))$$

$$u(t) \in U(t)$$

$$q(t) \in Q(t)$$

to select
$$\phi(q(t_f))$$
?
 $\phi(q(t_f)) = \alpha(q(t_f))$

Outline

Analytical Solutions to Optimal Control Problems

Core of the problem

$$\min J(u) = \phi(q(t_b), t_b) + \int_{t_a}^{t_b} L(t, u(t)) dt$$

s.t. $\dot{q}(t) = f(t, q(t), u(t))$

 $u(t) = \arg\min H(t, q(t), u(t), \mu(T))$

with

$$H(t, q(t), u(t), \mu(T)) = L(t, u(t)) + \mu(t) f(t, q(t), u(t))$$

$$\dot{\mu}(t) = -\frac{\partial}{\partial q}f(t, q(t), u(t))$$
$$\dot{q}(t) = f(t, q(t), u(t))$$

If $\frac{\partial}{\partial q} f(t, q(t), u(t)) = 0$ the problem becomes simpler. μ becomes a constant μ_0 , search for it when solving.

Analytical Solutions to Optimal Control Problems

ECMS - Equivalent Consumption Minimization Strategy

• μ_0 depends on the (soft) constraint

Analytical solutions to Optimal Control Problems

$$\mu_0 = rac{\partial}{q(t_f)} \phi(q(t_f)) = / ext{special case} / = -w$$

Different efficiencies

$$\mu_0 = \frac{\partial}{\partial q(t_f)} \phi(q(t_f)) = \begin{cases} -w_{dis}, & q(t_f) > q(0) \\ -w_{chg}, & q(t_f) < q(0) \end{cases}$$

 Introduce equivalence factor (scaling) by studying battery and fuel power

$$s(t) = -\mu(t) rac{H_{LHV}}{V_b \, Q_{max}}$$

ECMS - Equivalent Consumption Minimization Strategy

Determining Equivalence Factors II

 Collecting battery and fuel energy data from test runs with constant u gives a graph

Slopes determine s_{dis} and s_{chg}.

Determining Equivalence Factors I

ECMS On-line Implementation

Flowchart

There is also a T-ECMS (telemetry-ECMS)