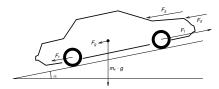
Vehicle Propulsion Systems Lecture 11

Case Study 6 Fuel Cell Vehicle and Optimal Control

Lars Eriksson Associate Professor (Docent)

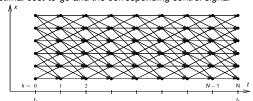

> Vehicular Systems Linköping University

December 5, 2010

The Vehicle Motion Equation

Newtons second law for a vehicle

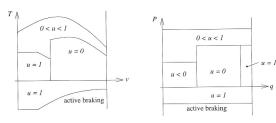
$$m_{V} \frac{d}{dt} v(t) = F_{t}(t) - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$


- ► F_t tractive force
- ► F_a aerodynamic drag force
- ► F_r rolling resistance force
- ▶ F_g gravitational force
- ► F_d disturbance force

Deterministic Dynamic Programming – Basic algorithm

$$J(x_0) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$
$$x_{k+1} = f_k(x_k, u_k)$$

Algorithm idea:


Start at the end and proceed backward in time to evaluate the optimal cost-to-go and the corresponding control signal

Heuristic Control Approaches

torque demand

▶ Parallel hybrid vehicle (electric assist)

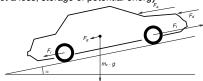
 Determine control output as function of some selected state variables: vehicle speed, engine speed, state of charge, power demand, motor speed, temperature, vehicle acceleration,

Outline

Repetition

Case study 6: Fuel Optimal Trajectories of a Racing FCEV Model compilation

Model simplification

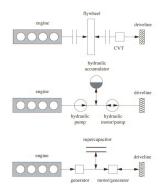

Formulating the optimal control problem

Optimal Controllers Solutions

Some Additional Material – Fuel Consumption

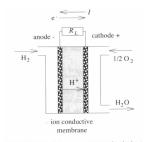
Gravitational Force

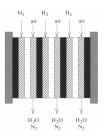
Gravitational load forceNot a loss, storage of potential energy



▶ Up- and down-hill driving produces forces.

$$F_g = m_v g \sin(\alpha)$$


 \blacktriangleright Flat road assumed $\alpha=$ 0 if nothing else is stated (In the book).


Examples of Short Term Storage Systems

Fuel Cell Basic Principles

- Convert fuel directly to electrical energy
- Let an ion pass from an anode to a cathode
- ► Take out electrical work from the electrons
- ▶ Fuel cells are stacked ($U_{cell} \le 1V$)

Overview of Different Fuel Cell Technologies

6				
Anode waste H ₂ , H ₂ O, CO ₂ -			Cathode waste O ₂ , N ₂ , H ₂ O, CO ₂	
AFC	H ₂ → H ₂ O ←	OH⁻ ◄	→ O ₂	T=80 C
PEMFC PAFC	H ₂ →	H ⁺ →	← 0 ₂ → H ₂ O	T=80 C (PEMFC) T=200 C (PAFC)
MCFC	H ₂ → CO ₂ ←	CO ₃ ²⁻ ←	← 0 ₂ → CO ₂	T=650 C
SOFC	H ₂ → H ₂ O ←	0²· ←	← O ₂	T=1000 C
Fuel H ₂ (+ CO ₂) ->			4	Oxidant (+ N ₂ , + CO ₂)
	Anode	Electrolyte	Cathode	

Hydrogen Fuel Storage

- ► Hydrogen storage is problematic Challenging task.
- Some examples of different options.
 - ► High pressure bottles
 - ▶ Liquid phase Cryogenic storage, -253°C.
 - Metal hydride
 - ► Sodium borohydride NaBH₄

Quasistatic Modeling of a Fuel Cell

► Causality diagram

- ► Power amplifier (Current controller)
- ► Fuel amplifier (Fuel controller)
- ► Standard modeling approach

Fuel Cell Thermodynamics

Starting point reaction equation

$$\textit{H}_2 + \frac{1}{2}\,\textit{O}_2 \Rightarrow 2\,\textit{H}_20$$

► Open system energy – Enthalpy H

$$H = U + pV$$

► Reversible energy – Gibbs free energy G

$$G = H + TS$$

► Open circuit cell voltages

$$U_{\text{rev}} = -rac{\Delta G}{n_{e}\,F}, \hspace{1cm} U_{\text{id}} = -rac{\Delta H}{n_{e}\,F}, \hspace{1cm} U_{\text{rev}} = \eta_{\text{id}}$$

F – Faradays constant ($F = q N_0$)

Under load

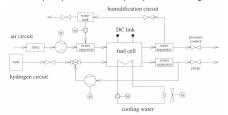
$$P_{I} = I_{fc}(t) \left(U_{id} - U_{fc}(t) \right)$$

Fuel Cell Performance - Polarization curve

Polarization curve of a fuel cell Relating current density $i_{\rm fc}(t)=I_{\rm fc}(t)/A_{\rm fc}$, and cell voltage $U_{\rm fc}(t)$

Curve for one operating condition

- ► Fundamentally different compared to combustion engine/electrical motor
- Excellent part load behavior
 When considering only the cell


Fuel Cell System Modeling

► Describe all subsystems with models

$$P_2(t) = P_{st}(t) - P_{aux}(t)$$

$$P_{aux} = P_0 + P_{em}(t) + P_{ahp}(t) + P_{hp}(t) + P_{cl}(t) + p_{cf}(t)$$
m-electric motor, ahp – humidifier pump, hp – hydrogen

em-electric motor, ahp – humidifier pump, hp – hydrogen recirculation pump, cl – coolant pump, cf – cooling fan.

 Submodels for: Hydrogen circuit, air circuit, water circuit, and coolant circuit

Outline

Repetition

Case study 6: Fuel Optimal Trajectories of a Racing FCEV Model compilation

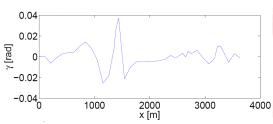
Model simplification

Formulating the optimal control problem

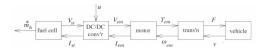
Optimal Controllers Solutions

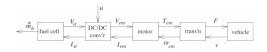
Some Additional Material - Fuel Consumption

Problem Setup


▶ Run a fuel cell vehicle optimally on a racetrack

- Start up lap
- Repeated runs on the track
- Path to the solution
 - Measurements Model
 - Simplified model
 - Optimal control solutions


Problem Setup - Road Slope Given

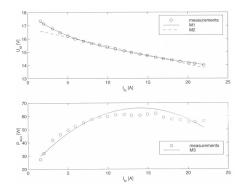


Model Causality

Model causality - Dynamic model

Model Component - Fuel Cell

Current in the cell and losses

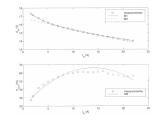

$$I_{fc}(t) = I_{fc}(t) + I_{aux}(t)$$

Current and hydrogen flow

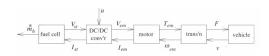
$$\dot{m}_H(t) = c_9 \, I_{fc}(t)$$

▶ Next step: Polarization curve and auxiliary consumption

Fuel Cell - Polarization and Auxiliary Components


Fuel Cell - Polarization and Auxiliary Components

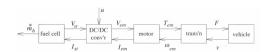
Polarization curve


$$U_{st}(t) = c_0 + c_1 \cdot e^{-c_2 \cdot I_{fc}(t)} - c_3 \cdot I_{fc}(t)$$

Auxiliary power

$$P_{aux}(t) = c_6 + c_7 \cdot I_{fc}(t) + c_8 \cdot I_{fc}(t)$$

Model Component – DC Motor Controller

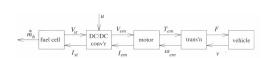

► DC motor voltage (from control signal *u*)

$$U_{em}(t) = \kappa \, \omega_{em}(t) + K \, R_{em} \, u(t)$$

► Current requirement at the stack

$$I_{st} = \frac{U_{em}(t)I_{em}(t)}{\eta_c U_{st}(t)}$$

Model Component - DC Motor

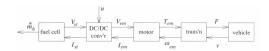

▶ DC motor current

$$I_{em}(t) = rac{U_{em}(t) - \kappa \, \omega_{em}(t)}{R_{em}}$$

► DC motor torque

$$T_{em}(t) = \kappa_{em} I_{em}(t)$$

Model Component - Transmission and Wheels


► Tractive force

$$F(t) = \eta_t^{\pm 1} \, rac{\gamma \, T_{em}(t)}{r_w}$$

Rotational speed

$$\omega_{em}(t) = \frac{\gamma v(t)}{r_{ee}}$$

Model Compilation 1 - Vehicle


▶ The vehicle tractive force can now be expressed as

$$F(t) = rac{\eta_t \, \gamma}{r_w} \, \kappa_{em} \, K \, u(t)$$

▶ Dynamic vehicle velocity and position model

$$\frac{d}{dt}v(t) = h_1 u(t) - h_2 v^2(t) - g_0 - g_1 \alpha(x(t))$$
$$\frac{d}{dt}x(t) = v(t)$$

Model Compilation 2 – Fuel Consumption

Fuel flow, $\dot{m}_H(t) = c_9 I_{fc}(t)$

$$I_{lc}(t) = \frac{P_{aux}(I_{st}(t))}{U_{st}(I_{st}(t))} + \frac{K \ u(t)}{\eta_c \ U_{st}(I_{st}(t))} \left(K \ R_{em} \ u(t) + \kappa_{em} \frac{\gamma}{r_w} \ v(t)\right)$$

-Implicit nonlinear static function

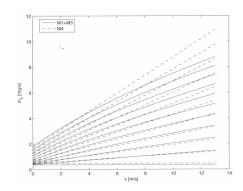
Simpler model

$$\dot{m}_H(t) = b_0 + b_1 v(t) u(t) + b_2 u^2(t)$$

Outline

Repetition

Case study 6: Fuel Optimal Trajectories of a Racing FCEV Model compilation


Model simplification

Formulating the optimal control problem

Optimal Controllers Solutions

Some Additional Material – Fuel Consumption

Simplified Fuel Consumption – Validation

Detour

- Occam's razor: The explanation of any phenomenon should make as few assumptions as possible.
 Shave of those who are unnecessary.
- Law of Parsimony: Among others a factor in statistics: In general, mathematical models with the smallest number of parameters are preferred as each parameter introduced into the model adds some uncertainty to it.
- Another viewpoint. Try to simplify the problem you solve as much as possible.
 - -Neglect effects and be proud when you are successful!

Outline

Repetition

Case study 6: Fuel Optimal Trajectories of a Racing FCEV Model compilation

Model simplification

Formulating the optimal control problem

Optimal Controllers Solutions

Some Additional Material - Fuel Consumption

Optimal Control Problems

► Start of the cycle

$$v(0) = 0, \quad x(0) = 0$$

$$\lambda_1(t_f) = 0, \qquad x(t_f) = x_f = v_m t_f$$

▶ Periodic route

$$x(0) = 0$$

$$\lambda_1(t_f) = \lambda_1(0), \qquad x(t_f) = x_f = v_m t_f, \qquad v(t_f) = v(0)$$

PID Cruise Controller - Baseline for Comparison

Simple controller for the start

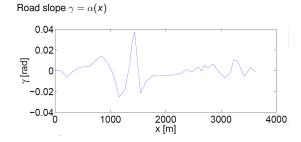
$$u(t) = K_p(f v_m - v(t)) + K_i \int_0^t (f v_m - v_t(t)) dt$$

 \emph{f} -tuning parameter \approx 1 to allow for matching the average speed

Outline

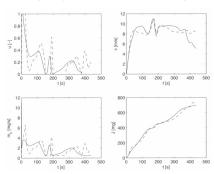
Repetition

Case study 6: Fuel Optimal Trajectories of a Racing FCEV Model compilation

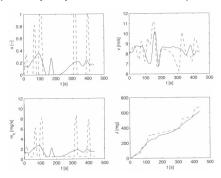

Model simplification

Formulating the optimal control problem

Optimal Controllers Solutions


Some Additional Material – Fuel Consumption

Problem Setup - Road Slope Given


Fuel Optimal Trajectory - Start

Fuel optimal trajectory has 7% lower fuel consumption

Fuel Optimal Trajectory - Continuous Driving

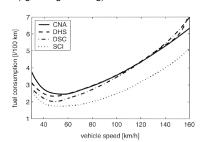
Fuel optimal trajectory has 9% lower fuel consumption

Outline

Repetition

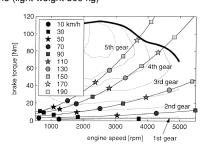
Case study 6: Fuel Optimal Trajectories of a Racing FCEV Model compilation

Model simplification


Formulating the optimal control problem

Optimal Controllers Solutions

Some Additional Material – Fuel Consumption


Fuel Optimal Speed for Normal Driving

ICE vehicle (light weight 800 kg)

Engine Map an Gearbox Layout

CI engine (light weight 800 kg)

